Locally graded categories

Paul Blain Levy

University of Birmingham

February 17, 2019

- Ordinary mathematics is about things.
- A collection of things is itself a thing, provided its size is limited. Such a collection is called a set.
- Categorical mathematics requires arbitrary collections of things. These are called classes.
- Sometimes, classes are not enough, so we need a bigger ontology.

- A 0-class is a set.
- A 0-entity is a thing.
- A 1-class is a collection of 0-entities, i.e. a class.
- We shall not define 1-entity but assume the following.
 - Every thing is a 1-entity.
 - Every class is a 1-entity.
 - Every ordered pair of 1-entities is a 1-entity.
 - Every class-indexed tuple of 1-entities is a 1-entity.
- A 2-class is a collection of 1-entities.
- Likewise k-entity and k-class for $k \in \mathbb{N}$.

Here's a way to interpret our terminology. There are others. We work in ZFC, perhaps with urelements, and one Grothendieck universe parameter \mathfrak{U} .

- Thing \rightarrow element of \mathfrak{U} .
- Set \rightarrow set in \mathfrak{U} .
- Class \rightarrow subset of \mathfrak{U} .
- "1-entity" is inductively defined by the axioms.
- 2-class \rightarrow set of 1-entities.
- Etc.

A category $\ensuremath{\mathcal{C}}$ is

- small when ob C and each C(a, b) is a set
- moderate when ob C and each C(a, b) is a class.
- 2-moderate when ob C and each C(a, b) is a 2-class.
- light when ob C is a class and each C(a, b) is a set.

Light = moderate + locally small.

Examples

- The category of natural numbers and functions is small.
- Set is light but not small.
- The category of sets and multirelations is moderate but not light.
- The category [Set, Set] is 2-moderate but not moderate.

Higher categories can be k-light or k-moderate, for $k \in \mathbb{N}$.

For a (light) category ${\mathcal C}$ we have an isomorphism

 $Fc \cong [\mathcal{C}^{op}, \mathbf{Set}](\mathcal{Y}c, F)$ natural in c and F

For a (light) category ${\mathcal C}$ we have an isomorphism

 $Fc \cong [\mathcal{C}^{op}, \mathbf{Set}](\mathcal{Y}c, F)$ natural in c and F

Diagrammatically:

Let ${\mathcal C}$ and ${\mathcal D}$ be (light) categories.

- A bimodule $\mathcal{O}: \mathcal{C} \twoheadrightarrow \mathcal{D}$ provides
 - for each $c \in C$ and $d \in D$, a set $\mathcal{O}(c, d)$ of morphisms $g: c \to d$

• composite morphisms $c' \xrightarrow{f} c \xrightarrow{g} d$ and $c \xrightarrow{g} d \xrightarrow{h} d'$. These must satisfy two identity and three associativity laws.

- **()** Should we think of a bimodule $\mathcal{C} \twoheadrightarrow \mathcal{D}$ as a functor $\mathcal{C}^{op} \times \mathcal{D}$ to Set?
- Should we think of it as a generalized ("pro") functor?
- Should we think of it as going from \mathcal{D} to \mathcal{C} ?
- Should we compose bimodules?

- **()** Should we think of a bimodule $\mathcal{C} \twoheadrightarrow \mathcal{D}$ as a functor $\mathcal{C}^{op} \times \mathcal{D}$ to Set?
- Should we think of it as a generalized ("pro") functor?
- Should we think of it as going from \mathcal{D} to \mathcal{C} ?
- Should we compose bimodules?

I prefer not to.

Two ways of constructing a bimodule $\mathcal{C} \twoheadrightarrow \mathcal{D}$.

• A functor $F: \mathcal{C} \to \mathcal{D}$ gives

$$F^{\mathsf{Left}}(c,d) \stackrel{\text{\tiny def}}{=} \mathcal{D}(Fc,d)$$

Contravariant on 2-cells

• A functor $G: \mathcal{D} \to \mathcal{C}$ gives

$$G^{\mathsf{Right}}(c,d) \stackrel{\text{\tiny def}}{=} \mathcal{C}(c,Gd)$$

Contravariant on 1-cells

For a bimodule $\mathcal{O}: \mathcal{C} \twoheadrightarrow \mathcal{D}$,

- a *left representation* consists of a functor $F: \mathcal{C} \to \mathcal{D}$ and isomorphism $m: \mathcal{O} \cong F^{\text{Left}}$
- a right representation consists of a functor $G: \mathcal{C} \to \mathcal{D}$ and isomorphism $n: \mathcal{O} \cong G^{\text{Right}}$.

An adjunction of functors

is a bimodule isomorphism $F^{\text{Left}} \cong G^{\text{Right}}$.

