Locally graded categories

Paul Blain Levy

University of Birmingham
February 17, 2019

Outline

(1) Size stuff

(2) Modules

(3) Background
(4) Locally indexed and locally graded

Things and sets

- Ordinary mathematics is about things.
- A collection of things is itself a thing, provided its size is limited. Such a collection is called a set.
- Categorical mathematics requires arbitrary collections of things. These are called classes.
- Sometimes, classes are not enough, so we need a bigger ontology.

k-classes and k-entities

- A 0 -class is a set.
- A 0 -entity is a thing.
- A 1 -class is a collection of 0 -entities, i.e. a class.
- We shall not define 1-entity but assume the following.
- Every thing is a 1-entity.
- Every class is a 1 -entity.
- Every ordered pair of 1-entities is a 1-entity.
- Every class-indexed tuple of 1 -entities is a 1 -entity.
- A 2-class is a collection of 1-entities.
- Likewise k-entity and k-class for $k \in \mathbb{N}$.

Modelling k-entities and k-classes

Here's a way to interpret our terminology. There are others. We work in ZFC, perhaps with urelements, and one Grothendieck universe parameter \mathfrak{U}.

- Thing \rightarrow element of \mathfrak{U}.
- Set \rightarrow set in \mathfrak{U}.
- Class \rightarrow subset of \mathfrak{U}.
- "1-entity" is inductively defined by the axioms.
- 2-class \rightarrow set of 1-entities.
- Etc.

Application: sizes of categories

A category \mathcal{C} is

- small when ob \mathcal{C} and each $\mathcal{C}(a, b)$ is a set
- moderate when ob \mathcal{C} and each $\mathcal{C}(a, b)$ is a class.
- 2-moderate when ob \mathcal{C} and each $\mathcal{C}(a, b)$ is a 2-class.
- light when ob \mathcal{C} is a class and each $\mathcal{C}(a, b)$ is a set.

Light $=$ moderate + locally small.

Examples

- The category of natural numbers and functions is small.
- Set is light but not small.
- The category of sets and multirelations is moderate but not light.
- The category [Set, Set] is 2-moderate but not moderate.

Higher categories can be k-light or k-moderate, for $k \in \mathbb{N}$.

Example: Yoneda lemma

For a (light) category \mathcal{C} we have an isomorphism

$$
F c \cong\left[\mathcal{C}^{\mathrm{op}}, \operatorname{Set}\right](\mathcal{Y} c, F) \quad \text { natural in } c \text { and } F
$$

Example: Yoneda lemma

For a (light) category \mathcal{C} we have an isomorphism

$$
F c \cong\left[\mathcal{C}^{\mathrm{op}}, \operatorname{Set}\right](\mathcal{Y} c, F) \quad \text { natural in } c \text { and } F
$$

Diagrammatically:

$$
\begin{aligned}
& \mathcal{C}^{\text {op }} \times\left[\mathcal{C}^{\text {op }}, \text { Set }\right] \xrightarrow{\mathcal{Y} \times\left[\mathcal{C}^{\text {op }}, \text { Set }\right]}\left[\mathcal{C}^{\text {op }}, \text { Set }\right]^{\text {op }} \times\left[\mathcal{C}^{\text {op }}, \text { Set }\right] \\
& \text { app } \downarrow \quad \cong \quad \downarrow \text { hom } \\
& \text { Set } \longrightarrow \text { Class }_{2}
\end{aligned}
$$

Bimodules

Let \mathcal{C} and \mathcal{D} be (light) categories.
A bimodule $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{D}$ provides

- for each $c \in \mathcal{C}$ and $d \in \mathcal{D}$, a set $\mathcal{O}(c, d)$ of morphisms $g: c \rightarrow d$
- composite morphisms $c^{\prime} \xrightarrow{f} c \xrightarrow{g} d$ and $c \xrightarrow{g} d \xrightarrow{h} d^{\prime}$.

These must satisfy two identity and three associativity laws.

Questions about bimodules

(1) Should we think of a bimodule $\mathcal{C} \rightarrow \mathcal{D}$ as a functor $\mathcal{C}^{\text {op }} \times \mathcal{D}$ to Set?
(2) Should we think of it as a generalized ("pro") functor?
(3) Should we think of it as going from \mathcal{D} to \mathcal{C} ?
(9) Should we compose bimodules?

