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CHAPTER 1Local spaces and localization1.1. Spaces and function spacesWe will be working simultaneously in several di�erent categories of spaces, anda central question will be whether a map of spaces induces a weak equivalence ofmapping spaces. In order to make statements that are valid in each of our cate-gories, we will refer uniformly to the simplicial mapping space (i.e., the simplicial setof maps) between two spaces no matter what the category of spaces. Notation 1.1.2describes our categories of spaces, and De�nition 1.1.5 describes the simplicial map-ping space. Corollary 1.1.9 implies that a map of spaces induces a weak equivalenceof these simplicial mapping spaces if and only if it induces a weak equivalence ofthe usual internal mapping spaces.1.1.1. Our categories of spaces. We will be working with both topologicalspaces and simplicial sets, and for each of these we will consider both the categoryof pointed spaces and the category of unpointed spaces. In order to keep theterminology concise, the word space will be used to mean either a topological spaceor a simplicial set, and we will use the following notation for our categories ofspaces.Notation 1.1.2. Wewill use the following notation for our categories of spaces:SS : The category of simplicial sets.SS� : The category of pointed simplicial sets.Top : The category of compactly generated Hausdor� topological spaces.Top�: The category of pointed compactly generated Hausdor� topological spaces.Since much of our discussion will apply to more than one of these categories, wewill use the following notation:SS(�) : Either SS or SS�.Top(�): Either Top or Top�.Spc : A category of unpointed spaces, i.e., either Top or SS.Spc� : A category of pointed spaces, i.e., either Top� or SS�.Spc(�): Any of the categories SS, SS�, Top, or Top�.Definition 1.1.3. We will use the notions of �bration, co�bration, and weakequivalence appropriate to the standard model category structures on SS(�) andTop(�) (see Theorem 10.1.4). Thus,� A �bration of simplicial sets is a Kan �bration (see, e.g., [43, page 25]), aco�bration of simplicial sets is an inclusion map, and a weak equivalence ofsimplicial sets is a map whose geometric realization is a homotopy equiva-lence.� A �bration of topological spaces is a Serre �bration, a co�bration of topo-logical spaces is a retract of a relative cell complex (see De�nition 2.2.1 or9 Draft: August 12, 1997



10 1. LOCAL SPACES AND LOCALIZATION[46, Part II Section 3]), and a weak equivalence of topological spaces is amap whose total singular complex is a homotopy equivalence.1.1.4. Function spaces. Given spaces X and Y in Spc(�), we will need twospaces of maps from X to Y . The �rst is the simplicial set of maps from X to Y ,which is the simplicial mapping space used as part of the usual simplicial model cat-egory structure on Spc(�) (see De�nition 10.1.2). The second is an internal mappingspace, i.e., an object of Spc(�). These two mapping spaces are closely related (seeProposition 1.1.7). In particular, if Spc(�) = SS, then these two mapping spacesare the same.Definition 1.1.5 (Simplicial mapping spaces). LetX and Y be spaces in Spc(�).� If Spc(�) = SS, then Map(X;Y ) is the simplicial set with n-simplices thesimplicial maps X ��[n] ! Y and face and degeneracy maps induced bythe standard maps between the �[n].� If Spc(�) = SS�, then Map(X;Y ) is the simplicial set with n-simplices thebasepoint preserving simplicial maps X ^�[n]+ ! Y and face and degen-eracy maps induced by the standard maps between the �[n].� If Spc(�) = Top, then Map(X;Y ) is the simplicial set with n-simplices thecontinuous functions X����[n]��! Y and face and degeneracy maps inducedby the standard maps between the �[n].� If Spc(�) = Top�, then Map(X;Y ) is the simplicial set with n-simplicesthe continuous functions X ^ ���[n]��+ ! Y and face and degeneracy mapsinduced by the standard maps between the �[n].Note that, in all cases, Map(X;Y ) is an unpointed simplicial set.Definition 1.1.6 (Internal mapping spaces). LetX and Y be spaces in Spc(�).� If Spc(�) = SS, then the internal mapping space Y X equals the simplicialmapping space Map(X;Y ) (see De�nition 1.1.5).� If Spc(�) = SS�, then Y X is the pointed simplicial set with n-simplicesthe basepoint preserving simplicial maps X ^ �[n]+ ! Y , and face anddegeneracy maps induced by the standard maps between the �[n]. Whenwe need to emphasize the category in which we work, we will use the notationMap�(X;Y ) for the pointed simplicial set of basepoint preserving maps.� If Spc(�) = Top, then Y X is the topological space of continuous functionsfrom X to Y with the compactly generated compact open topology. Whenwe need to emphasize the category in which we work, we will use the notationmap(X;Y ) for the unpointed topological space of continuous functions.� If Spc(�) = Top�, then Y X is the pointed topological space of basepointpreserving continuous functions from X to Y with the compactly generatedcompact open topology. When we need to emphasize the category in whichwe work, we will use the notation map�(X;Y ) for the pointed topologicalspace of basepoint preserving continuous functions.Proposition 1.1.7. The internal mapping spaces Y X of De�nition 1.1.6 arerelated to the simplicial mapping spaces Map(X;Y ) of De�nition 1.1.5 as follows:� If Spc(�) = SS, then Map(X;Y ) equals Y X .� If Spc(�) = SS�, then Map(X;Y ) is obtained from Y X by forgetting thebasepoint.Draft: August 12, 1997



1.1. SPACES AND FUNCTION SPACES 11� If Spc(�) = Top, then the simplicial set Map(X;Y ) is the total singularcomplex of Y X .� If Spc(�) = Top�, the simplicial set Map(X;Y ) is the total singular complexof the unpointed space obtained from Y X by forgetting the basepoint.Proof. This follows from the natural isomorphisms of setsTop����[n]��; Y X� � Top�X � ���[n]��; Y �Top�����[n]��+; Y X� � Top��X ^ ���[n]��+; Y �:Corollary 1.1.8. If Spc(�) = Top(�), then Map(X;Y ) is always a �brant sim-plicial set.Proof. Since the total singular complex of a topological space is always �-brant, this follows from Proposition 1.1.7.Corollary 1.1.9. Let g : W ! X and h : Y ! Z be maps in Spc(�).1. The map h� : Y X ! ZX is a weak equivalence in Spc(�) if and only if themap h� : Map(X;Y )!Map(X;Z) is a weak equivalence of simplicial sets.2. The map g� : Y X ! Y W is a weak equivalence in Spc(�) if and only if themap g� : Map(X;Y )!Map(W;Y ) is a weak equivalence of simplicial sets.Proof. Since a map of pointed spaces is a weak equivalence if and only if it isa weak equivalence of unpointed spaces after forgetting the basepoint, and a mapof topological spaces is a weak equivalence if and only if its total singular complexis a weak equivalence of simplicial sets, this follows from Proposition 1.1.7.1.1.10. Topological spaces and simplicial sets.Definition 1.1.11. If X and Y are objects of Spc(�) and K is a simplicial set,then X 
K and Y K will denote the objects of Spc(�) characterized by the naturalisomorphisms of simplicial setsSpc(�)(X 
K;Y ) � SS�K;Map(X;Y )� � Spc(�)(X;Y K)(see De�nition 10.1.2). Thus,If Spc(�) = SS, X 
K = X �K and XK = Map(K;X).If Spc(�) = SS�, X 
K = X ^K+ and XK = Map�(K+; X).If Spc(�) = Top, X 
K = X � ��K�� and XK = map���K��; X�.If Spc(�) = Top�, X 
K = X ^ ��K��+ and XK = map����K��+; X�(see De�nition 1.1.6).Lemma 1.1.12. If X is a space in SS(�) and K is a simplicial set, then there isa natural homeomorphism ��X 
K�� � ��X�� 
K.Proof. Since Top(�) is the category of compactly generated Hausdor� spaces,the natural map ��X �K��! ��X��� ��K�� is a homeomorphism.Lemma 1.1.13. If K is a simplicial set and W is a topological space (eitherboth pointed or both unpointed), then the standard adjunction of the geometricDraft: August 12, 1997



12 1. LOCAL SPACES AND LOCALIZATIONrealization and total singular complex functors extends to a natural isomorphismof simplicial mapping spacesMap���K��;W � � Map(K; SingW ):Proof. This follows from the natural homeomorphism ��K 
 �[n]�� � ��K�� 
���[n]�� (see De�nition 1.1.11).Proposition 1.1.14. If A and X are objects of SS(�) and X is �brant, thenthere is a natural weak equivalence of simplicial setsMap(A;X) �= Map���A��; ��X���:Proof. Since all simplicial sets are co�brant, the natural map X ! Sing��X��induces a weak equivalence Map(A;X) �= Map�A; Sing��X��� (see Corollary 10.2.2).The proposition now follows from Lemma 1.1.13.Proposition 1.1.15. If A and X are objects of Top(�) and A is co�brant, thenthere is a natural weak equivalence of simplicial setsMap(A;X) �= Map(SingA; SingX):Proof. Since all topological spaces are �brant, the natural map ��SingA��! Ainduces a weak equivalence Map(A;X) �= Map���SingA��; X� (see Corollary 10.2.2).The proposition now follows from Lemma 1.1.13.Definition 1.1.16. Each of our categories of spaces has a functor to SS, andthis functor has a left adjoint SS ! Spc(�), i.e., for an unpointed simplicial set Kand an object X of Spc(�), we have natural isomorphismsSS(K;X) � SS(K;X)SS�(K+; X) � SS(K;X�)Top���K��; X� � SS(K; SingX)Top����K��+; X� � SS(K; SingX�)where \X�" means \forget the basepoint of X". If K is an (unpointed) simplicialset, then Spc(�)(K) will denote the image of K in Spc(�) under this left adjoint.Thus, If Spc(�) = SS, then Spc(�)(K) = K.If Spc(�) = SS�, then Spc(�)(K) = K+.If Spc(�) = Top, then Spc(�)(K) = ��K��.If Spc(�) = Top�, then Spc(�)(K) = ��K��+.Example 1.1.17. In the standard model category structure on Spc(�), a map isde�ned to be a �bration if it has the right lifting property (see De�nition 8.2.1) withrespect to the maps Spc(�)(�[n; k])! Spc(�)(�[n]) for all n > 0 and 0 � k � n.1.2. Local spaces and localization1.2.1. De�nitions.Definition 1.2.2. Let f : A! B be a map between co�brant spaces in Spc(�)(see Notation 1.1.2).Draft: August 12, 1997



1.2. LOCAL SPACES AND LOCALIZATION 131. A space W is f-local if W is �brant and the induced map of simplicial setsf� : Map(B;W )!Map(A;W ) is a weak equivalence. If f is a map � ! A,then an f-local space will also be called A-local or A-null. Bous�eld ([12])has used the term A-periodic for what we here call A-local.2. A map g : X ! Y is an f-local equivalence if there is a co�brant approx-imation ~g : eX ! eY to g (see De�nition 9.1.8) such that, for every f-localspace W , the induced map of simplicial sets ~g� : Map(eY ;W )!Map( eX;W )is a weak equivalence. (Proposition 10.5.2 implies that if this is true forany one co�brant approximation to g, then it is true for every co�brantapproximation to g.)If Spc(�) = SS(�), then every space is co�brant, and so a map g : X ! Y is an f-local equivalence if and only if, for every f-local spaceW , the map g� : Map(Y;W )!Map(X;W ) is a weak equivalence. If Spc(�) = Top(�), then all CW-complexes areco�brant, and so a CW-replacement for a space serves as a co�brant approximationto that space.A paraphrase of De�nition 1.2.2 is that a �brant space is f-local if it makesf look like a weak equivalence (see Proposition 10.2.1), and a map is an f-localequivalence if all f-local spaces make it look like a weak equivalence. In Theo-rem 2.1.2, we show that there is a model category structure on Spc(�) in which thelocal spaces are the �brant objects (see Proposition 2.1.3) and the f-local equiva-lences are the weak equivalences. For a discussion of the relation of our de�nitionof f-local equivalence to earlier de�nitions, see Remark 1.2.9.Proposition 1.2.3. Let both f and ~f be maps between co�brant spaces. Ifthe class of f-local spaces equals the class of ~f-local spaces, then the class of f-localequivalences equals the class of ~f -local equivalences.Proof. This follows directly from the de�nitions.Example 1.2.4. Let A be a simplicial set (if Spc(�) = SS(�)) or a cell complex(if Spc(�) = Top(�)), and let CA be the cone on A. If f : � ! A is the inclusionof a vertex and ~f : A! CA is the standard inclusion, then a space is f-local (i.e.,A-local; see De�nition 1.2.2) if and only if it is ~f -local, and so the class of f-localequivalences equals the class of ~f -local equivalences.Proposition 1.2.5. Let f : A ! B be a map of co�brant spaces. If X and Yare �brant spaces and g : X ! Y is a weak equivalence, then X is f-local if andonly if Y is f-local.Proof. We have a commutative diagramMap(B;X) //�= �� Map(A;X)�=��Map(B; Y ) // Map(A; Y )in which the vertical maps are weak equivalences (see Corollary 10.2.2). Thus, thetop map is a weak equivalence if and only if the bottom map is a weak equivalence.Draft: August 12, 1997



14 1. LOCAL SPACES AND LOCALIZATIONProposition 1.2.6. Let both f : A ! B and ~f : eA ! eB be maps betweenco�brant spaces. If there are weak equivalences A ! eA and B ! eB such that thesquare A f //�= �� B�=��eA ~f // eBcommutes, then1. the class of f-local spaces equals the class of ~f-local spaces, and2. the class of f-local equivalences equals the class of ~f -local equivalences.Proof. Proposition 1.2.3 implies that part 1 implies part 2, and so it is su�-cient to prove part 1.If W is a �brant space, then we have the commutative squareMap( eB;W ) ~f� //�= �� Map( eA;W )�=��Map(B;W ) f� // Map(A;W )in which the vertical maps are weak equivalences (see Corollary 10.2.2). Thus, f�is a weak equivalence if and only if ~f� is a weak equivalence, and so W is f-local ifand only if it is ~f -local.Remark 1.2.7. Proposition 1.2.6 and Proposition 13.2.16 imply that we canalways replace our map f : A ! B with an inclusion of simplicial sets (if Spc(�) =SS(�)) or an inclusion of cell complexes (if Spc(�) = Top(�)) without changing theclass of f-local spaces or the class of f-local equivalences. We will often assumethat we have done this, and we will summarize this assumption by saying that f isan inclusion of cell complexes. (This usage is consistent with the de�nition of cellcomplex in a co�brantly generated model category (see De�nition 13.2.4).)Definition 1.2.8. Let f : A! B be a map between co�brant spaces.1. An f-localization of a space X is an f-local space bX (see De�nition 1.2.2)together with an f-local equivalence jX : X ! bX . We will sometimes use thephrase f-localization to refer to the space bX , without explicitly mentioningthe f-local equivalence j. A co�brant f-localization ofX is an f-localizationin which the f-local equivalence is also a co�bration.2. An f-localization of a map g : X ! Y is an f-localization ( bX; jX) of X, anf-localization (bY ; jY ) of Y , and a map ĝ : bX ! bY such that the squareX g //jX �� Y jY��bX ĝ // bYDraft: August 12, 1997



1.2. LOCAL SPACES AND LOCALIZATION 15commutes. We will sometimes use the term f-localization to refer to themap ĝ, without explicitly mentioning the f-localizations ( bX; jX) of X and(bY ; jY ) of Y .We will show in Corollary 1.4.13 that all spaces and maps have f-localizations.The reader should note the similarity between the de�nitions of f-localizationand �brant approximation (see De�nition 9.1.1 and De�nition 9.1.8). In Theo-rem 2.1.2, we prove that there is an f-local model category structure on Spc(�) inwhich the local spaces are the �brant objects and the f-local equivalences are theweak equivalences. In the f-local model category, an f-localization of a space ormap is exactly a �brant approximation to that space or map.Remark 1.2.9. In most earlier work on localization [21, 19, 24, 23, 12, 17],an f-local equivalence was de�ned to be a map g : X ! Y such that, for every f-local space W , the map of function spaces g� : Map(Y;W )!Map(X;W ) is a weakequivalence. In fact, this earlier work considered only the subcategory of co�brantspaces. Since a co�brant space is a co�brant approximation to itself, this earlierde�nition coincides with ours.1.2.10. f-local equivalences.Proposition 1.2.11. If f : A ! B is a map between co�brant spaces, thenevery weak equivalence is an f-local equivalence.Proof. Since a co�brant approximation to a weak equivalence must also be aweak equivalence, this follows from Corollary 10.2.2.Proposition 1.2.12. If f : A! B is a map between co�brant spaces, then theclass of f-local equivalences satis�es the \two out of three" axiom, i.e., if g and hare composable maps, and if two of g, h, and hg are f-local equivalences, then sois the third.Proof. Given maps g : X ! Y and h : Y ! Z, we can apply a functorialco�brant approximation (see Proposition 9.1.2) to g and h to obtain the diagrameX ~g //�� eY ~h //�� eZ��X g // Y h // Zin which ~g, ~h, and ~h~g are co�brant approximations to g, h, and hg, respectively.If W is a �brant space, then two of the maps ~g� : Map(eY ;W ) ! Map( eX;W ),~h� : Map( eZ;W ) ! Map(eY ;W ), and (~h~g)� : Map( eA;W ) ! Map( eX;W ) are weakequivalences, and so the third is as well.Proposition 1.2.13. If f : A ! B is a map between co�brant spaces, then aretract (see De�nition 8.1.1) of an f-local equivalence is an f-local equivalence.Proof. If g : X ! Y is an f-local equivalence and h : V ! W is a retractof g, then we apply a functorial co�brant approximation (see Proposition 9.1.2) toobtain co�brant approximations ~g : eX ! eY to g and ~h : eV ! fW such that ~h isa retract of ~g. If Z is an f-local space, then ~h� : Map(fW;Z) ! Map(eV ; Z) is aDraft: August 12, 1997



16 1. LOCAL SPACES AND LOCALIZATIONretract of the weak equivalence ~g� : Map(eY ; Z)!Map( eX;Z), and so ~h� is a weakequivalence.Proposition 1.2.14. Let f : A! B be a map of co�brant spaces. If g : X ! Yis a co�bration of co�brant spaces, then g is an f-local equivalence if and onlyif it has the left lifting property (see De�nition 8.2.1) with respect to the mapW�[n] !W @�[n] for all n � 0 and all f-local spaces W .Proof. This follows from Proposition 10.3.3 and Lemma 10.3.6.Proposition 1.2.15. Let f : A! B be a map of co�brant spaces, and let T bea totally ordered set. IfW : T ! Spc(�) is a functor such that, if s; t 2 T and s � t,then W s !W t is a co�bration of co�brant spaces that is an f-local equivalence,then, for every s 2 T , the mapW s ! colimt�sW t is an f-local equivalence.Proof. This follows from Proposition 1.2.14, Lemma 12.2.20, and Proposi-tion 12.2.21.Proposition 1.2.16. Let f : A ! B be a map of co�brant spaces and letg : C ! D be a co�bration between co�brant spaces that is also an f-local equiva-lence. If the square C //g �� Xh��D // Yis a pushout, then h is an f-local equivalence.Proof. Factor the map C ! X as C u�! P v�! X, where u is a co�brationand v is a trivial �bration. If we let Q be the pushout D qC P , then we have thecommutative diagram C u //g �� P v //k�� Xh��D s // Q t // Yin which u and s are co�brations, and so P and Q are co�brant. Since k is aco�bration, we are in a proper model category (see Theorem 11.1.16), and Proposi-tion 8.2.12 implies that Y is the pushout QqP X, the map t is a weak equivalence.Thus, k is a co�brant approximation to h (see De�nition 9.1.8), and so it is su�-cient to show that k induces a weak equivalence of mapping spaces to every f-localspace. Since g is a co�bration and an f-local equivalence and k is a co�bration,this follows from Proposition 10.3.3 and Lemma 10.3.7.1.2.17. f-local Whitehead theorems.Lemma 1.2.18. If f : A! B is a map between co�brant spaces, W is an f-localspace, and g : X ! Y is an f-local equivalence of co�brant spaces, then g induces anisomorphismof the sets of simplicial homotopy classes of maps g� : [Y;W ] � [X;W ].Proof. This follows from Corollary 10.4.9.Draft: August 12, 1997



1.2. LOCAL SPACES AND LOCALIZATION 17Theorem 1.2.19 (Strong f-local Whitehead theorem). Let f : A ! B be amap between co�brant spaces. If X and Y are co�brant f-local spaces and g : X !Y is an f-local equivalence, then g is a simplicial homotopy equivalence.Proof. This follows from Lemma 1.2.18 and Proposition 10.4.24.Theorem 1.2.20 (Weak f-local Whitehead theorem). Let f : A! B be a mapof co�brant spaces. If X and Y are f-local spaces and g : X ! Y is an f-localequivalence, then g is a weak equivalence.Proof. Choose a co�brant approximation ~g : eX ! eY to g such that jX : eX !X and jY : eY ! Y are trivial �brations (see Proposition 9.1.9). Proposition 1.2.5implies that eX and eY are f-local spaces, and Proposition 1.2.11 and Proposi-tion 1.2.12 imply that ~g is an f-local equivalence. Theorem 1.2.19 now implies that~g is a weak equivalence, which implies that g is a weak equivalence.1.2.21. Characterizing f-local spaces and f-local equivalences.Theorem 1.2.22. Let f : A! B be a map between co�brant spaces. If X is a�brant space and j : X ! bX is an f-localization of X (see De�nition 1.2.8), then jis a weak equivalence if and only if X is f-local.Proof. If X is f-local, then Theorem 1.2.20 implies that j is a weak equiva-lence. Conversely, if j is a weak equivalence, then Proposition 1.2.5 implies that Xis f-local.Theorem 1.2.23. Let f : A! B be a map between co�brant spaces. If ĝ : bX !bY is an f-localization of g : X ! Y (see De�nition 1.2.8), then g is an f-localequivalence if and only if ĝ is a weak equivalence.Proof. Proposition 1.2.11 and Proposition 1.2.12 imply that g is an f-localequivalence if and only if ĝ is an f-local equivalence. Since bX and bY are f-localspaces, Theorem 1.2.20 and Proposition 1.2.11 imply that ĝ is an f-local equivalenceif and only if it is a weak equivalence, and so the proof is complete.In De�nition 1.4.11, we de�ne a functorial f-localization (Lf ; j). Theorem 1.2.22then implies that a �brant space X is f-local if and only if the localization mapj(X) : X ! LfX is a weak equivalence (see Theorem 1.4.14), and Theorem 1.2.23implies that a map g : X ! Y is an f-local equivalence if and only if Lf (g) : LfX !LfY is a weak equivalence (see Theorem 1.4.15).1.2.24. Topological spaces and simplicial sets.Proposition 1.2.25. Let f : A ! B be a map between co�brant spaces inTop(�).1. A space is f-local if and only if it is ��Sing f��-local.2. A map g : X ! Y is an f-local equivalence if and only if it is a ��Sing f��-localequivalence.Proof. This follows from Proposition 1.2.6 and Proposition 1.2.3.Proposition 1.2.26. Let f : A! B be a map in SS(�).1. A space is f-local if and only if it is �Sing��f���-local. Draft: August 12, 1997



18 1. LOCAL SPACES AND LOCALIZATION2. A map g : X ! Y is an f-local equivalence if and only if it is a �Sing��f���-local equivalence.Proof. Since every simplicial set is co�brant, this follows fromProposition 1.2.6and Proposition 1.2.3.Proposition 1.2.27. If f : A ! B is a map in SS(�), then a topological spaceW in Top(�) is ��f��-local if and only if SingW is f-local.Proof. Lemma 1.1.13 gives us the commutative squareMap���B��;W � //� �� Map���A��;W ����Map(B; SingW ) // Map(A; SingW )in which the vertical maps are isomorphisms, from which the proposition follows.Proposition 1.2.28. If f : A! B is a map in SS(�) and K is a �brant simpli-cial set in SS(�), then K is f-local if and only if ��K�� is ��f��-local.Proof. Since K is �brant the natural mapK ! Sing��K�� is a weak equivalenceof �brant spaces, and so we have the commutative squareMap(B;K) //� �� Map(A;K)���Map�B; Sing��K��� // Map�A; Sing��K���in which the vertical maps are weak equivalences (see Corollary 10.2.2). Thus,K is f-local if and only if Sing��K�� is f-local, and so the proposition follows fromProposition 1.2.27.Proposition 1.2.29. If f : A! B is a map in SS(�), then the map g : C ! Din SS(�) is an f-local equivalence if and only if the map ��g�� : ��C��! ��D�� in Top(�) isa ��f��-local equivalence.Proof. Since every simplicial set is co�brant, g is an f-local equivalence if andonly if, for every f-local simplicial setK, the map of simplicial sets g� : Map(D;K)!Map(C;K) is a weak equivalence. IfK is an f-local simplicial set, then K is �brant,and so Corollary 10.2.2 implies that g is an f-local equivalence if and only if, forevery f-local simplicial set K, the map of simplicial sets g� : Map�D; Sing��K��� !Map�C; Sing��K��� is a weak equivalence. Lemma 1.1.13 implies that this is trueif and only if Map���D��; ��K��� ! Map���C��; ��K��� is a weak equivalence. Proposi-tion 1.2.27 and Proposition 1.2.28 imply that this is true if and only if, for every ��f��-local topological space W , the map Map���D��;W �!Map���C��;W � is a weak equiv-alence. Since ��C�� and ��D�� are co�brant, this is true if and only if ��g�� : ��C��! ��D�� isa ��f��-local equivalence, and the proof is complete.Proposition 1.2.30. If f : A! B is a map in SS(�), then the map g : X ! Yin Top(�) is a ��f��-local equivalence if and only if the map (Sing g) : SingX ! SingYin SS(�) is an f-local equivalence.Draft: August 12, 1997



1.3. CONSTRUCTING AN f-LOCALIZATION FUNCTOR 19Proof. The map ��Sing g�� : ��SingX�� ! ��SingY �� is a co�brant approximationto g (see De�nition 9.1.8), and so g is a ��f��-local equivalence if and only if, for ev-ery ��f��-local topological space W , the map of simplicial sets Map���SingY ��;W �!Map���SingX��;W � is a weak equivalence. Lemma 1.1.13 implies that this is true ifand only if, for every ��f��-local topological spaceW , the mapMap(SingY; SingW )!Map(SingX; SingW ) is a weak equivalence. If K is an f-local simplicial set, thenK is �brant, and so the natural map K ! Sing��K�� is a weak equivalence of �-brant objects. Thus, Corollary 10.2.2 and Proposition 1.2.28 imply that g is a��f��-local equivalence if and only if, for every f-local simplicial set K, the mapMap�SingY; Sing��K���!Map�SingX; Sing��K��� is a weak equivalence. Since everysimplicial set is co�brant, this completes the proof.1.3. Constructing an f-localization functorIf f : A! B is a map of co�brant spaces in Spc(�), we describe in this sectionhow to construct a functorial f-localization on Spc(�). The construction that wepresent is essentially the one used by Bous�eld in [10].1.3.1. Horns on f . Given a map f : A! B of co�brant spaces in Spc(�), wewant to construct a functorial f-localization (see De�nition 1.2.8) on Spc(�). Thatis, for every space X we want to construct a natural f-local space bX together with anatural f-local equivalence X ! bX . Remark 1.2.7 implies that we can assume thatf is an inclusion of cell complexes, and we will assume that f is such an inclusion.If bX is to be an f-local space, then it must �rst of all be �brant. Thus, themap bX ! � must have the right lifting property with respect to the inclusionsSpc(�)(�[n; k])! Spc(�)(�[n]) (see De�nition 1.1.16) for all n > 0 and n � k � 0.If bX is a �brant space, then f� : Map(B; bX)!Map(A; bX) is already a �brationof simplicial sets (see Proposition 10.1.6). Thus, if bX is �brant, then the assertionthat bX is f-local is equivalent to the assertion that f� is a trivial �bration ofsimplicial sets. Since a map of simplicial sets is a trivial �bration if and only ifit has the right lifting property with respect to the inclusions @�[n] ! �[n] forn � 0, this implies that a �brant space bX is f-local if and only if the dotted arrowexists in every solid arrow diagram of the form@�[n] //�� Map(B; bX)���[n] // 99Map(A; bX)and the isomorphisms of De�nition 1.1.11 imply that this is true if and only if thedotted arrow exists in every solid arrow diagram of the formA
�[n]qA
@�[n] B 
 @�[n] //�� bX��B 
�[n] //55 �Thus, a space bX is f-local if and only if the map bX ! � has the right liftingproperty with respect to the maps Spc(�)(�[n; k])! Spc(�)(�[n]) for all n > 0 andDraft: August 12, 1997



20 1. LOCAL SPACES AND LOCALIZATIONn � k � 0 and the maps A 
�[n]qA
@�[n] B 
 @�[n]! B 
�[n] for all n � 0.This is the motivation for the de�nition of the set �ffg of augmented f-horns.Definition 1.3.2. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7).� The set �ffg of horns on f is the set of maps�ffg = fA
�[n]qA
@�[n] B 
 @�[n]! B 
�[n] �� n � 0g:If Spc(�) = Spc� and f is the map f : � ! A, then �ffg is the set of maps�fAg = fA
 @�[n]! A 
�[n] �� n � 0g;and it will also be called the set of horns on A.� The set �ffg of augmented f-horns is the set of mapsJf = �ffg [ fSpc(�)(�[n; k])! Spc(�)(�[n]) �� n > 0; n � k � 0g(see De�nition 1.1.16).Proposition 1.3.3. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then a space X is f-local if and only if the map X ! � has the rightlifting property (see De�nition 8.2.1) with respect to all augmented f-horns (seeDe�nition 1.3.2).Proof. This follows from the discussion preceding De�nition 1.3.2.We will construct the map X ! bX as a trans�nite composition (see De�ni-tion 12.2.2) of inclusions of cell complexes X = E0 ! E1 ! E2 ! � � � ! E� !� � � (� < �), bX = colim�<� E�. To ensure that bX is f-local, we will construct theE� so that if the map C ! D is an element of �ffg, then1. for every map h : C ! bX there is an ordinal � < � such that h factorsthrough the map E� ! bX, and2. for every ordinal � < �, the dotted arrow exists in every solid arrow diagramof the form C //�� E� // E�+1D 66Thus, if the map C ! D is an element of �ffg, then the dotted arrow will existsin every solid arrow diagram of the formC //�� bXD ??and so the map bX ! � will have the right lifting property with respect to everyelement of �ffg (see Proposition 1.3.3).Draft: August 12, 1997



1.3. CONSTRUCTING AN f-LOCALIZATION FUNCTOR 211.3.4. Choice of the ordinal �. If A and B are �nite complexes, then welet � be the �rst in�nite ordinal. Otherwise, we let � be the �rst cardinal greaterthan that of the set of simplices (or cells) of Aq B (in which case � is a successorcardinal). In either case, � is a regular cardinal (see Proposition 12.1.15).Suppose we now construct a �-sequence (see De�nition 12.2.1) of inclusions ofcell complexes X = E0 ! E1 ! E2 ! � � � ! E� ! � � � (� < �)and let bX = colim�<� E�. If A 
�[n]qA
@�[n] B 
 @�[n]! bX is any map, thenfor each simplex (or cell) of A
�[n]qA
@�[n]B 
 @�[n] there is an ordinal � < �such that that simplex (or cell) lands in E� . (If Spc(�) = Top(�), then this followsfrom Corollary 2.2.5.) If we let � be the union of the ordinals � obtained in thisway for each simplex (or cell) in A
�[n]qA
@�[n] B 
 @�[n], then the regularityof � ensures that � < �. Thus, our map factors through E�. The same argumentapplies to maps Spc(�)(�[n; k])! bX.1.3.5. Construction of the sequence. It remains only to show how to con-struct the E�. We begin the sequence by letting E0 = X. If � < �, and we haveconstructed the sequence through E�, we letC� = a(C!D)2�ffgSpc(�)(C;E� ) C and D� = a(C!D)2�ffgSpc(�)(C;E� ) DWe then have a natural map C� ! E�, and we de�ne E�+1 by letting the squareC� //�� E���D� // E�+1be a pushout. If  is a limit ordinal, we let E = colim�< E�. We let bX =colim�<� E�.It remains only to show that the map X ! bX that we have constructed is anf-local equivalence. This will follow from Theorem 1.3.11.1.3.6. Horns on f and f-local equivalences.Proposition 1.3.7. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then every horn on f is an f-local equivalence.Proof. Since every horn on f is a co�bration between co�brant spaces, thisfollows from Proposition 10.3.3 and Proposition 10.3.10.Definition 1.3.8. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then a relative �ffg-cell complex is de�ned to be a map that canbe constructed as a trans�nite composition (see De�nition 12.2.2) of pushouts (seeDe�nition 8.2.10) of elements of �ffg (see De�nition 1.3.2). If the map from theinitial object to a space X is a relative �ffg-cell complex, then X will be called an�ffg complex. Draft: August 12, 1997



22 1. LOCAL SPACES AND LOCALIZATIONTheorem 1.3.9. If f : A! B is an inclusion of cell complexes (see Remark 1.2.7),then every relative �ffg-cell complex is both a co�bration and an f-local equiva-lence.Proof. Since every element of �ffg (see De�nition 1.3.2) is a co�bration,and co�brations are closed under both pushouts and trans�nite compositions (seeProposition 12.2.19), every relative �ffg-cell complex is a co�bration. Thus, itremains only to show that a relative �ffg-cell complex is an f-local equivalence.If Spc(�) = SS(�) (in which every object is co�brant), then Proposition 10.3.3,Proposition 10.3.10, and Proposition 12.2.18 imply that every relative �ffg-cellcomplex is an f-local equivalence.If Spc(�) = Top(�), then Proposition 1.3.7 implies that every element of �ffgis an f-local equivalence. Since every f-cell has co�brant domain and codomain,Proposition 1.2.16 now implies that every pushout of an element of �ffg is anf-local equivalence.If � is an ordinal andX0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)is a �-sequence of pushouts of elements of �ffg, then Proposition 11.1.22 impliesthat we can �nd a �-sequence of co�brations together with a map of �-sequenceseX0 //�� eX1 //�� eX2 //�� � � � // eX� //�� � � �X0 // X1 // X2 // � � � // X� // � � �such that each vertical map eX� ! X� is a co�brant approximation to X� andcolim�<� eX� ! colim�<�X� is a co�brant approximation to colim�<�X� . If W isan f-local space, then Map(colim�<� eX� ;W ) is isomorphic to lim�<�Map( eX� ;W ).Since each X� ! X�+1 is an f-local equivalence and each eX� ! eX�+1 is a co�bra-tion, each Map( eX�+1;W )!Map( eX� ;W ) is a trivial �bration. Thus,Map( eX0;W ) Map( eX1;W ) Map( eX2;W ) � � �  Map( eX� ;W ) � � �is a tower of trivial �brations, and so the composition Map(colim�<� eX� ;W ) !Map( eX0;W ) is a weak equivalence, and so the composition X0 ! colim�<�X� isan f-local equivalence.Proposition 1.3.10. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then for every space X, the map X ! bX constructed in Section 1.3.5is a relative �ffg-cell complex.Proof. The mapX ! bX is constructed as a trans�nite composition of pushoutsof coproducts of elements of �ffg, and to the result follows fromProposition 12.2.12.Theorem 1.3.11. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then for every space X the map X ! bX constructed in Section 1.3.5is a natural f-localization of X.Draft: August 12, 1997



