Modelling Topological Materials with D-branes

Georgios Linardopoulos

NCSR "Demokritos" and National & Kapodistrian University of Athens

INPP Annual Meeting NCSR "Demokritos" – November 16th, 2017

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQで 1/17

References & Collaborators

In collaboration with M. de Leeuw and C. Kristjansen:

M. de Leeuw, C. Kristjansen, and G. Linardopoulos. "One-point Functions of Non-protected Operators in the SO(5) Symmetric D3-D7 dCFT". J. Phys. A50 (2017), 254001. arXiv: 1612.06236 [hep-th]

In collaboration with J. Hoppe and T. Turgut:

[2]. J. Hoppe, G. Linardopoulos, and T.O. Turgut. "New Minimal Hypersurfaces in $\mathbb{R}^{(k+1)(2k+1)}$ and S^{2k^2+3k} ". Mathematische Nachrichten (2016). arXiv: 1602.09101 [math.DG]

In collaboration with M. Axenides and E. Floratos:

[3]. M. Axenides, E. Floratos, and G. Linardopoulos. "M2-brane Dynamics in the Classical Limit of the BMN Matrix Model". Phys. Lett. B773 (2017), 265. arXiv: 1707.02878 [hep-th]

[4]. M. Axenides, E. Floratos, and G. Linardopoulos. "The Omega-Infinity Limit of Single Spikes". Nucl. Phys. B907 (2016), 323. arXiv: 1511.03587 [hep-th]

[5]. M. Axenides, E. Floratos, and G. Linardopoulos. "Stringy Membranes in AdS/CFT". JHEP 08 (2013), 089. arXiv: 1306.0220 [hep-th]

In collaboration with E. Floratos and G. Georgiou:

[6]. E. Floratos, G. Georgiou, and G. Linardopoulos. "Large-Spin Expansions of GKP Strings". JHEP 03 (2014), 018. arXiv: 1311.5800 [hep-th]

In collaboration with E. Floratos:

[7]. G. Linardopoulos. "Classical Strings and Membranes in the AdS/CFT Correspondence". PhD thesis. National and Kapodistrian University of Athens, 2015

[8]. G. Linardopoulos. "Large-Spin Expansions of Giant Magnons". PoS (CORFU2014), 154. arXiv: 1502.01630 [hep-th]

[9]. E. Floratos and G. Linardopoulos. "Large-Spin and Large-Winding Expansions of Giant Magnons and Single Spikes". Nucl. Phys. B897 (2015), 229. arXiv: 1406.0796 [hep-th]

Section 1

Topological Materials and Holography

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AdS/CFT Holography

• The AdS/CFT correspondence has changed the way we think about physics

• A gravitational theory may provide clues about a non-gravitational theory and vice-versa

AdS/CFT Holography

• The AdS/CFT correspondence has changed the way we think about physics

• A wealth of applications...

Topological materials

Topological materials

The Classical Hall Effect (E. Hall, 1879)

• Drude model:

$$m\frac{d\mathbf{v}}{dt} = -e\mathbf{E} - e\mathbf{v} \times \mathbf{B} - \frac{m\mathbf{v}}{\tau}$$

• In equilibrium $\mathbf{J} = -ne\mathbf{v}$ and we obtain Ohm's law:

 $\mathbf{J} = \boldsymbol{\sigma} \cdot \mathbf{E},$

where the Hall resistivity is

$$\rho = \sigma^{-1} = \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ -\rho_{xy} & \rho_{yy} \end{pmatrix} = \frac{1}{\sigma_{dc}} \begin{pmatrix} 1 & \omega_{B}\tau \\ -\omega_{B}\tau & 1 \end{pmatrix}$$

$$\sigma_{dc} \equiv \frac{e^{2}n\tau}{m} \quad (\text{dc conductivity}), \quad \omega_{B} \equiv \frac{eB_{z}}{m} \quad (\text{Cyclotron frequency})$$

5/17

Topological materials

5/17

Topological materials

Topological insulators

• A topological insulator is a material that insulates in its bulk and conducts on its surface.

- Metallic edge states were predicted to occur in quantum wells in 1987 (observed in 2007).
- 3d topological insulators were discovered in bismuth-antimony (BiSb) alloys in 2008.
- Potentially useful as spintronic (memory) devices in Quantum Computers.