Questions about bimodules

(1) Should we think of a bimodule $\mathcal{C} \rightarrow \mathcal{D}$ as a functor $\mathcal{C}^{\text {op }} \times \mathcal{D}$ to Set?
(2) Should we think of it as a generalized ("pro") functor?
(3) Should we think of it as going from \mathcal{D} to \mathcal{C} ?
(1) Should we compose bimodules?

I prefer not to.

From a functor to a bimodule

Two ways of constructing a bimodule $\mathcal{C} \rightarrow \mathcal{D}$.

- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ gives

$$
F^{\text {Left }}(c, d) \stackrel{\text { def }}{=} \mathcal{D}(F c, d)
$$

Contravariant on 2-cells

- A functor $G: \mathcal{D} \rightarrow \mathcal{C}$ gives

$$
G^{\mathrm{Right}}(c, d) \stackrel{\text { def }}{=} \mathcal{C}(c, G d)
$$

Contravariant on 1-cells

Left and right representations

For a bimodule $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{D}$,

- a left representation consists of a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and isomorphism $m: \mathcal{O} \cong F^{\text {Left }}$
- a right representation consists of a functor $G: \mathcal{C} \rightarrow \mathcal{D}$ and isomorphism $n: \mathcal{O} \cong G^{\text {Right }}$.

Adjunction

An adjunction of functors

is a bimodule isomorphism $F^{\text {Left }} \cong G^{\text {Right }}$.

Adjunction

An adjunction of functors

is a bimodule isomorphism $F^{\text {Left }} \cong G^{\text {Right }}$.

Adjunction

An adjunction of functors

is a bimodule isomorphism $F^{\text {Left }} \cong G^{\text {Right }}$.
An adjunction from \mathcal{C} to \mathcal{D} consists of a bimodule $\mathcal{O}: \mathcal{C} \leftrightarrow \mathcal{D}$
with a left representation (F, R) and right representation (G, S).

One-sided modules

Let \mathcal{C} be a (light) category.
A module $\mathcal{O}: \mathcal{C} \rightarrow$ provides

- for each $c \in \mathcal{C}$, a set $\mathcal{O}(c)$ of morphisms $g: c \rightarrow$
- composite morphisms $c^{\prime} \xrightarrow{f} c \xrightarrow{g} d$

These must satisfy the identity and associativity laws.
Dually for a module $\mathcal{O}: \rightarrow \mathcal{C}$.

Questions about one-sided modules

(1) Should we think of a module $\mathcal{C} \rightarrow$ as a functor $\mathcal{C}^{\text {op }} \rightarrow$ Set?
(2) Should we think of it as a bimodule $\mathcal{C} \rightarrow 1$?
(3) Or as a module $\rightarrow \mathcal{C}^{\text {op }}$?
(9) Dually for a module $\rightarrow \mathcal{C}$.

Questions about one-sided modules

(1) Should we think of a module $\mathcal{C} \rightarrow$ as a functor $\mathcal{C}^{\text {op }} \rightarrow$ Set?
(2) Should we think of it as a bimodule $\mathcal{C} \rightarrow 1$?
(3) Or as a module $\rightarrow \mathcal{C}^{\mathrm{op}}$?
(1) Dually for a module $\rightarrow \mathcal{C}$.

I prefer not to.

From an object to a module

An object $v \in \mathcal{C}$ gives $v^{\text {From }}: \rightarrow \mathcal{C}$ and $v^{\text {To }}: \mathcal{C} \rightarrow$.

$$
\begin{aligned}
v^{\text {From }}(c) & \stackrel{\text { def }}{=} \mathcal{C}(v, c) \\
v^{\mathrm{To}}(c) & \stackrel{\text { def }}{=} \mathcal{C}(c, v)
\end{aligned}
$$

- A representation for $\mathcal{O}: \rightarrow \mathcal{C}$ consists of an object $v \in \mathcal{C}$ and isomorphism $v^{\text {From }} \cong \mathcal{O}$.
- Dually for $\mathcal{O}: \mathcal{C} \rightarrow$.