1.4. CONCISE DESCRIPTION OF THE f-LOCALIZATION 23Proof. This follows fromProposition 1.3.10, Theorem 1.3.9, Proposition 1.3.3,and the discussion following Proposition 1.3.3.1.4. Concise description of the f-localization1.4.1. f-co�brations and f-injectives.Definition 1.4.2. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7).1. A �ffg-injective is de�ned to be a map that has the right lifting property(see De�nition 8.2.1) with respect to every element of �ffg (see De�ni-tion 1.3.2). A space X will be called a �ffg-injective if the map X ! � isa �ffg-injective. If f is a co�bration f : � ! A, then a �ffg-injective willalso be called a �fAg-injective.2. A �ffg-co�bration is de�ned to be a map that has the left lifting propertywith respect to all �ffg-injectives. If the map from the initial object to aspace X is a �ffg-co�bration, then X will be called �ffg-co�brant. If f isa co�bration f : � ! A, then a �ffg-co�bration will also be called a �fAg-co�bration, and a �ffg-co�brant space will also be called a �fAg-co�brantspace.Remark 1.4.3. The term �ffg-injective comes from the theory of injectiveclasses ([32]). A space X is a �ffg-injective if and only if it is injective in the senseof [32] relative to the elements of �ffg, and we will show in Proposition 1.4.5 thata map p : X ! Y is a �ffg-injective if and only if, in the category (Spc(�) #Y ) ofspaces over Y (see De�nition 14.4.1), the object p is injective relative to the classof maps whose image under the forgetful functor (Spc(�) #Y )! Spc(�) is a relative�ffg-cell complex (see De�nition 1.3.8).Proposition 1.4.4. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then a map p : X ! Y is a �ffg-injective if and only if it is a �brationwith the homotopy right lifting property with respect to f .Proof. This follows from Lemma 10.3.6.Proposition 1.4.5. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then every relative �ffg-cell complex (see De�nition 1.3.8) is a �ffg-co�bration.Proof. This follows from Proposition 1.4.4.Proposition 1.4.6. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then every trivial co�bration is a �ffg-co�bration.Proof. This follows from Proposition 8.2.3.Proposition 1.4.7. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then a space X is a �ffg-injective if and only if it is f-local (seeDe�nition 1.2.2).Proof. This follows from Proposition 10.3.3 and Proposition 1.4.4.Draft: August 12, 1997



24 1. LOCAL SPACES AND LOCALIZATION1.4.8. The functorial localization.Proposition 1.4.9. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). If j : X ! bX is a relative �ffg-cell complex and bX is a �ffg-injective,then the pair ( bX; j) is a co�brant f-localization of X.Proof. This follows from Proposition 1.4.7 and Theorem 1.3.9.Theorem 1.4.10. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then there is a natural factorization of every map X ! Y asX j�! Ef p�! Yin which j is a relative �ffg-cell complex (see De�nition 1.3.8) and p is a �ffg-injective (see De�nition 1.4.2).Proof. This follows from Proposition 12.4.12.Definition 1.4.11. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). The f-localization of a space X is the space LfX obtained by applyingthe factorization of Theorem 1.4.10 to the map X ! � from X to the terminal ob-ject of Spc(�). This factorization de�nes a natural transformation j : 1 ! Lf suchthat jX : X ! LfX is a relative �ffg-cell complex.Theorem 1.4.12. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then for every space X, the f-localization jX : X ! LfX is a co�brantf-localization of X.Proof. This follows from Proposition 1.4.9.Corollary 1.4.13. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then every space has an f-localization.Proof. This follows from Theorem 1.4.12.Theorem 1.4.14. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). IfX is a �brant space, then X is f-local if and only if the f-localizationmap jX : X ! LfX is a weak equivalence.Proof. This follows from Theorem 1.2.22.Theorem 1.4.15. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). The map g : X ! Y is an f-local equivalence if and only if itsf-localization Lf (g) : LfX ! LfY is a weak equivalence.Proof. This follows from Theorem 1.2.23.Proposition 1.4.16. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then every �ffg-co�bration (see De�nition 1.4.2) is a retract of arelative �ffg-cell complex.Proof. This follows form Theorem 1.4.10 and the retract argument (see Prop-osition 8.2.2).Corollary 1.4.17. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then every �ffg-co�bration is an f-local equivalence.Draft: August 12, 1997



1.5. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 25Proof. This follows from Proposition 1.4.16, Theorem 1.3.9, and Proposi-tion 1.2.13.1.4.18. Properties of the localization functor.Proposition 1.4.19. Let f : A ! B be an inclusion of cell complexes (seeRemark 1.2.7), let X ! X0 and Y ! Y 0 be co�brations, and let the squareX //�� Y��X 0 // Y 0be commutative. If we apply the factorization of Theorem 1.4.10 to each of thehorizontal maps to obtain the commutative diagramX //�� Ef //�� Y��X 0 // E0f // Y 0;then the map Ef ! E0f is a co�bration.Proof. Using Lemma 8.2.13, one can check inductively that at each stage inthe construction of the factorization, we have a co�bration E� ! (E�)0.Corollary 1.4.20. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). If g : X ! Y is a co�bration, then so is Lf (g) : LfX ! LfY (seeDe�nition 1.4.11).Proof. This follows from Proposition 1.4.19.1.5. Topological spaces and simplicial setsWarning: This section is a collection of leftovers in need of reorga-nization!The main results of this section (Corollary 1.5.5 and Corollary 1.5.7) imply,roughly speaking, that when using the localization functor of De�nition 1.4.11,one can pass freely through the geometric realization and total singular complexfunctors, at the cost of only a natural weak equivalence.Lemma 1.5.1. Let K and C be simplicial sets and let X be is a topologicalspace.1. Amap of topological spaces ��K��! X de�nes a simplicialmapMap(C;K)!Map���C��; X� that is natural in C and in the map ��K��! X.2. A map of simplicial sets K ! SingX de�nes a simplicial mapMap(C;K)!Map���C��; X� that is natural in C and in the map K ! SingX.Proof. The map of part 1 is de�ned as the compositionMap(C;K)!Map���C��; ��K���!Map���C��; X�and the map of part 2 is de�ned as the compositionMap(C;K)!Map(C; SingX)!Map���C��; X�:Draft: August 12, 1997



26 1. LOCAL SPACES AND LOCALIZATIONProposition 1.5.2. If K ! L is a map of simplicial sets, X ! Y a map oftopological spaces, and ��K�� //�� X����L�� // Ya commutative square, then there is a natural map from the geometric realizationof the pushoutC � �Map(C;K)�Map(C;L)Map(D;L)� //�� K //�� P��D � �Map(C;K)�Map(C;L) Map(D;L)� // 33Lto the pushout��C��� ��Map���C��; X� �Map(jCj;Y ) Map���D��; Y ��� //�� X //�� Q����D��� ��Map���C��; X��Map(jCj;Y ) Map���D��; Y ��� // 33Ythat makes the diagram ��K�� //�� ��P �� //�� ��L����X // Q // Ycommute.Proof. Since the geometric realization functor commutes with pushouts, thisfollows from Lemma 1.5.1.Proposition 1.5.3. If K ! L is a map of simplicial sets, X ! Y a map oftopological spaces, and K //�� SingX��L // SingYa commutative square, then there is a natural map from the pushoutC � �Map(C;K)�Map(C;L)Map(D;L)� //�� K //�� P��D � �Map(C;K)�Map(C;L) Map(D;L)� // 33LDraft: August 12, 1997



1.5. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 27to the total singular complex of the pushout��C��� ��Map���C��; X� �Map(jCj;Y ) Map���D��; Y ��� //�� X //�� Q����D��� ��Map���C��; X��Map(jCj;Y ) Map���D��; Y ��� // 33Ythat makes the diagram K //�� P //�� L��SingX // SingQ // SingYcommute.Proof. This follows from Lemma1.5.1, using the natural map from the pushoutof the total singular complexes to the total singular complex of the pushout.Theorem 1.5.4. Let f : A ! B be a co�bration of simplicial sets and letg : X ! Y be a map of topological spaces. If Ef (Sing g) is the simplicial set ob-tained by applying the factorization of Theorem 1.4.10 to the map Singg : SingX !SingY and Ejf jg is the topological space obtained by applying the factorization ofTheorem 1.4.10 (with respect to the map ��f�� : ��A��! ��B��) to the map g, then thereis a natural map ��Ef (Sing g)��! Ejf j g that makes the diagram��SingX�� //�� ��Ef (Sing g)�� //�� ��SingY ����X // Ejf j g // Ycommute.Proof. Using Proposition 1.5.2, one can construct the map inductively at eachstage in the construction of the factorization.Corollary 1.5.5. If f : A ! B is a co�bration of simplicial sets, then, forevery topological space X, there is a natural map ��Lf SingX��! Ljf jX that makesthe square ��SingX�� //�� X����Lf SingX�� // Ljf jXcommute, and this natural map is a weak equivalence.Proof. The existence of the natural map follows from Theorem 1.5.4. Propo-sition 1.2.28 implies that ��Lf SingX�� is ��f��-local, and so Proposition 1.2.29 impliesthat our natural map is a ��f��-localization of the weak equivalence ��SingX�� ! X(see De�nition 1.2.8). Proposition 1.2.11 and Theorem 1.2.23 now imply that ournatural map is a weak equivalence. Draft: August 12, 1997



28 1. LOCAL SPACES AND LOCALIZATIONTheorem 1.5.6. Let f : A ! B be a co�bration of simplicial sets and letg : K ! L be a map of simplicial sets. If Ef g is the simplicial set obtained byapplying the factorization of Theorem 1.4.10 to the map g and Ejf j��g�� is the topo-logical space obtained by applying the factorization of Theorem 1.4.10 (with respectto the map ��f�� : ��A��! ��B��) to the map ��g�� : ��K��! ��L��, then there is a natural mapEf g ! Ejf j��g�� that makes the diagramK //�� Ef g //�� L��Sing��K�� // SingEjf j��g�� // Sing��Y ��commute.Proof. Using Proposition 1.5.3, one can construct the map inductively at eachstage in the construction of the factorization.Corollary 1.5.7. If f : A! B is a co�bration of simplicial sets then for everysimplicial set K there is a natural map LfK ! Sing Ljf jK that makes the squareK //�� Sing��K����LfK // Sing Ljf j��K��commute, and this natural map is a simplicial homotopy equivalence.Proof of Corollary 1.5.7. The existence of the natural map follows fromTheorem 1.5.6. Proposition 1.2.27 implies that Sing Ljf j��K�� is f-local, and Prop-osition 1.2.12, Proposition 1.2.11, and Proposition 1.2.30 imply that our naturalmap is an f-local equivalence of co�brant f-local spaces. The result now followsfrom Theorem 1.2.19.Proposition 1.5.8. If f : A! B is a co�bration in SS(�), (Mf ; j : 1!Mf ) isa functorial co�brant f-localization on SS(�), and (Njf j; k : 1! Njf j) is a functorialco�brant ��f��-localization on Top(�), then, for every topological space X, there isa map ��Mf SingX�� ! Njf jX, unique up to simplicial homotopy, that makes thesquare ��SingX�� //�� X����Mf SingX�� // Njf jX(1.5.9)commute, and any such map is a weak equivalence. (Since ��Mf SingX�� is co�brantand Njf jX is �brant, all notions of homotopy of maps ��Mf SingX�� ! Njf jX coin-cide and are equivalence relations (see Proposition 10.4.4).) This map is naturalDraft: August 12, 1997



1.5. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 29up to homotopy, i.e., if g : X ! Y is a map of topological spaces, then the square��Mf SingX�� //�� Njf jX����Mf SingY �� // Njf jYcommutes up to homotopy.Proof. Since Proposition 1.2.29 implies that the map ��SingX��! ��Mf SingX��is a ��f��-local equivalence, the existence and uniqueness of the map follow fromLemma 1.2.18. Since Proposition 1.2.28 implies that ��Mf SingX�� is ��f��-local, The-orem 1.2.20 implies that the map is a weak equivalence.For the naturality statement, we note that we have the cube��SingX�� //))TTTTT�� X %%KKKKKK����SingY �� //�� Y����Mf SingX�� //))TTT Njf jX %%KKK��Mf SingY �� // Njf jYin which the top and side squares commute and the front and back squares commuteup to simplicial homotopy. This implies that the composition��SingX��! ��Mf SingX��! ��Mf SingY ��! Njf jYis simplicially homotopic to the composition��SingX��! ��Mf SingX��! Njf jX ! Njf jY;and so the result follows from Lemma 1.2.18.Proposition 1.5.10. If f : A! B is a co�bration in SS(�), (Mf ; j : 1!Mf ) isa functorial co�brant f-localization on SS(�), and (Njf j; k : 1! Njf j) is a functorialco�brant ��f��-localization on Top(�), then, for every simplicial set K, there is a mapMfK ! SingNjf j��K��, unique up to homotopy, that makes the squareK //�� Sing��K����MfK // SingNjf j��K��(1.5.11)commute, and any such map is a homotopy equivalence. (Since every simplicial setis co�brant and SingNjf j��K�� is �brant, all notions of homotopy of maps MfK !SingNjf j��K�� coincide and are equivalence relations (see Proposition 10.4.4).) Thismap is natural up to homotopy, i.e., if g : K ! L is a map of simplicial sets, thenDraft: August 12, 1997



30 1. LOCAL SPACES AND LOCALIZATIONthe square MfK //�� SingNjf j��K����MfL // SingNjf j��L��commutes up to homotopy.Proof. Proposition 1.2.30 implies that the map Sing��K�� ! SingNjf j��K�� isan f-local equivalence and Proposition 1.2.27 implies that SingNjf j��K�� is f-local.Since every simplicial set is co�brant, the existence and uniqueness of the mapnow follows from Lemma 1.2.18, and Theorem 1.2.19 implies that it is a homotopyequivalence. The naturality statement follows as in the proof of Proposition 1.5.8.1.6. A continuous localization functorIn this section, we will de�ne a variant Lcontf of the f-localization functor Lfthat is \continuous". If we were using topological spaces of functions (insteadof simplicial sets of functions; see Section 1.1.4) then we would want to de�ne afunction Map(X;Y )!Map(LfX;LfY )(1.6.1)that is a continuous function of topological spaces. Since we are considering Spc(�)as a simplicial model category (see De�nition 10.1.2), we want to de�ne Lcontf to bea simplicial functor, i.e., we want a functor Lcontf that de�nes a map of simplicialsets (1.6.1) (see [46, Chapter II, Section 1]). Note that not every functor can beextended to a simplicial functor; for a counterexample, see Example 1.6.11.1.6.2. Constructing relative �ffg-cell complexes.Lemma 1.6.3. If f : A! B is an inclusion of cell complexes (see Remark 1.2.7),then a pushout of a relative �ffg-cell complexes is a relative �ffg-cell complex.Proof. This follows from Lemma 8.2.11.Lemma 1.6.4. If f : A! B is an inclusion of cell complexes (see Remark 1.2.7),then a coproduct of relative �ffg-cell complexes is a relative �ffg-cell complex.Proof. This follows fromProposition 12.2.5, Lemma1.6.3, and Lemma12.2.11.Proposition 1.6.5. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). If (K;L) is a pair of simplicial sets, then the mapA 
K qA
L B 
 L! B 
Kis a relative �ffg-cell complexes.Proof. The inclusion L ! K can be written as a trans�nite composition(see De�nition 12.2.2) of inclusions each of which is a pushout of an inclusion@�[n]! �[n] (for various values of n). Thus, A 
K qA
L B 
 L ! B 
 K is atrans�nite composition of pushouts of A
�[n]qA
@�[n]B
@�[n]! B
�[n].Draft: August 12, 1997



1.6. A CONTINUOUS LOCALIZATION FUNCTOR 31Corollary 1.6.6. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7) and K is a simplicial set, then the maps(A
�[n]qA
@�[n] B 
 @�[n])
K ! (B 
�[n])
K for n � 0�[n; k]
K ! �[n]
K for n > 0 and 0 � k � nare relative �ffg-cell complexes.Proof. Lemma 10.2.3 and axiom M6 (see De�nition 10.1.2) imply that themap (A
�[n]qA
@�[n] B 
 @�[n])
K ! (B 
�[n])
Kis isomorphic to the mapA
 (�[n]�K)qA
(@�[n]�K) B 
 (@�[n]�K)! B 
 (�[n]�K);and so Proposition 1.6.5 implies that it is a relative �ffg-cell complex. The map�[n; k]
 K ! �[n] 
 K can be written as a trans�nite composition (see De�ni-tion 12.2.2) of inclusions each of which is a pushout of an inclusion �[n; k]! �[n](for various values of n and k), and so the proof is complete.1.6.7. Constructing the continuous f-localization. We follow the proce-dure described in Section 1.3, using the same ordinal �, except that we use a newconstruction to de�ne the space E�+1 in terms of the space E� (see Section 1.3.5).1.6.8. Construction of the sequence. As in Section 1.3.5, we begin thesequence by letting E0 = X. If � < �, and we have constructed the sequencethrough E�, we let Ccont� = a(C!D)2�ffgC 
Map(C;E�)Dcont� = a(C!D)2�ffgD 
Map(C;E�)We then have a natural map Ccont� ! E� , and we de�ne E�+1 by letting the squareCcont� //�� E���Dcont� // E�+1be a pushout. If  is a limit ordinal, we let E = colim�< E�. We let Lcontf X =colim�<� E�.Theorem 1.6.9. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). IfX is a space, then the mapX ! Lcontf X constructed in Section 1.6.8is a co�brant f-localization of X.Proof. Corollary 1.6.6, Lemma 1.6.4, and Lemma 1.6.3 imply that each E� !E�+1 is a relative �ffg-cell complex, and so Lemma 12.2.11 implies that X !Lcontf X is a relative �ffg-cell complex. Theorem 1.3.9 now implies that the mapX ! Lcontf X is both a co�bration and an f-local equivalence, and so it remainsDraft: August 12, 1997



32 1. LOCAL SPACES AND LOCALIZATIONonly to show that Lcontf X is f-local. The 0-skeleton of Map(C;E�) is Spc(�)(C;E�),and so C 
Map(C;E�) containsC 
 Spc(�)(C;E�) � aSpc(�)(C;E�)Cas a subcomplex. The discussion in Section 1.3.4 now explains why the spaceLcontf X is a �ffg-injective, and so the map X ! Lcontf X is a functorial co�brantf-localization of X.Theorem 1.6.10. The functor Lcontf can be extended to a simplicial functor.Proof. If C and X are spaces and K is a simplicial set, then there is anatural map Map(C;X)�K !Map(C;X 
K) that takes the n-simplex (� : C 
�[n]! X; � ) of Map(C;X) �K to the n-simplex �(�; � ) : C 
 �[n]! X 
K ofMap(C;X 
 K) where the projection of �(�; � ) on X is � and the projection onK is the composition of the projection C 
�[n]! �[n] with the map that takesthe non-degenerate n-simplex of �[n] to � . This natural map � has the propertiesrequired by Theorem 10.6.4, and so we can use it to inductively de�ne � for all thespaces used in the construction of the localization (see Section 1.6.8). The theoremnow follows from Proposition 10.6.6 and Theorem 10.6.4.Example 1.6.11 (Counterexample to continuity). If A is any nonempty spacein Top, we de�ne a functor WA = W : Top ! Top by WAX = WX = `A!X A,that is, we take the disjoint union of one copy of A for each continuous functiong : A! X. This de�nes a functor in which the copy ofA corresponding to g as abovemaps under W (f) : WX !WY by the identity map to the copy corresponding tof � g, but W cannot be extended to a simplicial functor. To see this, take X = Aand Y = A � I. The simplicial set Map(X;Y ) = Map(A;A � I) has vertices (i.e.,maps A! A� I) the inclusions i0 and i1 (where i0(a) = (a; 0) and i1(a) = (a; 1)),and these vertices of Map(A;A� I) are connected by a 1-simplex A��[1]! A� Iof Map(A;A � I). The functions W (i0) and W (i1), however, take each point ofWA into di�erent components of W (A � I), and so there can be no 1-simplex ofMap�WA;W (A� I)� connecting these vertices.Example 1.6.12. If we change Example 1.6.11 slightly, we can construct afunctor that is continuous. De�ne W cA = W c byW cX = XA�X (where XA is thecompactly generated topological space of continuous functions A ! X). We havea natural transformationW !W c such that WX !W cX is always a continuousbijection, but it is not, in general, a homeomorphism.1.7. Pointed and unpointed localizationThere is a functor from the category of pointed spaces to the category of un-pointed spaces that forgets the basepoint. If f : A! B is a co�bration of co�brantpointed spaces, we can consider the notions of pointed f-local spaces and pointedf-local equivalences in Spc�, or we can still consider spaces with basepoint (i.e.,spaces in Spc�) but consider the notions of unpointed f-local spaces and unpointedf-local equivalences in Spc by forgetting the basepoints.Notation 1.7.1. In this section, ifX and Y are objects of Spc�, then Map(X;Y )will continue to denote the unpointed simplicial set of maps between the pointedDraft: August 12, 1997



1.7. POINTED AND UNPOINTED LOCALIZATION 33spaces X and Y , and UMap(X;Y ) will denote the unpointed simplicial set of mapsbetween the unpointed spaces obtained from X and Y by forgetting the basepoint.Proposition 1.7.2. Let A be a co�brant object of Spc� and let X be a �brantobject of Spc�.1. If Spc� = SS�, then there is a natural �bration of unpointed simplicial setsMap(A;X)! UMap(A;X)! X:2. If Spc� = Top�, then there is a natural �bration of unpointed simplicial setsMap(A;X)! UMap(A;X)! SingX:Proof. Since � ! A is a co�bration of pointed spaces and X is a �brantpointed space, � ! A is also a co�bration of unpointed spaces (after forgetting thebasepoints) and X is also a �brant pointed space (after forgetting the basepoint).Thus, Proposition 10.1.6 implies that we have a natural �bration of simplicial setsUMap(A;X) ! UMap(�; X). The �ber of this �bration is Map(A;X). If Spc� =SS�, then UMap(�; X) is naturally isomorphic to the unpointed simplicial set X. IfSpc� = Top�, then UMap(�; X) is naturally isomorphic to the unpointed simplicialset SingX.Definition 1.7.3. If f : A! B is a co�bration of co�brant pointed spaces andX is a pointed space, then we will say that X is pointed f-local if it is an f-localspace in Spc�, and we will say that X is unpointed f-local if X is an f-local spacein Spc when we forget the basepoints of all the spaces involved. Similarly, a mapf : X ! Y will be called a pointed f-local equivalence if it is an f-local equivalencein Spc�, and an unpointed f-local equivalence if it is an f-local equivalence in Spcafter forgetting all basepoints.Proposition 1.7.4. Let A ! B be a map of co�brant pointed spaces and letW be a �brant pointed space.1. If UMap(B;W )! UMap(A;W ) (see Notation 1.7.1) is a weak equivalence,then Map(B;W )!Map(A;W ) is a weak equivalence.2. IfW is path connected andMap(B;W )! Map(A;W ) is a weak equivalence,then UMap(B;W )! UMap(A;W ) is a weak equivalence.Proof. This follows from Proposition 1.7.2.Proposition 1.7.5. Let f : A! B be a co�bration of co�brant pointed spacesand let X be a pointed space.1. If X is an unpointed f-local space, then it is also a pointed f-local space.2. If X is a path connected pointed f-local space, then it is also an unpointedf-local space.Proof. This follows from Proposition 1.7.4.Corollary 1.7.6. Let f : A! B be a co�bration of co�brant pointed spaces.If X is a path connected pointed space, then X is pointed f-local if and only if itis unpointed f-local.Proof. This follows from Proposition 1.7.5. Draft: August 12, 1997



34 1. LOCAL SPACES AND LOCALIZATIONLemma 1.7.7. If A is a path connected pointed space, X is a pointed space,and Xb is the path component of X containing the basepoint, then the natural mapMap(A;Xb)!Map(A;X) is an isomorphism.Proof. Since the image of a path connected space is path connected, the imageof a pointed map from A to X is contained in Xb.Theorem 1.7.8. If f : A ! B is a map of path connected co�brant pointedspaces and X is a pointed space, then the following are equivalent:1. X is pointed f-local.2. Every path component of X is �brant and the path component of X con-taining the basepoint is pointed f-local.3. Every path component of X is �brant and the path component of X con-taining the basepoint is unpointed f-local.Proof. This follows from Lemma 1.7.7 and Corollary 1.7.6.Corollary 1.7.9. If f : A ! B is a map of path connected co�brant pointedspaces and X is a �brant pointed space, then X is unpointed f-local if and onlyif every path component of X is pointed f-local when you choose a basepoint foreach path component.Proof. If the path components of X are fXsgs2S , then there is an iso-morphism Map(A;X) � `s2SMap(A;Xs) that is natural in A, and (after youchoose a basepoint for each path component) an isomorphism UMap(A;X) �`s2S UMap(A;Xs) that is natural in A. The result now follows from Corol-lary 1.7.6.Corollary 1.7.10. If f : A! B is a map of path connected co�brant pointedspaces, X is a pointed space, and Xb is the path component of X containing thebasepoint, then the natural map(X �Xb)q LfXb ! LfXis a weak equivalence (where Lf denotes pointed f-localization).Proof. This follows from Theorem 1.7.8, Lemma 1.7.7, and Theorem 1.2.20.Lemma 1.7.11. IfW is an f-local space, then any space consisting of a nonemptyunion of path components of W is an f-local space.Proof. A nonempty union of path components of a co�brant space is a retractof that space.Proposition 1.7.12. Let f : A ! B be a map of co�brant pointed spaces. IfX ! Y is an unpointed f-local equivalence of path connected pointed spaces, thenit is also a pointed f-local equivalence.Proof. If eX ! eY is a pointed co�brant approximation (see De�nition 9.1.8)to X ! Y , then it is also an unpointed co�brant approximation. If W is apointed f-local space, let Wb be the path component of W containing the base-point. Lemma 1.7.11 and Proposition 1.7.5 imply that Wb is an unpointed f-local space, and so the map UMap(eY ;Wb)! UMap( eX;Wb) is a weak equivalence.Proposition 1.7.4 now implies that the map Map(eY ;Wb)! Map( eX;Wb) is a weakDraft: August 12, 1997



1.8. COMPARING LOCALIZATIONS 35equivalence. Since both eX and eY are path connected, the horizontal maps in thecommutative square Map(eY ;Wb) //�� Map(eY ;W )��Map( eX;Wb) // Map( eX;W )are isomorphisms, and so the mapMap(eY ;W )!Map( eX;W ) is a weak equivalence.Theorem 1.7.13. If f : A! B is a co�bration of co�brant pointed spaces andX is a co�brant path connected pointed space, then the pointed f-localization ofX is weakly equivalent to the unpointed f-localization of X.Proof. Let X ! Y be the unpointed f-localization of X. Proposition 1.7.5implies that Y is pointed f-local and Proposition 1.7.12 implies that the map X !Y is a pointed f-local equivalence, and so the result follows from Proposition 6.1.10.Theorem 1.7.14. If f : A ! B is a co�bration of path connected co�brantpointed spaces and X is a pointed space, then the unpointed f-localization of Xis weakly equivalent to the space obtained by choosing a basepoint for each pathcomponent of X and taking the pointed f-localization of each path component.1.8. Comparing localizationsProposition 1.8.1. Let f : A! B and ~f : eA ! eB be maps between co�brantobjects. If f is an ~f -local equivalence, then every f-local equivalence is an ~f -localequivalence.Proof. Since f is an ~f -local equivalence, every ~f -local space is f-local.Corollary 1.8.2. Let f : A ! B and ~f : eA ! eB be maps between co�brantspaces. If f is an ~f -local equivalence, then for every object X, the f-localizationmap X ! LfX is an ~f-local equivalence.Proof. This follows from Proposition 1.8.1.Proposition 1.8.3. If n > 0 and f is the inclusion Sn � Dn+1 in Top, then aspace X is f-local if and only if �iX � 0 for i � n and every choice of basepoint inX. Proof. If k � 0, then the inclusion Sn 
 �[k] qSn
@�[k] Dn+1 
 @�[k] !Dn+1 
 �[k] is a relative CW-complex that attaches a single cell of dimensionn+k+1. Thus, any map Sn
�[k]qSn
@�[k]Dn+1
@�[k]! X can be extendedover Dn+1 
�[k].Proposition 1.8.4. If n > 0 and f is the inclusion Sn � Dn+1 in Top, thena map g : X ! Y is an f-local equivalence if and only if it induces isomorphismsg� : �iX � �iY for i < n and every choice of basepoint in X. Draft: August 12, 1997



36 1. LOCAL SPACES AND LOCALIZATIONProof. We can choose a co�brant approximation ~g : eX ! eY to g such that eYis a CW-complex and ~g is the inclusion of a subcomplex that contains the n-skeletonof eY . Thus, if k � 0, then the map eX 
�[k]q eX
@�[k] eY 
@�[k]! eY 
�[k] is theinclusion of a subcomplex that contains the (n+k)-skeleton. If Z is an f-local space,then Proposition 1.8.3 implies that every map eX 
�[k]q eX
@�[k] eY 
 @�[k]! Zcan be extended over eY 
�[k].Proposition 1.8.5. If n > 0 and f is the inclusion Sn � Dn+1 in Top, then thefunctor that projects a space onto its (n� 1)st Postnikov piece is an f-localizationmap.Proof. This follows from Proposition 1.8.3 and Proposition 1.8.4.Theorem 1.8.6. If n > 0 and f : A! B is a map in Spc that induces isomor-phisms f� : �iX � �iY for i � n and every choice of basepoint in A, then, for everyspace X, the f-localization map X ! LfX induces isomorphisms �kX � �kLfXfor k � n and every choice of basepoint in X.Corollary 1.8.7. If f : A ! B is a map between n-connected spaces, then,for every space X, the f-localization map X ! LfX induces isomorphisms �kX ��kLfX for k � n and every choice of basepoint in X.
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CHAPTER 2The localization model category for spaces2.1. The Bous�eld localization model category structureIn this section, we show that for every map f : A ! B in Spc(�) there isa model category structure on Spc(�) in which the weak equivalences are the f-local equivalences and the �brant objects are the f-local spaces (see Theorem 2.1.2and Proposition 2.1.3). This is a generalization of the h�-local model categorystructure for a generalized homology theory h� on the category of simplicial setsde�ned by A.K. Bous�eld in [9]. It is also an example of a left Bous�eld localization(see De�nition 3.2.1). This model category structure has also been obtained byBous�eld in [13] for the category of simplicial sets, where he deals as well withlocalizing certain proper classes of maps of simplicial sets.Definition 2.1.1. Let f : A! B be a map between co�brant spaces in Spc(�).1. An f-local weak equivalence is de�ned to be an f-local equivalence (seeDe�nition 1.2.2).2. An f-local co�bration is de�ned to be a co�bration.3. An f-local �bration is de�ned to be a mapwith the right lifting property (seeDe�nition 8.2.1) with respect to all maps that are both f-local co�brationsand f-local weak equivalences. If the map from a space to a point is anf-local �bration, then we will say that the space is f-local �brant.Theorem 2.1.2. If f : A ! B is a map between co�brant spaces in Spc(�),then there is a simplicial model category structure on Spc(�) in which the weakequivalences are the f-local weak equivalences, the co�brations are the f-local co�-brations, the �brations are the f-local �brations, and the simplicial structure is theusual simplicial structure on Spc(�).Proposition 2.1.3. If f : A ! B is an inclusion of cell complexes (see Re-mark 1.2.7), then a space is f-local if and only if it is �brant in the f-local modelcategory structure of Theorem 2.1.2.The proof of Theorem 2.1.2 will use the following proposition.Proposition 2.1.4. If f : A ! B is a map of co�brant spaces in Spc(�), thenthere is a set J of inclusions of cell complexes (see Remark 1.2.7) such that1. every map in J is an f-local equivalence, and2. the class of J-co�brations (see De�nition 12.4.1) equals the class of co�bra-tions that are also f-local equivalences.We will present the proof of Proposition 2.1.4 in Section 2.4, after some neces-sary preparatory work in Section 2.3. 37 Draft: August 12, 1997



38 2. THE LOCALIZATION MODEL CATEGORY FOR SPACESProof of Theorem 2.1.2. We begin by using Theorem 13.3.1 to show thatthere is a co�brantly generated model category structure on Spc(�) with weak equiv-alences, co�brations, and �brations as described in the statement of Theorem 2.1.2.Proposition 1.2.12 implies that the class of f-local equivalences satis�es the\two out of three" axiom, and Proposition 1.2.13 implies that it is closed underretracts.Let I be the set of mapsI = fSpc(�)(@�[n])! Spc(�)(�[n]) �� n � 0g(see De�nition 1.1.16) and let J be the set of maps provided by Proposition 2.1.4.Since every map in either I or J is an inclusion of simplicial sets (if Spc(�) =SS(�)) or an inclusion of cell complexes (if Spc(�) = Top(�)), Example 12.3.4 andExample 12.3.5 imply that condition 1 of Theorem 13.3.1 is satis�ed.The subcategory of I-co�brations is the subcategory of co�brations in the usualmodel category structure in Spc(�), and the I-injectives are the usual trivial �-brations. Thus, Proposition 2.1.4 implies that condition 2 of Theorem 13.3.1 issatis�ed.Since the J-co�brations are a subcategory of the I-co�brations, every I-injectivemust be a J-injective. Proposition 1.2.11 implies that every J-injective is an f-localequivalence, and so condition 3 is satis�ed.Proposition 2.1.4 implies that condition 4a of Theorem 13.3.1 is satis�ed, andso Theorem 13.3.1 now implies that we have a model category.To show that our model category is a simplicial model category, we note that,since the simplicial structure is the usual one, axiom M6 of De�nition 10.1.2 holdsbecause it does so in the usual simplicial model category structure on Spc(�). Foraxiom M7 of De�nition 10.1.2, we note that the class of f-local co�brations equalsthe usual class of co�brations and the class of f-local �brations is contained in theusual class of �brations. Thus, the �rst requirement of axiom M7 is clear. In thecase that the map p is an f-local equivalence, the rest of axiomM7 follows from thefact that, since the class of f-local co�brations equals the usual class of co�brations,the class of f-local trivial �brations equals the usual class of trivial �brations (seeProposition 8.2.3).In the case that the map i is an f-local equivalence, we choose a co�brantapproximation ~{ : eA ! eB to i such that ~{ is a co�bration (see Proposition 9.1.9).Proposition 10.3.3 and Proposition 10.3.10 imply that, for every n � 0, the mapeA
�[n]q eA
@�[n] eB 
 @�[n]! eB 
�[n] is also an f-local equivalence, and so ithas the left lifting property with respect to the map p. Lemma 10.3.6 now impliesthat the map ~{ has the left lifting property with respect to the map X�[n] !Y �[n] �Y @�[n] X@�[n] for every n � 0. Since Spc(�) is a left proper model category(see Theorem 11.1.16), Proposition 11.1.18 implies that the map i has the left liftingproperty with respect to the map X�[n] ! Y �[n] �Y @�[n] X@�[n] for every n � 0,and so the result follows from Lemma 10.3.6.Proof of Proposition 2.1.3. If W is �brant in the f-local model categorystructure, then the mapW ! � has the right lifting property with respect to everyco�bration that is an f-local equivalence. Proposition 1.3.7 implies that every hornon f is both a co�bration and an f-local equivalence, and so Proposition 1.3.3implies that W is f-local.Draft: August 12, 1997



