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Things and sets

Ordinary mathematics is about things.

A collection of things is itself a thing, provided its size is limited.
Such a collection is called a set.

Categorical mathematics requires arbitrary collections of things.
These are called classes.

Sometimes, classes are not enough, so we need a bigger ontology.
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k-classes and k-entities

A 0-class is a set.

A 0-entity is a thing.

A 1-class is a collection of 0-entities, i.e. a class.

We shall not define 1-entity but assume the following.

Every thing is a 1-entity.
Every class is a 1-entity.
Every ordered pair of 1-entities is a 1-entity.
Every class-indexed tuple of 1-entities is a 1-entity.

A 2-class is a collection of 1-entities.

Likewise k-entity and k-class for k ∈ N.
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Modelling k-entities and k-classes

Here’s a way to interpret our terminology. There are others.
We work in ZFC, perhaps with urelements,
and one Grothendieck universe parameter U.

Thing → element of U.

Set → set in U.

Class → subset of U.

“1-entity” is inductively defined by the axioms.

2-class → set of 1-entities.

Etc.
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Application: sizes of categories

A category C is

small when ob C and each C(a, b) is a set

moderate when ob C and each C(a, b) is a class.

2-moderate when ob C and each C(a, b) is a 2-class.

light when ob C is a class and each C(a, b) is a set.

Light = moderate + locally small.

Examples

The category of natural numbers and functions is small.

Set is light but not small.

The category of sets and multirelations is moderate but not light.

The category [Set,Set] is 2-moderate but not moderate.

Higher categories can be k-light or k-moderate, for k ∈ N.
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Example: Yoneda lemma

For a (light) category C we have an isomorphism

Fc ≅ [Cop
,Set](Yc, F ) natural in c and F

Diagrammatically:

Cop × [Cop
,Set]

app

��

Y×[Cop
,Set] //

≅

[Cop
,Set]op × [Cop

,Set]
hom
��

Set
� � // Class2
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Bimodules

Let C and D be (light) categories.

A bimodule O∶ C →∣ D provides

for each c ∈ C and d ∈ D, a set O(c, d) of morphisms g∶ c→ d

composite morphisms c
′ f // c

g // d and c
g // d

h // d
′

.

These must satisfy two identity and three associativity laws.
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Questions about bimodules

1 Should we think of a bimodule C →∣ D as a functor Cop ×D to Set?

2 Should we think of it as a generalized (“pro”) functor?

3 Should we think of it as going from D to C?

4 Should we compose bimodules?

I prefer not to.
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From a functor to a bimodule

Two ways of constructing a bimodule C →∣ D.

A functor F ∶ C → D gives

F
Left(c, d) def

= D(Fc, d)

Contravariant on 2-cells

A functor G∶D → C gives

G
Right(c, d) def

= C(c,Gd)

Contravariant on 1-cells
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Left and right representations

For a bimodule O∶ C →∣ D,

a left representation consists of a functor F ∶ C → D
and isomorphism m ∶ O ≅ F

Left

a right representation consists of a functor G∶ C → D
and isomorphism n ∶ O ≅ G

Right
.
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Adjunction

An adjunction of functors

C
F

((
⊥ D
G

hh

is a bimodule isomorphism F
Left

≅ G
Right

.

An adjunction from C to D consists of a bimodule O∶ C →∣ D
with a left representation (F,R)
and right representation (G,S).

Paul Blain Levy (University of Birmingham) Locally graded categories February 17, 2019 12 / 31



Adjunction

An adjunction of functors

C
F

((
⊥ D
G

hh

is a bimodule isomorphism F
Left

≅ G
Right

.

An adjunction from C to D consists of a bimodule O∶ C →∣ D
with a left representation (F,R)
and right representation (G,S).

Paul Blain Levy (University of Birmingham) Locally graded categories February 17, 2019 12 / 31



Adjunction

An adjunction of functors

C
F

((
⊥ D
G

hh

is a bimodule isomorphism F
Left

≅ G
Right

.

An adjunction from C to D consists of a bimodule O∶ C →∣ D
with a left representation (F,R)
and right representation (G,S).

Paul Blain Levy (University of Birmingham) Locally graded categories February 17, 2019 12 / 31



One-sided modules

Let C be a (light) category.

A module O∶ C →∣ provides

for each c ∈ C, a set O(c) of morphisms g∶ c→

composite morphisms c
′ f // c

g // d

These must satisfy the identity and associativity laws.
Dually for a module O∶ →∣ C.
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Questions about one-sided modules

1 Should we think of a module C →∣ as a functor Cop
→ Set?

2 Should we think of it as a bimodule C →∣ 1?

3 Or as a module →∣ Cop
?

4 Dually for a module →∣ C.

I prefer not to.
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From an object to a module

An object v ∈ C gives v
From∶ →∣ C and v

To∶ C →∣ .

v
From(c) def

= C(v, c)
v
To(c) def

= C(c, v)

A representation for O∶ →∣ C consists of an object v ∈ C
and isomorphism v

From
≅ O.

Dually for O∶ C →∣ .
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Colimits extending

A coproduct c
inl // v c

′inroo in C is said to

extend across O∶ C →∣ D when

c
inl //

f ��

v

g

��

c
′inroo

f
′

��
d

extend across O∶ C →∣ when

c
inl //

f
��

v

g

��

c
′inroo

f
′

��
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Extension and representation

If O∶ C →∣ is representable,
then every colimit in C extends across it.