Colimits extending

A coproduct $c \xrightarrow{\text { inl }} v \stackrel{\text { inr }}{\longleftrightarrow} c^{\prime}$ in \mathcal{C} is said to

- extend across $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{D}$ when

- extend across $\mathcal{O}: \mathcal{C} \rightarrow$ when

Extension and representation

- If $\mathcal{O}: \mathcal{C} \rightarrow$ is representable, then every colimit in \mathcal{C} extends across it.
- If $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{D}$ is right representable, then every colimit in \mathcal{C} extends across it.

This is half of the theorem that left adjoints preserve colimits.

General theory of modules

- So far we have dealt with ordinary categories, and modules between them.
- More generally, for a 2-moderate multicategory \mathcal{W}, we can speak of \mathcal{W}-enriched categories, and modules between them.

Background

- Semantics of call-by-push-value decomposes this into a strong adjunction between \mathcal{C} and a locally indexed category \mathcal{D}.
- "Strong adjunction" is formulated using a module $\rightarrow \mathcal{D}$, not a bimodule.
- Showing it's equivalent to locally indexed adjunction is complicated.
- I wanted a cleaner story.

Locally indexed category

Let \mathcal{V} be a (light) category. A locally \mathcal{V}-indexed category \mathcal{C} consists of

- a class ob \mathcal{C} of objects
- for all $x \in \mathcal{V}$ and $c, c^{\prime} \in \mathcal{C}$, a set $\mathcal{C}_{x}\left(c, c^{\prime}\right)$ of morphisms $c \xrightarrow[x]{f} c^{\prime}$
- reindexing of $c \xrightarrow[x]{f} c^{\prime}$ by $y \xrightarrow{k} x$ giving $c \xrightarrow[y]{k^{*} f} c^{\prime}$
- identities $c \xrightarrow[x]{\mathrm{id}_{x, c}} c$
- composition of $c \xrightarrow[x]{f} c^{\prime} \xrightarrow[x]{g} c^{\prime \prime}$ giving $c \xrightarrow[x]{f ; g} c^{\prime \prime}$.

Must satisfy the evident seven equations.
Also locally \mathcal{V}-indexed functor, natural transformation, bimodule and module.

Alternative view: indexed

A locally \mathcal{V}-indexed category \mathcal{C} is

- a class ob \mathcal{C}
- a \mathcal{V}-indexed category
- whose fibres have object class ob \mathcal{C}
- and whose reindexing functors are identity-on-objects.

Locally graded category (Wood)

Let \mathcal{V} be a (light) category. A locally \mathcal{V}-graded category \mathcal{C} consists of

- a class ob \mathcal{C} of objects
- for all $x \in \mathcal{V}$ and $c, c^{\prime} \in \mathcal{C}$, a set $\mathcal{C}_{x}\left(c, c^{\prime}\right)$ of morphisms $c \xrightarrow[x]{f} c^{\prime}$
- reindexing of $c \xrightarrow[x]{f} c^{\prime}$ by $y \xrightarrow{k} x$ giving $c \xrightarrow[y]{k^{*} f} c^{\prime}$
- identities $c \xrightarrow[1]{\stackrel{\mathrm{id}_{c}}{ }} c$
- composition of $c \xrightarrow[x]{f} c^{\prime} \xrightarrow[y]{g} c^{\prime \prime}$ giving $c \xrightarrow[x \otimes y]{f ; g} c^{\prime \prime}$.

Must satisfy the evident seven equations.
Also locally \mathcal{V}-graded functor, natural transformation, bimodule and module.

Alternative view 2: enriched

For a category \mathcal{V},

- we have a 2 -moderate cartesian category [$\mathcal{V}^{\text {op }}$, Set]
- locally \mathcal{V}-indexed means [$\mathcal{V}^{\text {op }}$, Set]-enriched.

For a monoidal category \mathcal{V},

- we have a 2-moderate multicategory [$\mathcal{V}^{\text {Op }}$, Set]
- locally \mathcal{V}-graded means [$\mathcal{V}^{\text {op }}$, Set]-enriched.

Locally indexed vs locally graded

We have defined

- locally \mathcal{V}-indexed, for a category \mathcal{V}
- locally \mathcal{V}-graded, for a monoidal category \mathcal{V}.

Theorem

For cartesian \mathcal{V}, the two notions are equivalent.