2.2. CELL COMPLEXES OF TOPOLOGICAL SPACES 39Conversely, assume that W is f-local. If i : A ! B is both a co�bration andan f-local equivalence, then Proposition 9.1.9 implies that there is a co�brant ap-proximation ~{ : eA! eB to i such that ~{ is a co�bration, and Proposition 11.1.18 andProposition 8.2.3 imply that it is su�cient to show that ~{ has the left lifting propertywith respect to the map W ! �. Proposition 1.2.11 and Proposition 1.2.12 implythat ~{ is an f-local equivalence, and so Proposition 10.3.3 and Proposition 10.3.4imply that ~{ has the left lifting property with respect to the map W ! �.Corollary 1.4.17 implies that every �ffg-co�bration is an f-local equivalence.The following example (due to A. K. Bous�eld) shows that, among the co�brationsthat are f-local equivalences, there are maps that are not �ffg-co�brations.Example 2.1.5. Let Spc(�) = Top�, and let f : A ! B be the inclusionSn ! Dn+1. The path space �bration p : PK(Z; n)! K(Z; n) is a �ffg-injective(see De�nition 1.4.2), and so every �ffg-co�bration has the homotopy left liftingproperty with respect to p (see De�nition 10.3.2). The co�bration � ! Sn doesnot have the homotopy left lifting property with respect to p, and so it is not a�ffg-co�bration (see Fix this reference!). However, since both the composition� ! Sn ! Dn+1 and f itself are f-local equivalences (see Proposition 1.2.11),the \two out of three" property of weak equivalences implies that the inclusion� ! Sn is an f-local equivalence. Thus, � ! Sn is both a co�bration and anf-local equivalence, but it is not a �ffg-co�bration.2.2. Cell complexes of topological spacesA cell complex in Top(�) is a topological space built by a sequential process ofattaching cells. The class of cell complexes includes the class of CW-complexes, butthe attaching map of a cell in a cell complex need not be contained in a union of cellsof lower dimension. Thus, while a CW-complex can be built by a countable processof attaching unions of cells, a general cell complex may require an arbitrarily longtrans�nite construction. Cell complexes and their retracts are the co�brant objectsin the standard model category of topological spaces.Definition 2.2.1. � A relative cell complex in Top is a map that is atrans�nite composition (see De�nition 12.2.2) of pushouts (see De�nition 8.2.10)of maps of the form ��@�[n]�� ! ���[n]�� for n � 0. The topological space Xin Top is a cell complex if the map ; ! X is a relative cell complex, and itis a �nite cell complex if the map ; ! X is a �nite composition of pushoutsof maps of the form ��@�[n]��! ���[n]�� for n � 0.� A relative cell complex in Top� is a map that is a trans�nite composition ofpushouts of maps of the form ��@�[n]��+ ! ���[n]��+ for n � 0. The topologicalspace X in Top� is a cell complex if the map � ! X is a relative cell complex,and it is a �nite cell complex if the map � ! X is a �nite composition ofpushouts of maps of the form ��@�[n]��+ ! ���[n]��+ for n � 0.Example 2.2.2. A CW-complex in Top(�) is a cell complex.Remark 2.2.3. De�nition 2.2.1 implies that a relative cell complex in Top(�) isa map that can be constructed as a trans�nite composition of pushouts of inclusionsof the boundary of a cell into that cell, but there will generally be many di�erentpossible such constructions. When dealing with a topological space that is a cellcomplex or a map that is a relative cell complex, we will often assume that we haveDraft: August 12, 1997



40 2. THE LOCALIZATION MODEL CATEGORY FOR SPACESchosen some speci�c such construction. Furthermore, we may choose a constructionof the map as a trans�nite composition of pushouts of coproducts of cells, i.e., wewill consider constructions as trans�nite compositions in which more than one cellis attached at a time (see Proposition 12.2.5).Proposition 2.2.4. IfX ! Y is a relative cell complex, then a compact subsetof Y can intersect the interiors of only �nitely many cells of Y �X.Proof. Let C be a subset of Y ; we will show that if C intersects the interiors ofin�nitelymany cells of Y �X, then C has an in�nite subset that has no accumulationpoint (which implies that C is not compact).Suppose now that C intersects the interiors of in�nitely many cells of Y �X.We construct a subset P of C by choosing one point of C from the interior of eachcell whose interior intersects C. We will now show that this in�nite subset P of Chas no accumulation point in C. We will do this by showing that, for every pointc 2 C, there is an open subset U of Y such that c 2 U and U \ P has at most onepoint.Let ec be the unique cell of Y �X that contains c in its interior. Since there isat most one point of P in the interior of any cell of Y �X, we can choose an opensubset Uc of the interior of ec that contains no points of P (except for c, if c 2 P ).We will use Zorn's lemma to show that we can enlarge Uc to an open subset of Ythat contains no points of P (except for c, if c 2 P ).Let � be the presentation ordinal (see De�nition 12.5.4) of the cell ec. If thepresentation ordinal of the relative cell complex X ! Y is , consider the set T ofordered pairs (�; U ) where � � � �  and U is an open subset of Y � such thatU \Y � = Uc and U contains no points of P except possibly c. We de�ne a preorderon T by de�ning (�1; U1) < (�2; U2) if �1 < �2 and U2 \ Y �1 = U1.If f(�s; Us)gs2S is a chain in T , then (Ss2S �s;Ss2S Us) (see Section 12.1.1)is an upper bound in T for the chain, and so Zorn's lemma implies that T has amaximal element (�m; Um). We will complete the proof by showing that �m = .If �m < , then consider the cells of presentation ordinal �m + 1. Since Yhas the weak topology determined by X and the cells of Y � X, we need onlyenlarge Um so that its intersection with each cell of presentation ordinal �m + 1is open in that cell, and so that it still contains no points of P except possibly c.If h : Sn�1 ! Y �m is the attaching map for a cell of presentation ordinal �m + 1,then h�1Um is open in Sn�1, and so we can \thicken" h�1Um to an open subset ofDn, avoiding the (at most one) point of P that is in the interior of the cell. If welet U 0 equal the union of Um with these thickenings in the interiors of the cells ofpresentation ordinal �m + 1, then the pair (�m + 1; U 0) is an element of T greaterthan the maximal element (�m; Um) of T . This contradiction implies that �m = ,and so the proof is complete.Corollary 2.2.5. A compact subset of a cell complex can intersect the inte-riors of only �nitely many cells.Proof. This follows from Proposition 2.2.4.Proposition 2.2.6. Every cell of a cell complex is contained in a �nite sub-complex of the cell complex.Proof. If we choose a presentation of the cell complexX (see De�nition 12.5.2),then the proposition follows from Corollary 2.2.5, using a trans�nite induction onDraft: August 12, 1997



2.3. SUBCOMPLEXES OF RELATIVE �ffg-CELL COMPLEXES 41the presentation ordinal of the cell. The attaching map of any cell intersects theinteriors of only �nitely many cells, each of which (by the induction hypothesis) iscontained in a �nite subcomplex of X.Corollary 2.2.7. A compact subset of a cell complex is contained in a �nitesubcomplex of the cell complex.Proof. This follows from Corollary 2.2.5 and Proposition 2.2.6.2.3. Subcomplexes of relative �ffg-cell complexesThe proof of Proposition 2.1.4 (in Section 2.4) will require a careful analysisof the localization of a space. Since the localization map is a relative �ffg-cellcomplex, we need to study subcomplexes of relative �ffg-cell complexes.Definition 2.3.1. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7).� If C ! D is an element of �ffg (see De�nition 1.3.2), then D will also becalled a �ffg-cell, C will be called the boundary of the �ffg-cell, and D�Cwill be called the interior of the �ffg-cell. (The interior of a �ffg-cell isnot, in general, a subcomplex.)� If C ! D is a map in �ffg andC //�� X��D // Yis a pushout, then we will refer to the image of D in Y as a �ffg-cell.2.3.2. Presentations of relative �ffg-cell complexes. A relative �ffg-cell complex is a map that can be constructed as a trans�nite composition ofpushouts of elements of �ffg (see De�nition 1.3.8). To consider subcomplexesof a relative �ffg-cell complex, we need to choose a particular such construction.Definition 2.3.3. If g : X ! Y is a relative �ffg-cell complex (see De�ni-tion 1.3.8), then a presentation of g is a pair consisting of a �-sequenceX = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)(for some ordinal �) and a set of ordered triples�(T � ; e�; h�)	�<�such that1. the composition of the �-sequence is the map g : X ! Y ,2. each T � is a set,3. each e� is a function e� : T � ! �ffg (see De�nition 1.3.2),4. for every � < �, if i 2 T � and e�i is the �ffg-cell Ci ! Di, then h�i is amap h�i : Ci ! X� , and Draft: August 12, 1997



42 2. THE LOCALIZATION MODEL CATEGORY FOR SPACES5. every X�+1 is the pushoutaT� Ci //` h�i �� aT� Di��X� // X�+1:Definition 2.3.4. Let g : X ! Y be a relative �ffg-cell complex with presen-tation �X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<��.1. If e is a �ffg-cell of g (see De�nition 1.3.2), the presentation ordinal of e isde�ned to be the �rst ordinal � such that e is in X� .2. If � < �, then the �-skeleton of g is de�ned to be X� . We will sometimesabuse language and refer to the image of X� in Y as the �-skeleton of g.2.3.5. Constructing a subcomplex of a relative �ffg-cell complex.Definition 2.3.6. If g : X ! Y is a relative �ffg-cell complex with presenta-tion �X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<��, then asubcomplex of g relative to that presentation consists of a family of sets f eT �g�<�such that1. for every � < �, the set eT � is a subset of T �,2. there is a �-sequenceX = eX0 ! eX1 ! eX2 ! � � � ! eX� ! � � � (� < �)(called the �-sequence associated with the subcomplex) and a map of �-sequences X eX0 //�� eX1 //�� eX2 //�� � � �X X0 // X1 // X2 // � � �such that, for every � < � and every i 2 eT � , the map h�i : Ci ! X� factorsthrough the map eX� ! X�, and3. for every � < �, the squareaeT� Ci //�� aeT� Di��eX� // eX�+1:is a pushout.Remark 2.3.7. Although a subcomplex of a relative �ffg-cell complex canonly be de�ned relative to some particular presentation of that relative �ffg-cellcomplex, we will often discuss subcomplexes of a relative �ffg-cell complex with-out explicitly mentioning the presentation relative to which the subcomplexes arede�ned.Draft: August 12, 1997



2.3. SUBCOMPLEXES OF RELATIVE �ffg-CELL COMPLEXES 43Remark 2.3.8. Although a subcomplex of a relative �ffg-cell complex withsome particular presentation is de�ned to be a family of sets f eT �g�<� (see De�-nition 2.3.6), we will often abuse language and refer to the �-sequence associatedwith the subcomplex, or the composition of that �-sequence, as a \subcomplex".Remark 2.3.9. Note that the de�nition of a subcomplex implies that the mapseX� ! X� are all relative �ffg-cell complexes. Since a relative �ffg-cell complex isa monomorphism, the factorization of each h�i through eX� ! X� is unique. Thus,a subcomplex of a relative �ffg-cell complex is itself a relative �ffg-cell complexwith a natural presentation.Proposition 2.3.10. Given a relative �ffg-cell complex X ! Y with presen-tation �X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<��, anarbitrary subcomplex can be constructed by the following inductive procedure.1. Choose an arbitrary subset eT 0 of T 0.2. If � < � and we have de�ned f eT g<� , then we have determined the spaceeX� and the map eX� ! X� (where eX� is the space that appears in the�-sequence associated to the subcomplex). Consider the setfi 2 T � �� h�i : Ci ! X� factors through eX� ! X�gChoose an arbitrary subset eT � of this set. For every i 2 eT �, there is aunique map ~h�i : Ci ! eX� that makes the diagramCi h�i   AAAAAAAA~h�i ��eX� // X�commute. We let eX�+1 be the pushoutaeT� Ci //` ~h� �� aeT� Di��eX� // eX�+1Proof. This follows directly from the de�nitions.Proposition 2.3.11. Let g : X ! Y be a relative �ffg-cell complex with pre-sentation �X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<��.If �f eTu�g�<�	u2U is a set of subcomplexes of g, then the intersection f eT �g�<� ofthe set of subcomplexes (where eT � = Tu2U eTu� for every � < �) is a subcomplexof g.Proof. It is su�cient to show that, if � < � and we have constructed the�-skeleton of the associated �-sequence X = eX0 ! eX1 ! eX2 ! � � � ! eX� , then,for every i 2 eT � , the map h�i : Ci ! X� factors through eX� ! X� . If i 2 eT � ,then i 2 eTu� for every u 2 U , and so h�i factors uniquely through eXu� ! X� forevery u 2 U . Since eX� is the limit of the diagram that contains the map eXu� ! X�Draft: August 12, 1997



44 2. THE LOCALIZATION MODEL CATEGORY FOR SPACESfor every u 2 U , the map h�i factors uniquely through eX� ! X� , and the proof iscomplete.Corollary 2.3.12. Let g : X ! Y be a relative �ffg-cell complex with pre-sentation �X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<��. Ife is an f-cell of g, then there is a smallest subcomplex of g that contains e, i.e., asubcomplex of g containing e that is a subcomplex of every subcomplex of g thatcontains e.Proof. Proposition 2.3.11 implies that we can take the intersection of allsubcomplexes of g that contain e.Definition 2.3.13. If e is a �ffg-cell of the relative �ffg-cell complex g : X !Y with some particular presentation, then the smallest subcomplex of g that con-tains e (whose existence is guaranteed by Corollary 2.3.12) will be called the sub-complex generated by e.2.3.14. Subcomplexes of the localization. If f : A! B is an inclusion ofcell complexes (see Remark 1.2.7), then for every space X, the localization jX : X !LfX has a natural presentation as a relative �ffg-cell complex. When we discusssubcomplexes of jX , it will be with respect to that natural presentation.Lemma 2.3.15. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7), and let X be a simplicial set (or a cell complex). IfW is a subcomplexof X, then LfW is naturally isomorphic (or homeomorphic) to a subcomplex ofLfX (where by \naturally" we mean that this isomorphism is a functor on thecategory of subcomplexes of X).Proof. The construction of LfX from X de�nes an obvious presentation ofthe relative �ffg-cell complex jX : X ! LfX. Since an inclusion of a subcomplexis a monomorphism, the construction of LfW from W de�nes an obvious naturalisomorphism of the relative �ffg-cell complex W ! LfW with a subcomplex ofj(X).Proposition 2.3.16. Let f : A ! B be an inclusion of cell complexes (seeRemark 1.2.7). IfX is a simplicial set (or a cell complex) andW is a subcomplex ofX, then LfW is naturally isomorphic (or homeomorphic) to the subcomplex of LfXconsisting of those �ffg-cells of LfX for which the zero skeleton of the subcomplexof LfX generated by that �ffg-cell (see De�nition 2.3.13) is a subcomplex of W .Proof. We identify LfW with a subcomplex of LfX as in Lemma 2.3.15,and we will show by trans�nite induction on the presentation ordinal (see De�ni-tion 2.3.4) of the �ffg-cell that a �ffg-cell of LfX is in LfW if and only if thezero skeleton of the subcomplex of LfX generated by that �ffg-cell (see De�ni-tion 2.3.13) is a subcomplex of W .If e is a �ffg-cell of presentation ordinal 1, then the subcomplex of LfXgenerated by e consists of the union of e and the subcomplexes of X generated bythose simplices (or cells) of X whose interiors intersect the image of the attachingmap of e. Thus, the zero skeleton of the subcomplex of LfX generated by e is asubcomplex ofW if and only if the attaching map of e factors through the inclusionW ! X, which is true if and only if e is contained in LfW .Draft: August 12, 1997



2.4. THE BOUSFIELD-SMITH CARDINALITY ARGUMENT 45Since there are no �ffg-cells whose presentation ordinal is a limit ordinal,we assume that � + 1 < � and that the assertion is true for all �ffg-cells ofpresentation ordinal less than or equal to �. Let e be a �ffg-cell of presentationordinal � + 1. The subcomplex of LfX generated by e consists of the union ofe and the subcomplexes of LfX generated by those �ffg-cells and simplices (orcells) of X whose interiors intersect the image of the attaching map of e. Each ofthose �ffg-cells is of presentation ordinal at most �, and so it is in LfW if andonly if the zero skeleton of the subcomplex of LfX it generates is contained in W ,and the inductive hypothesis implies that this is true if and only if that �ffg-cellis in LfW . Thus, the subcomplex of LfX generated by e is contained in LfW ifand only if the attaching map for e factors through W� ! X� , i.e., if and only if eis in LfW .Proposition 2.3.17. Let f : A ! B be an inclusion of cell complexes (seeRemark 1.2.7). If X is a simplicial set (or a cell complex) and fWsgs2S is a familyof subcomplexes of X, then Lf (Ts2SWs) = Ts2S LfWs.Proof. This follows from Proposition 2.3.16.Proposition 2.3.18. Let f : A ! B be an inclusion of cell complexes (seeRemark 1.2.7). If X is a simplicial set (or a cell complex) and W0 � W1 �W2 � � � � � W� � � � � (� < �) is a �-sequence of subcomplexes of X (where� is the ordinal chosen in Section 1.3.4), then the natural map colim�<� LfW� !Lf colim�<�W� is an isomorphism (or a homeomorphism).Proof. Proposition 2.3.16 implies that the map is an isomorphism onto asubcomplex; it remains only to show that every �ffg-cell of Lf colim�<�W� iscontained in some LfW� . We will do this by a trans�nite induction on the presen-tation ordinal of the �ffg-cell (see De�nition 2.3.4).If e is a �ffg-cell of Lf colim�<�W� of presentation ordinal 1, then its attachingmap is a map to colim�<�W�, and the discussion in Section 1.3.4 explains why thereis an ordinal � < � such that the image of the attaching map is contained in W� .Thus, the �ffg-cell is in LfW� .Since there are no �ffg-cells of presentation ordinal equal to a limit ordinal,we now let  be an ordinal such that  + 1 < �, and we assume that the assertionis true for all �ffg-cells of presentation ordinal less than or equal to . If e is a�ffg-cell of presentation ordinal +1, then e has fewer than � simplices (or cells).Thus, the image of the attaching map of e is contained in the interiors of fewerthan � many �ffg-cells, each of presentation ordinal less than or equal to . (IfSpc(�) = Top(�), then this follows from Corollary 2.2.5.) The induction hypothesisimplies that each of these is contained in some LfW� . Since � is a regular cardinal,there must exist � < � such that the union of these �ffg-cells is contained inLfW� , and so e is also contained in LfW� .2.4. The Bous�eld-Smith cardinality argumentThe proof of Proposition 2.1.4 is at the end of this section. The cardinalityargument that we use here was �rst used by A. K. Bous�eld [9] to de�ne a modelcategory structure on the category of simplicial sets in which a weak equivalence wasa map that induced a homology isomorphism (for some chosen homology theory).Draft: August 12, 1997



46 2. THE LOCALIZATION MODEL CATEGORY FOR SPACESThis was extended to more general localizations of co�brantly generated modelcategories (see De�nition 13.2.1) by J. H. Smith. We are indebted to D. M. Kanfor explaining this argument to us.We will prove Proposition 2.1.4 by showing that there is a set J of co�bra-tions that are f-local equivalences such that every co�bration that is an f-localequivalence has the left lifting property (see De�nition 8.2.1) with respect to everyJ-injective. Proposition 2.1.4 will then follow from Corollary 12.4.17.We will �nd the set J by showing (in Proposition 2.4.8) that there is a cardinal such that, if a map has the right lifting property with respect to all inclusions ofsimplicial sets (or of cell complexes) that are f-local equivalences between complexesof size no larger than , then it has the right lifting property with respect to allco�brations that are f-local equivalences. By the \size" of a simplicial set (or acell complex) X, we will mean the cardinal of the set of simplices (or cells) of X.We will then let J be a set of representatives of the isomorphism classes of of these\small enough" inclusions of complexes that are f-local equivalences.We must �rst deal with an inconvenient aspect of the categories Top and Top�:Not all spaces are cell complexes. This requires Lemma 2.4.1, which shows that,for a �bration to have the right lifting property (see De�nition 8.2.1) with respectto all co�brations that are f-local equivalences, it is su�cient for it to have theright lifting property with respect to all such co�brations that are inclusions of cellcomplexes.Lemma 2.4.1. Let f : A! B be a map of co�brant spaces in Top(�). If p : E !B is a �bration with the right lifting property with respect to all inclusions of cellcomplexes that are f-local equivalences, then it has the right lifting property withrespect to all co�brations that are f-local equivalences.Proof. Let g : X ! Y be a co�bration that is an f-local equivalence. Propo-sition 13.2.16 implies that there is a co�brant approximation (see De�nition 9.1.8)gc to g such that gc is an inclusion of cell complexes. Proposition 1.2.11 and Prop-osition 1.2.12 imply that gc is an f-local equivalence, and so the lemma now followsfrom Proposition 11.1.18.We can now restrict our attention to inclusions of simplicial sets (if Spc(�) =SS(�)) or inclusions of cell complexes (if Spc(�) = Top(�)). We need to �nd a cardinal with two properties:1. The cardinal  is \large enough" in that, for every complex X, every sub-complex of LfX of size no greater than  is contained in the localization ofa subcomplex of X of size no greater than .2. The cardinal  is \stable" in that, if X is a complex of size no greater than, then LfX will also have size no greater than .Once we have such a cardinal , Proposition 2.4.7 (which uses Lemma 2.4.5) willshow that any inclusion of complexes that is an f-local equivalence can be built outof ones of size no greater than . This will be used in Proposition 2.4.8 to showthat if a map has the right lifting property with respect to all \small" inclusions ofcomplexes that are f-local equivalences, then it has the right lifting property withrespect to all inclusions of complexes that are f-local equivalences. We de�ne ourcardinal  in De�nition 2.4.4.Draft: August 12, 1997



2.4. THE BOUSFIELD-SMITH CARDINALITY ARGUMENT 47Definition 2.4.2. If the set of simplices (or cells) of the complex X has car-dinal �, then we will say that X is of size �.Lemma 2.4.3. Let f : A! B be an inclusion of cell complexes (see Remark 1.2.7),and let � be the �rst in�nite cardinal greater than that of the simplices (or cells)of A q B. For any complex X, we have LfX � colimLfXs, where Xs varies overthe subcomplexes of X of size less than �.Proof. Proposition 2.3.16 implies that each LfXs is a subcomplex of LfX,and so we need only show that every �ffg-cell of LfX is contained in LfXs forsome small subcomplex Xs of X. We will do this by a trans�nite induction on thepresentation ordinal of the �ffg-cell (see De�nition 2.3.4). To ease the strain ofterminology, for the remainder of this proof, the word \small" will mean \of sizeless than �".The induction is begun by noting that the zero skeleton of X ! LfX equalsX. Since there are no �ffg-cells of sequential dimension equal to a limit ordinal,we need only consider the case of successor ordinals.Now let � +1 < �, and assume that each �ffg-cell of presentation ordinal lessthan or equal to � is contained in LfXs for some small subcomplex Xs of X. Any�ffg-cell of presentation ordinal � +1 must be attached by a map of its boundaryto the �-skeleton of LfX (see De�nition 2.3.4). Since the boundary of an �ffg-cellhas size less than �, the image of the attaching map can intersect the interiors offewer than � other simplices (or cells), each of which is either in X or in an �ffg-cell of sequential dimension less than or equal to �. (If Spc(�) = Top(�), then thisuses Corollary 2.2.5.) Thus, our �ffg-cell is attached to the union of X with some�ffg-cells, each of which is contained in the localization of a small subcomplex ofX. If we let Z be the union of those small subcomplexes ofX and the subcomplexesof X generated by the (fewer than �) simplices (or cells) of X in the image of theattaching map of our �ffg-cell, then Z is the union a collection of size less than� of subcomplexes of X, each of which is of size less than �. Since � is a regularcardinal, this implies that Z is of size less than �, and our �ffg-cell is containedin LfZ.Definition 2.4.4. We let c denote the cardinal of the continuum, i.e., c is thecardinal of the set of real numbers. We let � denote the ordinal (which is also acardinal) selected in Section 1.3.4, i.e., if f : A ! B, then � is the �rst in�nitecardinal greater than that of the set of simplices (or cells) of AqB. We now de�ne as  = (�� if Spc(�) = SS(�)(�c)�c if Spc(�) = Top(�):Thus, if Spc(�) = Top(�), then  = (�c)�c = max(��; cc) = (��)(cc) (since themaximumof two in�nite cardinals equals their product (see, e.g., [25, Chapter 2])).Lemma 2.4.5. Let f : A! B be an inclusion of cell complexes (see Remark 1.2.7),and let X be a simplicial set (or a cell complex). If Z is a subcomplex of LfX ofsize less than or equal to , then there exists a subcomplex W of X, of size lessthan or equal to , such that Z � LfW . Draft: August 12, 1997



48 2. THE LOCALIZATION MODEL CATEGORY FOR SPACESProof. Lemma 2.4.3 implies that each simplex (or cell) of Z is contained in thelocalization of some subcomplex of X of size less than �, and so Proposition 2.3.16implies that Z is contained in the localization of the union of those subcomplexes.Since � <  (see De�nition 2.4.4), ��  = , and so that union of subcomplexes isof size less than or equal to .Lemma 2.4.6. Let f : A! B be an inclusion of cell complexes (see Remark 1.2.7).If X is a simplicial set (or a cell complex) of size less than or equal to  (see De�-nition 2.4.4), then LfX has size less than or equal to .Proof. Let X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �) be the�-sequence that is part of the natural presentation of the relative �ffg-cell com-plex X ! LfX (see De�nition 2.3.3). We will prove by trans�nite inductionthat, for every � < �, the complex X� has size less than or equal to . SinceLfX = colim�<�X� and Succ() (see De�nition 12.1.11) is a regular cardinal (seeDe�nition 12.1.15), this will imply the lemma.We begin the induction by noting that X0 = X. If we now assume that X�has size less than or equal to , then (since the boundary of a �ffg-cell is ofsize less than �) there are fewer than � =  (if Spc(�) = SS(�)) or �c =  (ifSpc(�) = Top(�)) (see Proposition 12.1.16) many maps from the boundary of a�ffg-cell to X� . Since there are only countably many �ffg-cells, there are fewerthan  many �ffg-cells attached to X� to form X�+1. Since each �ffg-cell hasfewer than � many simplices (or cells), X�+1 has size less than or equal to .If � is a limit ordinal, then X� is a colimit of complexes, each of which is ofsize less than or equal to . Since � < � < , this implies that X� has size lessthan or equal to , and the proof is complete.The following proposition will be used in Proposition 2.4.8 to extend a map overan arbitrary inclusion of a subcomplex that is an f-local equivalence by extendingit over a subcomplex of size no greater than .Proposition 2.4.7. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7), and let D be a simplicial set (or a cell complex). If i : C ! D isthe inclusion of a proper subcomplex and an f-local equivalence, then there is asubcomplex K of D such that1. the subcomplex K is not contained in the subcomplex C,2. the size of K is less than or equal to  (see De�nition 2.4.4), and3. the inclusions K \ C ! K and C ! C [K are both f-local equivalences.Proof. Since i : C ! D is the inclusion of a subcomplex and an f-local equiv-alence, Lemma 2.3.15, and Theorem 1.4.15 imply that Lf (i) : LfC ! LfD is atrivial co�bration of �brant spaces, and so it is the inclusion of a strong defor-mation retract (see Corollary 10.4.20). We choose a strong deformation retractionR : LfD 
 I ! LfD (where I = �[1]), which will remain �xed throughout thisproof.We will show that there exists a subcomplex K of D of size less than or equalto  such that1. K is not contained in C,2. RjLfK
I is a deformation retraction of LfK to Lf (K \ C), and3. RjLf(C[K)
I is a deformation retraction of Lf (C [K) to LfC.Draft: August 12, 1997



2.4. THE BOUSFIELD-SMITH CARDINALITY ARGUMENT 49We will do this by constructing a �-sequenceK0 � K1 � K2 � � � � � K� � � � � (� < �)(where � is as in De�nition 2.4.4) of subcomplexes of D such that, for every � < �,1. K� has size less than or equal to ,2. R(LfK� 
 I) � LfK�+1,and such that no K� is contained in C. If we then let K = S�<�K�, then Propo-sition 2.3.18 will imply that K has the properties that we require.We begin by choosing a simplex (or cell) of D that isn't contained in C, andletting K0 equal the subcomplex generated by that simplex (or cell).For successor ordinals, suppose that � + 1 < , and that we've constructedK�. Lemma 2.4.6 implies that LfK� has size less than or equal to , and soR(LfK� 
 I) is contained in a subcomplex of LfD of size less than or equal to. (If Spc(�) = Top(�), then this uses Corollary 2.2.7.) Lemma 2.4.5 now impliesthat we can �nd a subcomplex Z� of D, of size less than or equal to , such thatR(LfK� 
 I) � LfZ�. We let K�+1 = K� [ Z�. It is clear that K�+1 has theproperties required of it, and so the proof is complete.Proposition 2.4.8. Let f : A ! B be an inclusion of cell complexes (see Re-mark 1.2.7). If p : X ! Y has the right lifting property with respect to thoseinclusions of subcomplexes i : C ! D that are f-local equivalences and such thatthe size of D is less than or equal to  (see De�nition 2.4.4), then p has the rightlifting property with respect to all inclusions of subcomplexes that are f-local equiv-alences.Proof. Let i : C ! D be an inclusion of a subcomplex that is an f-localequivalence, and let the solid arrow diagramC h //i �� Xp��D >>k // Ybe commutative; we must show that there exists a dotted arrow making both tri-angles commute. To do this, we will consider the subcomplexes of D over whichour map can be de�ned, and use Zorn's lemma to show that we can de�ne it overall of D.Let S be the set of pairs (Ds; gs) such that1. Ds is a subcomplex of D containing C, and the inclusion is : C ! Ds is anf-local equivalence2. gs is a function Ds ! X such that gsis = h and pgs = kjDs.We de�ne a preorder on S by de�ning (Ds; gs) < (Dt; gt) ifDs � Dt and gtjDs = gs.If S0 � S is a chain (i.e., a totally ordered subset of S), letDu = colim(Ds;gs)2S0 Ds,and de�ne gu : Du ! X by gu = colim(Ds;gs)2S0 gs. The universal mapping prop-erty of the colimit implies that guiu = h and pgu = kjDu , and Proposition 1.2.15implies that the map C ! Du is an f-local equivalence. Thus, (Du; gu) is an el-ement of S, and so it is an upper bound for S0. Zorn's lemma now implies thatS has a maximal element (Dm; gm). We will complete the proof by showing thatDm = D. Draft: August 12, 1997



50 2. THE LOCALIZATION MODEL CATEGORY FOR SPACESIf Dm 6= D, then Proposition 2.4.7 implies that there is a subcomplex K of Dsuch that K is not contained in Dm, the size of K is less than or equal to , and theinclusions K \Dm ! K and Dm ! Dm [K are both f-local equivalences. Thus,there is a map gK : K ! X such that pgK = kjK and gKjK\Dm = gmjK\Dm , and sogm and gK combine to de�ne a map gmK : K[Dm ! X such that pgmK = kjK[Dmand gmK i = h. Thus, (K [ Dm; gmK) is an element of S strictly greater than(Dm; gm). This contradicts (Dm; gm) being a maximal element of S, and so ourassumption that Dm 6= D must have been false, and the proof is complete.Proof of Proposition 2.1.4. Let J be a set of representatives of the iso-morphism classes of inclusions of subcomplexes that are f-local equivalences ofcomplexes of size less than or equal to . Proposition 2.4.8, Corollary 12.4.17 andLemma 2.4.1 (if Spc(�) = Top(�)) imply that the J-co�brations are exactly theco�brations that are f-local equivalences, and so the proof is complete.