An adjunction of functors

is a bimodule isomorphism $F^{\text{Left}} \cong G^{\text{Right}}$.

An adjunction of functors

- is a bimodule isomorphism $F^{\text{Left}} \cong G^{\text{Right}}$.
- An adjunction from C to D consists of a bimodule $\mathcal{O}: C \twoheadrightarrow D$ with a left representation (F, R)and right representation (G, S).

Let C be a (light) category.

A module $\mathcal{O}: \mathcal{C} \rightarrow$ provides

• for each $c \in C$, a set $\mathcal{O}(c)$ of morphisms $g: c \rightarrow c$

• composite morphisms $c' \xrightarrow{f} c \xrightarrow{g} d$

These must satisfy the identity and associativity laws. Dually for a module \mathcal{O} : $\Rightarrow \mathcal{C}$.

- **(**) Should we think of a module $\mathcal{C} \rightarrow$ as a functor $\mathcal{C}^{op} \rightarrow \mathbf{Set}$?
- **2** Should we think of it as a bimodule $C \rightarrow 1$?
- **(a)** Or as a module $\rightarrow C^{op}$?
- Dually for a module $\rightarrow C$.

- **(**) Should we think of a module $\mathcal{C} \rightarrow$ as a functor $\mathcal{C}^{op} \rightarrow \mathbf{Set}$?
- **2** Should we think of it as a bimodule $C \rightarrow 1$?
- Dually for a module $\rightarrow C$.

I prefer not to.

An object $v \in \mathcal{C}$ gives $v^{\mathsf{From}} : \twoheadrightarrow \mathcal{C}$ and $v^{\mathsf{To}} : \mathcal{C} \twoheadrightarrow .$

$$v^{\mathsf{From}}(c) \stackrel{\text{def}}{=} \mathcal{C}(v,c)$$

 $v^{\mathsf{To}}(c) \stackrel{\text{def}}{=} \mathcal{C}(c,v)$

 A representation for O: → C consists of an object v ∈ C and isomorphism v^{From} ≅ O.

• Dually for $\mathcal{O}: \mathcal{C} \twoheadrightarrow$.

Colimits extending

A coproduct $c \xrightarrow{\text{ inl}} v \xleftarrow{\text{ inr}} c'$ in \mathcal{C} is said to

• extend across $\mathcal{O}: \mathcal{C} \twoheadrightarrow \mathcal{D}$ when

• extend across $\mathcal{O}: \mathcal{C} \twoheadrightarrow$ when

- If O: C → is representable, then every colimit in C extends across it.
- If O: C → D is right representable, then every colimit in C extends across it.

This is half of the theorem that left adjoints preserve colimits.

- So far we have dealt with ordinary categories, and modules between them.
- More generally, for a 2-moderate multicategory W, we can speak of W-enriched categories, and modules between them.

- Semantics of call-by-push-value decomposes this into a strong adjunction between C and a locally indexed category D.
- "Strong adjunction" is formulated using a module → D, not a bimodule.
- Showing it's equivalent to locally indexed adjunction is complicated.
- I wanted a cleaner story.

Let $\mathcal V$ be a (light) category. A locally $\mathcal V\text{-indexed}$ category $\mathcal C$ consists of

- a class ob $\mathcal C$ of objects
- for all $x \in \mathcal{V}$ and $c, c' \in \mathcal{C}$, a set $\mathcal{C}_x(c, c')$ of morphisms $c \xrightarrow{f} c'$
- reindexing of $c \xrightarrow{f} c'$ by $y \xrightarrow{k} x$ giving $c \xrightarrow{k^* f} c'$

• identities
$$c \xrightarrow[x]{id_{x,c}} c$$

• composition of $c \xrightarrow{f} c' \xrightarrow{g} c''$ giving $c \xrightarrow{f;g} c''$.

Must satisfy the evident seven equations.

Also locally $\ensuremath{\mathcal{V}}\xspace$ -indexed functor, natural transformation, bimodule and module.

A locally $\mathcal V\text{-indexed}$ category $\mathcal C$ is

- ullet a class ob ${\mathcal C}$
- \bullet a $\mathcal V\text{-indexed}$ category
 - $\bullet\,$ whose fibres have object class ob ${\mathcal C}\,$
 - and whose reindexing functors are identity-on-objects.

Let V be a (light) category. A locally V-graded category C consists of
a class ob C of objects

- for all $x \in \mathcal{V}$ and $c, c' \in \mathcal{C}$, a set $\mathcal{C}_x(c, c')$ of morphisms $c \xrightarrow{f} c'$
- reindexing of $c \xrightarrow{f} c'$ by $y \xrightarrow{k} x$ giving $c \xrightarrow{k^* f} c'$

• identities
$$c \xrightarrow{id_c} c$$

• composition of $c \xrightarrow{f} c' \xrightarrow{g} c''$ giving $c \xrightarrow{f:g} c''$.