Distributivity

Let \mathcal{V} be a category with coproducts or a monoidal category with distributive coproducts.

Let \mathcal{C} be a locally \mathcal{V}-indexed category or locally \mathcal{V}-graded category.
\mathcal{C} is distributive when
for $c \xrightarrow[x]{f} c^{\prime}$ and $c \xrightarrow[y]{f^{\prime}} c^{\prime}$
there's a unique mediating map $c \underset{x+y}{f} c^{\prime}$.
i.e. the coproduct extends across $\mathcal{D}_{-}\left(c, c^{\prime}\right)$ for all c, c^{\prime}.

This corresponds to restricting the enriching multicategory $\left[\mathcal{V}^{\text {op }}\right.$, Set $]$.

Universal properties in a locally \mathcal{V}-graded category

Coproduct
Copower
Product
Power
Internal hom

$$
\begin{aligned}
\prod_{i \in I} \mathcal{C}_{x}\left(c_{i}, y\right) & \cong \mathcal{C}_{x}\left(\bigoplus_{i \in I} c_{i}, y\right) \\
\mathcal{C}_{x \otimes a}(c, y) & \cong \mathcal{C}_{x}(a . c, y) \\
\prod_{i \in I} \mathcal{C}_{x}\left(y, c_{i}\right) & \cong \mathcal{C}_{x}\left(y, \prod_{i \in I} c_{i}\right) \\
\mathcal{C}_{x \otimes a}(y, c) & \cong \mathcal{C}_{x}\left(y, c^{a}\right) \\
\mathcal{C}_{x}(c, d) & \cong \mathcal{V}(x, c \multimap d)
\end{aligned}
$$

Locally \mathcal{V}-graded category: three examples (Wood)

A \mathcal{V}-actegory is a category \mathcal{C} with monoidal action $\oslash: \mathcal{V} \times \mathcal{C} \rightarrow \mathcal{C}$.

$$
\mathcal{C}_{x}^{\text {Act }}(c, d) \stackrel{\text { def }}{=} \mathcal{C}(x \oslash c, d)
$$

A \mathcal{V}-opactegory is a category \mathcal{C} with monoidal action $\ni: \mathcal{C} \times \mathcal{V}^{\mathrm{op}} \rightarrow \mathcal{C}$.

$$
\mathcal{C}_{x}^{\text {Opact }}(c, d) \stackrel{\text { def }}{=} \mathcal{C}(c, d \ni-x)
$$

A \mathcal{V}-enriched category \mathcal{C}.

$$
\mathcal{C}_{x}^{\text {Enr }}(c, d) \stackrel{\text { def }}{=} \mathcal{V}(x, \mathcal{C}(c, d))
$$

Characterizing these constructions

- \mathcal{V}-actegory $=$ locally \mathcal{V}-graded category with copowers.
- \mathcal{V}-opactegory $=$ locally \mathcal{V}-graded category with powers.
- \mathcal{V}-enriched category $=$ locally \mathcal{V}-graded category with internal homs.

Maps to a locally \mathcal{V}-graded category \mathcal{D} (Wood)

Map from a \mathcal{V}-actegory \mathcal{C} to \mathcal{D}.

- A functor $H: \mathcal{C} \rightarrow \mathcal{D}_{1}$.
- A strength, consisting of morphisms $H c \xrightarrow[x]{t_{x, c}} H(x \oslash c)$ Map from a \mathcal{V}-opactegory \mathcal{C} to \mathcal{D}.
- A functor $H: \mathcal{C} \rightarrow \mathcal{D}_{1}$.
- A strength consisting of morphisms $H(c \ni-x) \xrightarrow[x]{s_{x, c}} H c$ Map from a \mathcal{V}-enriched category \mathcal{C} to \mathcal{D}.
- Function ob $\mathcal{C} \rightarrow$ ob \mathcal{D}.
- Morphisms $H c \frac{H_{c, c^{\prime}}}{\mathcal{C}\left(c, c^{\prime}\right)} H c^{\prime}$.

These correspond to locally \mathcal{V}-graded functors.