Draft: August 12, 1997



CHAPTER 3Localization of model categories3.1. IntroductionThe purpose of a model category is to serve as a presentation of its homotopytheory (where we loosely de�ne the \homotopy theory" of a model category asits homotopy category together with the function complexes between its objects).Thus, a \localization" of a model category should not be a construction that addsinverses for maps in the underlying category, but rather one that adds inversesfor maps in the homotopy category. If M is a model category and C is a class ofmaps inM, a localization ofM with respect to C will be a map of model categoriesF: M! N such that the images in HoM of the elements of C go to isomorphismsin HoN and such that F is initial among such maps of model categories. Sincethere are two di�erent varieties of maps of model categories, left Quillen functorsand right Quillen functors (see De�nition 9.8.1), we will de�ne (in De�nition 3.2.1)two di�erent varieties of localizations of model categories, the left localizations andthe right localizations.If F : M! N is a left Quillen functor, g : X ! Y is a map inM, and [g] : X ! Yis the image of g in HoM, then the total left derived functor LF: HoM ! HoNof F (see De�nition 9.7.9) takes [g] to the image of F(~g) in HoN for some co�brantapproximation ~g to g. Thus, if LF[g] is to be an isomorphism for every element gof C, then Proposition 9.6.8 and Proposition 9.3.2 imply that F must take everyco�brant approximation to an element of C into a weak equivalence. Thus, if Cis a class of maps in M, then a left localization of M with respect to C will be aleft Quillen functor that takes co�brant approximations to elements of C into weakequivalences, and is initial among such left Quillen functors. Similarly, a rightlocalization ofM with respect to C will be a right Quillen functor that takes �brantapproximations to elements of C into weak equivalences, and is initial among suchright Quillen functors.3.2. Localizations of model categoriesDefinition 3.2.1. Let M be a model category and let C be a class of maps inM. 1. A left localization of M with respect to C is a model category LCM togetherwith a left Quillen functor (see De�nition 9.8.1) j : M! LCM such that(a) the total left derived functor Lj : HoM! HoN (see De�nition 9.7.9)of j takes the images in HoM of the elements of C into isomorphismsin HoLCM, and(b) j is initial among left Quillen functors satisfying condition 1a.2. A right localization ofM with respect to C is a model category RCM togetherwith a right Quillen functor j : M! RCM such that51 Draft: August 12, 1997



52 3. LOCALIZATION OF MODEL CATEGORIES(a) the total right derived functor Rj : HoM ! HoN of j takes theimages in HoM of the elements of C into isomorphisms in HoRCM,and(b) j is initial among right Quillen functors satisfying condition 2a.Proposition 3.2.2. Let M be a model category and let C be a class of mapsin M. If a (left or right) localization of M with respect to C exists, it is unique upto a unique isomorphism.Proof. The standard argument applies.Proposition 3.2.3. Let M be a model category, and let C be a class of mapsin M.1. If F: M ! N is a left Quillen functor, then the total left derived functorLF: HoM ! HoN (see De�nition 9.7.9) of F takes the images in HoMof the elements of C into isomorphisms in HoN if and only if F takes everyco�brant approximation to an element of C (see De�nition 9.1.8) into a weakequivalence in N.2. If F: M! N is a right Quillen functor, then the total right derived functorRF: HoM! HoN of F takes the images in HoM of the elements of C intoisomorphisms in HoN if and only if F takes every �brant approximation toan element of C into a weak equivalence in N.Proof. We will prove part 1; the proof of part 2 is dual.If g : X ! Y is a map in M, then the total left derived functor of F takes theimage of g in HoM to the image in HoN of F(~g) for some co�brant approximation~g to g (see the proof of Proposition 9.7.6). Since a map in N is a weak equivalenceif and only if its image in HoN is an isomorphism (see Proposition 9.6.8), the resultnow follows from Proposition 9.3.2.Corollary 3.2.4. Let M be a model category and let C be a class of maps inM. 1. A left Quillen functor j : M! LCM is a left localization of M with respectto C if and only if it takes all co�brant approximations to elements of C intoweak equivalences, and is initial among such left Quillen functors.2. A right Quillen functor j : M ! RCM is a right localization of M withrespect to C if and only if takes all �brant approximations to elements of Cinto weak equivalences, and is initial mong such right Quillen functors.Proof. This follows from Proposition 3.2.3.3.2.5. Bous�eld localization.Definition 3.2.6. Let M be a model category, and let C be a class of maps inM. � A left localization j : M! LCM ofM with respect to C (see De�nition 3.2.1)will be called a left Bous�eld localization if1. the underlying category of LCM equals that ofM and j is the identityfunctor,2. every weak equivalence of M is a weak equivalence of LCM,3. every element of C is a weak equivalence of LCM, and4. the class of co�brations of M equals the class of co�brations of LCM.Draft: August 12, 1997



3.3. LEFT BOUSFIELD LOCALIZATION 53We will often call a left Bous�eld localization of M a localization of M.� A right localization j : M ! RCM of M with respect to C will be called aright Bous�eld localization if1. the underlying category of RCM equals that ofM and j is the identityfunctor,2. every weak equivalence of M is a weak equivalence of LCM,3. every element of C is a weak equivalence of RCM, and4. the class of �brations of M equals the class of �brations of RCM.We will often call a right Bous�eld localization of M a colocalization of M.Proposition 3.2.7. Let M be a model category, and let C be a class of mapsin M.1. If j : M! LCM is a left Bous�eld localization of M with respect to C, then(a) the co�brations and trivial �brations of LCM equal those of M,(b) the trivial co�brations of LCM contain those of M, and(c) the �brations of LCM are contained in those of M.2. If j : M ! RCM is a right Bous�eld localization of M with respect to C,then(a) the �brations and trivial co�brations of RCM equal those of M,(b) the trivial �brations of RCM contain those of M, and(c) the co�brations of RCM are contained in those of M.Proof. This follows from Proposition 8.2.3.In Section 3.3, we show that if M is a left proper cellular model category (seeDe�nition 15.1.1 and De�nition 11.1.1) and S is a set of maps in M, then the leftBous�eld localization of M with respect to S exists (see Theorem 3.3.11) and isitself a left proper cellular model category (see Theorem 3.3.13). In Section 3.4, weshow that ifM is a right proper cellular model category, then certain right Bous�eldlocalizations of M (the S-colocalizations; see Theorem 3.4.9) exist.3.3. Left Bous�eld localizationIn this section, we show that if M is a left proper cellular model category andS is a set of maps in M, then a left Bous�eld localization of M with respect to Sexists (see Theorem 3.3.11). We begin by showing that ifM is a model category, Cis a class of maps inM, and a left Quillen functor takes co�brant approximations toelements of C (see Corollary 3.2.4) into weak equivalences, then it takes all C-localequivalences (see De�nition 3.3.2) into weak equivalences (see Proposition 3.3.5).3.3.1. Structure of a left localization.Definition 3.3.2. Let M be a model category, and let C be a class of maps inM. 1. An object W ofM is C-local ifW is �brant and, for every element f : A! Bof C, the induced map of homotopy function complexes (see De�nition 17.2.4)f� : map(B;W ) ! map(A;W ) is a weak equivalence. (Theorem 17.6.6 im-plies that if this is true for any one homotopy function complex, then it istrue for every homotopy function complex.) If C consists of the single mapf : A! B, then a C-local object will also be called f-local, and if C consistsof the single map from the initial object ofM to an object A, then an C-localobject will also be called A-local or A-null. Draft: August 12, 1997



54 3. LOCALIZATION OF MODEL CATEGORIES2. A map g : X ! Y in M is a C-local equivalence if, for every C-local objectW , the induced map of homotopy function complexes (see De�nition 17.2.4)g� : map(Y;W ) ! map(X;W ) is a weak equivalence. (Theorem 17.6.6 im-plies that if this is true for any one homotopy function complex, then itis true for every homotopy function complex.) If C consists of the singlemap f : A ! B, then a C-local equivalence will also be called an f-localequivalence, and if C consists of the single map from the initial object ofM to an object A, then a C-local equivalence will also be called an A-localequivalence.Proposition 3.3.3. If M is a model category and C is a class of maps in M,then every weak equivalence is a C-local equivalence.Proof. This follows from Theorem 17.5.2.Lemma 3.3.4. LetM and N be model categories, let C be a class of maps inM,and let F: M � N :U be a Quillen pair. If F takes every co�brant approximationto an element of C into a weak equivalence in N, then U takes every �brant objectin N into a C-local object in M.Proof. If f : A ! B is an element of C and ~f : eA ! eB is a cosimplicialresolution of f in M, then F( ~f ) : F( eA)! F( eB) is a cosimplicial resolution in N ofF( ~f0) : F( eA0)! F( eB0) (see Proposition 18.6.2). Since ~f0 : eA0 ! eB0 is a co�brantapproximation to f , if W is a �brant object in N, Theorem 17.5.2 implies that themap of simplicial sets N�F( eB);W � ! N�F( eA);W � is a weak equivalence. Thus,the map of simplicial sets M� eB;U(W )�!M�eA;U(W )� is a weak equivalence, andso U(W ) is C-local.Proposition 3.3.5. Let M and N be model categories, let C be a class ofmaps in M, and let F: M � N :U be a Quillen pair. If F takes every co�brantapproximation to an element of C into a weak equivalence in N, then F takes everyC-local equivalence between co�brant objects into a weak equivalence in N.Proof. Let g : A! B be a C-local equivalence between co�brant objects inM.IfW is a �brant object in N and cW is a simplicial resolution ofW in N, then U(cW )is a simplicial resolution of U(W ) inM (see Proposition 18.6.2), and so Lemma 3.3.4implies that the map of simplicial sets g� : M�B;U(cW )�!M�A;U(cW )� is a weakequivalence. Thus, the map of simplicial sets F(g)� : N�F(B); cW �!M�F(A);cW �is a weak equivalence, and so Theorem 18.1.6 implies that F(g) is a weak equiva-lence.3.3.6. Existence of left Bous�eld localizations.Definition 3.3.7. Let M be a left proper cellular model category (see De�ni-tion 15.1.1), and let S be a set of maps in M.1. An S-local weak equivalence is de�ned to be an S-local equivalence (seeDe�nition 3.3.2).2. An S-local co�bration is de�ned to be a co�bration.3. An S-local �bration is de�ned to be a mapwith the right lifting property (seeDe�nition 8.2.1) with respect to all maps that are both S-local co�brationsand S-local weak equivalences. If the map X ! � from an object X toDraft: August 12, 1997



3.3. LEFT BOUSFIELD LOCALIZATION 55the terminal object of M is an S-local �bration, then we will say that X isS-local �brant.Theorem 3.3.8. If M is a left proper cellular model category (see De�ni-tion 11.1.1 and De�nition 15.1.1) and S is a set of maps in M, then there is amodel category structure on M (which we call the S-local model category struc-ture) in which1. the weak equivalences are the S-local weak equivalences (see De�nition 3.3.7),2. the co�brations are the S-local co�brations, and3. the �brations are the S-local �brations.If M is a simplicial model category, then that simplicial structure gives the S-localmodel category the structure of a simplicial model category.The proof of Theorem 3.3.8 is in Section 4.6.Proposition 3.3.9. IfM is a left proper cellular model category and S is a setof maps in M, then an object W ofM is S-local if and only if it is a �brant objectin the S-local model category structure on M (see Theorem 3.3.8).The proof of Proposition 3.3.9 is in Section 4.6.Proposition 3.3.10. If M is a left proper cellular model category and S is aset of maps in M, then the model category structure of Theorem 3.3.8 is a leftBous�eld localization of M with respect to S (see De�nition 3.2.1).The proof of Proposition 3.3.10 is in Section 4.6.Theorem 3.3.11. If M is a left proper cellular model category (see De�ni-tion 11.1.1 and De�nition 15.1.1) and S is a set of maps inM, then a left Bous�eldlocalization of M with respect to S exists.Proof. This follows from Proposition 3.3.10.Definition 3.3.12. IfM is a left proper cellular model category and S is a setof maps in M, then the model category structure of Theorem 3.3.8 will be calledthe left Bous�eld localization of M with respect to S (see Proposition 3.3.10).Theorem 3.3.13. If M is a left proper cellular model category and S is a setof maps in M, then the left Bous�eld localization of M with respect to S (seeDe�nition 3.3.12) is a left proper cellular model category.The proof of Theorem 3.3.13 is in Section 4.6.3.3.14. Examples of left proper cellular model categories.Proposition 3.3.15. The categories SS, Top, SS�, and Top� are left propercellular model categories.Proposition 3.3.16. If M is a left proper cellular model category and C isa small category, then the diagram category MC is a left proper cellular modelcategory.Proposition 3.3.17. If M is a left proper cellular model category and Z is anobject ofM, then the overcategory (M #Z) is a left proper cellular model category.Draft: August 12, 1997



56 3. LOCALIZATION OF MODEL CATEGORIESProposition 3.3.18. If M is a left proper cellular simplicial model categoryand C is a small simplicial category, then the category MC of simplicial diagramsis a left proper cellular model category.Proposition 3.3.19. IfM is a pointed left proper cellular model category withan action by pointed simplicial sets, then the category of spectra overM (as in [14])is a left proper cellular model category.Proposition 3.3.20. IfM is a pointed left proper cellular model category withan action by pointed simplicial sets, then J. H. Smith's category of symmetricspectra over M [52, 36] is a left proper cellular model category.3.4. Right Bous�eld localization3.4.1. Structure of a right localization.Definition 3.4.2. Let M be a model category, and let C be a class of objectsin M.1. A map g : X ! Y is a C-colocal equivalence if for every element A of C theinduced map of homotopy function complexes g� : map(A;X)! map(A; Y )is a weak equivalence. (Theorem 17.6.6 implies that if this is true for anyone homotopy function complex, then it is true for every homotopy functioncomplex.) If C consists of the single object A, then a C-colocal equivalencewill be called an A-colocal equivalence.2. An object W is C-colocal if W is co�brant and, for every C-colocal equiva-lence g : X ! Y , the induced map of homotopy function complexes g� : map(W;X)!map(W;Y ) is a weak equivalence. (Theorem 17.6.6 implies that if this is truefor any one homotopy function complex, then it is true for every homotopyfunction complex.) If C consists of the single object A, then a C-colocalobject will be called A-colocal.For a discussion of the relation between our de�nitions (in the case M = Spc�)of C-colocal spaces and C-colocal equivalences and earlier de�nitions (which usedthe terms \A-cellular space" and \A-cellular equivalences"), see Remark 5.1.2.Proposition 3.4.3. Let M be a model category. If C is a class of objects inM, then every weak equivalence is a C-colocal equivalence.Proof. This follows from Theorem 17.5.2.Lemma 3.4.4. LetM be a model category, and let C be a class of objects inM.If RCM exists, then every co�brant object in RCM is C-colocal.Proof. Let g : X ! Y be a C-colocal equivalence, and let ĝ : cX ! bY be asimplicial resolution of g in the original model category structure on M. Sincej : M ! RCM is a right Quillen functor, ĝ is also a simplicial resolution of g inRCM. Thus, if W is a co�brant object in RCM, then Theorem 17.5.2 implies thatthe map of simplicial sets ĝ� : M(W;cX)!M(W; bY ) is a weak equivalence, and soW is C-colocal.Proposition 3.4.5. Let M be a model category, and let C be a class of objectsin M. If RCM exists, then every C-colocal equivalence is a weak equivalence inRCM.Draft: August 12, 1997



3.4. RIGHT BOUSFIELD LOCALIZATION 57Proof. This follows from Lemma 3.4.4 and Theorem 18.1.6.Remark 3.4.6. IfM = Spc, a category of unpointed spaces (see Notation 1.1.2),and A is a non-empty space, then every space X is a retract of XA (see De�ni-tion 1.1.6), and so an C-colocal equivalence of unpointed spaces must be a weakequivalence (see Corollary 1.1.9). Thus, to consider the notion of C-colocal equiva-lence of unpointed spaces would be pointless. (According to E. Dror Farjoun, thisjoke is due to W. G. Dwyer.)3.4.7. Existence of right Bous�eld localizations.Definition 3.4.8. Let M be a right proper cellular model category, and let Sbe a set of objects in M.1. An S-colocal weak equivalence is de�ned to be an S-colocal equivalence (seeDe�nition 3.4.2).2. An S-colocal �bration is de�ned to be a �bration.3. An S-colocal co�bration is de�ned to be a map with the left lifting propertywith respect to all maps that are both S-colocal weak equivalences and S-colocal �brations.Theorem 3.4.9. Let M be a right proper cellular model category. If S is a setof objects inM, then there is a model category structure onM (called the S-colocalmodel category) in which1. the weak equivalences are the S-colocal weak equivalences,2. the �brations are the S-colocal �brations, and3. the co�brations are the S-colocal co�brations.If M is a simplicial model category, then the given simplicial structure on M givesthe S-colocal model category the structure of a simplicial model category.The proof of Theorem 3.4.9 is in Chapter 5. Theorem 3.4.9 for the category ofpointed topological spaces was �rst obtained by Nofech [44].Proposition 3.4.10. Let M be a right proper cellular model category. If S isa set of objects in M, then an object is S-colocal (see De�nition 3.4.2) if and onlyif it is a co�brant object in the S-colocal model category structure on M.Proof. If W is a co�brant object in the S-colocal model category structure,then the map ; !W has the left lifting property with respect to all maps that areboth �brations and S-colocal equivalences (where ; is the initial object of M). Ifg : X ! Y is an S-colocal equivalence, let ĝ : cX ! bY be a simplicial resolution ofg in the original model category structure on M such that ĝ is a Reedy �bration.Proposition 18.3.5, Proposition 18.3.13, and Proposition 17.3.7 imply that the mapcX�[n] ! bY �[n] �bY @�[n] cX@�[n] is both a �bration and an S-colocal equivalence.Proposition 18.3.8 now implies that W is S-colocal.Conversely, assume that W is S-colocal. Proposition 8.2.3 implies that it is suf-�cient to show that if p : X ! Y is both a �bration and an S-colocal equivalence,then the map ; ! W has the left lifting property with respect to p. Proposi-tion 17.1.12 implies that we can choose a simplicial resolution p̂ : cX ! bY of p suchthat p̂ is a Reedy �bration. Proposition 18.3.5 and Proposition 18.3.9 imply thatthe map ; ! W has the left lifting property with respect to p̂0 : cX0 ! bY 0. SinceM is right proper, Proposition 11.1.18 and Proposition 17.1.6 imply that the map; !W has the left lifting property with respect to p. Draft: August 12, 1997



58 3. LOCALIZATION OF MODEL CATEGORIESProposition 3.4.11. If M is a right proper cellular model category and S is aset of objects in M, then the model category structure of Theorem 3.4.9 is a rightBous�eld localization of M with respect to the class of S-colocal equivalences.Proof. This follows from Proposition 3.4.3 and Proposition 3.4.5.Theorem 3.4.12. If M is a right proper cellular model category and S is a setof objects inM, then the right Bous�eld localization ofM with respect to the classof S-colocal equivalences exists.Proof. This follows from Proposition 3.4.11.Proposition 3.4.13. Let M be a right proper cellular model category, and letS be a set of objects in M. If g : X ! Y is a S-colocal equivalence, h : Z ! Y is amap, at least one of g and h is a �bration, and the squareW //k �� Xg��Z h // Yis a pullback, then k is an S-colocal equivalence.Proof. This follows from Proposition 18.3.5 and Proposition 18.5.6.Proposition 3.4.14. If M is a right proper cellular model category and S is aset of objects in M, then the right Bous�eld localization of M with respect to theclass of S-colocal equivalences is right proper.Proof. This follows from Proposition 3.4.13.
Draft: August 12, 1997



CHAPTER 4Left Bous�eld localizationThe main purpose of this chapter is to prove Theorem 3.3.8. This is done inSection 4.6.Section 4.1 discuses S-localizations of objects inM. Section 4.2 has some tech-nical results (motivated by the discussion of Section 1.3) needed for the constructionof a functorial co�brant S-localization in Section 4.3 (see De�nition 4.3.2 and The-orem 4.3.3). Section 4.4 contains some technical results needed for the cardinalityargument in Section 4.5, and the proof of Theorem 3.3.8 is in Section 4.6.Theorem 4.2.12 might lead one to hope that the factorization of Theorem 4.3.1would serve as the required factorization into an S-local trivial co�bration followedby an S-local �bration (see De�nition 8.1.2). Unfortunately, Example 4.2.14 showsthat not all S-local trivial co�brations need be f�S-co�brations, and so there maybe f�S-injectives that are not S-local �brations. Thus, we must establish Proposi-tion 4.5.1, which shows that there is a set JS of generating trivial co�brations (seeDe�nition 13.2.1) for the S-local model category structure on M.4.1. Localizing objects and mapsDefinition 4.1.1. Let M be a model category, and let S be a set of maps inM. 1. An S-localization of an object X is an S-local object bX (see De�nition 3.3.2)together with an S-local equivalence j : X ! bX . We will sometimes use thephrase S-localization to refer to the object bX , without explicitly mentioningthe S-local equivalence j. A co�brant S-localization ofX is an S-localizationin which the S-local equivalence j is also a co�bration.2. An S-localization of a map g : X ! Y is an S-localization ( bX; jX) of X, anS-localization (bY ; jY ) of Y , and a map ĝ : bX ! bY such that the squareX g //jX �� Y jY��bX ĝ // bYcommutes. We will sometimes use the term S-localization to refer to themap ĝ, without explicitly mentioning the S-localizations ( bX; jX) of X and(bY ; jY ) of Y .Lemma 4.1.2. Let M be a model category, and let S be a set of maps in M.If X and Y are �brant objects and g : X ! Y is a weak equivalence, then X isS-local if and only if Y is S-local. 59 Draft: August 12, 1997



60 4. LEFT BOUSFIELD LOCALIZATIONProof. If f : A! B is an element of S, then we have a commutative diagramMap(B;X) //� �� Map(A;X)���Map(B; Y ) // Map(A; Y )in which the vertical maps are weak equivalences (see Theorem 17.5.2). Thus, thetop map is a weak equivalence if and only if the bottom map is a weak equivalence.Proposition 4.1.3. Let M be a model category, and let S be a set of maps inM. If X and Y are �brant objects that are weakly equivalent (see De�nition 9.5.2),then X is S-local if and only if Y is S-local.Proof. This follows from Lemma 4.1.2.4.1.4. S-local equivalences.Proposition 4.1.5. IfM is a model category and S is a set of maps inM, thenthe class of S-local equivalences satis�es the \two out of three" axiom, i.e., if g andh are composable maps, and if two of g, h, and hg are S-local equivalences, thenso is the third.Proof. Given maps g : X ! Y and h : Y ! Z, we can apply a functorialco�brant approximation (see Proposition 9.1.2) to g and h to obtain the diagrameX ~g //�� eY ~h //�� eZ��X g // Y h // Zin which ~g, ~h, and ~h~g are co�brant approximations to g, h, and hg, respectively.If W is an S-local object, cW is a simplicial resolution of W , and two of the maps~g� : M(eY ;cW ) ! M( eX;cW ), ~h� : M( eZ;cW ) ! M(eY ;cW ), and (~h~g)� : M( eZ;cW ) !M( eX;cW ) are weak equivalences, then the third is as well.Proposition 4.1.6. IfM is a model category and S is a set of maps inM, thena retract (see De�nition 8.1.1) of an S-local equivalence is an S-local equivalence.Proof. If g : X ! Y is an S-local equivalence and h : V ! W is a retract ofg, then we apply the functorial factorization of the maps from the initial object toeach of X, Y , V , and W to obtain co�brant approximations ~g : eX ! eY to g and~h : eV ! fW to h such that ~h is a retract of ~g. If Z is an S-local object and bZ is asimplicial resolution of Z, then ~h� : M(fW; bZ) ! M(eV ; bZ) is a retract of the weakequivalence ~g� : M(eY ; bZ)!M( eX; bZ), and so ~h� is a weak equivalence.Proposition 4.1.7. Let M be a simplicial model category, and let S be a setof maps inM. If g : X ! Y is a co�bration of co�brant objects, then g is an S-localequivalence if and only if it has the left lifting property (see De�nition 8.2.1) withrespect to the map cW�[n] ! cW @�[n] for every simplicial resolution cW of everyS-local object W and every n � 0.Draft: August 12, 1997



4.2. HORNS ON S AND S-LOCAL EQUIVALENCES 61Proof. This follows from Proposition 18.3.5 and Proposition 18.3.8.Proposition 4.1.8. Let M be a model category, let S be a set of maps in M,and let T be a totally ordered set. IfW : T !M is a functor such that, if s; t 2 Tand s � t, then W s ! W t is a co�bration of co�brant objects that is an S-localequivalence, then, for every s 2 T , the map W s ! colimt�sW t is an S-localequivalence.Proof. This follows from Proposition 4.1.7, Lemma 12.2.20 and Proposi-tion 12.2.21.4.1.9. S-local Whitehead theorems.Theorem 4.1.10 (Weak S-local Whitehead theorem). Let M is a model cate-gory, and let S be a set of maps inM. IfX and Y are S-local objects and g : X ! Yis an S-local equivalence, then g is a weak equivalence.Proof. This follows from Proposition 18.1.5.Theorem 4.1.11 (Strong S-local Whitehead theorem). Let M be a model cat-egory, and let S be a set of maps in M. If X and Y are co�brant S-local objectsand g : X ! Y is an S-local equivalence, then g is a homotopy equivalence.Proof. This follows from Theorem 4.1.10 and Proposition 8.3.26.4.1.12. Characterizing S-local objects and S-local equivalences.Theorem 4.1.13. Let M be a model category, and let S be a set of maps inM.IfX is a �brant object and j : X ! bX is an S-localization ofX (see De�nition 4.1.1),then j is a weak equivalence if and only if X is S-local.Proof. If X is S-local, then Theorem 4.1.10 implies that j is a weak equiva-lence. Conversely, if j is a weak equivalence, then Proposition 4.1.3 implies that Xis S-local.Theorem 4.1.14. Let M be a model category, and let S be a set of maps inM. If ĝ : bX ! bY is an S-localization of g : X ! Y (see De�nition 4.1.1), then g isan S-local equivalence if and only if ĝ is a weak equivalence.Proof. Proposition 3.3.3 and Proposition 4.1.5 imply that g is an S-localequivalence if and only if ĝ is an S-local equivalence. Since bX and bY are S-local,Theorem 4.1.10 and Proposition 3.3.3 imply that ĝ is an S-local equivalence if andonly if it is a weak equivalence.If M is a left proper cellular model category (see De�nition 15.1.1) and S isa set of maps in M, then, in De�nition 4.3.2, we de�ne a functorial S-localization(LS ; j). Theorem 4.1.13 then implies that a �brant object X is S-local if and only ifthe S-localization map j(X) : X ! LSX is a weak equivalence (see Theorem 4.3.5),and Theorem 4.1.14 implies that a map g : X ! Y is an S-local equivalence if andonly if LS(g) : LSX ! LSY is a weak equivalence (see Theorem 4.3.6).4.2. Horns on S and S-local equivalencesThis section contains some technical constructions and results that are neededfor our construction of a natural co�brant S-localization in Section 4.3. For themotivation for the de�nition of a horn on S, see Section 1.3. Draft: August 12, 1997



62 4. LEFT BOUSFIELD LOCALIZATIONDefinition 4.2.1. IfM is a model category and S is a set of maps in M, thena horn on S is a map constructed by1. choosing an element f : A! B of S,2. choosing a cosimplicial resolution ~f : eA ! eB (see De�nition 17.1.10) of fsuch that ~f is a Reedy co�bration,3. choosing an integer n � 0, and then4. constructing the map eA 
�[n]q eA
@�[n] eB 
 @�[n]! eB 
�[n].Proposition 4.2.2. IfM is a model category and S is a set of maps inM, thenevery horn on S is a co�bration.Proof. This follows from Proposition 17.3.13.Proposition 4.2.3. IfM is a model category and S is a set of weak equivalencesin M, then every horn on S is a trivial co�bration.Proof. This follows from Proposition 17.1.14 and Proposition 17.3.12.Definition 4.2.4. Let M be a left proper cellular model category with gener-ating co�brations I and generating trivial co�brations J , and let S be a set of mapsin M.� A full set of horns on S is a set �(S) of maps obtained by choosing, for everyelement f : A! B of S, a cosimplicial resolution ~f : eA! eB of f (see De�-nition 17.1.10) such that ~f is a Reedy co�bration (see Proposition 17.1.12)and letting �(S) be the set�(S) = f eA
�[n]qeA
@�[n] eB 
 @�[n]! eB 
�[n] �� (A! B) 2 S; n � 0g:We will use the symbol �(S) to denote some full set of horns on S, eventhough it depends on the choices of cosimplicial resolutions of the elementsof S.� A full set of augmented S-horns is a set �(S) of maps�(S) = �(S) [ Jfor some full set of horns �(S) on S.Proposition 4.2.5. Let M be a left proper cellular model category, and let Sbe a set of maps in M. An object X of M is S-local if and only if the map X ! �(where � is the terminal object ofM) has the right lifting property with respect toevery element of a full set of augmented S-horns (see De�nition 4.2.4).Proof. This follows from Proposition 13.2.9, Proposition 18.3.5 and Proposi-tion 18.3.8.Proposition 4.2.6. IfM is a left proper cellular model category and S is a setof maps in M, then every element of a full set of horns on S (see De�nition 4.2.4)is an S-local equivalence.Proof. This follows from Proposition 18.3.5 and Proposition 18.3.13.Proposition 4.2.7. If M is a left proper cellular model category with gener-ating co�brations I and S is a set of maps in M, then there is a set f�S of relativeI-cell complexes with co�brant domains such that1. every element of f�S is an S-local equivalence, andDraft: August 12, 1997



4.2. HORNS ON S AND S-LOCAL EQUIVALENCES 632. an object X of M is S-local if and only if the map X ! � (where � is theterminal object of M) is a f�S-injective.Proof. Choose a full set of horns on S (see De�nition 4.2.4.) Factor eachelement g : C ! D of �(S) as C ~g�! eD p�! D where ~g is a relative I-cell complexesand p is a trivial �bration (see Corollary 13.2.12). The retract argument (see Prop-osition 8.2.2) implies that g is a retract of ~g. Since p and g are S-local equivalences(see Proposition 3.3.3 and Proposition 4.2.6), Proposition 4.1.5 implies that ~g is anS-local equivalence.Proposition 13.2.14 implies that there is a set eJ of generating trivial co�brationsfor M such that every element of eJ is a relative I-cell complexe with co�brantdomain. We let f�S = eJ [ f~ggg2�(S):It remains only to show that condition 2 is satis�ed. If the map X ! � is af�S-injective, then Proposition 4.2.5 and Lemma 8.2.7 imply that X is S-local.Conversely, if X is S-local, then X is �brant and every element of f�S is a co�-bration between co�brant objects, and so Proposition 18.3.5, Theorem 17.1.28,Proposition 17.1.27, and Proposition 18.3.8 imply that the map X ! � is a f�S-injective.Definition 4.2.8. If M is a left proper cellular model category and S is a setof maps in M, then a relative f�S-cell complex is a map that can be constructed asa trans�nite composition (see De�nition 12.2.2) of pushouts (see De�nition 8.2.10)of elements of f�S (see Proposition 4.2.7).Proposition 4.2.9. Let M be a left proper cellular model category, and let Sbe a set of maps in M. An object X of M is S-local if and only if the map X ! �(where � is the terminal object ofM) has the right lifting property with respect toall relative f�S-cell complexes.Proof. This follows fromProposition 4.2.7, Lemma8.2.5, and Lemma12.2.16.4.2.10. Regular f�S-co�brations and S-local equivalences. The mainresult of this section is Theorem 4.2.12, which asserts that if M is a left propercellular model category and S is a set of maps in M, then every relative f�S-cellcomplexe is an S-local equivalence.Proposition 4.2.11. Let M be a left proper cellular model category, and letS be a set of maps in M. If g : C ! D is a co�bration that is also an S-localequivalence, then any pushout of g is also an S-local equivalence.Proof. This follows from Proposition 4.6.4.Theorem 4.2.12. If M is a left proper cellular model category and S is a setof maps in M, then every relative f�S-cell complex (see De�nition 4.2.8) is both aco�bration and an S-local equivalence. Draft: August 12, 1997



64 4. LEFT BOUSFIELD LOCALIZATIONProof. Since every element of f�S (see Proposition 4.2.7) is a co�bration andco�brations are closed under both pushouts and trans�nite compositions (see Prop-osition 12.2.19), every relative f�S-cell complex is a co�bration. Thus, it remainsonly to show that a relative f�S-cell complex is an S-local equivalence.Proposition 4.2.7 implies that every element of f�S is an S-local equivalence,and so Proposition 4.2.11 implies that every pushout of an element of f�S is anS-local equivalence. Thus, it remains only to show that a trans�nite compositionof pushouts of elements of f�S is an S-local equivalence.If � is an ordinal andX0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)is a �-sequence of pushouts of elements of f�S, then Proposition 18.5.3 implies thatwe can �nd a �-sequence of co�brations together with a map of �-sequenceseX0 //�� eX1 //�� eX2 //�� � � � // eX� //�� � � �X0 // X1 // X2 // � � � // X� // � � �such that each vertical map eX� ! X� is a co�brant approximation to X� andcolim�<� eX� ! colim�<�X� is a co�brant approximation to colim�<�X� . IfW is an S-local object and cW is a simplicial resolution of W , then, since eachX� ! X�+1 is an S-local equivalence and each eX� ! eX�+1 is a co�bration,each M( eX�+1;cW ) !M( eX� ;cW ) is a trivial �bration of simplicial sets (see Theo-rem 18.3.7). Thus,M( eX0;cW ) M( eX1;cW ) M( eX2;cW ) � � �  M( eX�;cW ) � � �is a tower of trivial �brations of simplicial sets, and so the projection lim�<�M( eX�;cW )!M( eX0;cW ) is a weak equivalence. Since M(colim�<� eX� ;cW ) is isomorphic tolim�<�M( eX� ;cW ), this implies that the composition X0 ! colim�<�X� is anS-local equivalence.Proposition 4.2.13. Let M be a left proper cellular model category, and letS be a set of maps in M. If j : X ! bX is a relative f�S-cell complex and bX is af�S-injective, then the pair ( bX; j) is a co�brant S-localization of X.Proof. This follows from Theorem 4.2.12 and Proposition 4.2.7.Theorem 4.2.12 and Proposition 4.1.6 imply that every f�S-co�bration is anS-local equivalence. The following example (due to A. K. Bous�eld) shows that,among the co�brations that are S-local equivalences, there are maps that are notf�S-co�brations.Example 4.2.14. Let M = Top�, and let f : A ! B be the inclusion Sn !Dn+1. The path space �bration p : PK(Z; n)! K(Z; n) is an f-injective (see De�-nition 1.4.2), and so every f-co�bration has the homotopy left lifting property withrespect to p (see De�nition 10.3.2). The co�bration � ! Sn does not have thehomotopy left lifting property with respect to p, and so it is not an f-co�bration.However, since both the composition � ! Sn ! Dn+1 and f itself are f-localDraft: August 12, 1997



4.4. LOCALIZATION OF SUBCOMPLEXES 65equivalences (see Proposition 3.3.3), the \two out of three" property of weak equiv-alences implies that the inclusion � ! Sn is an f-local equivalence. Thus, � ! Snis both a co�bration and an f-local equivalence, but it is not an f-co�bration.4.3. A functorial localizationTheorem 4.3.1. If M is a left proper cellular model category and S is a set ofmaps in M, then there is a natural factorization of every map X ! Y in M asX j�! ES p�! Yin which j is a relative f�S-cell complex (see De�nition 4.2.8) and p is a f�S-injective.Proof. Proposition 4.2.7 and Theorem 15.4.3 imply that the domains of theelements of f�S are small relative to the subcategory of relative f�S-cell complexes,and so Lemma12.3.6 implies that there is a cardinal � such that the domain of everyelement of f�S is �-small relative to the subcategory of relative f�S-cell complexes.We let � = Succ(�) (see De�nition 12.1.11), so that � is a regular cardinal (seeProposition 12.1.15). The result now follows from Corollary 12.4.16.Definition 4.3.2. Let M be a left proper cellular model category, and let Sbe a set of maps in M. The S-localization of an object X is the object LSXobtained by applying the factorization of Theorem 4.3.1 to the map X ! � (where� is the terminal object of M). This factorization de�nes a natural transformationj : 1! LS such that j(X) : X ! LSX is a relative f�S-cell complex for every objectX of M.Theorem 4.3.3. If M is a left proper cellular model category and S is a setof maps in M, then, for every object X, the S-localization j(X) : X ! LSX (seeDe�nition 4.3.2) is a co�brant S-localization of X.Proof. This follows from Proposition 4.2.13.Corollary 4.3.4. If M is a left proper cellular model category and S is a setof maps in M, then every object has an S-localization.Proof. This follows from Theorem 4.3.3.Theorem 4.3.5. Let M be a left proper cellular model category, and let S bea set of maps in M. If X is a �brant object, then X is S-local if and only if theS-localization map j(X) : X ! LSX (see De�nition 4.3.2) is a weak equivalence.Proof. This follows from Theorem 4.1.13.Theorem 4.3.6. Let M be a left proper cellular model category, and let S bea set of maps in M. The map g : X ! Y is an S-local equivalence if and only if itsS-localization LS(g) : LSX ! LSY (see De�nition 4.3.2) is a weak equivalence.Proof. This follows from Theorem 4.1.14.4.4. Localization of subcomplexesThis section contains some technical results on the S-localization (see De�ni-tion 4.3.2) needed for the cardinality argument of Section 4.5. Draft: August 12, 1997