Must satisfy the evident seven equations.

Also locally $\mathcal{V}\text{-}\mathsf{graded}$ functor, natural transformation, bimodule and module.

For a category $\ensuremath{\mathcal{V}}$,

- \bullet we have a 2-moderate cartesian category $[\mathcal{V}^{\mathsf{op}}, \mathbf{Set}]$
- locally \mathcal{V} -indexed means [\mathcal{V}^{op} , **Set**]-enriched.

For a monoidal category \mathcal{V} ,

- \bullet we have a 2-moderate multicategory $[\mathcal{V}^{\mathsf{op}}, \mathbf{Set}]$
- locally \mathcal{V} -graded means [$\mathcal{V}^{op}, \mathbf{Set}$]-enriched.

We have defined

- \bullet locally $\mathcal V\text{-indexed},$ for a category $\mathcal V$
- \bullet locally $\mathcal V\text{-}\mathsf{graded},$ for a monoidal category $\mathcal V.$

Theorem

For cartesian \mathcal{V} , the two notions are equivalent.

Let \mathcal{V} be a category with coproducts or a monoidal category with distributive coproducts.

Let $\mathcal C$ be a locally $\mathcal V\text{-indexed}$ category or locally $\mathcal V\text{-graded}$ category.

 $\ensuremath{\mathcal{C}}$ is distributive when

for
$$c \xrightarrow{f} c'$$
 and $c \xrightarrow{f'} c'$

there's a unique mediating map $c \xrightarrow{f} c'$.

i.e. the coproduct extends across $\mathcal{D}_{-}(c,c')$ for all c,c'.

This corresponds to restricting the enriching multicategory $[\mathcal{V}^{op}, \mathbf{Set}]$.

Coproduct	$\prod_{i\in I} \mathcal{C}_x(c_i, y)$	≅	$\mathcal{C}_x(\bigoplus_{i\in I} c_i, y)$
Copower	$\mathcal{C}_{x\otimes a}(c,y)$	≅	$\mathcal{C}_x(a.c,y)$
Product	$\prod_{i\in I} \mathcal{C}_x(y,c_i)$	≅	$\mathcal{C}_x(y,\prod_{i\in I}c_i)$
Power	$\mathcal{C}_{x\otimes a}(y,c)$	≅	$\mathcal{C}_x(y,c^a)$
Internal hom	$\mathcal{C}_x(c,d)$	≅	$\mathcal{V}(x, c \multimap d)$

A \mathcal{V} -actegory is a category \mathcal{C} with monoidal action $\emptyset: \mathcal{V} \times \mathcal{C} \to \mathcal{C}$.

$$\mathcal{C}_x^{\mathsf{Act}}(c,d) \stackrel{\text{def}}{=} \mathcal{C}(x \otimes c,d)$$

A \mathcal{V} -opactegory is a category \mathcal{C} with monoidal action $\Rightarrow: \mathcal{C} \times \mathcal{V}^{op} \rightarrow \mathcal{C}$.

$$\mathcal{C}_x^{\mathsf{Opact}}(c,d) \stackrel{\text{def}}{=} \mathcal{C}(c,d \neq x)$$

A \mathcal{V} -enriched category \mathcal{C} .

$$\mathcal{C}^{\mathsf{Enr}}_{x}(c,d) \stackrel{\text{\tiny def}}{=} \mathcal{V}(x,\mathcal{C}(c,d))$$

- *V*-actegory = locally *V*-graded category with copowers.
- \mathcal{V} -opactegory = locally \mathcal{V} -graded category with powers.
- *V*-enriched category = locally *V*-graded category with internal homs.

Maps to a locally \mathcal{V} -graded category \mathcal{D} (Wood)

Map from a \mathcal{V} -actegory \mathcal{C} to \mathcal{D} .

• A functor $H: \mathcal{C} \to \mathcal{D}_1$.

• A strength, consisting of morphisms $Hc \xrightarrow{t_{x,c}} H(x \otimes c)$ Map from a \mathcal{V} -opactegory \mathcal{C} to \mathcal{D} .

• A functor $H: \mathcal{C} \to \mathcal{D}_1$.

• A strength consisting of morphisms $H(c \Rightarrow x) \xrightarrow{s_{x,c}} Hc$ Map from a \mathcal{V} -enriched category \mathcal{C} to \mathcal{D} .

• Function ob $\mathcal{C} \rightarrow ob \mathcal{D}$.