Topological materials

Topological insulators

• A topological insulator is a material that insulates in its bulk and conducts on its surface.

- Metallic edge states were predicted to occur in quantum wells in 1987 (observed in 2007).
- 3d topological insulators were discovered in bismuth-antimony (BiSb) alloys in 2008.
- Potentially useful as spintronic (memory) devices in Quantum Computers.
- Models of 2d topological insulators can be studied in the context of AdS/CFT holography.

Section 2

Intersecting Branes

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 6/17

The D3-D7 system

Let us recall the original formulation $\mathsf{AdS}/\mathsf{CFT}$ correspondence:

 $\left\{ \text{Type IIB superstring theory on } AdS_5 \times S^5 \right\} = \left\{ \mathcal{N} = 4, \ SU(N) \text{ SYM theory in } 3 + 1 \text{ dimensions} \right\}$ (J. Maldacena, 1998)

The D3-D7 system

IIB string theory on $AdS_5 \times S^5$ is encountered very close to a system of N coincident D3-branes:

The D3-D7 system

IIB string theory on $AdS_5 \times S^5$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along x_1 , x_2 , x_3 ...

	t	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7	<i>X</i> 8	<i>X</i> 9
D3	•	•	•	•						

The D3-D7 system

IIB string theory on $AdS_5 \times S^5$ is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along x_1 , x_2 , x_3 . Now insert a single (probe) D7-brane at $x_3 = x_9 = 0...$

	t	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	X_5	<i>x</i> ₆	<i>X</i> ₇	<i>x</i> ₈	<i>X</i> 9
D3	٠	•	•	•						
D7	٠	•	•		•	٠	•	•	•	

The D3-D7 system: description

- In the bulk, the D3-D7 system describes IIB superstring theory on $AdS_5 \times S^5$ bisected by a D7-brane with worldvolume geometry $AdS_4 \times S^4$.
- The dual field theory is still SU(N), N = 4 SYM in 3 + 1 dimensions, that interacts with a CFT living on the 2 + 1 dimensional defect:

 $S = S_{\mathcal{N}=4} + S_{2+1}.$

- Due to the presence of the defect, the total bosonic symmetry of the system is reduced from $SO(4,2) \times SO(6)$ to $SO(3,2) \times SO(5)$.
- The relative co-dimension of the branes is $\#ND = 6 \rightarrow$ no unbroken supersymmetry.

イロト 不得 トイヨト イヨト 二日

8/17

• Tachyonic instability...

The (D3-D7)_{dg} system

- To stabilize the system, add an instanton bundle on the S⁴ component of the AdS₄ \times S⁴ D7-brane, with instanton number $d_G = (n+1)(n+2)(n+3)/6.$ (Myers-Wapler, 2008)
- Then exactly d_G of the N D3-branes $(N \gg d_G)$ will end on the D7-brane.
- On the dual SCFT side, the gauge group $SU(N) \times SU(N)$ breaks to $SU(N) \times SU(N d_G)$.
- Equivalently, the fields of $\mathcal{N} = 4$ SYM develop nonzero vevs...

(Karch-Randall, 2001b)

A fractional topological insulator

Other ways of dealing with the tachyonic instability:

• Embed the D7-brane into the full D3-brane geometry...

Davis-Kraus-Shah (2008) & Kristjansen-Semenoff (2016)

• Introduce an AdS cutoff while sending the unstable mode towards the BF bound...

Kutasov-Lin-Parnachev (2011) & Mezzalira-Parnachev (2015)

A fractional topological insulator

Other ways of dealing with the tachyonic instability:

• Embed the D7-brane into the full D3-brane geometry...

Davis-Kraus-Shah (2008) & Kristjansen-Semenoff (2016)

• Introduce an AdS cutoff while sending the unstable mode towards the BF bound... Kutasov-Lin-Parnachev (2011) & Mezzalira-Parnachev (2015)

The dual field theory is a 3+1 dimensional defect conformal field theory (dCFT):

$$S = S_{\mathcal{N}=4} + S_{2+1},$$

A fractional topological insulator

Other ways of dealing with the tachyonic instability:

• Embed the D7-brane into the full D3-brane geometry...