66 4. LEFT BOUSFIELD LOCALIZATIONProposition 4.4.1. Let M be a left proper cellular model category, and let Sbe a set of maps in M. If g : X ! Y is the inclusion of a subcomplex, then so isLS(g) : LSX ! LSY (see De�nition 4.3.2).Proof. This follows from Proposition 15.4.6.Proposition 4.4.2. Let M be a left proper cellular model category, and let Sbe a set of maps in M. If g : X ! Y is the inclusion of a subcomplex, then it is anS-local equivalence if and only if LS(g) : LSX ! LSY is the inclusion of a strongdeformation retract.Proof. If LS(g) is the inclusion of a strong deformation retract, then it is aweak equivalence, and so Theorem 4.3.6 implies that g is an S-local equivalence.Conversely, if g is an S-local equivalence, then Theorem 4.3.6 and Proposi-tion 4.4.1 imply that LS(g) is a trivial co�bration of �brant objects, and so Corol-lary 10.4.20 implies that it is the inclusion of a strong deformation retract.Remark 4.4.3. If we take S to be the empty set, then LSX is a functorial�brant approximation to X (see De�nition 9.1.1). In this case, Proposition 4.4.1asserts that if W is a subcomplex of X, then this �brant approximation to W is asubcomplex of this �brant approximation to X.Proposition 4.4.4. Let M be a left proper cellular model category, and letS be a set of maps in M. If X is a cell complex and W0 � W1 � W2 � � � � �W� � � � � (� < �) is a �-sequence of subcomplexes (see Remark 12.5.7) of X(where � is the ordinal chosen in the proof of Theorem 4.3.1), then the naturalmap colim�<� LSW� ! LS colim�<�W� is an isomorphism.Proof. Proposition 4.4.1 implies that the map is an isomorphism onto a sub-complex; it remains only to show that every f�S-cell of LS colim�<�W� is containedin some LSW�. We will do this by a trans�nite induction on the presentation ordinalof the f�S-cell.Since there are no f�S-cells of presentation ordinal equal to a limit ordinal,we let  be an ordinal such that  + 1 < �, and we assume that the assertion istrue for all f�S-cells of presentation ordinal at most . This assumption impliesthat the -skeleton of LS colim�<�W� is isomorphic to colim�<��(LSW�)�. Thus,the -skeleta of the LSW� form a �-sequence whose colimit is the -skeleton ofLS colim�<�W�. If e is a f�S-cell of LS colim�<�W� of presentation ordinal  + 1,then the attaching map of e must factor through (LSW�) for some � < �, and soe is contained in LSW� .4.5. The Bous�eld-Smith cardinality argumentThe purpose of this section is to prove the following proposition, which will beused in Section 4.6 to prove Theorem 3.3.8.Proposition 4.5.1. IfM is a left proper cellular model category and S is a setof maps in M, then there is a set JS of inclusions of cell complexes such that1. every element of JS is an S-local equivalence, and2. the class of JS-co�brations (see De�nition 12.4.1) equals the class of co�-brations that are also S-local equivalences.Draft: August 12, 1997



4.5. THE BOUSFIELD-SMITH CARDINALITY ARGUMENT 67The set JS will serve as our set of generating trivial co�brations (see De�ni-tion 13.2.1) for the S-local model category structure on M (see Theorem 3.3.8 andSection 4.6).The proof of Proposition 4.5.1 is at the end of this section (on page 69). Wewill prove Proposition 4.5.1 by showing that there is a set JS of co�brations thatare S-local equivalences such that every co�bration that is an S-local equivalencehas the left lifting property (see De�nition 8.2.1) with respect to every JS-injective.Proposition 4.5.1 will then follow from Corollary 12.4.17.We will �nd the set JS by showing (in Proposition 4.5.6) that there is a cardinal (see De�nition 4.5.3) such that, if a map has the right lifting property with respectto all inclusions of cell complexes that are S-local equivalences between complexesof size at most , then it has the right lifting property with respect to all co�brationsthat are S-local equivalences. We will then let JS be a set of representatives of theisomorphism classes of of these \small enough" inclusions of cell complexes that areS-local equivalences.We begin with the following lemma, which implies that it is su�cient to �nda set JS such that the JS-injectives have the right lifting property with respect toall inclusions of cell complexes that are S-local equivalences.Lemma 4.5.2. LetM be a left proper cellular model category, and let S be a setof maps inM. If p : E ! B is a �bration with the right lifting property with respectto all inclusions of cell complexes that are S-local equivalences, then it has the rightlifting property with respect to all co�brations that are S-local equivalences.Proof. Let g : X ! Y be a co�bration that is an S-local equivalence. Propo-sition 13.2.16 implies that there is a co�brant approximation (see De�nition 9.1.8)~g to g such that ~g is an inclusion of cell complexes. Proposition 3.3.3 and Propo-sition 4.1.5 imply that ~g is an S-local equivalence, and so the lemma now followsfrom Proposition 11.1.18.Definition 4.5.3. Let M be a left proper cellular model category, and let Sbe a set of maps in M. If � denotes the cardinal of De�nition 15.1.1, � denotesa cardinal such that the domain of every element of I is �-compact (see Proposi-tion 13.4.6), � denotes the cardinal selected in the proof of Theorem 4.3.1, � denotesthe cardinal described in De�nition 15.5.4, and � denotes the cardinal described inProposition 15.5.3 for the set f�S, then we let  denote the cardinal  = �����.Lemma 4.5.4. Let M be a left proper cellular model category, and let S be aset of maps in M. If X is a cell complex of size at most  (see De�nition 4.5.3),then LSX has size at most .Proof. This follows from Proposition 15.5.3.The following proposition will be used in Proposition 4.5.6 to extend a map overan arbitrary inclusion of a subcomplex that is an S-local equivalence by extendingit over a subcomplex of size at most .Proposition 4.5.5. Let M be a left proper cellular model category, let S be aset of maps in M, and let D be a cell complex. If i : C ! D is the inclusion of aproper subcomplex and an S-local equivalence, then there is a subcomplex K of Dsuch that1. the subcomplex K is not contained in the subcomplex C,Draft: August 12, 1997



68 4. LEFT BOUSFIELD LOCALIZATION2. the size of K is at most  (see De�nition 4.5.3), and3. the inclusions K \ C ! K (see Theorem 15.2.6) and C ! C [K are bothS-local equivalences.Proof. Since i : C ! D is an inclusion of a subcomplex and an S-local equiv-alence, Proposition 4.4.2 implies that LS(i) : LSC ! LSD is the inclusion of adeformation retract. Thus, there is a retraction r : LSD ! LSC, and Proposi-tion 8.3.16 implies that we can choose a homotopy R : CylM(LSD) ! LSD (seeDe�nition 15.5.4) from the identity map of LSD to LS(i) � r.We will show that there exists a subcomplex K of D, of size at most , suchthat1. K is not contained in C,2. RjCylM(LSK) is a deformation retraction of LSK onto LS(K \ C), and3. RjCylM(LS(C[K)) is a deformation retraction of LS(C [K) onto LSC.We will do this by constructing a �-sequence K0 � K1 � K2 � � � � � K� � � � �(� < �) of subcomplexes of D (where � is the ordinal selected in the proof ofTheorem 4.3.1) such that, for every � < �,1. K� has size at most ,2. RjCylM(LSK� ) factors through the subcomplex LSK�+1 of LSD (see Propo-sition 4.4.1),and such that no K� is contained in C. If we then let K = S�<�K� , then Prop-osition 4.4.4 will imply that LSK � colim�<� LSK� . Thus, RjCylM(LSK) factorsthrough LSK, rjLSK factors through (LSK) \ (LSC) (see Theorem 15.2.6 andProposition 15.2.3), and RjCylM(LSK) is a deformation retraction of LSK onto(LSK) \ (LSC).We begin by choosing a cell of D that isn't contained in C. Since the domainsof the elements of I are -compact, we can choose a subcomplex K0 of D, of sizeat most , through which the inclusion of that cell factors.For successor ordinals, suppose that �+1 < , and that we've constructed K� .Lemma 4.5.4 and Proposition 15.5.5 imply that CylM(LSK�) has size at most ,and so De�nition 15.1.1 implies that RjCylM(LSK�) factors through a subcomplex ofLSD of size at most � = . The zero skeleton of this subcomplex is a subcomplexZ� of D, of size at most , such that RjCylM(LSK� ) factors through LSZ� . We letK�+1 = K� [ Z� . It is clear that K�+1 has the properties required of it, and sothe proof is complete.Proposition 4.5.6. Let M be a left proper cellular model category, and let Sbe a set of maps in M. If p : X ! Y has the right lifting property with respect tothose inclusions of subcomplexes i : C ! D that are S-local equivalences and suchthat the size of D is at most  (see De�nition 4.5.3), then p has the right liftingproperty with respect to all inclusions of subcomplexes that are S-local equivalences.Proof. Let i : C ! D be an inclusion of a subcomplex that is an S-localequivalence, and let the solid arrow diagramC h //i �� Xp��D >>k // YDraft: August 12, 1997



4.6. COMPLETION OF THE PROOFS 69be commutative; we must show that there exists a dotted arrow making both tri-angles commute. To do this, we will consider the subcomplexes of D over whichour map can be de�ned, and use Zorn's lemma to show that it can be de�ned overall of D.Let T be the set of pairs (Dt; gt) such that1. Dt is a subcomplex of D containing C such that the inclusion it : C ! Dtis an S-local equivalence, and2. gt is a function Dt ! X such that gtit = h and pgt = kjDt .We de�ne a preorder on T by de�ning (Dt; gt) < (Du; gu) if Dt � Du and gujDt =gt. If T 0 � T is a chain (i.e., a totally ordered subset of T ), letDu = colim(Dt;gt)2T 0 Dt,and de�ne gu : Du ! X by gu = colim(Dt;gt)2T 0 gt. The universal mapping propertyof the colimit implies that guiu = h and pgu = kjDu, and Proposition 4.1.8 impliesthat the map C ! Du is an S-local equivalence. Thus, (Du; gu) is an element ofT , and so it is an upper bound for T 0. Zorn's lemma now implies that T has amaximal element (Dm; gm). We will complete the proof by showing that Dm = D.If Dm 6= D, then Proposition 4.5.5 implies that there is a subcomplex K of Dsuch that K is not contained in Dm, the size of K is at most , and the inclusionsK \Dm ! K and Dm ! Dm [K are both S-local equivalences. Thus, there is amap gK : K ! X such that pgK = kjK and gKjK\Dm = gmjK\Dm , and so gm andgK combine to de�ne a map gmK : K [Dm ! X such that pgmK = kjK[Dm andgmKi = h. Thus, (K [Dm; gmK) is an element of T strictly greater than (Dm; gm).This contradicts (Dm; gm) being a maximal element of T , and so our assumptionthat Dm 6= D must have been false, and the proof is complete.Proof of Proposition 4.5.1. Let JS be a set of representatives of the iso-morphism classes of inclusions of subcomplexes that are S-local equivalences ofcomplexes of size at most  (see De�nition 4.5.3). Proposition 4.5.6, Lemma 4.5.2,and Corollary 12.4.17 imply that the JS -co�brations are exactly the co�brationsthat are S-local equivalences, and so the proof is complete.4.6. Completion of the proofsProof of Theorem 3.3.8. We begin by using Theorem 13.3.1 to show thatthere is a co�brantly generated model category structure on M with weak equiva-lences, co�brations, and �brations as described in the statement of Theorem 3.3.8.Proposition 4.1.5 implies that the class of S-local equivalences satis�es the \twoout of three" axiom, and Proposition 4.1.6 implies that it is closed under retracts.Let JS be the set of maps provided by Proposition 4.5.1, and let I be theset of generating co�brations of the original co�brantly generated model categorystructure on M. Condition 1 of Theorem 13.3.1 is thus satis�ed for I and, sinceevery element of JS has a co�brant domain, Theorem 15.4.3 implies that condition 1of Theorem 13.3.1 is satis�ed for J .The subcategory of I-co�brations is the subcategory of co�brations in the givenmodel category structure inM, and the I-injectives are the trivial �brations in thatmodel category. Thus, Proposition 4.5.1 implies that condition 2 of Theorem 13.3.1is satis�ed.Since the JS-co�brations are a subcategory of the I-co�brations, every I-injective must be a JS-injective. Proposition 3.3.3 implies that every JS-injectiveis an S-local equivalence, and so condition 3 is satis�ed. Draft: August 12, 1997



70 4. LEFT BOUSFIELD LOCALIZATIONProposition 4.5.1 implies that condition 4a of Theorem 13.3.1 is satis�ed, andso Theorem 13.3.1 now implies that we have a model category.IfM is a simplicial model category, we note that, since the simplicial structureis the given one, axiomM6 of De�nition 10.1.2 holds because it does so in the givensimplicial model category structure on M. For axiom M7 of De�nition 10.1.2, wenote that the class of S-local co�brations equals the given class of co�brations andthe class of S-local �brations is contained in the given class of �brations. Thus,the �rst requirement of axiom M7 is clear. In the case that the map p is an S-localequivalence, the rest of axiom M7 follows from the fact that, since the class of S-local co�brations equals the given class of co�brations, the class of S-local trivial�brations equals the given class of trivial �brations (see Proposition 8.2.3).In the case that the map i is an S-local equivalence, we can choose a co�brantapproximation~{ : eA! eB to i such that ~{ is a co�bration, and Proposition 18.3.4 andProposition 18.3.6 imply that (~{; p) is a homotopy orthogonal pair. Example 17.1.30,Proposition 18.3.13, and Proposition 18.3.9 imply that the map eA
�[n]q eA
@�[n]eB 
 @�[n] ! eB 
 �[n] has the left lifting property with respect to p for everyn � 0. Thus, ~{ : eA ! eB has the left lifting property with respect to the �brationX�[n] ! Y �[n] �Y @�[n] X@�[n] for every n � 0 (see Lemma 10.3.6). Since M isleft proper, i : A ! B also has the left lifting property with respect to the mapX�[n] ! Y �[n] �Y @�[n] X@�[n] for every n � 0, and so our result follows fromLemma 10.3.6.Lemma 4.6.1. Let M and N be model categories and let F: M � N :U be aQuillen pair. If g : A ! B is a map of co�brant objects in M and h : C ! D is ahorn on g (see De�nition 4.2.1), then F(h) is a horn on F(g).Proof. Since the left adjoint F commutes with colimits, this follows fromCorollary 18.6.3.Proposition 4.6.2. Let M be a left proper cellular model category and let Sbe a set of maps in M. If N is a model category and F: M ! N is a left Quillenfunctor that takes every co�brant approximation to an element of S into a weakequivalence in N, then F is a left Quillen functor when considered as a functorLSM! N.Proof. Since the underlying category of LSM equals that ofM, F has a rightadjoint whether we consider it to be a functor F: M! N or a functor F: LSM! N.Thus, it remains only to show that F: LSM ! N preserves both co�brations andtrivial co�brations. Since the class of co�brations of LSM equals that of M, weneed only consider the trivial co�brations of LSM.If g : A ! B is a trivial co�bration of LSM, then g is a co�bration in M suchthat LS(g) : LSA ! LSB is a weak equivalence in M (see Theorem 4.3.6). Sinceg is a co�bration, so is F(g), and so it remains only to show that F(g) is a weakequivalence. Since the natural S-localization LS : M ! M preserves co�brations,LS(g) is actually a trivial co�bration in M, and so FLS (g) is a trivial co�brationDraft: August 12, 1997



4.6. COMPLETION OF THE PROOFS 71in N. Thus, we have the diagram in NFA Fj(A) //F(g) �� FLSAFLS(g)��FB Fj(B) // FLSBin which FLS(g) is a weak equivalence. Since j(A) : A! LSA is a trans�nite com-position of pushouts of horns on S, and the left adjoint F commutes with trans�nitecompositions and pushouts, Fj(A) is a trans�nite composition of pushouts of hornson S. Since F takes every co�brant approximation to an element of S into a weakequivalence in N, Fj(A) is a trans�nite composition of pushouts of horns on weakequivalences in N (see Lemma 4.6.1 and Proposition 4.2.3), and so Fj(A) is a weakequivalence in N. Similarly, Fj(B) is a weak equivalence in N, and so F(g) is aweak equivalence in N.Theorem 4.6.3. Let M and N be left proper cellular model categories and letF:M� N :U be a Quillen pair.1. If S is a set of maps inM, then (F;U) is also a Quillen pair when consideredas functors F: LSM� LFSN :U between the localizations of M and N.2. If (F;U) is a pair of Quillen equivalences, then (F;U) is also a pair of Quillenequivalences when considered as functors F: LSM� LFSN :U between thelocalizations of M and N.Proof. Proposition 4.6.2 implies that the composition M F�! N 1N��! LFSN isa left Quillen functor when considered as a functor LSM ! LFSN, which provespart 1.For part 2, we must show that if X is co�brant in LSM and Y is �brant inLFSN, then a map g : X ! UY in LSM is an S-local equivalence if and only ifthe corresponding map g] : FX ! Y in LFSN is an FS-local equivalence. Givensuch a map g, we factor it in M as X h�! eY k�! UY where h is a co�bration inM and k is a trivial �bration in M. Both X and eY are co�brant, and since k isa weak equivalence in M, g is an S-local equivalence if and only if h is an S-localequivalence. The corresponding factorization of g] in N is FX Fh��! FeY k]�! Y , andsince (F;U) is a pair of Quillen equivalences between M and N, the map k] is aweak equivalence in N. Thus, both FX and FeY are co�brant, and g] is an FS-localequivalence if and only if Fh is an FS-local equivalence. It remains only to showthat h is an S-local equivalence if and only if Fh is an FS-local equivalence.The map Fh is an FS-local equivalence if and only if for every FS-local ob-ject W in N and every simplicial resolution cW of W , the map of simplicial setsN(FeY ;cW )! N(FX;cW ) is a weak equivalence. This map is isomorphic to the mapM(eY ;UcW ) ! M(X;UcW ), and so it is now su�cient to show that every S-localobject Z ofM is weakly equivalent to an object of the form UW for some FS-localobject W of N. Since a �brant object W in N is FS-local if and only if UW isS-local, it is su�cient to show that every S-local object Z ofM is weakly equivalentto an object of the form UW for some �brant object W in N. Given such an objectZ, we can choose a trivial �bration Z0 ! Z inM with Z 0 co�brant, and then choosea trivial co�bration in N FZ 0 ! W with W �brant. Since Z 0 is co�brant and WDraft: August 12, 1997



72 4. LEFT BOUSFIELD LOCALIZATIONis �brant, the corresponding map Z 0 ! UW is a weak equivalence, and so we havethe diagram of weak equivalences Z  Z 0 ! UW .Proof of Proposition 3.3.9. If W is S-local �brant (see De�nition 3.3.7),then the map W ! � (where � is the terminal object of M) has the right liftingproperty with respect to all maps that are both co�brations and S-local equiva-lences. If f : A ! B is an element of S and ~f : eA! eB is a cosimplicial resolutionof f (in the original model category structure on M) such that ~f is a Reedy co�-bration, then for every n � 0 the map eA
�[n]qeA
@�[n] eB 
 @�[n]! eB 
�[n]is an S-local trivial co�bration (see Proposition 18.3.5, Proposition 18.3.13, andProposition 17.3.7), and so Proposition 18.3.8 implies that W is S-local.Conversely, assume that W is S-local. Proposition 8.2.3 implies that it is su�-cient to show that if i : A! B is both a co�bration and an S-local equivalence, thenthe mapW ! � has the right lifting property with respect to i. Proposition 17.1.12implies that we can choose a cosimplicial resolution ~{ : eA! eB of i such that ~{ is aReedy co�bration. Proposition 18.3.5 and Proposition 18.3.9 imply that the mapW ! � has the right lifting property with respect to ~{0 : eA0 ! eB0. Since M is leftproper, Proposition 11.1.18 and Proposition 17.1.6 now imply that the mapW ! �has the right lifting property with respect to i.Proof of Proposition 3.3.10. Fill this in!!Proposition 4.6.4. Let M be a left proper cellular model category, and let Sbe a set of maps in M. If g : A! B is an S-local equivalence, h : A! X is a map,at least one of g and h is a co�bration, and the squareA h //g �� Xk��B // Yis a pushout, then k is an S-local equivalence.Proof. This follows from Proposition 18.3.5 and Proposition 18.5.5.Corollary 4.6.5. If M is a left proper cellular model category and S is aset of maps in M, then the left Bous�eld localization of M with respect to S (seeDe�nition 3.3.12) is left proper.Proof. This follows from Proposition 4.6.4.Proof of Theorem 3.3.13. The proof of Theorem 3.3.8 constructed the local-ization as a co�brantly generated model category with the same set of generatingco�brations as in M and a set of inclusions of cell complexes as generating trivialco�brations, and so most of the conditions are clear. Finally, Corollary 4.6.5 impliesthat the localization is left proper.Draft: August 12, 1997



CHAPTER 5Right Bous�eld localizationWarning: This chapter is in the midst of serious revision.The main purpose of this chapter is to prove Theorem 3.4.9. This is done inSection 5.5. We begin by discussing S-colocalizations of objects and maps in M.5.1. Colocalizing objects and mapsDefinition 5.1.1. Let M be a right proper cellular model category, and let Sbe a set of objects in M.1. A S-colocalization of an object X is an S-colocal object bX together withan S-colocal equivalence j : bX ! X. We will sometimes use the phraseS-colocalization to refer to the object bX , without explicitly mentioning theS-colocal equivalence j. A �brant S-colocalization ofX is an S-colocalizationin which the S-colocal equivalence is also a �bration.2. A S-colocalization of a map g : X ! Y is a S-colocalization ( eX; jX ) of X,an S-colocalization (eY ; jY ) of Y , and a map ~g : eX ! eY such that the squareeX ~g //jX �� eY jY��X g // Ycommutes. We will sometimes use the term S-colocalization to refer to themap ~g, without explicitly mentioning the S-colocalizations ( eX; jX) of X and(eY ; jY ) of Y .We construct S-colocalizations in De�nition 5.5.3.Remark 5.1.2. Earlier work on colocalization was exclusively in a category ofpointed spaces ([19, 20, 23]), and was called cellularization. Given a pointed spaceA, an A-cellular equivalence of pointed spaces was de�ned to be a map g : X ! Yfor which the induced map g� : Map(A;X) ! Map(A; Y ) is a weak equivalence,and the class of A-cellular spaces was de�ned to be the smallest class of co�brantspaces containing A and closed under homotopy colimits and weak equivalences.Since this earlier work considered only the subcategory of �brant objects (or workedentirely in the category of topological spaces, in which every object is �brant), thisearlier de�nition of an A-cellular equivalence coincides with our de�nition of anA-colocal equivalence (see Example 17.2.3). We will show in Theorem 6.6.4 thatthis earlier de�nition of an A-cellular space also coincides with our de�nition of anA-colocal space. 73 Draft: August 12, 1997



74 5. RIGHT BOUSFIELD LOCALIZATION5.2. S-colocal equivalencesProposition 5.2.1. Let M be a right proper cellular model category. If S is aset of objects inM, then the class of S-colocal equivalences is closed under retracts,i.e., if the map g is a retract of an S-colocal equivalence h, then g is an S-colocalequivalence.Proof. If g is a retract of h, then we have a commutative diagramX iX //g �� W pX //h �� Xg��Y iY // Z pY // Y(5.2.2)in which pXiX = 1X and pY iY = 1Y . If we apply a functorial �brant approximationto this diagram (see Proposition 9.1.2), we obtain the diagrambX {̂X //ĝ �� cW p̂X //ĥ �� bXĝ��bY {̂Y // bZ p̂Y // bYin which p̂X {̂X = 1 bX and p̂Y {̂Y = 1bY , and the objects and maps are �brantapproximations to those in Diagram 5.2.2. If eA is a cosimplicial resolution ofan element of S, then the map M( eA; bX) ! M( eA; bY ) is a retract of the mapM( eA;cW )!M( eA; bZ), and so the proposition follows.Proposition 5.2.3. Let M be a right proper cellular model category. If S is aset of objects in M, then the class of S-colocal equivalences satis�es the \two outof three" axiom, i.e., if g and h are composable maps, and if two of g, h, and hgare S-colocal equivalences, then so is the third.Proof. Given maps g : X ! Y and h : Y ! Z, we can apply a functorial�brant approximation (see Proposition 9.1.2) to obtain the diagramX g //�� Y h //�� Z��bX ĝ // bY ĥ // bZin which ĝ, ĥ, and ĥĝ are �brant approximations to g, h, and hg, respectively. IfeA is a cosimplicial resolution of an element of S, then two of the mapsĝ� : M( eA; bX)!M( eA; bY )ĥ� : M( eA; bY )!M( eA; bZ)(ĥĝ)� : M( eA; bX)!M( eA; bZ)are weak equivalences, and so the third is as well.Draft: August 12, 1997



5.3. REGULAR �(S)-COFIBRATIONS AND �(S)-INJECTIVES 755.2.4. S-colocal Whitehead theorems.Theorem 5.2.5 (S-colocal weak Whitehead theorem). LetM be a right propercellular model category. If S is a set of objects inM and g : X ! Y is an S-colocalequivalence between S-colocal objects, then g is a weak equivalence.Proof. This follows from Proposition 18.1.5.Theorem 5.2.6 (S-colocal strong Whitehead theorem). LetM be a right propercellular model category. If S is a set of objects inM and g : X ! Y is an S-colocalequivalence between �brant S-colocal objects, then g is a simplicial homotopy equiv-alence.Proof. This follows from Theorem 5.2.5 and Proposition 8.3.26.5.2.7. Characterizing S-colocal objects and S-colocal equivalences.Proposition 5.2.8. Let M be a right proper cellular model category, and letS be a set of objects in M. If C and D are co�brant objects and h : C ! D is aweak equivalence, then C is S-colocal if and only if D is S-colocal.Proof. If g : X ! Y is an S-colocal equivalence, then we have the commuta-tive diagram map(D;X) //� �� map(D;Y )���map(C;X) // map(C; Y )in which the vertical maps are weak equivalences (see Theorem 17.5.2). Thus, thetop map is a weak equivalence if and only if the bottom map is a weak equivalence.Theorem 5.2.9. Let M be a right proper cellular model category, and let S bea set of objects in M. If X is co�brant and j : eX ! X is an S-colocalization of X(see De�nition 5.1.1), then j is a weak equivalence if and only if X is S-colocal.Proof. If X is S-colocal, then Theorem 5.2.5 implies that j is a weak equiv-alence. Conversely, if j is a weak equivalence, then Proposition 5.2.8 implies thatX is S-colocal.Theorem 5.2.10. Let M be a right proper cellular model category, and letS be a set of objects in M. If ~g : eX ! eY is an S-colocalization of g : X ! Y(see De�nition 5.1.1), then g is an S-colocal equivalence if and only if ~g is a weakequivalence.Proof. Proposition 5.2.3 implies that g is an S-colocal equivalence if and onlyif ~g is an S-colocal equivalence. Proposition 3.4.3 and Theorem 5.2.5 imply that ~gis an S-colocal equivalence if and only if it is a weak equivalence.5.3. Regular �(S)-co�brations and �(S)-injectivesDefinition 5.3.1. Let M be a right proper cellular model category with gen-erating co�brations I and generating trivial co�brations J , and let S be a set ofobjects in M. Draft: August 12, 1997



76 5. RIGHT BOUSFIELD LOCALIZATION� A full set of horns on S is a set �(S) of maps obtained by choosing acosimplicial resolution eA of every element A of S and letting�(S) = f eA
 @�[n]! eA
�[n] �� A 2 S; n � 0g:(This is exactly a full set of horns on the maps from the initial object of Mto the elements of S; see De�nition 4.2.4.) If S consists of the single objectA, then �(S) is the set of maps�fAg = f eA
 @�[n]! eA
�[n] �� n � 0g;and it will also be called a full set of horns on A.� A full set of augmented S-horns is a set �(S) of maps�(S) = �(S) [ Jfor some full set of horns �(S) on S. If S consists of the single object A, then�(S) will also be denoted �fAg, and will be called a full set of augmentedA-horns.Definition 5.3.2. Let M be a right proper cellular model category, and let Sbe a set of objects in M.� A �(S)-injective is a map with the right lifting property with respect toevery element of �(S).� A �(S)-co�bration is a map with the left lifting property with respect toevery �(S)-injective.� A relative �(S)-cell complex is a trans�nite composition of pushouts of ele-ments of �(S).� An object ofM is a �(S)-cell complex if the map to it from the initial objectof M is a relative �(S)-cell complex.Proposition 5.3.3. Let M be a right proper cellular model category. If S is aset of objects inM, then there is a functorial factorization of every map X ! Y asX p�!W q�! Y where p is a relative �(S)-cell complex and q is a �(S)-injective.Proof. This follows from Proposition 15.4.5.Proposition 5.3.4. Let M be a right proper cellular model category. If S is aset of co�brant objects in M, then a map g : X ! Y is a �(S)-injective if and onlyif g is a �bration that induces a weak equivalence of homotopy function complexesg� : map(A;X) �= map(A; Y ) for every element A of S.Corollary 5.3.5. Let M be a right proper cellular model category. If S is aset of objects in M and X and Y are �brant objects, then a map g : X ! Y is an�(S)-injective if and only if it is both a �bration and an S-colocal equivalence.Proof. Since a �brant object is a �brant approximation to itself, this followsfrom Proposition 5.3.4.Proposition 5.3.6. Let M be a right proper cellular model category. If S isa set of co�brant objects in M, then a relative �(S)-cell complex is an S-colocalco�bration.Proof. If g : X ! Y is both an S-colocal weak equivalence and a S-colocal�bration, then Proposition 9.1.9 implies that we can choose a �brant approximationDraft: August 12, 1997



5.4. S-COLOCAL COFIBRATIONS 77~g to g such that ~g is a �bration. Proposition 5.3.4 implies that ~g is a �(S)-injective,and so Proposition 12.4.8 implies that ~g has the right lifting property with respectto all relative �(S)-cell complexes. Since M is a right proper model category,Proposition 11.1.18 implies that g has the right lifting property with respect to allrelative �(S)-cell complexes.Example 5.3.7. We present here an example of an �(S)-injective that is nota S-colocal equivalence. LetM = SS� (the category of pointed simplicial sets), andlet S = fAg, where A is the quotient of �[1] obtained by identifying the two verticesof �[1] (so that the geometric realization of A is homeomorphic to a circle). Let Ybe @�[2], i.e., let Y consist of three 1-simplices with vertices identi�ed so that itsgeometric realization is homeomorphic to a circle. Let X be the simplicial set builtfrom six 1-simplices by identifying vertices so that the geometric realization of X ishomeomorphic to a circle and there is a map g : X ! Y whose geometric realizationis the double cover of the circle. The map g is a �bration, since it is a �ber bundlewith �ber two discrete points (see [6, Section IV.2] or [43, Lemma 11.9]).Since no nondegenerate 1-simplex of X has its vertices equal, the only pointedmap from A to X is the constant map to the basepoint. One can now show byinduction on n that the only pointed map from A ^ �[n]+ to X is the constantmap to the basepoint. Thus, Map(A;X) has only one simplex in each dimension.Similarly, Map(A; Y ) has only one simplex in each dimension, and so the mapg� : Map(A;X) ! Map(A; Y ) is an isomorphism. Thus, g is an A-injective (seeCorollary 5.3.5).To see that g is not an A-colocal equivalence, we note that Sing��g�� : Sing��X��!Sing��Y �� is a �brant approximation to g, and the mapMap�A; Sing��X���!Map�A; Sing��Y ���is isomorphic to the map Map���A��; ��X��� ! Map���A��; ��Y ��� (see Lemma 1.1.13).Since the map ��g�� : ��X��! ��Y �� is homeomorphic to the double covering map of thecircle, the induced map Map���A��; ��X��� ! Map���A��; ��Y ��� is not surjective on theset of components, and so g is not an A-colocal equivalence.Remark 5.3.8. Example 5.3.7 shows that, if M = SS�, then not every �(S)-injective need be an S-colocal weak equivalence. Since the �(S)-co�brations areexactly the maps with the left lifting property with respect to all �(S)-injectives,this implies that the S-colocal co�brations must consist of more than just the �(S)-co�brations (see Proposition 5.3.6).5.4. S-colocal co�brationsThe main results of this section are Proposition 5.4.2 and Proposition 5.4.4,which together provide the factorizations needed for the proof of Theorem 3.4.9.Lemma 5.4.1. Let M be a right proper cellular model category. If S is a set ofobjects in M, then every S-colocal co�bration is a co�bration.Proof. This follows from Proposition 8.2.3 and Proposition 3.4.3.Proposition 5.4.2. Let M be a right proper cellular model category. If S is aset of objects in M, then a map g : X ! Y is both a S-colocal co�bration and anS-colocal weak equivalence if and only if it is a trivial co�bration.Draft: August 12, 1997



78 5. RIGHT BOUSFIELD LOCALIZATIONProof. If g is a trivial co�bration, then Proposition 3.4.3 implies that it isan S-colocal weak equivalence and Proposition 8.2.3 implies that it is an S-colocalco�bration.Conversely, let g : X ! Y be both an S-colocal co�bration and an S-colocalweak equivalence. Lemma 5.4.1 implies that we need only show that g is a weakequivalence. Proposition 9.1.9 implies that there is a solid arrow diagramX iX //g �� eX~g��Y iY //h ?? eYin which eX and eY are �brant, iX and iY are trivial co�brations, and ~g is a �bration.We will show that ~g is a simplicial homotopy equivalence. Since iX and iY aretrivial co�brations, this will imply that g is a weak equivalence, and the proof willbe complete.Since g is an S-colocal weak equivalence and ~g is a �brant approximation to g,the map ~g is also a S-colocal weak equivalence. Thus, g has the left lifting propertywith respect to ~g, and so there exists a map h : Y ! eX such that hg = iX and~gh = iY . Since iY is a trivial co�bration and eX is �brant, there exists a mapĝ : eY ! eX such that ĝiY = h. We will show that ĝ is a simplicial homotopy inverseto ~g.We have ~gĝiY = ~gh = iY . Since iY is a trivial co�bration and eY is �brant,Corollary 10.4.10 implies that ~gĝ s' 1eY . We also have ĝ~giX = ĝiY g = hg = iX .Since iX is a trivial co�bration and eX is �brant, Corollary 10.4.10 implies thatĝ~g s' 1 eX . Thus, ĝ is a simplicial homotopy inverse to ~g.Lemma 5.4.3. Let M be a right proper cellular model category, and let S be aset of objects in M. If g : A! B is a co�bration, h : B ! C is a weak equivalence,and the composition hg : A! C is an S-colocal co�bration, then g is an S-colocalco�bration.Proof. If f : X ! Y is both an S-colocal weak equivalence and a S-colocal�bration, then Proposition 9.1.9 implies that we can choose a �brant approximation~f : eX ! eY to f such that ~f is a �bration. SinceM is a right proper model category,Proposition 11.1.18 implies that it is su�cient to show that g has the left liftingproperty with respect to ~f . Proposition 3.4.3 and Proposition 5.2.3 imply that ~f isan S-colocal weak equivalence.Suppose that we have the commutative solid arrow diagramA s //g �� eX~f��B t //h �� eYC j ??k GGDraft: August 12, 1997



