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We describe a systematic procedure for deriving the Wess-
Zumino-Witten action in two dimensions, using chira anomaly
as an input. The actua caculation is carried out with a homotopy
operator technique.

. INTRODUCTION

Skyrmel's original idea! that baryons are the solitons in the chiral non-linear u-model
has recently attracted much interest?™, since the latter has been speculated to represent
the low-energy behavior of QCD. Further developments have been made by Wess and
Zumino® and Witten®, who have modified the Skyrme model to incorporate the chiral
anomalies. The so-caled Wess-Zumino-Witten (WZW) term contains, when gauged, al
the information about flavor anomalies in QCD.

Witten3® observed that, without the WZW term, the Skyrme model will only allow
processes conserving (-1)", where n is the number of the pseudoscalars. This is not one
of the symmetries of QCD. He aso anayzed the topological aspects of the chiral non-
linear u-moddl, making analogy with those in the dynamics of a charged particle moving
in the field of a magnetic monopole. It turns out that the WZW term is only properly
expressible in terms of a certain 5-D integral. Topological consideration requires the
co efficient of the WZW term to be quantized, much in the same way as monopole charge
is quantized.

However, to gauge the modified Skyrme model, the conventional minimal coupling
method would not work because of the topological nature of the WZW term. Witten has
tried to gauge the WZW term using Noetherian methods. The resulting action becomes
the sum of the originad 5-D integra and a 4-D integra of a certain effective Lagrangian
involving both gauge fields and Goldstone bosons. This effective Lagrangian‘is extremely
messy, containing some twenty-more terms. Indeed, Witten’s original result contained

a few minor errors, which has launched many correcting papers.®
A different direction of constructing the modified Skyrme model, starting from the

Bardeen anomay, has been taken by Wess and Zumino®,Rossi et a.€, Alvarez*, D’Yako-
nov and Eides® and Nepomechie!®, who have al obtained the ungauged WZW term. And
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later, Pak and Rossi!! and Ingermanson!? have derived the gauged WZW term. Owing
to the different €nethods adopted, the results of Refs. (8), (10) and (12) look different
from those of Refs. (7), (9) and (11).

The purpose of this work is to describe for (QCD), a systematic procedure for
deriving the WZW term using Bardeen¥s anomaly as an input. (We discuss the 2-D theory
just for simplicity). Differential geometric approach advocated by Zumino!?,Stora'#
and others!® are essentid in this derivation.

The outline of this paper is as follows. Sec. || summarises our conventions. In
Sec. Ill, we briefly discuss how the determinant of the Dirac operator is related to the
chiral anomaly. In Sec. IV, we present the explicit derivation of the WZW term. The
Appendix contains some formulae used in the text.

I1. CONVENTIONS

We will work in the 2-D Euclidean space, and choose the Dirac matrices to be

The symbol ¥tr” will denote trace over Dirac and/or internal indices, while TTrT will
denote trace over space-time as well as Dirac and internal indices.
The vector and axial-vector gauge fields (in matrix form) are given by

b, b b

- _ . .b
v, =-i V#X , ay = - a#.X , 2.1)

M

where XP are the hermitian generators of SU(N), satisfying
tr(X® XP) = —é— 530

The field strength tensors are then given by

VI,LV =a#vv—avvl_‘ + [V#, VV ] + [aIJ.’aV ]’

By = Oy — dydy +[v,,a, 1+ [a“,Vp] . (2.2)

In our calculations we will utilize differential forms35 | which provide an exceeding-
ly compact notation saving us the tedious task of writing out indices explicitly. So we

define the I-forms v, a and 2-forms v, a by

VEV#dX#, aEa# dx“ ,

1 |
3= EX Vi dx#dxv , a =5 ayy dx#dxv . (2.3)
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We omit the wedge product symbols and simply regard dx, as an anti-commuting Grass-
mann object.

The fundamental field U to appear in the effective action®-® is an element of the
coset space SU(N)LxSU(N)R/SU(N)V, which transforms under SU(N)p x SU(N)r by

(A, B) : U — AUB™.

