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We describe a systematic procedure for deriving the Wess-

Zumino-Witten  action in two dimensions, using chiral anomaly

as an input. The actual calculation is carried out with a homotopy

operator technique.

I. INTRODUCTION

8kyrmeís original idea 1 that baryons are the solitons in the chiral non-linear u-model

has recently attracted much interestí+, since the latter has been speculated to represent

the low-energy behavior of QCD. Further developments have been made by Wess and

Zumino’ and Witten3, who have modified the Skyrme model to incorporate the chiral

anomalies. The so-called Wess-Zumino-Witten (WZW) term contains, when gauged, all

the information about flavor anomalies in QCD.
Witten  observed that, without the WZW term, the Skyrme model will only allow

processes conserving (-l)ì,  where n is the number of the pseudoscalars. This is not one

of the symmetries of QCD. He also analyzed the topological aspects of the chiral non-

linear u-model, making analogy with those in the dynamics of a charged particle moving

in the field of a magnetic monopole. It turns out that the WZW term is only properly

expressible in terms of a certain 5-D integral. Topological consideration requires the

co efficient of the WZW term to be quantized, much in the same way as monopole charge
is quantized.

However, to gauge the modified Skyrme model, the conventional minimal coupling
method would not work because of the topological nature of the WZW term. Witten  has
tried to gauge the WZW term using Noetherian methods. The resulting action becomes
the sum of the original 5-D integral and a 4-D integral of a certain effective Lagrangian
involving both gauge fields and Goldstone bosons. This effective Lagrangianis  extremely

messy, containing some twenty-more terms. Indeed, Wittenís  original result contained

a few minor errors, which has launched many correcting papers6
A different direction of constructing the modified Skyrme model, starting from the

Bardeen
nov and

anomaly, has been taken by Wess and Zumino5, Rossi  et al.ë, Alvarez*, DíYako-

Bides9 and Nepomechieî, who have all obtained the ungauged WZW term. And
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later, Pak and Rossi”  and Ingermanson i2 have derived the gauged WZW term. Owing

to the different ëmethods adopted, the results of Refs. (8), (10) and (12) look different

from those of Refs. (7), (9) and (11).
The purpose of this work is to describe for (QCD),  a systematic procedure for

deriving the WZW term using Bardeenís anomaly as an input. (We discuss the 2-D theory

just for simplicity). Differential geometric approach advocated by Zuminoi3, Storai4

and others15 are essential in this derivation.
The outline of this paper is as follows. Sec. II summarises our conventions. In

Sec. III, we briefly discuss how the determinant of the Dirac operator is related to the
chiral anomaly. In Sec. IV, we present the explicit derivation of the WZW term. The
Appendix contains some formulae used in the text.

II. CONVENTIONS

We will work in the 2-D Euclidean space, and choose the Dirac matrices to be

Yo = ax  9 71 = ay 9 75 = UJz.

The symbol ìtr” will denote trace over Dirac and/or internal indices, while ìTrî will

denote trace over space-time as well as Dirac and internal indices.

The vector and axial-vector gauge fields (in matrix form) are given by

v/J
= -i vbXb -i ab Xbp , al,= p , (2.1)

where Xb are the hermitian generators of SU(N), satisfying

tr(Xa Xb) = + 6 ab .

The field strength tensors are then given by

ìP = apVv - a,v, + [vp, vu 1 + [a,, a~ 1 7

aPV = a,a, - au ap + [v,, a~ 1 + [a,, vu J . (2.2)

In our calculations we will utilize differential forms13-15,  which provide an exceeding-
ly compact notation saving us the tedious task of writing out indices explicitly. So we
define the l-forms v, a and 2-forms V, ìa  by

v = v,dx /J ’
a-a pdxC(  ’

3 =_ + vclv dxFdxv  , ’ii E,~ apv dxpdxv  . (2.3)

-_ .2.-_ )~ .,. .
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We omit the wedge product symbols and simply regard dxP as an anti-commuting Grass-

mann object.
The fundamental field U to appear in the effective action3y5 is an element of the

coset space SU(N)IxSU(N)R/SU(N),, which transforms under SU(N)I  x SU(N)R  by

(A ,  B )  : U - AUB-’  .

U can be described in terms of the Goldstone fields rra by

u = e2it  with t = Ta x” (2.4)

The general theory of non-linear realization of the chiral symmetry has been

described in the classic papers of Callan et all6 Recently, some authorsí,”  have demon-

strated how to determine in such a theory the determinant of certain Dirac operators

through the chiral anomaly. In this approach it is useful to consider the following l-

and 2-forms depending on a real parameter t:

gt G vt + at ys = e-itfëys  ( d + v + a  rs)eitiY, ,

gt = G, + ii, ys = e-itEy,  (G+a ys)eitEY5  .