5.4. S-COLOCAL COFIBRATIONS 79In the category (A #M) of object ofM under A, h is a weak equivalence of co�brantobjects (see Lemma 5.4.1) and eY is �brant. Thus, Corollary 8.5.4 implies that thereis a map j : C ! eY in (A #M) such that jh ' t in (A #M). Since hg is an S-colocalco�bration and ~f is both an S-colocal weak equivalence and an S-colocal �bration,there exists a map k : C ! eX such that khg = s and ~fk = j.Since ~fkh = jh ' t in (A #M), if we let u = kh, then u : B ! eX , and ~fu ' t in(A #M). Since B is co�brant in (A #M) and ~f is a �bration, the homotopy liftingproperty of �brations (see Proposition 8.3.8) implies that there is a map v : B ! eXin (A #M) such that v ' u and ~fv = t. The map v satis�es vg = s and ~fv = t, andso g has the left lifting property with respect to ~f .Proposition 5.4.4. Let M be a right proper cellular model category. If S is aset of objects in M, then there is a functorial factorization of every map g : X ! Yin M as X p�! W q�! Y in which p is an S-colocal co�bration and q is both anS-colocal weak equivalence and an S-colocal �bration.Proof. Choose a functorial co�brant �brant approximation j : Y ! eY to Y .Proposition 5.3.3 implies that there is a functorial factorization of the compositionjg : X ! eY as X r�!fW s�! eY , in which r is a relative �(S)-cell complex and s is a�(S)-injective. If we let Z be the pullback Y �eY fW , then we can factor the naturalmap X ! Z in M as X p�! W u�! Z where p is a co�bration and u is a trivial�bration. If we let q = vu, then we have the diagramX r ��p   @@@@@@@@ g --W u //q ��???????? Z t //v�� fWs��Y j // eYSince j is a weak equivalence, s is a �bration, and M is a right proper modelcategory, t is a weak equivalence. Thus, the composition tu is a weak equivalence,and so s is a �brant approximation to q. Since Corollary 5.3.5 implies that s isan S-colocal equivalence, q (which is the composition of two �brations) is bothan S-colocal weak equivalence and a S-colocal �bration. Since r is an S-colocalco�bration (see Proposition 5.3.6), Lemma 5.4.3 implies that p is an S-colocalco�bration.Proposition 5.4.5. Let M be a right proper cellular model category. If S is aset of objects in M, then every S-colocal co�bration has the homotopy left liftingproperty with respect to every map that is both an S-colocal weak equivalence andan S-colocal �bration.Proof. If g : X ! Y is both an S-colocal weak equivalence and a S-colocal�bration, Proposition 9.1.9 implies that we can choose a �brant approximation~g : eX ! eY to g such that ~g is a �bration. Since M is a right proper model category,Corollary 11.1.19 implies that it is su�cient to show that every S-colocal co�brationhas the homotopy left lifting property with respect to ~g. Thus, Lemma 10.3.6implies that it is su�cient to show that every S-colocal co�bration has the leftDraft: August 12, 1997



80 5. RIGHT BOUSFIELD LOCALIZATIONlifting property with respect to the map eX�[n] ! eY �[n] �eY @�[n] eX@�[n] for everyn � 0.Proposition 5.3.4 implies that ~g is a �(S)-injective, and so Proposition 10.3.10implies that eX�[n] ! eY �[n] �eY @�[n] eX@�[n] is also a �(S)-injective for every n � 0.Corollary 5.3.5 implies that each of these maps is both an S-colocal weak equiva-lence and an S-colocal �bration, and so the proof is complete.5.5. The colocalization model categoryThis section contains the proof of Theorem 3.4.9.Proof of Theorem 3.4.9. We must show that axioms M1 through M5 ofDe�nition 8.1.2 and axioms M6 and M7 of De�nition 10.1.2 are satis�ed.Axiom M1 is clear, axiom M2 follows from Proposition 5.2.3, and axiom M3follows from Proposition 5.2.1. Axiom M4 part (1) follows from the de�nitionof S-colocal co�bration, and axiom M4 part (2) follows from Proposition 5.4.2.Axiom M5 part (1) follows from Proposition 5.4.4, and axiom M5 part (2) followsfrom Proposition 5.4.2.Axiom M6 follows because the simplicial structure is the given one on M.Axiom M7 follows from Lemma 5.4.1, Proposition 5.4.2, and Proposition 5.4.5.Proposition 5.5.1. Let M be a right proper cellular model category. If S isa set of objects in M, then a map is an S-colocal co�bration if and only if it is aretract of a co�bration X ! Y for which there is a weak equivalence Y ! Z suchthat the composition X ! Z is a relative �(S)-cell complex.Proof. This follows from the factorization constructed in the proof of Propo-sition 5.4.4 and the retract argument (see Proposition 8.2.2).Corollary 5.5.2. Let M be a right proper cellular model category. If S is aset of objects in M, then an object is S-colocal if and only if it is a retract of anobject that is both co�brant and weakly equivalent to a �(S)-complex.Proof. This follows from Proposition 3.4.10 and Proposition 5.5.1.Definition 5.5.3. Let M be a right proper cellular model category. If S is aset of objects inM, then we can choose a functorial �brant co�brant approximation(CWS ; p) for the S-colocal model category structure on M (see Proposition 9.1.2).We de�ne the S-colocalization of an object X to be the object CWS X togetherwith the S-colocal trivial �bration p(X) : CWS X ! X.Proposition 5.5.4. Let M be a right proper cellular model category. If S is aset of objects in M, then CWS X is weakly equivalent to a �(S)-complex for everyobject X.Proof. This follows from the de�nition of CWS X (see De�nition 5.5.3) andthe factorization constructed in Proposition 5.4.4.Proposition 5.5.5. Let M be a right proper cellular model category. If S isa set of objects in M, then the S-colocal model category structure on M is rightproper.Proof. This follows from Proposition 3.4.13.Draft: August 12, 1997



5.6. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 81Proposition 5.5.6. Let M be a right proper cellular model category in whichevery object is �brant. If S is a set of objects in M, then1. every S-colocal co�bration is a �(S)-co�bration, and2. every S-colocal co�brant object is a retract of a �(S)-complex.5.6. Topological spaces and simplicial setsWarning: This section is a collection of leftovers.5.6.1. Topological spaces and simplicial sets.Proposition 5.6.2. Let A be a co�brant pointed topological space.1. A map in Top� is an A-colocal equivalence if and only if it is a ��SingA��-colocal equivalence.2. A co�brant pointed topological space is A-colocal if and only if it is ��SingA��-colocal.Proof. This follows from Proposition 6.4.3 and Proposition 6.4.1.Proposition 5.6.3. Let A be a pointed simplicial set.1. A map in SS� is an A-colocal equivalence if and only if it is a Sing��A��-colocalequivalence.2. A pointed simplicial set is A-colocal if and only if it is Sing��A��-colocal.Proof. Since every simplicial set is co�brant, this follows fromProposition 6.4.3and Proposition 6.4.1.Proposition 5.6.4. If A is a pointed simplicial set, then a map of pointedtopological spaces g : X ! Y is a ��A��-colocal equivalence if and only if(Sing g) : SingX ! SingY is an A-colocal equivalence.Proof. Lemma 1.1.13 gives us the commutative squareMap���A��; X� //� �� Map���A��; Y ����Map(A; SingX) // Map(A; SingY )in which the vertical maps are isomorphisms. Since all topological spaces are �brantand the total singular complex of a topological space is �brant, the propositionfollows.Proposition 5.6.5. If A is a pointed simplicial set, then a map g : X ! Yof simplicial sets is an A-colocal equivalence if and only if ��g�� : ��X�� ! ��Y �� is a��A��-colocal equivalence.Proof. The map �Sing��g��� : Sing��X��! Sing��Y �� is a �brant approximation tog, and so g is anA-colocal equivalence if and only if �Sing��g���� : Map�A; Sing��X���!Map�A; Sing��Y ��� is a weak equivalence. Lemma 1.1.13 implies that this is true ifand only if ��g��� : Map���A��; ��X��� ! Map���A��; ��Y ��� is a weak equivalence. Sinceall topological spaces are �brant, this is true if and only if ��g�� : ��X�� ! ��Y �� is a��A��-colocal equivalence. Draft: August 12, 1997



82 5. RIGHT BOUSFIELD LOCALIZATIONProposition 5.6.6. IfA is a co�brant pointed topological space, then a pointedsimplicial set W is A-colocal if and only if ��W �� is ��A��-colocal.Proof. If W is A-colocal, let g : X ! Y be a ��A��-colocal equivalence oftopological spaces. Proposition 5.6.4 implies that (Sing g)� : Map(W; SingX) !Map(W; SingY ) is a weak equivalence, and so Lemma 1.1.13 implies thatg� : Map���W ��; X� ! Map���W ��; Y � is a weak equivalence. Since all topologicalspaces are �brant, this implies that ��W �� is ��A��-colocal.Conversely, assume that ��W �� is ��A��-colocal, and let g : X ! Y be an A-colocalequivalence of simplicial sets. Proposition 5.6.5 implies that ��g�� : ��X�� ! ��Y �� is a��A��-colocal equivalence, and so ��g��� : Map���W ��; ��X��� ! Map���W ��; ��Y ��� is a weakequivalence. Lemma 1.1.13 now implies that �Sing��g���� : Map�W; Sing��X��� !Map�W; Sing��Y ��� is a weak equivalence. Since Sing��g�� is a �brant approximationto g, this implies that W is A-colocal.Proposition 5.6.7. If A is a co�brant pointed topological space, then a co�-brant pointed topological space W is A-colocal if and only if SingW is (SingA)-colocal.Proof. If W is A-colocal, let g : X ! Y be a (SingA)-colocal equivalence ofsimplicial sets. Since Sing��g�� is a �brant approximation to g, we must show that�Sing��g���� : Map�SingW; Sing��X���!Map�SingW; Sing��Y ��� is a weak equivalence.This is true if and only if ��g��� : Map�W; ��X���!Map�W; ��Y ��� is a weak equivalence.Proposition 5.6.5 and Proposition 5.6.2 imply that ��g�� : ��X�� ! ��Y �� is an A-colocalequivalence, and so SingW is (SingA)-colocal.Conversely, assume that SingW is (SingA)-colocal, and let g : X ! Y be anA-colocal equivalence of topological spaces; we must show that g� : Map(W;X) !Map(W;Y ) is a weak equivalence. This is true if and only if (Sing g)� : Map(SingW; SingX)!Map(SingW; SingY ) is a weak equivalence (see Proposition 1.1.15). Proposition 5.6.4and Proposition 5.6.2 imply that Sing g is a (SingA)-colocal equivalence, and sothe proof is complete.5.6.8. Topological spaces and simplicial sets.Corollary 5.6.9. If A is a pointed simplicial set then, for every topologicalspace X, there is a natural map ��CWA SingX��! CWjAjX that makes the square��CWA SingX�� //�� CWjAjX����SingX�� // Xcommute, and this natural map is a simplicial homotopy equivalence.Proof. The existence of the natural map follows from Theorem 1.5.4. Propo-sition 5.6.6 implies that ��CWA SingX�� is ��A��-colocal, and Proposition 5.2.3, Propo-sition 3.4.3, and Proposition 5.6.5 imply that our natural map is a ��A��-colocal equiv-alence of �brant ��A��-colocal spaces. The result now follows fromTheorem 5.2.6.Draft: August 12, 1997



5.6. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 83Corollary 5.6.10. If A is a pointed simplicial set then for every simplicial setK there is a natural map CWAK ! SingCWjAj��K�� that makes the squareCWAX //�� SingCWjAj��K����K // Sing��K��commute, and this natural map is a weak equivalence.Proof. The existence of the natural map follows from Theorem 1.5.6. Prop-osition 5.6.7 and Proposition 5.6.2 imply that SingCWjAj��K�� is A-colocal, andProposition 5.2.3, Proposition 3.4.3, and Proposition 5.6.4 imply that our naturalmap is an A-colocal equivalence of A-colocal spaces. The result now follows fromTheorem 5.2.5.5.6.11. Topological spaces and simplicial sets.Proposition 5.6.12. If A is a pointed simplicial set, then the map g : X ! Yof pointed topological spaces is a ��A��-colocal equivalence if and only if the mapSing g : SingX ! SingY of pointed simplicial sets is an A-colocal equivalence.Proof. Since every topological space is �brant, g is a ��A��-colocal equivalenceif and only if g� : Map���A��; X� ! Map���A��; Y � is a weak equivalence of simplicialsets. Lemma 1.1.13 implies that this is true if and only if the map of simplicialsets (Sing g)� : Map(A; SingX) ! Map(A; SingY ) is a weak equivalence. SinceSingX and SingY are �brant, this is true if and only if (Sing g) is an A-colocalequivalence.Proposition 5.6.13. If A is a pointed simplicial set, then the map g : C !D of pointed simplicial sets is an A-colocal equivalence if and only if the map��g�� : ��C��! ��D�� of pointed topological spaces is a ��A��-colocal equivalence.Proof. The map Sing��g�� : Sing��C�� ! Sing��D�� is a �brant approximationto g (see De�nition 9.1.8), and so g is an A-colocal equivalence if and only ifthe map of simplicial sets �Sing��g���� : Map�A; Sing��C��� ! Map�A; Sing��D��� is aweak equivalence. Lemma 1.1.13 implies that this is true if and only if the map��g��� : Map���A��; ��C���!Map���A��; ��D��� is a weak equivalence. Since ��C�� and ��D�� are�brant, the result follows.Proposition 5.6.14. If A is a pointed simplicial set, then the simplicial set Kis A-colocal if and only if ��K�� is ��A��-colocal.Proof. If ��K�� is ��A��-colocal and g : C ! D is a �bration of �brant simpli-cial sets that is an A-colocal equivalence, then ��g�� : ��C�� ! ��D�� is a �bration andProposition 5.6.13 implies that it is a ��A��-colocal equivalence. Proposition 6.6.1implies that the map Map���K��; ��C��� ! Map���K��; ��D��� is a weak equivalence.Lemma 1.1.13 now implies that Map�K; Sing��C��� ! Map�K; Sing��D��� is a weakequivalence. Since C ! Sing��C�� and D ! Sing��D�� are weak equivalences of �brantsimplicial sets and every simplicial set is co�brant, Corollary 10.2.2 implies thatMap(K;C) ! Map(K;D) is a weak equivalence, and so Proposition 6.6.1 impliesthat K is A-colocal. Draft: August 12, 1997



84 5. RIGHT BOUSFIELD LOCALIZATIONConversely, if K is A-colocal and g : X ! Y is a �bration of topological spacesthat is a ��A��-colocal equivalence, then Sing g : SingX ! SingY is a �bration andProposition 5.6.12 implies that it is an A-colocal equivalence. Lemma 1.1.13 andProposition 6.6.1 imply that we have a commutative squareMap���K��; X� //� �� Map���K��; Y ����Map(K; SingX) // Map(K; SingY )in which all the maps except the top one are weak equivalences, and so this lastone must also be a weak equivalence. Proposition 6.6.1 now implies that ��K�� is��A��-colocal, and the proof is complete.Proposition 5.6.15. If A is a pointed simplicial set, then a co�brant topolog-ical space X is ��A��-colocal if and only if SingX is A-colocal.Proof. If X is ��A��-colocal and g : C ! D is a �bration of �brant simplicialsets that is an A-colocal equivalence, then we have the commutative diagramMap(SingX;C) //�= �� Map(SingX;D)�=��Map�SingX; Sing��C��� //� �� Map�SingX; Sing��D������Map���SingX��; ��C��� // Map���SingX��; ��D���Map�X; ��C��� //�= OO Map�X; ��D����=OOin which all the vertical maps are weak equivalences (see Corollary 10.2.2 andLemma 1.1.13). Since ��C�� ! ��D�� is a �bration and a ��A��-colocal equivalence (seeProposition 5.6.13), the bottom map is a weak equivalence, and so the top map isalso a weak equivalence, and so Proposition 6.6.1 implies that SingX is A-colocal.Conversely, if SingX is A-colocal and g : Y ! Z is a �bration of topologicalspaces that is a ��A��-colocal equivalence, then we have the commutative diagramMap(X;Y ) //�= �� Map(X;Z)�=��Map���SingX��; Y � //� �� Map���SingX��; Z����Map(SingX; SingY ) // Map(SingX; SingZ)in which all the vertical maps are weak equivalences. Since SingY ! SingZ isa �bration of �brant simplicial sets and an A-colocal equivalence (see Proposi-tion 5.6.12), the bottom map is a weak equivalence, and so the top map is a weakequivalence, and so the result follows from Proposition 6.6.1.Draft: August 12, 1997



5.6. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 85Proposition 5.6.16. If A is a pointed simplicial set, (M; p) is a functorial �-brant A-colocalization on SS�, and (N; q) is a functorial �brant ��A��-colocalizationon Top�, then, for every topological space X, there is a map ��MSingX�� ! NX,unique up to simplicial homotopy, that makes the square��MSingX�� //�� NX����SingX�� //// X(5.6.17)commute, and any such map is a homotopy equivalence. This map is natural upto simplicial homotopy, i.e., if g : X ! Y is a map of topological spaces then thesquare ��MSingX�� //�� NX����MSingY �� // NYcommutes up to simplicial homotopy.Proof. This is similar to the proof of Proposition 1.5.8.Theorem 5.6.18. If A is a pointed simplicial set, then, for every topologicalspace X, there is a natural homotopy equivalence (i.e., a natural map that is a ho-motopy equivalence, not just a homotopy class of maps) ��CWA SingX��! CWjAjX(see De�nition 5.5.3).Proof. Corollary 5.6.9 implies that there is a natural map ��CWA SingX�� !CWjAjX that makes the square (5.6.17) commute, and so the theorem follows fromProposition 5.6.16.Proposition 5.6.19. If A is a pointed simplicial set, (M; p) is a functorial �-brant A-colocalization on SS�, and (N; q) is a functorial �brant ��A��-colocalizationon Top�, then, for every simplicial set K, there is a mapMK ! SingN��K��, uniqueup to homotopy, that makes the squareMK //�� SingN��K����K // Sing��K��(5.6.20)commute, and any such map is a weak equivalence. This map is natural up tosimplicial homotopy, i.e., if g : K ! L is a map of simplicial sets then the squareMK //�� SingN��K����ML // SingN��L��commutes up to simplicial homotopy. Draft: August 12, 1997



86 5. RIGHT BOUSFIELD LOCALIZATIONProof. This is similar to the proof of Proposition 5.6.16.Theorem 5.6.21. If A is a pointed simplicial set then for every simplicial set Kthere is a natural weak equivalence (i.e., a natural map that is a weak equivalence,not just a homotopy class of maps)CWAK ! SingCWjAj��K�� (see De�nition 5.5.3).Proof. Corollary 5.6.10 implies that there is a natural map CWAK !SingCWjAj��K�� that makes the square (5.6.20) commute, and so the theorem followsfrom Proposition 5.6.19.

Draft: August 12, 1997



CHAPTER 6Localization functors and colocalization functorsWarning: This chapter is in need of revision.6.1. Characterizing localization functors6.1.1. Functorial localizations. If M is a left proper cellular model cate-gory and S is a set of maps inM, then the de�nition of the S-local model categorystructure (see De�nition 3.3.7) implies that an S-localization of an object is ex-actly an S-local �brant approximation to that object (see De�nition 9.1.1), andthat a co�brant S-localization of an object is exactly an S-local co�brant �brantapproximation to that object.Definition 6.1.2. If M is a model category, a coaugmented functor on M isa pair (F; j) where F is a functor F: M ! M and j is a natural transformationj : 1! F.Definition 6.1.3. If M is a model category, then a coaugmented functor Fon M will be called homotopy idempotent if, for every object X in M, the naturalmaps j(FX);F�j(X)� : FX ! FFX are homotopic under X (see De�nition 8.4.3)and are homotopy equivalences under X.Remark 6.1.4. De�nition 6.1.3 is the lifting to M of J. F. Adams' notion ofan idempotent functor on the homotopy category of M (see [1]).Definition 6.1.5. IfM is a model category and S is a set of maps in M, thena functorial S-localization is a coaugmented functor (F; j) on M such that, forevery object X, the coaugmentation j(X) : X ! FX is an S-localization of X (seeDe�nition 4.1.1). A functorial co�brant S-localization is a functorial S-localizationfor which the coaugmentation j(X) is a co�brant S-localization for every object X.Proposition 6.1.6. If M is a model category and S is a set of maps in M,then a functorial co�brant S-localization (MS ; j) is homotopy idempotent, i.e., forevery object X, the maps j(MSX) and MS�j(X)� are homotopic under X (seeDe�nition 8.4.3), and are homotopy equivalences MSX �= MSMSX under X.Proof. Since j is a natural transformation, for every object X we have acommutative square X j(X) //j(X) �� MSXj(MSX)��MSX MS(j(X)) // MSMSX87 Draft: August 12, 1997



88 6. LOCALIZATION FUNCTORS AND COLOCALIZATION FUNCTORSSince j(X) is an S-local trivial co�bration (see De�nition 3.3.7) and MSX is S-local�brant, Proposition 8.3.21 implies that j(MSX) r' MS�j(X)� in (X #M). SinceMSX and MSMSX are both co�brant and �brant in (X #M), Proposition 8.3.18implies that j(MSX) ' MS�j(X)� in (X #M). Since MSX and MSMSX are bothco�brant and �brant in (X #M) and Theorem 4.1.13 implies that j(MSX) is a weakequivalence, Proposition 8.3.26 implies that j(MSX) (and so MS�j(X)� as well) isa homotopy equivalence.Proposition 6.1.7. IfM is a left proper cellular model category and S is a setof maps inM, then the pair (LS ; j) of De�nition 4.3.2 is a functorial S-localization(see De�nition 6.1.5).Proof. This follows from Theorem 4.3.3.Proposition 6.1.8. If M is a left proper cellular model category and S is aset of maps in M, (MS ; j) is a functorial co�brant S-localization on M, and X is a�brant object in M, then the following are equivalent:1. The object X is S-local.2. The S-localization map j(X) : X !MSX is a weak equivalence.3. The S-localization map j(X) : X !MSX is a homotopy equivalence underX (see De�nition 8.4.3).4. The S-localization map j(X) : X !MSX is the inclusion of a strong defor-mation retract (see De�nition 8.4.6).Proof. A co�brant S-localization of an object is an S-local trivial co�brationto an S-local �brant object (see De�nition 3.3.7). Thus, Proposition 8.4.7 impliesthat condition 1 implies condition 4. It is obvious that condition 4 implies condi-tion 3 and that condition 3 implies condition 2, and Proposition 4.1.3 implies thatcondition 2 implies condition 1.6.1.9. Uniqueness of localizations.Proposition 6.1.10. Let M be a left proper cellular model category and letS be a set of maps in M. If g : X ! Y is an S-localization of X, then there is amap � : LSX ! Y (see De�nition 1.4.11), unique up to homotopy under X (seeDe�nition 8.4.3), such that �j(X) = g, and any such map � is a weak equivalence.Proof. This follows from Theorem 3.3.8 and Proposition 9.1.6.Proposition 6.1.11. Let M be a left proper cellular model category and let Sbe a set of maps inM. If (MS ; j : 1! MS) and (NS ; k : 1! NS) are functorial co�-brant S-localizations, then, for every object X, there is a map �X : MSX ! NSX,unique up to homotopy under X (see De�nition 8.4.3), that makes the triangleXj(X)||yyyyyyyy k(X)""DDDDDDDDMfX �X // NfXcommute, and any such map is a homotopy equivalence under X.Proof. This follows from Theorem 3.3.8 and Corollary 9.1.7.Draft: August 12, 1997



6.2. COMPARING LOCALIZATIONS 89Proposition 6.1.12. Let M be a left proper cellular model category and let Sbe a set of maps in M. If (MS ; j : 1!MS) is a functorial co�brant S-localization,then, for every object X, the homotopy class of the S-localization j(X) : X !MSXin (X #M) is initial in the category of homotopy classes of maps from X to S-local objects, i.e., if W is S-local and k : X ! W is a map, then there is a map� : MSX !W , unique up to homotopy in (X #M), such that �j(X) ' k.Proof. Theorem 3.3.8 implies that j(X) is a trivial co�bration of co�brantobjects in (X #M), and X ! W is a �brant object in (X #M). Thus, the resultfollows from Proposition 8.3.21 and Proposition 8.3.18.Proposition 6.1.13. Let M be a left proper cellular model category and let Sbe a set of maps in M. If (MS ; j : 1!MS) is a functorial co�brant S-localization,then for every object X, the homotopy class of the S-localization j(X) : X !MSXin (X #M) is terminal in the category of homotopy classes of co�brations that areS-local equivalences, i.e., if k : X !W is a co�bration and an S-local equivalence,then there is a map � : W ! MfX, unique up to homotopy in (X #M), such that�k ' j(X).Proof. Since k is an S-local trivial co�bration (see Theorem 3.3.8) and MSXis an S-local �brant object, this follows from Proposition 8.3.21 and Proposi-tion 8.3.18.Proposition 6.1.14. Let M be a left proper cellular model category and let Sbe a set of maps in M. If (MS ; j : 1!MS) is a functorial co�brant S-localization,g : X ! Y is an S-local equivalence, and Y is an S-local object, there is a map� : MfX ! Y , unique up to homotopy under X (see De�nition 8.4.3), such thatthe triangle X g ��@@@@@@@@j(X)||yyyyyyyyMSX � // Ycommutes, and any such map � is a weak equivalence.Proof. This follows from Proposition 6.1.12 and Theorem 4.1.10.6.2. Comparing localizationsProposition 6.2.1. Let M be a model category, and let f and f 0 be maps inM. If the class of f-local objects equals the class of f 0-local objects, then a mapg : X ! Y is an f-local equivalence if and only if it is an f 0-local equivalence.Proof. This follows directly from the de�nitions.Proposition 6.2.2. Let M be a model category, and let both f : A ! B andf 0 : A0 ! B0 be maps in M. If there are weak equivalences A ! A0 and B ! B0such that the square A f //�� B��A0 f 0 // B0 Draft: August 12, 1997



90 6. LOCALIZATION FUNCTORS AND COLOCALIZATION FUNCTORScommutes, then the class of f-local objects equals the class of f 0-local objects.Proof. This follows from Proposition 18.3.5 and Proposition 18.3.6.Proposition 6.2.3. Let M be a model category, and let S and S0 be classes ofmaps in M.1. If for every element f of S there is an element f 0 of S0 such that every f 0-local object is f-local, then every S0-local object is S-local and every S-localequivalence is an S0-local equivalence.2. If condition 1 holds and, in addition, for every element f 0 of S0 there is anelement f of S such that every f-local object is f 0-local, then the class ofS-local objects equals the class of S0-local objects and the class of S-localequivalences equals the class of S0-local equivalences.Proof. This follows directly from the de�nitions.6.3. Simplicial localization functorsIn this section, we show that if M is a left proper cellular model category thatis a simplicial model category and if S is a set of maps in M, then we can de�ne aco�brant S-localization on M that is a simplicial functor (see Section 10.6).Theorem 6.3.1. If M is a left proper simplicial cellular model category and Sis a set of maps in M, then there is a co�brant S-localization functor on M that isa simplicial functor.Proof. Fill this in!6.4. Comparing colocalizationsProposition 6.4.1. Let M be a right proper cellular model category. If S andS0 are sets of objects in M such that the class of S-colocal equivalences equals theclass of S0-colocal equivalences, then the class of S-colocal co�brations equals theclass of S0-colocal co�brations.Proof. This follows directly from the de�nitions.Proposition 6.4.2. Let M be a right proper cellular model category. If S is aset of objects in M, then a map is an S-colocal equivalence if and only if it is anA-colocal equivalence for every element A of S.Proof. This follows directly from the de�nitions.Proposition 6.4.3. Let M be a right proper cellular model category, and letA and B be objects in M. If there is a weak equivalence A! B, then1. the class of A-colocal equivalences equals the class of B-colocal equivalences,and2. the class of A-colocal objects equals the class of B-colocal objects.Proof. Part 1 follows from Theorem 17.5.2. Part 2 now follows from Propo-sition 6.4.1.Proposition 6.4.4. Let M be a right proper cellular model category. If S is aset of objects in M, then there is a set S0 of co�brant objects such thatDraft: August 12, 1997



6.5. FUNCTORIAL COLOCALIZATIONS 911. the class of S-colocal equivalences equals the class of S0-colocal equivalences,and2. the class of S-colocal co�brations equals the class of S0-colocal co�brations.Proof. Let S0 be a set of co�brant approximations to the elements of S. Theresult now follows from Proposition 6.4.2, Proposition 6.4.3 and Proposition 6.4.1.6.5. Functorial colocalizationsDefinition 6.5.1. If M is a model category, an augmented functor on M isa pair (F; j) where F is a functor F: M ! M and j is a natural transformationj : F! 1.Definition 6.5.2. IfM is a model category, then an augmented functor (F; j)on M will be called homotopy idempotent if, for every object X in M, the naturalmaps j(FX);Fj(X) : FFX � FX are homotopic over X (see De�nition 8.4.3) andare homotopy equivalences over X.Proposition 6.5.3. If M is a model category and S is a set of objects in M,then a functorial �brant S-colocal approximation (F; p) (see De�nition 5.1.1) ishomotopy idempotent.Proof. Since p is a natural transformation, for each object X we have acommutative square FFX p(FX) //F(p(X)) �� FXp(X)��FX p(X) // XSince FFX is S-colocal co�brant and p(X) is an S-colocal trivial �bration (seeTheorem 3.4.9), Proposition 10.2.1 implies that p(X) induces a weak equivalenceof homotopy function complexes �p(X)�� : map(FFX;FX) �= map(FFX;X). Fixthis!! Corollary 10.4.9 now implies that F�p(X)� s' p(FX). Theorem 5.2.10 impliesthat F�p(X)� is a weak equivalence, and so p(FX) must be a weak equivalence aswell.Proposition 6.5.4. If (F; p) is a functorial �brant A-colocalization and X is aco�brant object, then the following are equivalent:1. The object X is A-colocal.2. The A-colocalization map p(X) : FX ! X is a weak equivalence.3. The A-colocalization map p(X) : FX ! X is a simplicial homotopy equiva-lence.4. The A-colocalization map p(X) : FX ! X is a simplicial homotopy equiva-lence that has a right inverse that is a simplicial homotopy inverse,Proof. Proposition 10.4.19 implies that condition 1 implies condition 4. It isobvious that condition 4 implies condition 3 and that condition 3 implies condi-tion 2, and Proposition 5.2.8 implies that condition 2 implies condition 1.Draft: August 12, 1997



92 6. LOCALIZATION FUNCTORS AND COLOCALIZATION FUNCTORS6.6. Closed classes of objectsIn this section, we show that if M is a right proper cellular model categoryand S is a set of co�brant objects in M, then the class of S-colocal objects is thesmallest class of co�brant objects that contains S and is closed under homotopycolimits and weak equivalences (see Theorem 6.6.4).Proposition 6.6.1. Let M be a right proper cellular model category. If S is aset of objects in M, then a co�brant object W is S-colocal if and only if, for everyS-colocal equivalence that is a �bration of �brant objects g : X ! Y , the inducedmap of simplicial sets g� : Map(W;X)!Map(W;Y ) is a weak equivalence.Proof. Since a �brant object is a �brant approximation to itself, the conditionis clearly necessary.Conversely, if g : X ! Y is an S-colocal equivalence, then Proposition 9.1.9implies that we can choose a �brant approximation ~g : eX ! eY to g such that ~g isa �bration. Since ~g is itself an S-colocal equivalence, ~g induces a weak equivalence~g� : Map(W; eX) � Map(W; eY ), and so W is S-colocal.Lemma 6.6.2. Let M be a right proper cellular model category. If S is a setof objects in M, then the homotopy colimit of a diagram of S-colocal objects is anS-colocal object.Proof. Let C be a small category, and let X : C ! M be a diagram of S-colocal objects. Corollary 20.6.8 implies that hocolimX is co�brant, and so Propo-sition 6.6.1 implies that it is su�cient to show that hocolimX has the homotopy leftlifting property with respect to all �(S)-injectives between �brant objects. Thus, itis su�cient to show that if Y and Z are �brant and g : Y ! Z is a �(S)-injective,then the map g� : Map(hocolimX ; Y )!Map(hocolimX; Z)is a trivial �bration. This map is isomorphic to the mapholimMap(X ; Y )! holimMap(X; Z)(see Corollary 20.3.19). Since Map(X�; Y )!Map(X�; Z) is a trivial �bration forevery object � in C and the homotopy limit of such a diagram of maps is a trivial�bration (see Theorem 20.6.9), the proof is complete.Lemma 6.6.3. Let M be a right proper cellular model category, and let S be aset of objects in M. If W is an S-colocal object and K is a simplicial set, then theobject W 
K is S-colocal.Proof. This follows from Proposition 3.4.10 and Lemma 17.3.11.Theorem 6.6.4. Let M be a right proper cellular model category. If S is aset of objects in M, then the class of S-colocal objects is the smallest class ofco�brant objects that contains S and is closed under homotopy colimits and weakequivalences.Proof. Let C be a class of co�brant objects that contains S and is closed underhomotopy colimits and weak equivalences. Lemma 6.6.3 implies that C containsA 
 @�[n] for every element A of S and every n � 1, and so Proposition 20.3.8implies that, if X is an object in C, then C contains the pushout of the diagramDraft: August 12, 1997



6.6. CLOSED CLASSES OF OBJECTS 93X  A 
 @�[n] ! A 
 �[n]. Together with Proposition 20.9.9, this impliesthat C contains all �(S)-complexes (see De�nition 5.3.2), and so Corollary 5.5.2and Proposition 19.5.14 imply that C contains CWS X for every object X. Sinceevery S-colocal object X is weakly equivalent to CWS X (see Proposition 6.5.4), Cmust contain all S-colocal objects. Lemma 6.6.2 shows that the class of S-colocalobjects is closed under homotopy colimits, and Proposition 6.4.1 shows that it isclosed under weak equivalences, and so the proof is complete.
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CHAPTER 7Fiberwise localization7.1. Fiberwise localizationIf S is a set of maps in Spc(�) and p : Y ! Z is a �bration in Spc(�), then a�berwise S-localization of p should be a map from p to another �bration q over ZY i //p ��???????? bYq����������Zthat \localizes the �bers of p", i.e., for every point z in Z the map p�1(z)! q�1(z)should be an S-localization of p�1(z). The actual de�nition is a generalization ofthis that deals with maps p that may not be �brations.Definition 7.1.1. Let S be a set of maps in Spc(�) (see Notation 1.1.2). Ifp : Y ! Z is a map in Spc(�), then a �berwise S-localization of p is a factorizationY i�! bY q�! Z of p such that1. q is a �bration, and2. for every point z of Z, the induced map of homotopy �bers (see De�ni-tion 11.2.19) HFibz(p) ! HFibz(q) is an S-localization of HFibz(p) (seeDe�nition 4.1.1).Proposition 7.1.2. If S is a set of maps in Spc(�), p : Y ! Z is a �bration inSpc(�), and Y i�! bY q�! Z is a factorization of p, then this factorization is a �berwiseS-localization of p if and only if1. q is a �bration, and2. for every point z of Z, the induced map of �bers p�1(z) ! q�1(z) is anS-localization of p�1(z).Proof. This follows from Proposition 11.2.22.In this chapter, we show that for every set S of maps in Spc (a category ofunpointed spaces; see Notation 1.1.2), every map p : Y ! Z has a natural �berwiseS-localization Y ! bY ! Z. We also show that if p : Y ! Z is a map in Spcand Y ! bY 0 ! Z is some other �berwise S-localization of p, then there is a mapbY ! bY 0 under Y and over Z, unique up to simplicial homotopy in (Y # Spc #Z),and any such map is a weak equivalence.We construct our �berwise localization for the categories of unpointed spacesTop and SS. Since the pointed localization of a connected space is weakly equivalentto its unpointed localization (see Theorem 1.7.13), our construction will also serveas a �berwise pointed localization for �brations with connected �bers. This is the95 Draft: August 12, 1997