Davis-Kraus-Shah (2008) & Kristjansen-Semenoff (2016)

• Introduce an AdS cutoff while sending the unstable mode towards the BF bound... Kutasov-Lin-Parnachev (2011) & Mezzalira-Parnachev (2015)

The dual field theory is a 3+1 dimensional defect conformal field theory (dCFT):

$$S=S_{\mathcal{N}=4}+S_{2+1},$$

- S_{2+1} is the action of relativistic fermions that live on the 2+1 dimensional defect... (Rey, 2008)
- There are also fermion mass terms that break P and T symmetry... (Davis-Kraus-Shah, 2008)
- S_{2+1} then contains a Chern-Simons term... Hall conductivities (T = 0):

$$\sigma_{xx} = 0$$
 & $\sigma_{xy} = \frac{Ne^2}{4\pi} \cdot \operatorname{sgn}(m)$

Modelling the $(D3-D7)_{d_G}$ interface

- An interface is a wall between two (different/same) QFTs
- It can be described by means of classical solutions that are known as "fuzzy-funnel" solutions Constable-Myers-Tafjord, 1999 & 2001
- Here, we need an interface to separate the SU(N) and $SU(N d_G)$ regions of $(D3-D7)_{d_G}$ dCFT..
- A manifestly SO(5) ⊂ SO(3,2) × SO(5) symmetric solution is given by:

$$\Phi_i(z) = \frac{G_i \oplus \mathbb{O}_{(N-d_G) \times (N-d_G)}}{\sqrt{8} z}, \quad i = 1, \dots, 5, \qquad \Phi_6 = 0,$$

Kristjansen-Semenoff-Young, 2012

where the five d_G -dimensional matrices G_i are known as "fuzzy" S⁴ matrices or simply as *G*-matrices.

Section 3

One-point Functions

M. de Leeuw, C. Kristjansen, G. Linardopoulos, *One-Point Functions of Non-protected Operators in the SO*(5) Symmetric D3-D7 dCFT. J.Phys. A:Math.Theor., **50** (2017) 254001, [arXiv:1612.06236]

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, C_{ijk} 's, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, C_{ijk} 's, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

• Our dCFT is dual to the SO(5) symmetric $(D3-D7)_{d_G}$ probe brane system.

One-point functions

One-point functions are the most important observables in a dCFT. From them and the conformal data (Δ 's, C_{ijk} 's, etc.) one can determine all the correlators of the theory (and the theory itself) by using the OPE.

- Our dCFT is dual to the SO(5) symmetric $(D3-D7)_{d_G}$ probe brane system.
- Our goal is to calculate the one-point functions of $\mathfrak{so}(6)$ highest-weight eigenstates:

$$\left\langle \mathcal{O}\left(z,\mathbf{x}
ight)
ight
angle =rac{\mathcal{C}}{z^{\Delta}}, \qquad \mathcal{C}=rac{1}{\sqrt{L}}\left(rac{\pi^{2}}{\lambda}
ight)^{L/2}\cdotrac{\left\langle \mathsf{MPS}|\Psi
ight
angle}{\left\langle \Psi|\Psi
ight
angle ^{rac{1}{2}}, \qquad d_{G}\ll \mathcal{N}
ightarrow\infty,$$

where

$$\langle \mathsf{MPS} | \Psi \rangle = z^{\mathcal{M}} \cdot \sum_{1 \le x_k \le L} \psi(x_k) \cdot \mathsf{Tr} \left[\mathcal{G}_5^{x_1 - 1} \mathcal{W} \mathcal{G}_5^{x_2 - x_1 - 1} \mathcal{Y} \mathcal{G}_5^{x_3 - x_2 - 1} \overline{\mathcal{W}} \mathcal{G}_5^{x_4 - x_3 - 1} \overline{\mathcal{Y}} \dots \right]$$

and Ψ is an eigenstate of the $\mathfrak{so}(6)$ Hamiltonian, with

$$\langle \Psi | \Psi \rangle^{\frac{1}{2}} = \sqrt{\sum_{1 \leq x_k \leq L} \psi^2(x_k)}.$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (や 13/17