U can be described in terms of the Goldstone fields 73 by
U = e with £ = 72 X° (2.4)

The general theory of non-linear realization of the chiral symmetry has been
described in the classic papers of Callan et al.’* Recently, some authors®:*® have demon-
strated how to determine in such a theory the determinant of certain Dirac operators
through the chiral anomaly. In this approach it is useful to consider the following |-
and 2-forms depending on a real parameter t:

gt = Vt + at Ys = e‘1t27s (d+V+a 75)@“575’

N - -i A s it
gt = Vt + at s e1t£7s (V+a 75)31 575 . (2.5)

Then it follows from (2.1)—(2.5) that

{It = th+V:+a§,

ag =da; + {vy,a;} (2.6)
and

Vo=V, a=1a, Vg=V, § =4 (2.7)

Finaly, the covariant derivative at t of a p-form Wy is defined by

Dt @p = dwp + Vi — (-)P WVt (2.8)

I1l. DETERMINANTS FROM ANOMALY

To analyze the low-energy dynamics in QCD, we perform a locd chira transforma
tion on the quark fields in a vacuum state. Thus we assume that everywhere in the space

we have an approximate vacuum state, but the parameters labelling the state are slowly
varying functions of the space-time. Due to dynamica breskdown of the chira symmetry,
the parameters appearing in the chira transformation of the quark fields describe the
Goldstone particles. The difference in the path integral over the quark fields for this
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state and for the vacuum can be interpreted as the low-energy effective action of the
Goldstone bosons®19,17:18 So

_ — 1 _1
[DYDFexp { fax BV v, (3,+v, +a 7, Wiy

exp — Wlvtays, §,t]1= _ —
JDYDVexp{ fdxy iv, (3 i+ v, +aro v}

with
Vo=e Y and Wivtays,£,0] = 0.

To calculate W, we perform an infinitesimal chiral transformation on y and :
, 1 - -, -_—1
you'= VEY . U-T = VR
and easily obtain the relation
W[V+a75 s Ey t] = W[V+a75 ) E’ t'8t] + 2| 6t Tr E’YS ’

using the fact that under the infinitesimal chiral rotations, the fermion measure trans-
forms as!®

Dy DY = Dy Dy el 8t Trévs

The trace in the above equation, when suitably evaluated, yields the chiral anomaly. So
the effective action W satisfies the differential equation

== Wivkays, btl = 2 Tef s

Let B?[gt]E 2i Tr XP vs denote the chiral anomaly in the presence of the back-
ground gauge-field g =v;+a;ys. Then

1 1
Wivtays, £, 11 = Io dt 72 B? = fo dt [, trlEBy] (3.1)

where the trace operator in front of ¢B; denotes trace over SU(N) indices, and B,
is defined by

with tr now denoting trace over Dirac indices. By is to be caculated with some kind of
regularization scheme. Here we will choose a scheme such that the vector currents are
conserved. Then B, is found to be??-2?

|

which is the Bardeen anomaly in-the 2-D Euclidean space.

B; =
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IV. CALCULATIOIv OF THE WZW TERM

Now we proceed to derive an explicit expression of the WZW action using (3.1)
and (3.2). All fields appearing in £B; are supposed to approach constants at infinity.
This allows the space-time R? to compactify to S*. Let D? be a 3-D disk whose boundary
isS%. Then

1 1
W= fdt [, tr(EB] = _[0 dt ; d(trl£Be])

1
= Jat DB (4.1)

where we have used StokesT theorem and the fact that the trace of anything is a scalar.
Using the formulae in (A. 1) and (A. 2), we easiy obtain

1 d

where

Q= -i tr(a; vy —%— at3) 4.3)

Substituting (4.2) into (4.1), we find

1

=5 Jps @ —90) . (4.4)

From the work of Witten3, we know the gauged WZW action can be written as a
2-D integral of a certain Lagrangian involving the gauge fields and the Goldstone bosons,
plus a 3-D integral (the WZW term) which cannot be reduced to a 2-D integral of a non-
singular density. So we will separate out from the RHS of (4.4) a part which can be
written as a 2-D integral. To carry out such a separation, it iS convenient to apply the
homotopy operator formalism as advertised by Zumino!® and Stora'4;see aso Refs. (12)
and (15).

For each value oft, the homotopy operator K is defined by

dKy + Kgd = 1, Kf =0,d"=0. (4.5)

The action of K; on an arbitrary polynomial P(vi,a, %,8;) can be computed with the
formulai3»4

. s S .S .S 48
KP(v¢, ag, Vi Ap) = “-O 2% P(v; a4, Ve ay),

where Qst is defined. to be the antiderivative operator which when acting on the s-de-
pendent ¥interpolating fields’
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S _ S
Vt =S Vt’ at—Sat,

BEdvy + (W) + (2= s vy —s(l-s)(vf+af),

t =da> +{Vt,i}=55t — s(1-s) {Vt,at}, (4.6)
gives rise to

S s _ s .S _

Qtvt—O, Qtat =0

Qshs__d S 4s = v. d Sa¥=a d

TRt s = v; ds, (3= ag ds . (4.7)

Using (45) and StokesT theorem, we can achieve an initial separation of W in the
following way:

W

% fpo [ d + dKy ) 2 = (Kod + dK) Q)

1
jsz (K Q=Ko Q) +5- [ (KidDy —KodQo) . 4.8)

Our next task is to further extract from the last 3-D integral in (4.8) another piece which
can be converted to a regular 2-D integral.