Then it follows from (2.1)-(2.5)  that

+t = dvt + vt + a: ,

% = dat + {vt,at} ,
and

Vo=v, a,=a, vo=v, $ = a^.

Finally, the covariant derivative at t of a p-form wp is defined by

Dt wp =  daP +  vtap - (--)p aPvt (2.8)

(2.5)

(2.6)

(2.7)

III. DETERMINANTS FROM ANOMALY

To analyze the low-energy dynamics in QCD, we perform a local chiral transforma-
tion on the quark fields in a vacuum state. Thus we assume that everywhere in the space
we have an approximate vacuum state, but the parameters labelling the state are slowly

varying functions of the space-time. Due to dynamical breakdown of the chiral symmetry,
the parameters appearing in the chiral transformation of the quark fields describe the

Goldstone particles. The difference in the path integral over the quark fields for this

i..... .,
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state and for the vacuum can be interpreted as the low-energy effective action of the

Goldstone bosons8-10~17~18  So

exp - W[v+ays ,t,tl f
JD\i/DFexp (Idx\DV;%  iyP( aP+vc(  +aPY,)V;1/2  $}

ID$D$exp { Idx~iYI,(a,+v,+a~Ys)~} ’

with

vt ~ e-2it& and W[v+ay5,t,01  = 0.

To calculate W, we perform an infinitesimal chiral transformation on $ and 5:

$-+= V+jt$  ) +1c/ = ë3;jlf,  )

and easily obtain the relation

W[v+ay,  , [, tl = W[v+ay,,  t, t-at] + 2i  6t T r  tys  ,

using the fact that under the infinitesimal chiral rotations, the fermion measure trans-
forms aslg

D$,ëDT’  = D,j, DJj ,-2i St Trtrs  .

The trace in the above equation, when suitably evaluated, yields the chiral anomaly. So
the effective action W satisfies the differential equation

-$ W[v+ay,,$,tl  = 2 i  Trt ys .

Let BF[gtl  f 2i Tr Xb ys denote the chiral anomaly in the presence of the back-
ground gauge-field gt s vt + at ys . Then

W[v+ay,,  .!, 1 1  = ,i dt 78’ BF - Ji dt JR2 tr[tBtl , (3.1)

where the trace operator in front of tBt denotes trace over SU(N) indices, and B,
is defined by

B, E tr[2i ys ]
gt ’

with tr .now denoting trace over Dirac indices. B, is to be calculated

regularization scheme. Here we will choose a scheme such that the

conserved. Then Bt is found to be22y23

Bt = &(vt -2af),

which is the Bardeen anomaly inthe 2-D Euclidean space.

with some kind of
vector currents are

(3.2)
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IV. CALCULATIOId OF THE WZW TERM
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Now we proceed to derive an explicit expression of the WZW action using (3.1)

and (3.2). All fields appearing in $Bt  are supposed to approach constants at infinity.
This allows the space-time R2 to compactify to S2. Let D3 be a 3-D disk whose boundary

is S2. Then

W  =  Ibdt JS2 tr[(Btl  = ,i dt Dj d(tr[EBtl>

= .fA dt ID3 D&tr[lBtl)  , (4.1)

where we have used Stokesí theorem and the fact that the trace of anything is a scalar.

Using the formulae in (A. 1) and (A. 2), we easiiy obtain

where

2
a+ = - i  tr(at Gt --j- a[)

Substituting (4.2) into (4.1), we find

w-&JD3 (a* -%I .

From the work of Witten3, we know the gauged WZW

2-D integral of a certain Lagrangian involving the gauge fields

plus a 3-D integral (the WZW term) which cannot be reduced

singular density. So we will separate out from the RHS of
written as a 2-D integral. To carry out such a separation, it

homotopy operator formalism as advertised by Zumino13 and

and (15).

action can be written as a

and the Goldstone bosons,
to a 2-D integral of a non-

(4.4) a part which can be
is convenient to apply the
Storar4 ; see also Refs. (12)

For each value oft, the homotopy operator Kt is defined by

dKt+Ktd= 1 ,  K;=O, dí=O. (4.5)

The action of K, on an arbitrary polynomial P(vt, at, ?,, ^at) can be computed with the

(4.2)

(4.3)

(4.4)

formular3J4 _

KtP(vt,  at, Gt, tii )

where Qi is defined. to be the antiderivative operator
pendent  ìinterpolating fields”

which when acting on the sde-

-:
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ì;  ES Vt ) as z s at ,

$ =d vs + (v$* + (a:)* = s qt - s(l-s)(vf+at)  ,

ìt
AS =daf+ {vs,ai}  = sa^t -s(l-S) {vt,at}  , ( 4 . 6 )

gives rise to

KS ììt  = 0 ) % at
s s =o

d
Qît  G;  = ds v; ds = vt ds , Qs iis = at ds . ( 4 . 7 )

.