96 7. FIBERWISE LOCALIZATIONstrongest possible result; in Proposition 7.1.3, we show that it is not possible toconstruct a �berwise pointed localization for �brations with �bers that are notconnected.Proposition 7.1.3. Let f : A ! B be the inclusion S2 ! D3 in Top�. IfX = S2�R,Z = S1, and p : X ! Z is the composition of the projection S2�R! Rwith the universal covering map R! S1, then there is no �berwise f-localizationof p in the category Top� of pointed spaces.Proof. The �ber F of p is a countable disjoint union of copies of S2, and soif there were a �berwise pointed localization of p, its �ber would have countablymany path components: one contractible, and the others weakly equivalent to S2(see Corollary 1.7.10).To see that this is not possible, note that �1Z acts transitively on �0F , andso �1Z would act transitively on the path components of the �ber of any �berwiselocalization of p. Since �1Z acts on the �ber through (unpointed) weak equiva-lences, this is impossible, and so there does not exist a �berwise pointed localizationof p.The following theorem summarizes the main results of this chapter.Theorem 7.1.4. If S is a set of maps in Spc (see Notation 1.1.2), then there isa natural factorization of every map p : X ! Z as X i�! eLSX q�! Z such that1. q is a �bration with S-local �bers,2. for every point z in Z the induced map of homotopy �bers HFibz(p) !HFibz(q) (see De�nition 11.2.19) is an S-localization of HFibz(p),3. i is both a co�bration and an S-local equivalence,4. if we have a solid arrow diagramX j ##i //p !!CCCCCCCCC eLSX k //q�� Wr}}zzzzzzzzzZin which r is a �bration with S-local �bers, then there is a map k : eLSX !W , unique up to simplicial homotopy in (X # Spc #Z), such that ki = j,and5. if we have a diagram as in the previous part such that for every point z inZ the map HFibz(p) ! HFibz(r) of homotopy �bers over z induced by jis an S-local equivalence (i.e., if j is another �berwise S-localization of p),then the map k is a weak equivalence.7.2. The �berwise local model category structureDefinition 7.2.1. Let S be a set of maps in Spc. If Z is a space in Spc, thenwe de�ne FibZ(S) (which we call the set of elements of S �berwise over Z) to beDraft: August 12, 1997



7.3. LOCALIZING THE FIBER 97the set of maps in (Spc #Z) A f //��@@@@@@@ B��~~~~~~~Zwhere f : A! B is an element of S and the images of the maps A! Z and B ! Zare a single point of Z.Proposition 7.2.2. If Z is a space in Spc, then the category (Spc #Z) of ob-jects of Spc over Z is a left proper cellular model category.Proof. This follows from Proposition 3.3.17.Theorem 7.2.3. Let Z be a space in Spc, and let S be a set of maps in Spc.If we de�ne1. a �berwise over Z S-local equivalence to be a FibZ(S)-local equivalence in(Spc #Z) (see De�nition 3.3.2),2. a �berwise over Z S-local co�bration to be a FibZ(S)-local co�bration, and3. a �berwise over Z S-local �bration to be a FibZ(S)-local �bration,then there is a simplicial model category structure on (Spc #Z) in which the weakequivalences are the �berwise over Z S-local equivalences, the co�brations are the�berwise over Z S-local co�brations, and the �brations are the �berwise over ZS-local �brations.Proof. This follows from Theorem 3.3.8 and Proposition 7.2.2.Proposition 7.2.4. If S is a set of maps in Spc and Z is a space in Spc, thenan object of (Spc #Z) is �brant in the �berwise over Z S-local model categorystructure if and only if it is a �bration and the �ber over every point of Z is anS-local space.Proof. This follows from Proposition 3.3.9.7.3. Localizing the �berThe purpose of this section is to prove the following theorem.Theorem 7.3.1. If S is a set of maps in Spc, Z is a space in Spc, andX //p   @@@@@@@ Yq��~~~~~~~Zis a ��FibZ(S)�-co�bration (see De�nition 4.2.4), then for every point z of Z theinduced map of homotopy �bers HFibz(p)! HFibz(q) is an S-local equivalence.The proof of Theorem 7.3.1 is at the end of this section.Lemma 7.3.2. Let S be a set of maps in Spc, let C be a small category, and letXand Y be diagrams in Spc indexed by C. If g : X ! Y is a map of diagrams suchthat the map g� : X� ! Y � is an S-local equivalence between co�brant spacesDraft: August 12, 1997



98 7. FIBERWISE LOCALIZATIONfor each � 2 Ob(C), then the induced map of homotopy colimits hocolimX !hocolimY is an S-local equivalence.Proof. Let W be an S-local space. Since Map(hocolimX�;W ) is naturallyisomorphic to holimMap(X�;W ) (see Corollary 20.3.19), our map is isomorphicto holimMap(Y �;W ) ! holimMap(X�;W ). Since for each � we have a weakequivalence of �brant simplicial sets Map(Y �;W ) ! Map(X�;W ), and a homo-topy limit of such maps is also a weak equivalence (see Theorem 20.6.10), theproposition follows.Proposition 7.3.3. If q : X ! Z is a map of simplicial sets and z 2 Z, thenthere is a contractible simplicial set C (which depends naturally on the pair (Z; z))and a natural (�C)-diagram (see De�nition 16.1.11) of simplicial sets F : (�C)!SS such that1. for every simplex � of C there is a simplex � of Z such that F (�) = ~q(� )(see Example 20.10.1), and2. there is a natural weak equivalence hocolimF �= HFibz(q) (where HFibz(q)is the homotopy �ber of q over z).By \natural" we mean that the simplicial set C is a functor of the pair (Z; z) and,for a �xed pair (Z; z), the diagram F is a functor of the object q : X ! Z of(SS #Z).Proof. If � ! Z is the map to the point z in Z, let � ! C p�! Z be a naturalfactorization of it into a trivial co�bration followed by a �bration. The homotopy�ber of q over z is then naturally weakly equivalent to the pullback of the diagramC p�! Z q � X (see Proposition 11.2.7). If we let F be that pullback and r : F ! Cits projection onto C, then the construction of Example 20.10.1 applied to r yieldsa diagram F : (�C) ! SS that satis�es condition 1. Proposition 20.11.11 impliesthat F is Reedy co�brant, and so condition 2 follows from Theorem 20.11.10 andthe natural isomorphism colimF � F .Proposition 7.3.4 (E. Dror Farjoun, [22]). Let S be a set of maps in SS, letZ be a simplicial set, let p : X ! Z and q : Y ! Z be objects of (SS #Z), and letX g //p   @@@@@@@ Yq��~~~~~~~Zbe a map in (SS #Z). If for every simplex � of Z the induced map ~p(�)! ~q(�) (seeExample 20.10.1) is an S-local equivalence, then for every point z in Z the inducedmap of homotopy �bers HFibz(p)! HFibz(q) is an S-local equivalence.Proof. This follows from Proposition 7.3.3 and Lemma 7.3.2.Lemma 7.3.5. If f : A! B is a co�bration in SS, Z is a space in Top,X g //p   @@@@@@@ Yq��~~~~~~~ZDraft: August 12, 1997



7.3. LOCALIZING THE FIBER 99is a map in (Top#Z), and z is a point in Z, then the induced map of homo-topy �bers HFibz(p) ! HFibz(q) is a ��f��-local equivalence if and only if the in-duced map of the corresponding homotopy �bers of (Sing p) : SingX ! SingZ and(Sing q) : SingY ! SingZ is an f-local equivalence.Proof. Proposition 11.2.26 implies that the \homotopy �ber" and \total sin-gular complex" functors commute up to a natural weak equivalence, and so theresult follows from Proposition 1.2.30.Proposition 7.3.6. Let f : A ! B be an inclusion of cell complexes in Spc,and let Z be a space in Spc. If the mapX g //p   @@@@@@@ Yq��~~~~~~~Zin (Spc #Z) is a pushout of an element of ��FibZffg� (see De�nition 4.2.4), theng is both a co�bration and an f-local equivalence in Spc, and for every point z in Zthe induced map of homotopy �bers HFibz(p)! HFibz(q) is an f-local equivalence.Proof. There are two types of maps in the set ��FibZffg�. The �rst type isan element of ��FibZffg� (see De�nition 4.2.4); a map of this type is an S-localequivalence in Spc, and its domain and codomain lie over a single point z of Z.The second type is a generating trivial co�bration of Spc. If Y is obtained from Xby pushing out a map of the second type, then the map g is a weak equivalence,and so the induced map of homotopy �bers is a weak equivalence. Thus, we needonly consider the case in which Y is obtained from X by pushing out an elementof ��FibZffg�.If Spc = SS, then for each simplex � of Z, the map ~p(�) ! ~q(�) (see Exam-ple 20.10.1) is obtained by pushing out one copy of our element of ��FibZffg� foreach vertex of � that equals z. Thus, ~p(�) ! ~q(�) is an S-local equivalence, andso the lemma follows from Proposition 7.3.4. Thus, we need only consider the caseSpc = Top.If Spc = Top, then Proposition 1.2.30 and Proposition 1.2.6 imply that itis su�cient to show that Sing�HFibz(p)� ! Sing�HFibz(q)� is a (Sing f)-localequivalence, and Proposition 11.2.26 implies that this is equivalent to showing thatHFibz(Sing p) ! HFibz(Sing q) is a (Sing f)-local equivalence (where we also usethe symbol z to denote the vertex of SingZ corresponding to the point z of Z).LetA����[n]��qA�j@�[n]jB���@�[n]��! B����[n]�� be the element of ��FibZffg�in the pushout that transforms X into Y . We have a pushout squareA � ���[n]��qA�j@�[n]j B � ��@�[n]�� //�� X��B � ���[n]�� // Y Draft: August 12, 1997



100 7. FIBERWISE LOCALIZATIONand Proposition 11.3.3 implies that SingY is weakly equivalent to the pushoutSing�A� ���[n]��qA�j@�[n]j B � ��@�[n]��� //�� SingX��Sing�B � ���[n]��� // Y 0If we let q0 : Y 0 ! Z be the structure map of Y 0 in �SS # (SingZ)�, then for ev-ery simplex � 2 SingZ the map ^(Sing p)(�) ! ~q0(�) (see Example 20.10.1) isobtained by pushing out one copy of Sing�A � ���[n]��qA�j@�[n]j B � ��@�[n]��� !Sing�B � ���[n]��� for each vertex of � that equals the image of Sing�B � ���[n]���in SingZ. Proposition 1.2.30 implies that this is a (Sing f)-local equivalence, andso Proposition 7.3.4 implies that HFibz(Sing p) ! HFibz(q0) is a (Sing f)-localequivalence. This implies that HFibz(Sing p) ! HFibz(Sing q) is a (Sing f)-localequivalence, and the proof is complete.Proof of Theorem 7.3.1. Every FibZ(S)-co�bration is a retract of a trans-�nite composition of pushouts of elements of ��FibZ(S)� (see Corollary 12.4.18).Since S-local equivalences are closed under retracts, Proposition 11.2.25 impliesthat a retract of a map in (Spc #Z) inducing an S-local equivalence of homotopy�bers over z must also induce an S-local equivalence of homotopy �bers over z.Thus, it is su�cient to show that ifX0 // p0 ((QQQQQQQQQQQQQQQQ X1 //p1 !!BBBBBBBB X2 //p2�� � � � // X� //p�vvmmmmmmmmmmmmmmm � � � (� < �)Zis a trans�nite composition of pushouts of elements of ��FibZ(S)�, then the inducedmap of homotopy �bers HFibz(p0)! HFibz(colim�<� p�) is an S-local equivalence.If Spc = Top, then we choose a factorization � s�! C t�! Z of the map� ! Z whose image is z such that s is a trivial co�bration and t is a �bra-tion, and Proposition 11.2.25 implies that each HFibz(X�) is naturally weaklyequivalent to C �Z X� . Each map C �Z X� ! C �Z X�+1 is an inclusion (and,thus, a co�bration), and Proposition 7.3.6 implies that it is an S-local equiva-lence. Thus, it is a trivial co�bration in the S-local model category structureon SS (see Theorem 3.3.8). Proposition 12.2.19 now implies that the trans�nitecomposition C �Z X0 ! colim�<�(C �Z X�) � C �Z (colim�<�X�) is an S-localequivalence, and Proposition 11.2.25 implies that this is weakly equivalent to themap HFibz(p0)! HFibz(colim�<� p�).If Spc = Top, then Proposition 11.2.26 and Proposition 1.2.30 imply that itis su�cient to show that the induced map of homotopy �bers of total singularcomplexes HFibz(p0) ! HFibz(colim�<� Sing p�) � HFibz(Sing colim�<� p�) is a(SingS)-local equivalence (where (SingS) = fSing f �� f 2 Sg and we use thesymbol z to also denote the vertex of SingZ corresponding to z). We choose afactorization � s�! C t�! SingZ in SS of the map � ! SingZ whose image is z suchthat s is a trivial co�bration and t is a �bration, and the argument proceeds as inthe case Spc = SS.Draft: August 12, 1997



7.5. OTHER CONSTRUCTIONS OF THE FIBERWISE LOCALIZATION 1017.4. Uniqueness of the �berwise localizationTheorem 7.4.1. Let S be a set of maps in Spc(�). IfX //q   BBBBBBBB g ""ES //r�� Y~~}}}}}}}}Zis the factorization in (Spc(�) #Z) of g into a �(S)-co�bration followed by a �(S)-injective, then for every z 2 Z the induced map of homotopy �bers HFibz(q) !HFibz(r) is an S-local equivalence.Proposition 7.4.2. If S is a set of maps in Spc(�), p : X ! Z is an objectof (Spc #Z), q : Y ! Z is a �bration with S-local �bers, g : X ! Y is a mapin (Spc #Z) and X ! eLSX is the �berwise S-localization of X over Z, then thedotted arrow exists in the diagramX g ##//p !!CCCCCCCCC eLSX //�� Yq}}{{{{{{{{{Zand it is unique up to simplicial homotopy in (Spc #Z).Proof. Since q : Y ! Z is a (FibZS)-injective, this follows from Proposi-tion 10.4.16.Theorem 7.4.3 (Uniqueness of �berwise localization). Let S be a set of mapsin Spc(�). If q : Y ! Z is a �bration in Spc andX //p   @@@@@@@ Yq��~~~~~~~Zis a map in (Spc #Z) such that for every point z of Z the induced map of homotopy�bers HFibz(p) ! HFibz(q) is an S-local equivalence, then the map eLSX ! Y ofProposition 7.4.2 is a weak equivalence.Proof. Since for every point z 2 Z the induced map from the homotopy �berof eLSX ! Z over z to the homotopy �ber of q over z is an S-local equivalencebetween S-local spaces, Theorem 4.1.10 implies that it is a weak equivalence. Thetheorem now follows from the exact homotopy sequence of a �bration applied overeach path component of Z.7.5. Other constructions of the �berwise localization7.5.1. Decompose the total space. Decompose the total space as a diagramindexed by the category of simplices of the base, and localize each space in thediagram. Draft: August 12, 1997



102 7. FIBERWISE LOCALIZATION7.5.2. Using the classi�cation of �brations. Use the classi�cation of �-brations of simplicial sets. The continuity of the localization functor gives us asimplicial map autF ! aut LfF . Either take classifying spaces, or use to alter thetwisted cartesian product directly (as in [11] or [2]).Proposition 7.5.3. If W is f-local and X is co�brant, then WX is f-local.Proof. This follows from Corollary 1.1.9 and the natural isomorphisms�WX�B � WB
X � �WB�X :Proposition 7.5.4. If W is a co�brant f-local space, then autW (the monoidof self-homotopy equivalences of W ) is f-local.Proof. Since autW is a nonempty union of a set of path components ofWW ,this follows from Proposition 7.5.3 and Lemma 1.7.11.

Draft: August 12, 1997
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CHAPTER 8Model categories8.1. Model categoriesWe adopt the de�nition of a model category used in [26]. This is a strengtheningof Quillen's axioms for a closed model category (see [48, page 233]) in that it requiresthe category to contain all small limits and colimits (rather than just the �nite ones),and it requires the factorizations described in the �fth axiom to be functorial.Definition 8.1.1. If we have a commutative diagramA //f ��GF ED1A ��C //g�� Af��B //@A BC1B OOD // Bthen we will say that the map f is a retract of the map g.Definition 8.1.2. Amodel category is a categoryM together with three classesof maps (co�brations, �brations, and weak equivalences) satisfying the following �veaxioms:M1: (Limit axiom) The category M is closed under small limits and colimits.M2: (Two out of three axiom) If g and h are maps in M such that hg is de�nedand two of g, h, and hg are weak equivalences, then so is the third.M3: (Retract axiom) If g and h are maps in M such that g is a retract of h (inthe category of maps of M) and h is a weak equivalence, a �bration, or aco�bration, then so is g.M4: (Lifting axiom) Given the commutative solid arrow diagram in MA //i �� Xp��B >>// Ythe dotted arrow exists in each of the following two cases:1. i is a co�bration and p is a trivial �bration (i.e., a �bration that isalso a weak equivalence).2. p is a �bration and i is a trivial co�bration (i.e., a co�bration that isalso a weak equivalence).M5: (Factorization axiom) Every map g 2M has two functorial factorizations:1. g = hi, where i is a co�bration and h is a trivial �bration.105 Draft: August 12, 1997



106 8. MODEL CATEGORIES2. g = pj, where p is a �bration and j is a trivial co�bration.Terminology. We will follow Quillen [46, 48] in using the term trivial �bra-tion for a �bration that is also a weak equivalence, and the term trivial co�brationfor a co�bration that is also a weak equivalence.Remark 8.1.3. The lifting axiom implies both the homotopy extension prop-erty of co�brations (see Proposition 8.3.7) and the homotopy lifting property of�brations (see Proposition 8.3.8).Remark 8.1.4. The retract axiom implies that any two of the three classes ofmaps co�brations, �brations, and weak equivalences determine the third (see Prop-osition 8.2.3), and was the reason for the use of the name \closed model category"for what we call simply a \model category".8.1.5. Duality in model categories. The axioms for a model category areself dual.Proposition 8.1.6. If M is a model category, then its opposite category Mopis a model category such that� the co�brations in Mop are the opposites of the �brations in M,� the �brations in Mop are the opposites of the co�brations in M, and� the weak equivalences in Mop are the opposites of the weak equivalences inM.Proof. This follows directly from the de�nitions.Remark 8.1.7. Thus, any statement that is proved true for all model categoriesimplies a dual statement in which co�brations are replaced by �brations, �brationsare replaced by co�brations, colimits are replace by limits, and limits are replaceby colimits. 8.2. Lifting and the retract argumentDefinition 8.2.1. If i : A! B and p : X ! Y are maps for which the dottedarrow exists in every solid arrow diagramA //i �� Xp��B >>// Ythen (i; p) is called a lifting-extension pair, i is said to have the left lifting propertywith respect to p, and p is said to have the right lifting property with respect to i.Proposition 8.2.2 (The retract argument). Let M be a model category, andlet g : X ! Y be a map in M.1. If g can be factored as g = pi where p has the right lifting property withrespect to g, then g is a retract of i.2. If g can be factored as g = pi where i has the left lifting property withrespect to g, then g is a retract of p.Proof. We will prove part 1; the proof of part 2 is similar.Draft: August 12, 1997



8.2. LIFTING AND THE RETRACT ARGUMENT 107We have the solid arrow diagramX i //g �� Zp��Y q >> YSince p has the right lifting property with respect to g, the dotted arrow q exists.This yields the commutative diagramXg �� Xi �� Xg��Y q //@A BC1Y OOZ p // Yand so g is a retract of i.Proposition 8.2.3. Let M be a model category.1. The map i : A ! B is a co�bration if and only if it has the left liftingproperty with respect to all trivial �brations.2. The map i : A! B is a trivial co�bration if and only if it has the left liftingproperty with respect to all �brations.3. The map p : X ! Y is a �bration if and only if it has the right liftingproperty with respect to all trivial co�brations.4. The map p : X ! Y is a trivial �bration if and only if it has the right liftingproperty with respect to all co�brations.Proof. This follows from the retract argument (Proposition 8.2.2), using ax-ioms M3, M4, and M5 (see De�nition 8.1.2).Proposition 8.2.4. If M is a model category, then the classes of co�brationsand of �brations are closed under compositions.Proof. This follows from Proposition 8.2.3.Lemma 8.2.5. Let M be a model category, and let p : X ! Y be a map in M.1. The class of maps with the left lifting property with respect to p is closedunder pushouts.2. The class of maps with the right lifting property with respect to p is closedunder pullbacks.Proof. This follows directly from the de�nitions.Proposition 8.2.6. Let M be a model category.1. The class of co�brations is closed under pushouts.2. The class of trivial co�brations is closed under pushouts.3. The class of �brations is closed under pullbacks.4. The class of trivial �brations is closed under pullbacks.Proof. This follows from Proposition 8.2.3 and Lemma 8.2.5.Lemma 8.2.7. Let M be a model category, and let p : X ! Y is a map in M.Draft: August 12, 1997



108 8. MODEL CATEGORIES1. The class of maps with the left lifting property with respect to p is closedunder retracts.2. The class of maps with the right lifting property with respect to p is closedunder retracts.Proof. This follows directly from the de�nitions.Proposition 8.2.8. Let M and N be categories, and let F : M � N : U beadjoint functors. If i : A! B is a morphism in M and p : X ! Y is a morphism inN, then (Fi; p) is a lifting-extension pair (see De�nition 8.2.1) if and only if (i;Up)is a lifting-extension pair.Proof. The adjointness implies that there is a one to one correspondencebetween solid arrow diagrams of the formFA //Fi �� Xp��FB //h == Y and A //i �� UXUp��B //~h ==UY:The adjointness also implies that, under this correspondence, the dotted arrow hexists if and only if the dotted arrow ~h exists.8.2.9. Pushouts and pullbacks.Definition 8.2.10. If the squareA h //f �� Cg��B k // Dis a pushout, then the map g will be called the pushout of f along h. If the squareis a pullback, then the map f will be called the pullback of g along k.Lemma 8.2.11. If h : E ! F is a pushout (see De�nition 8.2.10) of g : C ! Dand k : G! H is a pushout of h, then k is a pushout of g.Proof. In the commutative diagramC //g �� E //h�� Gk��D // F // Hif the two squares are pushouts, then the rectangle is a pushout.Proposition 8.2.12. Consider the commutative diagramC s //f �� E t //g�� Gh ��D u // F v // H1. If H is the pushout D qC G and F is the pushout D qC E, then H is thepushout F qE G.Draft: August 12, 1997



8.3. HOMOTOPY 1092. If C is the pullback D �H G and E is the pullback F �H G, then C is thepullback D �F E.Proof. We will prove part 1; the proof of part 2 is similar.If W is an object and j : F ! W and k : G! W are maps such that jg = kt,then kts = jgs = juf . Since H is the pushout D qC G, there exists a unique mapl : H ! W such that lvu = ju and lh = k. Since F is the pushout D qC E andthe maps j and lv satisfy both (lv)u = (j)u and (j)g = kt = lht = (lv)g, we havej = lv. Thus, the map l satis�es lh = k and lv = j. To see that l is the unique suchmap, note that if ~l were another map satisfying ~lh = k and ~lv = j, then ~lvu = ju,and so the universal property of D qC G implies that ~l = l.Lemma 8.2.13 (C. L. Reedy, [50]). Let M be a model category. If we have acommutative diagram in M A //  AAA�� B fB!!BBB��A0 //�� B0��C //  AAA D fD!!BBBC0 // D0in which the front and back squares are pushouts and both fB and C qA A0 ! C0are co�brations, then fD is a co�bration.Proof. It is su�cient to show that fD has the left lifting property with respectto all trivial �brations (see Proposition 8.2.3). If we have a commutative diagramD //fD �� Xp��D0 // Yin which p is a trivial �bration, then we also have a similar diagram with fB in placeof fD. Since fB is a co�bration, there is a map hB : B0 ! X making both trianglescommute. Composing hB with A0 ! B0 yields a map hA : A0 ! X that also makesboth triangles commute. This induces a map C qA A0 ! X. Since C qA A0 ! C0is a co�bration, there is a map C0 ! X making everything commute, and so thereis an induced map D0 = C 0 qA0 B0 ! X making both triangles commute, and theproof is complete. 8.3. Homotopy8.3.1. Left homotopy, right homotopy, and homotopy.Definition 8.3.2. Let M be a model category, and let f; g : X ! Y be mapsin M.1. A cylinder object for X is a factorizationX qX i0qi1���! Cyl(X) p���! Xof the fold map 1X q 1X : X qX ! X such that i0 q i1 is a co�bration andp is a weak equivalence. Draft: August 12, 1997



110 8. MODEL CATEGORIES2. A left homotopy from f to g consists of a cylinder object X q X i0qi1���!Cyl(X) p�! X for X and a map H : Cyl(X) ! Y such that Hi0 = f andHi1 = g. If there exists a left homotopy from f to g, then we say that f isleft homotopic to g (written f l' g).3. A path object for Y is a factorizationY s����! Path(Y ) p0�p1����! Y � Yof the diagonal map 1Y � 1Y : Y ! Y � Y such that s is a weak equivalenceand p0 � p1 is a �bration.4. A right homotopy from f to g consists of a path object Y s�! Path(Y ) p0�p1����!Y �Y for Y and a map H : X ! Path(Y ) such that p0H = f and p1H = g.If there exists a right homotopy from f to g, then we say that f is righthomotopic to g (written f r' g).5. If f is both left homotopic and right homotopic to g, then we say that f ishomotopic to g (written f ' g).Lemma 8.3.3. Let M be a model category.1. Every object X of M has a cylinder object X qX i0qi1���! Cyl(X) p�! X inwhich p is a trivial �bration.2. Every object X of M has a path object X s�! Path(X) p0�p1����! X � X inwhich s is a trivial co�bration.Proof. Factor the map 1X q1X : XqX ! X into a co�bration followed by atrivial �bration, and factor the map 1X�1X : X ! X�X into a trivial co�brationfollowed by a �bration.Proposition 8.3.4. Let M be a model category, and let f; g : X ! Y be mapsin M.1. The maps f and g are left homotopic if and only if there is a factorizationX qX i0qi1���! C p�! X of the fold map 1X q 1X : X qX ! X such that p isa weak equivalence and a map H : C ! Y such that Hi0 = f and Hi1 = g.2. The maps f and g are right homotopic if and only if there is a factorizationY s�! P p0�p1����! Y � Y of the diagonal map 1Y � 1Y : Y ! Y � Y suchthat s is a weak equivalence and a map H : X ! P such that p0H = f andp1H = g.Proof. We will prove part 1; the proof of part 2 is dual.The necessity of the condition follows directly from the de�nition. Conversely,assume the condition is satis�ed. If we factor i0q i1 as XqX i00qi01���! C 0 q�! C wherei00 q i01 is a co�bration and q is a trivial �bration, then X qX i00qi01���! C 0 pq�! X is acylinder object for X and Hq : C 0 ! Y is a left homotopy from f to g.Lemma 8.3.5. Let M be a model category, and let X be an object of M.1. If X is co�brant, then the injections i0; i1 : X ! X qX are co�brations.2. If X is �brant, then the projections p0; p1 : X �X ! X are �brations.Proof. We will prove part 1; the proof of part 2 is similar.Draft: August 12, 1997



8.3. HOMOTOPY 111Since the diagram ; //�� Xi1��X i0 // X qX(where ; is the initial object of M) is a pushout, the lemma follows from Proposi-tion 8.2.6.Lemma 8.3.6. Let M be a model category.1. If X qX i0qi1���! Cyl(X) p�!X is a cylinder object for X, then the injectionsi0; i1 : X ! Cyl(X) are weak equivalences. If X is co�brant, then they aretrivial co�brations.2. If Y s�! Path(Y ) p0�p1����! Y � Y is a path object for Y , then the projectionsp0; p1 : Path(Y ) ! Y are weak equivalences. If Y is �brant, then they aretrivial �brations.Proof. This follows from the \two out of three" axiom for weak equivalences(see De�nition 8.1.2) and Lemma 8.3.5.Proposition 8.3.7 (Homotopy extension property of co�brations). Let M bea model category, let X be �brant, and let k : A! B be a co�bration. If f : A! Xis a map, ~f : B ! X is an extension of f , X s�! Path(X) p0�p1����! X �X is a pathobject for X, and H : A ! Path(X) is a right homotopy of f (i.e., a map H suchthat p0H = f), then there is a map eH : B ! Path(X) such that p0 eH = ~f andeHk = H.Proof. We have the solid arrow diagramA H //k �� Path(X)p0��B ~f //eH ;; Xand Lemma 8.3.6 implies that p0 is a trivial �bration.Proposition 8.3.8 (Homotopy lifting property of �brations). LetM be a modelcategory, let A be co�brant, and let k : X ! Y be a �bration. If f : A ! Y is amap, ~f : A! X is a lift of f , Aq A i0qi1���! Cyl(A) p�! A is a cylinder object for A,and H : Cyl(A) ! Y is a left homotopy of f (i.e., a map H such that Hi0 = f),then there is a map eH : Cyl(A)! X such that eHi0 = ~f and k eH = H.Proof. We have the solid arrow diagramA ~f //i0 �� Xk��Cyl(A) H //eH ;; Yand Lemma 8.3.6 implies that i0 is a trivial co�bration. Draft: August 12, 1997



112 8. MODEL CATEGORIES8.3.9. Homotopy as an equivalence relation.Definition 8.3.10. LetM be a model category and let X and Y be objects inM. 1. IfXqX i0qi1���! Cyl(X) p�! X is a cylinder object for X and H : Cyl(X) ! Yis a left homotopy from f : X ! Y to g : X ! Y , then the inverse of H isthe left homotopy H�1 : Cyl(X)�1 ! Y from g to f where X qX i�10 qi�11�����!Cyl(X)�1 p�1��! X is the cylinder object for X de�ned by Cyl(X)�1 =Cyl(X), i�10 = i1, i�11 = i0, and p�1 = p, and the map H�1 equals the mapH.2. If Y s�! Path(Y ) p0�p1����! Y �Y is a path object for Y and H : X ! Path(Y )is a right homotopy from f : X ! Y to g : X ! Y , then the inverse ofH is the right homotopy H�1 : X ! Path(Y )�1 from g to f where Y s�1��!Path(Y )�1 p�10 �p�11������! Y �Y is the path object for Y de�ned by Path(Y )�1 =Path(Y ), p�10 = p1, p�11 = p0, and s�1 = s, and the map H�1 equals themap H.Lemma 8.3.11. Let M be a model category and let X and Y be objects in M.1. If X is co�brant and X q X i0qi1���! Cyl(X) p�! X and X q X i00qi01���!Cyl(X)0 p0�! X are cylinder objects for X, then there is a cylinder objectX qX i000qi001���! Cyl(X)00 p00�! X for X in which(a) Cyl(X)00 is the pushout of the diagram Cyl(X) i1 � X i00�! Cyl(X)0,(b) i000 : X ! Cyl(X)00 is the composition X i0�! Cyl(X)! Cyl(X)00, and(c) i001 : X ! Cyl(X)00 is the composition X i01�! Cyl(X)0 ! Cyl(X)00.2. If Y is �brant and Y s�! Path(Y ) p0�p1����! Y � Y and Y s0�! Path(Y )0 p00�p01����!Y�Y are path objects for Y , then there is a path object Y s00�! Path(Y )00 p000�p001����!Y � Y for Y in which(a) Path(Y )00 is the pullback of the diagramPath(Y ) p1�! Y p00 �� Path(Y )0,(b) p000 : Path(Y )00 ! Y is the composition Path(Y )00 ! Path(Y ) p0�! Y ,and(c) p001 : Path(Y )00 ! Y is the composition Path(Y )00 ! Path(Y )0 p01�! Y .Proof. We will prove part 1; the proof of part 2 is dual.Draft: August 12, 1997



8.3. HOMOTOPY 113We have the commutative diagram Xi0��X i1 //i00 �� Cyl(X)�� p ��X i01 // Cyl(X)0 // p0 --Cyl(X)00p00 ##HHHHHHHHH XLemma 8.3.6 and Proposition 8.2.6 imply that i000 and i001 are trivial co�brations.Together with the \two out of three" property of weak equivalences (see De�ni-tion 8.1.2), this implies that p00 is a weak equivalence.It remains only to show that the map X qX i000qi001���! Cyl(X)00 is a co�bration.This map equals the compositionX qX i0q1X����! Cyl(X) qX j0qj1i01����! Cyl(X)00:The �rst of these is the pushout of i0 : X ! Cyl(X) along the �rst inclusionX ! XqX, and so Lemma 8.3.6 and Proposition 8.2.6 imply that it is a trivial co�-bration. The second is the pushout of i00q i01 along i1q 1X : X qX ! Cyl(X)qX,and so Proposition 8.2.6 implies that it is a co�bration. Proposition 8.2.4 nowimplies that i000 q i001 is a co�bration.Definition 8.3.12. LetM be a model category and let X and Y be objects inM. 1. If X is co�brant, X qX i0qi1���! Cyl(X) p�! X and X qX i00qi01���! Cyl(X)0 p0�!X are cylinder objects for X, H : Cyl(X) ! Y is a left homotopy fromf : X ! Y to g : X ! Y , and H 0 : Cyl(X)0 ! Y is a left homotopy from gto h : X ! Y , then the composition of the left homotopies H and H0 is theleft homotopy H �H 0 : Cyl(X)00 ! Y from f to h (where Cyl(X)00 is as inLemma 8.3.11) de�ned by H and H 0.2. If Y is �brant, Y s�! Path(Y ) p0�p1����! Y � Y and Y s0�! Path(Y )0 p00�p01����!Y � Y are path objects for Y , H : X ! Path(Y ) is a right homotopy fromf : X ! Y to g : X ! Y , and H 0 : X ! Path(Y )0 is a right homotopy fromg to h : X ! Y , then the composition of the right homotopies H and H0 isthe right homotopyH �H 0 : X ! Path(Y )00 from f to h (where Path(Y )00 isas in Lemma 8.3.11) de�ned by H and H 0.Proposition 8.3.13. Let M be a model category, and let X and Y be objectsin M.1. If X is co�brant, then left homotopy is an equivalence relation on the set ofmaps from X to Y .2. If Y is �brant, then right homotopy is an equivalence relation on the set ofmaps from X to Y . Draft: August 12, 1997