• Morphisms
$$Hc \xrightarrow{H_{c,c'}} Hc'$$
.

These correspond to locally $\ensuremath{\mathcal{V}}\xspace$ -graded functors.

A bimodule from a $\mathcal V\text{-}actegory \ \mathcal C$ to $\ \mathcal D$ consists of

• for each $c \in \mathcal{C}$ and $d \in \mathcal{D}$ a set $\mathcal{O}(c, d)$ of morphisms $g: c \to d$

• composition
$$c' \xrightarrow{f} c \xrightarrow{g} d$$

• composition $c \xrightarrow{g} d \xrightarrow{h} d'$ giving a morphism $x \oslash c \xrightarrow{g;h} d'$

satisfying the evident equations.

Equivalences

- Bimodules from $C \twoheadrightarrow D$ correspond to bimodules $C^{Act} \twoheadrightarrow D$ across which the copowers extend.
- Bimodules $\mathcal{V} \twoheadrightarrow \mathcal{D}$ are precisely modules $\twoheadrightarrow \mathcal{D}$.

Abstractly, a model of call-by-push-value is

- \bullet a cartesian category ${\cal V}$ with countable distributive coproducts
- \bullet a countably distributive locally $\mathcal V\text{-}\mathsf{graded}$ category $\mathcal D$ with countable products and powers
- \bullet an adjunction between $\mathcal{V}^{\mathsf{Act}}$ and $\mathcal{D}_{\text{,}}$
 - i.e. a bimodule $\ensuremath{\mathcal{O}}$ with left and right representations.

Abstractly, a model of call-by-push-value is

- \bullet a cartesian category ${\cal V}$ with countable distributive coproducts
- \bullet a countably distributive locally $\mathcal V\text{-}\mathsf{graded}$ category $\mathcal D$ with countable products and powers
- \bullet an adjunction between $\mathcal{V}^{\mathsf{Act}}$ and $\mathcal{D}_{\text{,}}$
 - i.e. a bimodule $\ensuremath{\mathcal{O}}$ with left and right representations.

Abstractly, a model of call-by-push-value is

- \bullet a cartesian category ${\cal V}$ with countable distributive coproducts
- \bullet a countably distributive locally $\mathcal V\text{-}\mathsf{graded}$ category $\mathcal D$ with countable products and powers
- \bullet an adjunction between $\mathcal{V}^{\mathsf{Act}}$ and $\mathcal{D}_{\text{,}}$
 - i.e. a bimodule \mathcal{O} with left and right representations.

From what we have learnt:

 $\ \, {\mathfrak O} \ \, {\rm corresponds} \ \, {\rm to} \ \, {\rm a} \ \, {\rm distributive} \ \, {\rm locally} \ \, {\mathcal V}{\rm -indexed} \ \, {\rm category}.$

Abstractly, a model of call-by-push-value is

- \bullet a cartesian category ${\cal V}$ with countable distributive coproducts
- \bullet a countably distributive locally $\mathcal V\text{-}\mathsf{graded}$ category $\mathcal D$ with countable products and powers
- \bullet an adjunction between $\mathcal{V}^{\mathsf{Act}}$ and $\mathcal{D}_{\text{,}}$
 - i.e. a bimodule \mathcal{O} with left and right representations.

- **(**) \mathcal{D} corresponds to a distributive locally \mathcal{V} -indexed category.
- The products and powers in D extend along O, because O is left representable.

Abstractly, a model of call-by-push-value is

- \bullet a cartesian category ${\cal V}$ with countable distributive coproducts
- \bullet a countably distributive locally $\mathcal V\text{-}\mathsf{graded}$ category $\mathcal D$ with countable products and powers
- an adjunction between $\mathcal{V}^{\mathsf{Act}}$ and \mathcal{D} ,
 - i.e. a bimodule \mathcal{O} with left and right representations.

- **(**) \mathcal{D} corresponds to a distributive locally \mathcal{V} -indexed category.
- The products and powers in D extend along O, because O is left representable.
- The copowers in V^{Act} extend across O, because O is right representable.

Abstractly, a model of call-by-push-value is

- \bullet a cartesian category ${\cal V}$ with countable distributive coproducts
- \bullet a countably distributive locally $\mathcal V\text{-}\mathsf{graded}$ category $\mathcal D$ with countable products and powers
- \bullet an adjunction between $\mathcal{V}^{\mathsf{Act}}$ and $\mathcal{D},$
 - i.e. a bimodule ${\cal O}$ with left and right representations.

- **(**) \mathcal{D} corresponds to a distributive locally \mathcal{V} -indexed category.
- The products and powers in D extend along O, because O is left representable.
- So O corresponds to a module V → D which is precisely a module → D.