Modules from an actegory

A bimodule from a \mathcal{V}-actegory \mathcal{C} to \mathcal{D} consists of

- for each $c \in \mathcal{C}$ and $d \in \mathcal{D}$ a set $\mathcal{O}(c, d)$ of morphisms $g: c \rightarrow d$
- composition $c^{\prime} \xrightarrow{f} c \xrightarrow{g} d$
- composition $c \xrightarrow{g} d \xrightarrow[x]{h} d^{\prime}$ giving a morphism $x \oslash c \xrightarrow{g ; h} d^{\prime}$ satisfying the evident equations.

Equivalences

- Bimodules from $\mathcal{C} \rightarrow \mathcal{D}$ correspond to bimodules $\mathcal{C}^{\text {Act }} \rightarrow \mathcal{D}$ across which the copowers extend.
- Bimodules $\mathcal{V} \rightarrow \mathcal{D}$ are precisely modules $\rightarrow \mathcal{D}$.

Adjunctions

Abstractly, a model of call-by-push-value is

- a cartesian category \mathcal{V} with countable distributive coproducts
- a countably distributive locally \mathcal{V}-graded category \mathcal{D} with countable products and powers
- an adjunction between $\mathcal{V}^{\text {Act }}$ and \mathcal{D}, i.e. a bimodule \mathcal{O} with left and right representations.

Adjunctions

Abstractly, a model of call-by-push-value is

- a cartesian category \mathcal{V} with countable distributive coproducts
- a countably distributive locally \mathcal{V}-graded category \mathcal{D} with countable products and powers
- an adjunction between $\mathcal{V}^{\text {Act }}$ and \mathcal{D}, i.e. a bimodule \mathcal{O} with left and right representations.

From what we have learnt:

Adjunctions

Abstractly, a model of call-by-push-value is

- a cartesian category \mathcal{V} with countable distributive coproducts
- a countably distributive locally \mathcal{V}-graded category \mathcal{D} with countable products and powers
- an adjunction between $\mathcal{V}^{\text {Act }}$ and \mathcal{D}, i.e. a bimodule \mathcal{O} with left and right representations.

From what we have learnt:
(1) \mathcal{D} corresponds to a distributive locally \mathcal{V}-indexed category.

Adjunctions

Abstractly, a model of call-by-push-value is

- a cartesian category \mathcal{V} with countable distributive coproducts
- a countably distributive locally \mathcal{V}-graded category \mathcal{D} with countable products and powers
- an adjunction between $\mathcal{V}^{\text {Act }}$ and \mathcal{D}, i.e. a bimodule \mathcal{O} with left and right representations.

From what we have learnt:
(1) \mathcal{D} corresponds to a distributive locally \mathcal{V}-indexed category.
(2) The products and powers in \mathcal{D} extend along \mathcal{O}, because \mathcal{O} is left representable.

Adjunctions

Abstractly, a model of call-by-push-value is

- a cartesian category \mathcal{V} with countable distributive coproducts
- a countably distributive locally \mathcal{V}-graded category \mathcal{D} with countable products and powers
- an adjunction between $\mathcal{V}^{\text {Act }}$ and \mathcal{D}, i.e. a bimodule \mathcal{O} with left and right representations.

From what we have learnt:
(1) \mathcal{D} corresponds to a distributive locally \mathcal{V}-indexed category.
(2) The products and powers in \mathcal{D} extend along \mathcal{O}, because \mathcal{O} is left representable.
(3) The copowers in $\mathcal{V}^{\text {Act }}$ extend across \mathcal{O}, because \mathcal{O} is right representable.

Adjunctions

Abstractly, a model of call-by-push-value is

- a cartesian category \mathcal{V} with countable distributive coproducts
- a countably distributive locally \mathcal{V}-graded category \mathcal{D} with countable products and powers
- an adjunction between $\mathcal{V}^{\text {Act }}$ and \mathcal{D}, i.e. a bimodule \mathcal{O} with left and right representations.

From what we have learnt:
(1) \mathcal{D} corresponds to a distributive locally \mathcal{V}-indexed category.
(2) The products and powers in \mathcal{D} extend along \mathcal{O}, because \mathcal{O} is left representable.
(3) The copowers in $\mathcal{V}^{\text {Act }}$ extend across \mathcal{O}, because \mathcal{O} is right representable. So \mathcal{O} corresponds to a module $\mathcal{V} \rightarrow \mathcal{D}$ which is precisely a module $\rightarrow \mathcal{D}$.