Using (4.5) and Stokesí theorem, we can achieve an initial separation of W in the

following way:

W=&D3 [(K, d + dK, ) a - (K,d + dKo)Gl

=---.-2, Js2 (K~,-K,%) +& JD3W~d~~-K4-w (4.8)

Our next task is to further extract from the last 3-D integral in (4.8) another piece which

can be converted to a regular 2-D integral.

Define

7 = [K,da, - &d%lg,=o

and

Qt- Ktdq - [Ktd~tlg,=o  . (4.9)

Then
A Q  -Q1 - Q,, =  KIda - &da0 - 7,

and the WZW action can be written as

w =+-Js2  WIG - KoG, > + -& JD, (AQ+7) (4.10)

It is the integral of AQ that will be transformed into a 2-D integral. From (A. 4) we have
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and gt, gt are given in (2.5). Therefore we get

[K&+lgo =. = $ tr[ys ~5 1 ,

and hence

so

7 = $ tr[y, c~: ] .

AQ = d[ $ My5 PI go>  I ,

and

[ AQ = $ Ltr(y5 PI go>.
. D3 s= 2

Inserting (4.12), (4.13) and (A.3) into (4. lo), we get
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(4.11)

(4.12)

(4.13)

WA .
2n Js2 $ tr[alvl - aOvO  + ysPlgol  + & JD3 -$- tr[y, CY: 1. (4.14)

Now it is customary to keep all the gauge-field-independent terms of W in the 3-D
integral. The a, vr term in the 2-D integral in (4.14) still contains a gauge-field-inde-

pendent piece, which we will transfer back to the 3-D integral. Thus we rewrite (4.14)
as

w = $ Js2 + tr 1 wl - [alvl  I, o= 0 - aovo + YEA go }

1

+%F D36I Itr{y,cy: +  3d[a,v,lg =O}  . (4.15)

Carrying out the trace operation over Dirac indicesíand  using the definitions (2.4) and

(2.5), we can transform (4.15) into a more familiar form:

w =&Js2
tr[(v-a)dU’  U + (v+a)U dU-’  + UT1 (v+a)U(v-a)

- (v+a) (v-a) 1 + &y .fD3 WdU  U-l I3 (4.16)

(4.16) is the desired expression for the WZW action. It agrees with that obtained in
Refs. (20)-(22).  The procedure that we have described here can obviously be generalized

without new difficulties to the case of any even dimensions, although the algebra would

become much more tedious.

APPENDIX

Here we list or derive some formulae that have been used in the text.
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(A. 1) From (2.5)-(2.8)  we have

Dtvt = dvt + 2~5 = irt + vt - ai ,

Dtat = at ,

DtVt = [i$,ql ,

Dtat = [irt, a t ]  .

(A.2) Differentiate (2.5) w.r.t. t,

d d
-vt +FatY5dt = i[at, tl + i[vt, Elrs + id.9, ,

so
d

dt Vt -- i[at, $1 ,

d
xat = iDtt  .

Similarly,

d
dtV-t

d _
dtat

iLit, El ,

iCGt,  El .

(A.3) We apply the homotopy operator K, on !C+ of (4.3)  and use (4.6), (4.7) to obtain

KPt
= - i  trji Il: [as 0: -+(aS)3]

= i tr  I/ [ai vtlds = +tr[a, vt] .

An entirely similar calculation leads to

Ktdq = - +tr[y, (gt gt -i $11 .

IA.4) Now we will separate out from the RHS of the above equation a piece which is a
total differential. We first express gt,and & as

gt
= crt + ,-ith5  go ,W5 ,

cyt- e-ith5  d(e ith5 > ,

St = e -itb5 go ,WY5 .
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With some obvious abbreviations, Ktdat can be written as

KtdSlt = -+ tr { ys [(cq + e-g,e+)(e-$e+)  -Jj- (at + e-goe+)3 I)

= ’  tr{~5[crte-~oe+-0!te-go- -
2

* e+ - <e-g,e+

+  g,g, - f g; +I} .

Using (2.5) and (2.6), we have

tr[Ys (cqe-boe+ - ct+e-g2,e+  - ctf e-g,e+)  I

= tr[Ts (ge-dgoe+ - o$e-g, e+ ) 1

= tr[y, (de+e- dg, + de+ de- g,)J (since at = e- de+)

= -d[tr(y, de+ e- go)1

So finally,
= -d[tr(y, &go)1  . (define & - de+e-)

K,dq =  d  [+ tr(y,  &go)  1 - + tr[%(gO  80
1_ _
3 g: - fc$) I.
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