If O∶ C →∣ D is right representable,
then every colimit in C extends across it.

This is half of the theorem that left adjoints preserve colimits.
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General theory of modules

So far we have dealt with ordinary categories, and modules between
them.

More generally, for a 2-moderate multicategory W, we can speak of
W-enriched categories, and modules between them.
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Background

Semantics of call-by-push-value decomposes this into a strong
adjunction between C and a locally indexed category D.

“Strong adjunction” is formulated using a module →∣ D, not a
bimodule.

Showing it’s equivalent to locally indexed adjunction is complicated.

I wanted a cleaner story.
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Locally indexed category

Let V be a (light) category. A locally V-indexed category C consists of

a class ob C of objects

for all x ∈ V and c, c
′
∈ C, a set Cx(c, c′) of morphisms c

f

x
// c
′

reindexing of c
f

x
// c
′

by y
k // x giving c

k
∗
f

y
// c
′

identities c
idx,c

x
// c

composition of c
f

x
// c
′ g

x
// c
′′

giving c
f ;g

x
// c
′′

.

Must satisfy the evident seven equations.
Also locally V-indexed functor, natural transformation, bimodule and
module.
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Alternative view: indexed

A locally V-indexed category C is

a class ob C
a V-indexed category

whose fibres have object class ob C
and whose reindexing functors are identity-on-objects.
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Locally graded category (Wood)

Let V be a (light) category. A locally V-graded category C consists of

a class ob C of objects

for all x ∈ V and c, c
′
∈ C, a set Cx(c, c′) of morphisms c

f

x
// c
′

reindexing of c
f

x
// c
′

by y
k // x giving c

k
∗
f

y
// c
′

identities c
idc

1
// c

composition of c
f

x
// c
′ g

y
// c
′′

giving c
f ;g

x⊗y
// c
′′

.

Must satisfy the evident seven equations.
Also locally V-graded functor, natural transformation, bimodule and
module.
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Alternative view 2: enriched

For a category V,

we have a 2-moderate cartesian category [Vop
,Set]

locally V-indexed means [Vop
,Set]-enriched.

For a monoidal category V,

we have a 2-moderate multicategory [Vop
,Set]

locally V-graded means [Vop
,Set]-enriched.
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Locally indexed vs locally graded

We have defined

locally V-indexed, for a category V
locally V-graded, for a monoidal category V.

Theorem

For cartesian V, the two notions are equivalent.
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Distributivity

Let V be a category with coproducts
or a monoidal category with distributive coproducts.

Let C be a locally V-indexed category or locally V-graded category.

C is distributive when

for c
f

x
// c
′

and c
f
′

y
// c
′

there’s a unique mediating map c
f

x+y
// c
′

.

i.e. the coproduct extends across D−(c, c′) for all c, c
′
.

This corresponds to restricting the enriching multicategory [Vop
,Set].
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Universal properties in a locally V-graded category

Coproduct ∏i∈I Cx(ci, y) ≅ Cx(⨁i∈I ci, y)
Copower Cx⊗a(c, y) ≅ Cx(a.c, y)
Product ∏i∈I Cx(y, ci) ≅ Cx(y,∏i∈I ci)
Power Cx⊗a(y, c) ≅ Cx(y, ca)
Internal hom Cx(c, d) ≅ V(x, c⊸ d)
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Locally V-graded category: three examples (Wood)

A V-actegory is a category C with monoidal action ⊘∶V × C → C.

CAct
x (c, d) def

= C(x⊘ c, d)

A V-opactegory is a category C with monoidal action t∶ C × Vop
→ C.

COpact
x (c, d) def

= C(c, dt x)

A V-enriched category C.

CEnr
x (c, d) def

= V(x, C(c, d))
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Characterizing these constructions

V-actegory = locally V-graded category with copowers.

V-opactegory = locally V-graded category with powers.

V-enriched category = locally V-graded category with internal homs.
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Maps to a locally V-graded category D (Wood)

Map from a V-actegory C to D.

A functor H∶ C → D1.

A strength, consisting of morphisms Hc
tx,c

x
// H(x⊘ c)

Map from a V-opactegory C to D.

A functor H∶ C → D1.

A strength consisting of morphisms H(ct x)
sx,c

x
// Hc

Map from a V-enriched category C to D.

Function ob C → ob D.

Morphisms Hc
Hc,c′

C(c,c′)
// Hc

′
.

These correspond to locally V-graded functors.
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Modules from an actegory

A bimodule from a V-actegory C to D consists of

for each c ∈ C and d ∈ D a set O(c, d) of morphisms g∶ c→ d

composition c
′ f // c

g // d

composition c
g // d

h
x
// d
′

giving a morphism x⊘ c
g;h // d

′

satisfying the evident equations.

Equivalences

Bimodules from C →∣ D correspond to
bimodules CAct

→∣ D across which the copowers extend.

Bimodules V →∣ D are precisely modules →∣ D.
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Adjunctions

Abstractly, a model of call-by-push-value is

a cartesian category V with countable distributive coproducts

a countably distributive locally V-graded category D with countable
products and powers

an adjunction between VAct
and D,

i.e. a bimodule O with left and right representations.

From what we have learnt:

1 D corresponds to a distributive locally V-indexed category.

2 The products and powers in D extend along O,
because O is left representable.

3 The copowers in VAct
extend across O,

because O is right representable.
So O corresponds to a module V →∣ D
which is precisely a module →∣ D.
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