Vacuum state

For the vacuum overlap we have found:

$$\langle \mathsf{MPS} | 0 \rangle = \mathsf{Tr} \left[G_5^L \right] = \sum_{j=1}^{n+1} \left[j \left(n - j + 2 \right) \left(n - 2j + 2 \right)^L \right].$$

Changing variables $j \leftrightarrow (n+2-j)$, an overall factor $(-1)^L$ comes out, leading the vacuum overlap to zero for L odd. Equivalently, we may write

$$\langle \mathsf{MPS}|0\rangle = \begin{cases} 0, & L \text{ odd} \\ \\ 2^{L} \cdot \left[\frac{2}{L+3} B_{L+3} \left(-\frac{n}{2}\right) - \frac{(n+2)^2}{2(L+1)} B_{L+1} \left(-\frac{n}{2}\right)\right], & L \text{ even,} \end{cases}$$

by using the relationship between the Hurwitz zeta function and the Bernoulli polynomials $B_m(x)$. In the large-*n* limit we find:

$$\langle \mathsf{MPS}|0\rangle \sim \frac{n^{L+3}}{2(L+1)(L+3)} + O\left(n^{L+2}\right), \qquad n \to \infty.$$

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト 14/17

Non-protected operators

• The overlaps $\langle MPS|\Psi\rangle$ of all the highest-weight eigenstates vanish unless:

$$L = \text{ even } \& \# \mathcal{W} = \# \overline{\mathcal{W}}, \quad \# \mathcal{Y} = \# \overline{\mathcal{Y}}.$$

Therefore the only $\mathfrak{so}(6)$ eigenstates that have nonzero one-point functions are those with:

$$N_1 = 2N_2 = 2N_3 \equiv M$$
 (even).

Evidently, the one-point functions vanish in the $\mathfrak{su}(2)$ and $\mathfrak{su}(3)$ subsectors.

Non-protected operators

• The overlaps $\langle MPS|\Psi\rangle$ of all the highest-weight eigenstates vanish unless:

$$L = even$$
 & $\#W = \#\overline{W}, \quad \#\mathcal{Y} = \#\overline{\mathcal{Y}}.$

Therefore the only $\mathfrak{so}(6)$ eigenstates that have nonzero one-point functions are those with:

$$N_1 = 2N_2 = 2N_3 \equiv M$$
 (even).

Evidently, the one-point functions vanish in the $\mathfrak{su}(2)$ and $\mathfrak{su}(3)$ subsectors.

• More generally, we can consider eigenstates with $N_1 = 2$, $N_2 = N_3 = 1$ and arbitrary L: $|p\rangle = \sum_{x_1 < x_2} \left(e^{ip(x_1 - x_2)} + e^{ip(x_2 - x_1 + 1)} \right) \cdot | \dots \underset{x_1}{\mathcal{X}} \dots \underset{x_2}{\mathcal{X}} \dots \rangle - 2 \sum_{x_3} \left(1 + e^{ip} \right) \cdot | \dots \underset{x_3}{\overline{\mathcal{Z}}} \dots \rangle,$

where the dots stand for \mathcal{Z} , and \mathcal{X} is any of the complex scalars \mathcal{W} , $\overline{\mathcal{W}}$, \mathcal{Y} , $\overline{\mathcal{Y}}$.

• Here's the one-loop energy of the L211 eigenstates:

$$E = L + \frac{\lambda}{\pi^2} \sin^2 \left[\frac{2m\pi}{L+1} \right] + \dots, \qquad m = 1, \dots, L+1$$

15 / 17

L211 Bethe eigenstates

• The corresponding one-point function for all n is given in terms of the n = 1 one:

$$\begin{split} \langle \mathcal{O}_{L211} \rangle &= \left[\frac{u^2}{u^2 - 1/2} \sum_{n \bmod 2}^n j^L \cdot \frac{(n+2)^2 - j^2}{8} \cdot \frac{[u^2 + \frac{(n+2)j+1}{4}][u^2 - \frac{(n+2)j-1}{4}]}{[u^2 + (\frac{j+1}{2})^2][u^2 + (\frac{j-1}{2})^2]} \right] \cdot \langle \mathcal{O}_{L211}^{n=1} \rangle, \\ \text{where} \\ &\quad \langle \mathcal{O}_{L211}^{n=1} \rangle = 8 \sqrt{\frac{L}{L+1}} \frac{u^2 - \frac{1}{2}}{u^2 + \frac{1}{4}} \sqrt{\frac{u^2 + \frac{1}{4}}{u^2}}, \qquad u \equiv \frac{1}{2} \cot \frac{p}{2}. \end{split}$$