Define
T =[K d2, — Kodﬂolg(,:o
and
Q= Kd &y — [KidQyelg o . (4.9)
Then

AQ =Q;—Q = Kjd&2; —Kod2y — 7,

and the WZW action can be written as
1 1
W= -{sz (Ki Q4 — Kof2o) + 5 fD3(AQ+T) (4.10)

It is the integral of AQ that will be transformed into a 2-D integral. From (A. 4) we have

i : i . | 1
K@y = dl5 tr(rs B 8o)) = 5 trlvs(Bofo — 5 85 = 5 o1 )1,

where

o = tEYs d(eitévs)’ 6, = d(eltEYs ) o 1tévs

2
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and gt, g, are given in (2.5). Therefore we get
i

= — trlys 4 ], (4.11)

(K@l ;

and hence

— 3
=Lyl (4.12)

S0 .
AQ =dl —%— tr(ys 61 80) |,

and
(e = fo 5 tlrs 61 g5) (4.13)

Inserting (4.12), (4.13) and (A.3) into (4. 10), we get

1 1 1 i 3
W= Jo 5 tlavi—acvet vsbigg) + 52 [y 5 trlyseil. (4.14)

Now it is customary to keep al the gauge-field-independent terms of W in the 3-D
integral. The a v, term in the 2-D integral in (4.14) still contains a gauge-field-inde-
pendent piece, which we will transfer back to the 3-D integral. Thus we rewrite (4.14)
as

1 i
W = ﬁ .[S2 _tr {alvl—“ [alvl ]gozo— aOVO + 7561 go }

| .
+o— fps —tr{ysed + 3dlavily 0} (4.15)

Carrying out the trace operation over Dirac indices and using the definitions (2.4) and
(2.5), we can transform (4.15) into a more familiar form:

W tr[(v-2)dU ' U + (v+a)U dU ' + U! (v+a)U(v-a)

.
47 782

— (v+a) (v-a) 1+ ps tr(dU U )3 (4.16)

L
127

(4.16) is the desired expression for the WZW action. It agrees with that obtained in
Refs. (20)—(22). The procedure that we have described here can obvioudsy be generalized

without new difficulties to the case of any even dimensions, athough the algebra would
become much more tedious.

APPENDIX

Here we list or derive some formulae that have been used in the text.
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(A.1) From (2.5)—(2.8) we have

Dyvy = dvt + 2v§=€'t+vt2—a%,

Dtat = at ,
Divp = [ag, 8l
Dtét =[¥;, at] .
(A.2) Differentiate (2.5) w.r.t. t,

d d : , ,
&Vt T gr A ys Tilag €+ ilvy Elys + ddEys

So

Eat = lDtE .

Similarly,

d Ca
—CFY‘[ zl[at’sly

—%ét = i[et, E] -

(A.3) We apply the homotopy operator K on 2, of (4.3), and use (4.6), (4.7) to obtain
i 1 . 2
Ky = -1 trf 9 Lo} 9 —5 ()’

. 1 s _ 1
=i tr fo [t vilds = 5-trlag vi] .
An entirely similar calculation leads to

i - 1
Ked £ = ——2—tr[75 (gt 8t—5 gl .
‘A.4) Now we will separate out from the RHS of the above equation a piece which is a
total differential. We first express g¢.and §; as

+ e'ltE’Ys eltg')’s ,

Bt T %t go

e'itg’)’s d(eité')’s) )

&t

. -it - it
g = e EYng e Evs )
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With some obvious abbreviations, K{d2; can be written as
- - 1 _
thQt = -—;— tr {75[(0‘t +e goe+)(e goe+)——2-(at+e gOe’L)3 I)
1 -~ - 2 - +
=" 2‘ tr{fys [oge goe+ —oqe gé et —aze g,e
- 1 3 1 3
+ gogo__3go ——‘3—0’1]}

Using (2.5) and (2.6), we have

tr[fys (ate‘goe+ — ate'gzoe+ — a% e'g0e+) |

triy, (e’ dgoe+ — ai e’ g et ) |

trly, (de*e” dg, + de*de"gy)l  (since o =c de™)

~d[tr(y, det e gJ)]

1

-d[tr(y, Brgy)] - (define gy=de"e™)
So finally,

i 1 P { 1 3
Kdgy = d [——12— tr(ys 5tgo)l——§‘tr[7s(go 8 — 38, - = o) I
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