• The results fully reproduce the numerical values (given in units of $(\pi^2/\lambda)^{L/2}/\sqrt{L}$):

L	N _{1/2/3}	eigenvalue γ	n=1	n=2	n=3	n=4
2 4 6 6	2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1		$20\sqrt{\frac{2}{3}} \\ 20 + \frac{44}{\sqrt{5}} \\ 20 - \frac{44}{\sqrt{5}} \\ 3.57792 \\ 9.90466 \\ 61.6052 \\ \end{array}$	$40\sqrt{6} \\ \frac{96}{5} \left(15 + \sqrt{5}\right) \\ 288 - \frac{96}{\sqrt{5}} \\ 324.178 \\ 1724.55 \\ 1044 \ 07$	$ \begin{array}{r} 140\sqrt{6} \\ 84\left(21-\sqrt{5}\right) \\ 84\left(21+\sqrt{5}\right) \\ 11338.3 \\ 19513.8 \\ 920.07 \\ \end{array} $	$ \begin{array}{r} 1120\sqrt{\frac{2}{3}}\\ \frac{3584}{5}\left(10-\sqrt{5}\right)\\ \frac{3584}{5}\left(10+\sqrt{5}\right)\\ 98726\\ 120347\\ 120347 \end{array} $

Outlook

• Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)

- Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Extend current methods to the $\mathfrak{su}(3)$ and $\mathfrak{so}(6)$ sectors of the D3-D5 system (work in progress)

- Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Extend current methods to the $\mathfrak{su}(3)$ and $\mathfrak{so}(6)$ sectors of the D3-D5 system (work in progress)
- Integrability of β -deformed version of D3-D5 (work in progress)

- Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Extend current methods to the $\mathfrak{su}(3)$ and $\mathfrak{so}(6)$ sectors of the D3-D5 system (work in progress)
- Integrability of β -deformed version of D3-D5 (work in progress)
- Thermodynamic limit ($M, L \rightarrow \infty$, M/L = const), string theory/strong coupling side ($\lambda \rightarrow \infty$)...

- Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Extend current methods to the $\mathfrak{su}(3)$ and $\mathfrak{so}(6)$ sectors of the D3-D5 system (work in progress)
- Integrability of β -deformed version of D3-D5 (work in progress)
- Thermodynamic limit ($M, L \rightarrow \infty$, M/L = const), string theory/strong coupling side ($\lambda \rightarrow \infty$)...
- Move on to the $SU(2) \times SU(2)$ solution of D3-D7 and its β -deformation...

- Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Extend current methods to the $\mathfrak{su}(3)$ and $\mathfrak{so}(6)$ sectors of the D3-D5 system (work in progress)
- Integrability of β -deformed version of D3-D5 (work in progress)
- Thermodynamic limit ($M, L \rightarrow \infty$, M/L = const), string theory/strong coupling side ($\lambda \rightarrow \infty$)...
- Move on to the $SU(2) \times SU(2)$ solution of D3-D7 and its β -deformation...
- Higher loop orders, Wilson loops, 2-point functions à la D3-D5?

- Closed formula for all so (6) Bethe eigenstates? Integrability? (work in progress)
- Extend current methods to the $\mathfrak{su}(3)$ and $\mathfrak{so}(6)$ sectors of the D3-D5 system (work in progress)
- Integrability of β -deformed version of D3-D5 (work in progress)
- Thermodynamic limit ($M, L \rightarrow \infty$, M/L = const), string theory/strong coupling side ($\lambda \rightarrow \infty$)...
- Move on to the $SU(2) \times SU(2)$ solution of D3-D7 and its β -deformation...
- Higher loop orders, Wilson loops, 2-point functions à la D3-D5?

Thank you!