114 8. MODEL CATEGORIESProof. We will prove part 1; the proof of part 2 is dual.Since there is a cylinder object for X in which Cyl(X) = X, left homotopy isreexive. The inverse of a left homotopy (see De�nition 8.3.10) implies that lefthomotopy is symmetric. Finally, the composition of left homotopies (see De�ni-tion 8.3.12) implies that left homotopy is transitive.8.3.14. Homotopy classes of maps.Notation 8.3.15. Let M be a model category, and let X and Y be objects ofM. 1. If X is co�brant, we let �l (X;Y ) denote the set of left homotopy classes ofmaps from X to Y .2. If Y is �brant, we let �r (X;Y ) denote the set of right homotopy classes ofmaps from X to Y .3. If X is co�brant and Y is �brant, we let �(X;Y ) denote the set of homotopyclasses of maps from X to Y .Proposition 8.3.16. LetM be a model category, and let f; g : X ! Y be mapsin M.1. If X is co�brant, f is left homotopic to g, and Y s�! Path(Y ) p0�p1����! Y � Yis a path object for Y , then there is a right homotopy H : X ! Path(Y )from f to g.2. If Y is �brant, f is right homotopic to g, and X qX i0qi1���! Cyl(X) p�!X isa cylinder object for X, then there is a left homotopy H : Cyl(X)! Y fromf to g.Proof. We will prove part 1; the proof of part 2 is dual.Since f is left homotopic to g, there is a cylinder object XqX i0qi1���! Cyl(X) p�!X for X and a left homotopy G : Cyl(X)! Y from f to g. Thus, we have the solidarrow diagram X sf //i0 �� Path(Y )(p0;p1)��Cyl(X) (fp;G) //h 99Y � Yin which (p0; p1) is a �bration. Since X is co�brant, Lemma 8.3.6 implies that i0is a trivial co�bration, and so the dotted arrow h exists. If we let H = hi1, then His the right homotopy we require.Proposition 8.3.17. LetM be a model category, and let f; g : X ! Y be mapsin M.1. If X is co�brant and f l' g, then f r' g.2. If Y is �brant and f r' g, then f l' g.Proof. This follows from Lemma 8.3.3 and Proposition 8.3.16.Proposition 8.3.18. Let M be a model category. If X is co�brant and Y is�brant, then the left homotopy, right homotopy, and homotopy relations coincideand are equivalence relations on the set of maps from X to Y .Draft: August 12, 1997



8.3. HOMOTOPY 115Proof. This follows from Proposition 8.3.17 and Proposition 8.3.13.Lemma 8.3.19. Let M be a model category, and let f; g : X ! Y be maps inM. 1. If f l' g and h : Y ! Z is a map, them hf l' hg.2. If f r' g and k : W ! X, then fk r' gk.Proof. If XqX ! Cyl(X)! X is a cylinder object for X and F : Cyl(X) !Y is a left homotopy from f to g, then hF is a left homotopy from hf to hg. Theproof of part 2 is dual.Proposition 8.3.20. Let M be a model category.1. If f; g : X ! Y are left homotopic and Y is �brant, then there is a cylinderobject X q X ! Cyl(X) p�! X in which p is a trivial �bration and a lefthomotopy H : Cyl(X)! Y from f to g.2. If f; g : X ! Y are right homotopic and X is co�brant, then there is a pathobject Y s�! Path(Y )! Y � Y in which s is a trivial co�bration and arighthomotopy H : X ! Path(Y ) from f to g.Proof. We will prove part 1; the proof of part 2 is dual.If X qX ! Cyl(X)0 p0�! X is a cylinder object for X such that there is a lefthomotopyH0 : Cyl(X)0 ! Y from f to g, then we factor p as Cyl(X)0 j�! Cyl(X) p�!X where j is a co�bration and p is a trivial �bration. The \two out of three" axiomfor weak equivalences (see De�nition 8.1.2) implies that j is a trivial co�bration,and so the dotted arrow exists in the diagramCyl(X)0 H0 //j �� Y��Cyl(X) //H << �which constructs our left homotopy H.Proposition 8.3.21. Let M be a model category.1. If A is co�brant and p : X ! Y is a trivial �bration, then p induces anisomorphism of the sets of left homotopy classes of maps p� : �l (A;X) !�l(A; Y ).2. If X is �brant and i : A ! B is a trivial co�bration, then i induces anisomorphism of the sets of right homotopy classes of maps i� : �r (B;X) !�r(A;X).Proof. We will prove part 1; the proof of part 2 is dual.Lemma 8.3.19 implies that p� is well de�ned. If g : A! Y is a map and ; is theinitial object of M, then axiom M4 (see De�nition 8.1.2) implies that the dottedarrow exists in the diagram ; //�� Xp��A g //f ?? Y; Draft: August 12, 1997



116 8. MODEL CATEGORIESand so p� is surjective. To see that p� is injective, let f; g : A ! X be maps suchthat pf l' pg. There is then a cylinder object AqA ! Cyl(A)! A for A and a lefthomotopy F : Cyl(A)! Y from pf to pg, and so we have the solid arrow diagramAqA fqg //�� Xp��Cyl(A) F //G ;; Y:Axiom M4 implies that the dotted arrow G exists, and G is a left homotopy fromf to g.Proposition 8.3.22. LetM be a model category, let X, Y , and Z be co�brant-�brant objects of M, and let f; g : X ! Y and h; k : Y ! Z be maps. If f ' g andh ' k, them hf ' kg, and so composition is well de�ned on homotopy classes ofmaps between co�brant-�brant objects.Proof. This follows from Lemma 8.3.19.8.3.23. The classical homotopy category.Proposition 8.3.24. If M is a model category, then there is a category whoseobjects are the co�brant-�brant objects inM, whose maps are homotopy classes ofmaps in M, and whose composition of maps is induced by composition of maps inM. Proof. This follows from Proposition 8.3.22.Definition 8.3.25. If M is a model category, then we follow D. M. Kan andde�ne the classical homotopy category �Mcf of M to be the category with objectsthe co�brant-�brant objects ofM, and with morphisms fromX to Y the homotopyclasses of maps from X to Y (see Proposition 8.3.24).Proposition 8.3.26. Let M be a model category. If f : X ! Y is a weakequivalence between co�brant-�brant objects, then it is a homotopy equivalence.Proof. If we factor f into a co�bration followed by a trivial �bration to obtainX p�!W q�! Y , then W is also co�brant-�brant, and the \two out of three" axiom(see De�nition 8.1.2) implies that p is also a weak equivalence. Since a compositionof homotopy equivalences between co�brant-�brant objects is a homotopy equiva-lence (see Proposition 8.3.22), it is su�cient to show that a trivial co�bration ortrivial �bration between co�brant-�brant objects is a homotopy equivalence. Wewill show this for the trivial co�bration p; the proof for the trivial �bration q isdual.We have the solid arrow diagramXp �� X��W //r >> �(in which � denotes the terminal object), and so there exists a dotted arrow rsuch that rp = 1X . Proposition 8.3.21 implies that p induces an isomorphismp� : �r (W;W ) � �r (X;W ), and, since p�[pr] = [prp] = [p][rp] = [p][1X] = [p] =Draft: August 12, 1997



8.4. RELATIVE HOMOTOPY AND FIBERWISE HOMOTOPY 117p�[1W ], this implies that pr r' 1W . Thus, r is a homotopy inverse for p (seeProposition 8.3.18), and so p is a homotopy equivalence.Proposition 8.3.27. Let M be a model category, let W , X, Y , and Z beco�brant-�brant objects, and let f; g : X ! Y be a pair of maps.1. If there is a weak equivalence h : Y ! Z such that hf ' hg, then f ' g.2. If there is a weak equivalence k : W ! X such that fk ' gk, then f ' g.Proof. We will prove part 1; the proof of part 2 is similar.Proposition 8.3.26 implies that there is a map ~h : Z ! Y such that ~hh ' 1Y .Thus, f ' 1Y f ' ~hhf ' ~hhg ' 1Y g ' g.Proposition 8.3.28. Let M be a model category. If X and Y are co�brant-�brant objects in M, then a map g : X ! Y is a homotopy equivalence if either ofthe following two conditions is satis�ed:1. The map g induces isomorphisms of the sets of homotopy classes of mapsg� : �(X;X) � �(X;Y ) and g� : �(Y;X) � �(Y; Y ).2. The map g induces isomorphisms of the sets of homotopy classes of mapsg� : �(Y;X) � �(X;X) and g� : �(Y; Y ) � �(X;Y ).Proof. We will prove this using condition 1; the proof using condition 2 issimilar.The isomorphism g� : �(Y;X) � �(Y; Y ) implies that there is a map h : Y ! Xsuch that gh ' 1Y . Proposition 8.3.22 and the isomorphism g� : �(X;X) � �(X;Y )now imply that h induces an isomorphism h� : �(X;Y ) � �(X;X), and so there isa map k : X ! Y such that hk ' 1X . Thus, h is a homotopy equivalence and g isits inverse, and so g is a homotopy equivalence as well.8.4. Relative homotopy and �berwise homotopyTheorem 8.4.1. Let M be a model category.1. If W is an object in M, then the category (W #M) of objects of M underW is a model category in which a map is a weak equivalence, �bration, orco�bration if it is one in M.2. If W is an object in M, then the category (M #W ) of objects of M overW is a model category in which a map is a weak equivalence, �bration, orco�bration if it is one in M.Proof. This follows directly from the de�nitions.Lemma 8.4.2. If C is a category and g : X ! Y is a map in C, then the functorg� : (X #C) ! (Y #C) that takes the element X ! Z of (X #C) to its pushoutalong g is left adjoint to the functor g� : (Y #C)! (X #M) that takes the elementY !W of (Y #C) to its composition with g.Proof. This follows directly from the universal mapping property of the pushout.Definition 8.4.3. Let M be a model category, and let A be an object in M.1. If A ! X and A ! Y are objects of the category (A #M) of objects of Munder A, then maps f; g : X ! Y in (A #M) will be called left homotopicunder A, right homotopic under A, or homotopic under A if they are, respec-tively, left homotopic, right homotopic, or homotopic as maps in (A #M).Draft: August 12, 1997



118 8. MODEL CATEGORIESA map will be called a homotopy equivalence under A if it is a homotopyequivalence in the category (A #M).2. If X ! A and Y ! A are objects of the category (M #A) of objects ofM over A, then maps f; g : X ! Y will be called left homotopic over A,right homotopic over A, or homotopic over A if they are, respectively, lefthomotopic, right homotopic, or homotopic as maps in (M #A). A map willbe called a homotopy equivalence over A if it is a homotopy equivalence inthe category (M #A).Proposition 8.4.4. Let M be a model category, and let A be an object in M.1. If maps are left homotopic, right homotopic, or homotopic under A, thenthey are, respectively, left homotopic, right homotopic, or homotopic.2. If maps are left homotopic, right homotopic, or homotopic over A, then theyare, respectively, left homotopic, right homotopic, or homotopic.Proof. This follows from Proposition 8.3.4.Corollary 8.4.5. LetM be a model category, and let A be an object inM. Ifa map is a homotopy equivalence under A or a homotopy equivalence over A, thenit is a homotopy equivalence in M.Proof. This follows from Proposition 8.4.4.Definition 8.4.6. If M is a model category, then a map i : A ! B will becalled the inclusion of a deformation retract (and A will be called a deformationretract of B) if there is a map r : B ! A such that ri = 1A and ir ' 1B . Adeformation retract will be called a strong deformation retract if ir ' 1B under A.Proposition 8.4.7. Let M be a model category.1. If i : A ! B is a trivial co�bration of �brant objects, then A is a strongdeformation retract of B (see De�nition 8.4.6), i.e., there is a map r : B ! Asuch that ri = 1A and ir ' 1B under A.2. If p : X ! Y s a trivial �bration of co�brant objects, then there is a maps : Y ! X such that ps = 1Y and sp ' 1X over Y .Proof. We will prove part 1; the proof of part 2 is dual.We have the solid arrow diagramAi �� A��B //r ?? �in (A #M) (see Theorem 8.4.1) in which i is a trivial co�bration and the mapon the right is a �bration. Thus, there exists a map r : B ! A in (A #M) suchthat ri = 1A. Since i�(1B) = i = iri = i�(ri), Proposition 8.3.21 implies that1B r' ri in (A #M). Since both A and B are both co�brant-�brant in (A #M),Proposition 8.3.18 implies that 1B ' ri in (A #M).8.4.8. Homotopy uniqueness of lifts.Draft: August 12, 1997



8.5. WEAK EQUIVALENCES 119Proposition 8.4.9. Let M be a model category, and let the solid arrow dia-gram A //i �� Xp��B //h1 >>h2 >>Ybe such that either1. i is a co�bration and p is a trivial �bration, or2. i is a trivial co�bration and p is a �bration.If h1 and h2 are maps each of which makes both triangles commute, then h1 ' h2as maps in (A #M #Y ), the category of objects of M under A and over Y .Proof. We will assume that condition 1 holds; the proof in the case thatcondition 2 holds is similar.Factor the map B qA B ! B as B qA B j�! C r�! B where j is a co�brationand r is a trivial �bration. We now have the solid arrow diagramB qA B h1qh2 //j �� Xp��C //H 66B // Yin which j is a co�bration and p is a trivial �bration, and so there exists a dottedarrow H making both triangles commute. In the category (A #M #Y ) of objectsof M under A and over Y (see Theorem 8.4.1), B qA B ! C ! B is a cylinderobject for B (see De�nition 8.3.2) and H is a left homotopy from h1 to h2. SinceB is co�brant and X is �brant in (A #M #Y ), Proposition 8.3.17 implies that h1 isalso right homotopic to h2, and so h1 is homotopic to h2 in (A #M #Y ).Proposition 8.4.10. Let M be a model category. If the solid arrow diagramA j //i �� Xp��B q //h >> Yis such that either1. i and j are co�brations and p and q are trivial �brations, or2. i and j are trivial co�brations and p and q are �brations,then there exists a maph : B ! X making both triangles commute, unique up to ho-motopy in (A #M #Y ), and any such map is a homotopy equivalence in (A #M #Y ).Proof. This follows from Proposition 8.4.9.8.5. Weak equivalencesLemma 8.5.1 (K. S. Brown, [16]). Let M be a model category.1. If g : X ! Y is a weak equivalence between co�brant objects in M, then gcan be factored as g = ji where i is a trivial co�bration and j is a trivial�bration that has a right inverse that is a trivial co�bration.Draft: August 12, 1997



120 8. MODEL CATEGORIES2. If g : X ! Y is a weak equivalence between �brant objects inM, then g canbe factored as g = ji where i is a trivial co�bration that has a left inversethat is a trivial �bration and j is a trivial �bration.Proof. We will prove part 1; the proof of part 2 is similar.Since X and Y are co�brant, both of the injections X ! XqY and Y ! XqYare co�brations. If we factor the map g q 1Y : X q Y ! Y asX q Y k�! Z j�! Ywhere k is a co�bration and j is a trivial �bration, then both compositions X !X q Y ! Z and Y ! X q Y ! Z are co�brations. Since g and j are weakequivalences, axiom M2 (see De�nition 8.1.2) implies that the co�bration X ! Zis a weak equivalence, and the composition of co�brations Y ! X q Y ! Z is aright inverse to the trivial �bration j.Corollary 8.5.2. Let M and N be model categories, and let F: M! N be afunctor.1. If F takes trivial co�brations between co�brant objects inM to weak equiv-alences in N, then F takes all weak equivalences between co�brant objectsto weak equivalences in N.2. If F takes trivial �brations between �brant objects inM to weak equivalencesin N, then F takes all weak equivalences between �brant objects to weakequivalences in N.Proof. This follows from Lemma 8.5.1.Corollary 8.5.3. Let M be a model category, let C be a category, and letF: M! C be a functor.1. If F takes trivial co�brations between co�brant objects in M to isomor-phisms in C, then F takes all weak equivalences between co�brant objectsto isomorphisms.2. If F takes trivial �brations between �brant objects in M to isomorphismsin C, then F takes all weak equivalences between �brant objects to isomor-phisms.Proof. This follows from Lemma 8.5.1.Corollary 8.5.4. Let M be a model category.1. If g : C ! D is a weak equivalence between co�brant objects inM and X is a�brant object of M, then g induces an isomorphism of the sets of homotopyclasses of maps g� : �(D;X) � �(C;X).2. If g : X ! Y is a weak equivalence between �brant objects in M and Cis a co�brant object of M, then g induces an isomorphism of the sets ofhomotopy classes of maps g� : �(C;X) � �(C; Y ).Proof. This follows from Lemma8.5.1, Proposition 8.3.21, and Proposition 8.3.18.Corollary 8.5.5. Let M be a model category.1. If g : C ! D is a weak equivalence between co�brant objects inM and X isa �brant object of M, then there is a map C ! X in M if and only if thereis a map D ! X in M.Draft: August 12, 1997



8.6. HOMOTOPY EQUIVALENCES 1212. If g : X ! Y is a weak equivalence between �brant objects in M and C is aco�brant object of M, then there is a map C ! X in M if and only if thereis a map C ! Y in M.Proof. This follows from Corollary 8.5.4.Proposition 8.5.6. LetM be a model category, and let f; g : X ! Y be maps.If f l' g or f r' g, then f is a weak equivalence if and only if g is a weak equivalence.Proof. We will consider the case f l' g; the case f r' g is dual.Since f l' g, there is a cylinder object X qX i0qi1���! Cyl(X) p�! X for X and amap H : Cyl(X) ! Y such that hi0 = f and hi1 = g. Lemma 8.3.6 and axiom M2(see De�nition 8.1.2) imply that f is a weak equivalence if and only if H is a weakequivalence, and that this is true if and only if g is a weak equivalence.8.6. Homotopy equivalencesLemma 8.6.1. LetM be a model category and let X and Y be co�brant-�brantobjects in M.1. LetXqX i0qi1���! Cyl(X) p�! X be a cylinder object forX and letH : Cyl(X) !Y be a left homotopy from the map f : X ! Y to the map g : X ! Y . IfH 00 is the composition (see De�nition 8.3.12) of H and H�1 (see De�ni-tion 8.3.10), then H 00 is homotopic in �(X qX) #M� to the constant lefthomotopy (i.e., the composition Cyl(X)00 p00�! X f�! Y ).2. Let Y s�! Path(Y ) p0�p1����! Y � Y be a path object for Y and let H : X !Path(Y ) be a right homotopy from the map f : X ! Y to the map g : X !Y . If H00 is the composition (see De�nition 8.3.12) of H and H�1 (seeDe�nition 8.3.10), then H 00 is homotopic in �M # (Y � Y )� to the constantright homotopy (i.e., the composition X f�! Y s00�! Cyl(Y )00).Proof. We will prove part 1; the proof of part 2 is dual.Let Y s�! Path(Y ) p0�p1����! Y � Y be a path object for Y (see Lemma 8.3.3).We have the solid arrow diagramX sf //i0 �� Path(Y )(p0 ;p1)��Cyl(X) (fp;H) //K 77 Y � Yin which i0 is a trivial co�bration (see Lemma 8.3.6) and (p0; p1) is a �bration, andso the dotted arrow K exists. If we let the map K0 : Cyl(X)0 ! Path(()Y ) equalthe map K, then K and K 0 combine to de�ne a map K00 : Cyl(X)00 ! Path(Y )that makes the diagram X qX sfqsf //i000qi001 �� Path(Y )(p0 ;p1)��Cyl(X)00 (fp00;H00) //K00 77oooooooooooo Y � Y Draft: August 12, 1997



122 8. MODEL CATEGORIEScommutes. Thus, K00 is a right homotopy (see De�nition 8.3.2) from the mapfp00 : Cyl(X)00 ! Y to the map H00 : Cyl(X)00 ! Y in the category �(X qX) #M�of objects ofM under XqX. Since Cyl(X)00 is co�brant in �M # (X qX)� and Y is�brant in �M # (X qX)�, Proposition 8.3.18 implies that fp00 is also left homotopicto H 00 in �M # (X qX)�, and so fp00 is homotopic to H 00 in �M # (X qX)�.Lemma 8.6.2. LetM be a model category and let f : X ! Y be a map betweenco�brant-�brant objects.1. If f is both a co�bration and a homotopy equivalence, then f is the inclusionof a strong deformation retract, i.e., there is a map g : Y ! X such thatgf = 1X and fg ' 1Y in (X #M).2. If f is both a �bration and a homotopy equivalence, then f is the dual of astrong deformation retract, i.e., there is a map g : Y ! X such that fg = 1Yand gf ' 1X in (M #Y ).Proof. We will prove part 1; the proof of part 2 is dual.Since f is a homotopy equivalence, there is a map h : Y ! X such that fh ' 1Yand hf ' 1X . The homotopy extension property of co�brations (see Proposi-tion 8.3.7) implies that h is homotopic to a map g : Y ! X such that gf = 1X andfg ' 1Y (see Lemma 8.3.19). Let Y s�! Path(Y ) p0�p1����! Y � Y be a path objectfor Y and let H : Y ! Path(Y ) be a right homotopy from fg to 1Y . The com-position Hf : X ! Path(Y ) is then a right homotopy from fgf = f to 1Y f = f .The composite homotopy (Hfg) �H�1 : Y ! Path(Y )00 (see De�nition 8.3.12) com-posed with f is the composite homotopy (Hf) � (Hf)�1 : X ! Path(Y )00, andLemma 8.6.1 implies that (Hf) � (Hf)�1 is homotopic in �M # (Y � Y )� to theconstant homotopy s00f : X ! Path(Y )00. The homotopy extension property ofco�brations now implies that (Hfk) �H�1 is homotopic in �M # (Y � Y )� to a righthomotopy K : Y ! Path(Y )00 such that Kf : X ! Path(Y )00 equals s00f , i.e., K isa homotopy from gf to 1Y in (X #M).Proposition 8.6.3. LetM be a model category and let X and Y be co�brant-�brant objects in M.1. If g : X ! Y is both a co�bration and a homotopy equivalence, then g is aweak equivalence.2. If g : X ! Y is both a �bration and a homotopy equivalence, then g is aweak equivalence.Proof. We will prove part 1; the proof of part 2 is dual.If we factor g as X i�! W p�! Y where i is a trivial co�bration and p is a�bration, then the retract axiom (see De�nition 8.1.2) implies that it is su�cientto show that g is a retract of i. If we can show that the dotted arrow q exists inthe diagram X i //g �� Wp��Y q >> Y(8.6.4)Draft: August 12, 1997



8.6. HOMOTOPY EQUIVALENCES 123then we would have the diagramXg �� Xi�� Xg��Y q //@A BC1Y OOW p // Ywhich would show that g is a retract of i. thus, it is su�cient to �nd the dottedarrow q in Diagram 8.6.4. Lemma 8.6.2 implies that there is a map h : Y ! X suchthat hg = 1X and gf ' 1Y in (X #M). If we let k : Y !W be de�ned by k = ih,then kg = i, and pk = pih = gh ' 1Y in (X #M). The homotopy lifting property(see Proposition 8.3.8) of the �bration p in the category (X #M) now implies thatk is homotopic in (X #M) to a map q : Y !W such that pq = 1Y .Theorem 8.6.5. Let M be a model category. If X and Y are co�brant-�brantobjects inM and g : X ! Y is a homotopy equivalence, then g is a weak equivalence.Proof. If we factor g as X h�! W k�! Y where h is a co�bration and k is atrivial �bration, then the \two out of three" property of weak equivalences impliesthat it is su�cient to show that h is a weak equivalence. Since W is also co�brant-�brant, Proposition 8.6.3 implies that it is su�cient to show that h is a homotopyequivalence.If g�1 : Y ! X is a homotopy inverse for g, then let r : W ! X be de�ned byr = g�1k. Since rh = g�1kh = g�1g ' 1X , it is su�cient to show that hr ' 1W .Proposition 8.3.21 implies that k induced an isomorphism of sets k� : �(X;W ) ��(X;Y ). Since khr = gr = gg�1k ' k, this implies that hr ' 1W .
Draft: August 12, 1997
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CHAPTER 9Fibrant and co�brant approximationsFibrant and co�brant approximations are among the most fundamental toolswhen doing homotopy theory in a model category. When working with topologicalspaces, a CW-approximation to a space X (i.e., a CW-complex weakly equivalentto X) is the most common co�brant approximation to X. When working with sim-plicial sets, a Kan complex weakly equivalent to X (e.g., the total singular complexof the geometric realization of X, or Kan's functor Ex1 (see [39])) is a �brant ap-proximation to X. Co�brant and �brant approximations are used to construct thehomotopy category of a model category (see Theorem 9.6.4). When doing homo-logical algebra, a resolution of an object is a co�brant or �brant approximation ina model category of cosimplicial or simplicial objects (see, e.g., [45] or [46, Chap-ter II, Section 4]). When constructing function complexes in a model category (seeChapter 17), a resolution of an object is a co�brant or �brant approximation in yet adi�erent model category of cosimplicial or simplicial objects (see De�nition 17.1.2).9.1. Fibrant and co�brant approximationsDefinition 9.1.1. Let M be a model category.1. A co�brant approximation to an object X is a pair ( eX; i) where eX is aco�brant object and i : eX ! X is a weak equivalence. A �brant co�brantapproximation to X is a co�brant approximation ( eX; i) such that the weakequivalence i is a trivial �bration. We will sometimes use the term co�brantapproximation to refer to the object eX without explicitly mentioning theweak equivalence i.2. A �brant approximation to an object X is a pair ( bX; j) where bX is a �brantobject and j : X ! bX is a weak equivalence. A co�brant �brant approxima-tion to X is a �brant approximation ( bX; j) such that the weak equivalencej is a trivial co�bration. We will sometimes use the term �brant approx-imation to refer to the object bX without explicitly mentioning the weakequivalence j.Proposition 9.1.2. If M is a model category, then every object has both afunctorial �brant co�brant approximation and a functorial co�brant �brant ap-proximation.Proof. This follows from applying part 1 of the factorization axiom (see De�-nition 8.1.2) to the map from the initial object and part 2 of the factorization axiomto the map to the terminal object.Definition 9.1.3. Let M be a model category.1. If ( eX; i) and ( eX 0; i0) are co�brant approximations to X, a map of co�brantapproximations from ( eX; i) to ( eX0; i0) is a map g : eX ! eX 0 such that i0g = i.125 Draft: August 12, 1997



126 9. FIBRANT AND COFIBRANT APPROXIMATIONS2. If ( bX; j) and ( bX0; j0) are �brant approximations to X, a map of �brantapproximations from ( bX; j) to ( bX 0; j0) is a map g : bX ! bX 0 such that gj = j0.Lemma 9.1.4. Let M be a model category.1. If ( eX; i) and ( eX 0; i0) are co�brant approximations to X and g : eX ! eX 0 is amap of co�brant approximations, then g is a weak equivalence.2. If ( bX; j) and ( bX0; j0) are �brant approximations to X and g : bX ! bX0 is amap of �brant approximations, then g is a weak equivalence.Proof. This follows from the \two out of three" axiom for weak equivalences(see De�nition 8.1.2).Proposition 9.1.5. Let M be a model category.1. If ( eX; i) is a �brant co�brant approximation to X (see De�nition 9.1.1)and g : W ! X is a map from a co�brant object W , then there is a map� : W ! eX, unique up to homotopy over X (see De�nition 8.4.3), such thati� = g.2. If ( bX; j) is a co�brant �brant approximation toX and g : X ! Y is a map toa �brant object Y , then there is a map � : bX ! Y , unique up to homotopyunder X, such that �j = g.Proof. This follows from Proposition 8.4.9.Proposition 9.1.6. Let M be a model category.1. If ( eX; i) is a co�brant approximation to X and ( eX0; i0) is a �brant co�-brant approximation to X, then there is a map of co�brant approximationsg : eX ! eX 0, unique up to homotopy over X (see De�nition 8.4.3), and anysuch map g is a weak equivalence.2. If ( bX; j) is a co�brant �brant approximation toX and ( bX 0; j0) is a �brant ap-proximation toX, then there is a map of �brant approximations g : bX ! bX 0,unique up to homotopy under X, and any such map g is a weak equivalence.Proof. This follows from Proposition 9.1.5 and Lemma 9.1.4.Corollary 9.1.7. Let M be a model category.1. If ( eX; i) and ( eX0; i0) are �brant co�brant approximations to X, then thereis a map of co�brant approximations g : eX ! eX 0, unique up to homotopyover X (see De�nition 8.4.3), and any such map g is a homotopy equivalenceover X.2. If ( bX; j) and ( bX 0; j0) are co�brant �brant approximations toX, then there isa map of �brant approximations g : bX ! bX 0, unique up to homotopy underX, and any such map g is a homotopy equivalence under X.Proof. This follows from Proposition 9.1.6.Definition 9.1.8. Let M be a model category.1. A co�brant approximation to a map g : X ! Y consists of a co�brant ap-proximation ( eX; iX ) to X (see De�nition 9.1.1), a co�brant approximation(eY ; iY ) to Y , and a map ~g : eX ! eY such that iY ~g = giX . We will sometimesuse the term co�brant approximation to refer to the map ~g without explicitlymentioning the co�brant approximations ( eX; iX ) and (eY ; iY ) to X and YDraft: August 12, 1997



9.1. FIBRANT AND COFIBRANT APPROXIMATIONS 127(see De�nition 9.1.1). The co�brant approximation ~g will be called a �brantco�brant approximation if the co�brant approximations ( eX; iX) and (eY ; iY )are �brant co�brant approximations.2. A �brant approximation to a map g : X ! Y consists of a �brant approxi-mation ( bX; jX) to X (see De�nition 9.1.1), a �brant approximation (bY ; jY )to Y , and a map ĝ : bX ! bY such that ĝjX = jY g. We will sometimesuse the term �brant approximation to refer to the map ĝ without explicitlymentioning the �brant approximations ( bX; jX) and (bY ; jY ) to X and Y .The �brant approximation ĝ will be called a co�brant �brant approxima-tion if the �brant approximations ( bX; jX) and (bY ; jY ) are co�brant �brantapproximations.Proposition 9.1.9. Let M be a model category.1. Every map g : X ! Y has a natural �brant co�brant approximation ~g : eX !eY such that ~g is a co�bration.2. Every map g : X ! Y has a natural co�brant �brant approximation ĝ : bX !bY such that ĝ is a �bration.Proof. We will prove part 1; the proof of part 2 is similar.Choose a natural �brant co�brant approximation ( eX; iX ) toX, and then choosea natural factorization of the composition giX : eX ! Y as eX ~g�! eY iY�! Y where ~gis a co�bration and iY is a trivial �bration.Proposition 9.1.10. Let M be a model category.1. If g : X ! Y is a map in M, eX ! X is a co�brant approximation to X,and eY ! Y is a �brant co�brant approximation to Y , then there exists aco�brant approximation ~g : eX ! eY to g, and ~g is unique up to homotopyover Y .2. If g : X ! Y is a map inM, X ! bX is a co�brant �brant approximation toX, and Y ! bY is a �brant approximation to Y , then there exists a �brantapproximation ĝ : bX ! bY to g, and ĝ is unique up to homotopy under X.Proof. This follows from Proposition 8.4.9.Proposition 9.1.11. Let M be a model category.1. If i1(X) : eC1(X) ! X and i2(X) : eC2(X) ! X are natural co�brant ap-proximations de�ned on some subcategory of M, then eC1(�) and eC2(�)are naturally weakly equivalent (see De�nition 9.5.2) on their domain ofde�nition.2. If j1(X) : X ! bF1(X) and j2(X) : X ! bF2(X) are natural �brant approx-imations de�ned on some subcategory of M, then bF1(�) and bF2(�) arenaturally weakly equivalent on their domain of de�nition.Proof. We will prove part 1; the proof of part 2 is dual.If we choose a natural �brant co�brant approximation i(X) : eC(X) ! X for ev-ery object X in the domain of de�nition of eC1(�) and eC2(�) (see Proposition 9.1.2),then it is su�cient to show that each of eC1(�) and eC2(�) is naturally weakly equiv-alent to eC(�). We will do this for eC1(�) (the proof for eC2(�) is then identical tothat). Draft: August 12, 1997



128 9. FIBRANT AND COFIBRANT APPROXIMATIONSFor every object X in the domain of eC1(�), we construct the pullback squareP1(X) j(X) //j1(X) �� eC1(X)i1(X)��eC(X) i(X) // Xand then we choose a functorial co�brant approximation k(X) : eP1(X) ! P1(X) toP1(X). Since i(X) is a trivial �bration, so is j(X), and so the \two out of three"axiom (see De�nition 8.1.2) implies that j1(X) is also a weak equivalence. Thus,eC1(X) j(X)k(X) ������ eP1(X) j2(X)k(X)�������! eC(X) is a natural zig-zag of weak equivalencesof co�brant approximations to X.9.2. Approximations and homotopic mapsLemma 9.2.1. Let M be a model category, let X q X ! Cyl(X) ! X be acylinder object for X, and let X ! Path(X) ! X �X be a path object for X.1. If i : eX ! X is a �brant co�brant approximation to X, then(a) there is a cylinder object eXq eX ! Cyl( eX)! eX for eX and a diagrameX q eX //iqi �� Cyl( eX) //Cyl(i)�� eXi��X qX // Cyl(X) // Xsuch that Cyl(i) : Cyl( eX)! Cyl(X) is a �brant co�brant approxima-tion to Cyl(X), and(b) there is a path object eX ! Path( eX)! eX � eX for eX and a diagrameX //i �� Path( eX) //Path(i)�� eX � eXi�i��X // Path(X) // X �X(9.2.2) such that Path(i) : Path( eX)! Path(X) is a �brant co�brant approx-imation to Path(X) and the right hand square of Diagram 9.2.2 is apullback.2. If j : X ! bX is a co�brant �brant approximation to X, then(a) there is a cylinder object bXq bX ! Cyl( bX)! bX for bX and a diagramX qX //jqj �� Cyl(X) //Cyl(j)�� Xj��bX q bX // Cyl( bX) // bX(9.2.3) such that Cyl(j) : Cyl(X) ! Cyl( bX) is a co�brant �brant approxima-tion to Cyl(X) and the left hand square of Diagram 9.2.3 is a pushout,andDraft: August 12, 1997



9.2. APPROXIMATIONS AND HOMOTOPIC MAPS 129(b) there is a path object bX ! Path( bX)! bX � bX for bX and a diagramX //j �� Path(X) //Path(j)�� X �Xj�j��bX // Path( bX) // bX � bXsuch that Path(j) : Path(X) ! Path( bX) is a co�brant �brant approx-imation to Path(X).Proof. We will prove part 1; the proof of part 2 is dual.Factor the composition eXq eX ! XqX ! Cyl(X) as eXq eX k�! Cyl( eX) Cyl(i)����!Cyl(X) where k is a co�bration and Cyl(i) is a trivial �bration. Since i is a trivial�bration, the dotted arrow q exists in the solid arrow diagrameX q eXk �� 1fXq1fX // eXi��Cyl( eX) // q 55Cyl(X) // Xand the \two out of three" axiom for weak equivalences (see De�nition 8.1.2) impliesthat q is a weak equivalence.If we let Path( eX) be the pullback Path(X)�(X�X) ( eX � eX), then we have thesolid arrow diagram eX r //i �� 1fX�1fX &&Path( eX) //Path(i)�� eX � eXi�i��X // Path(X) // X �Xand the universal mapping property of the pullback implies that the dotted arrowr exists. Since i is a trivial �bration, so is i� i, and so Path(i) (which is a pullbackof i� i) is a trivial �bration. The \two out of three" axiom for weak equivalences(see De�nition 8.1.2) now implies that r is a weak equivalence.Proposition 9.2.4. LetM be a model category, and let f; g : X ! Y be maps.1. If ~f; ~g : eX ! eY are �brant co�brant approximations to, respectively, f andg, and if f and g are left homotopic, right homotopic, or homotopic, then ~fand ~g are, respectively, left homotopic, right homotopic, or homotopic.2. If f̂ ; ĝ : bX ! bY are co�brant �brant approximations to, respectively, f andg, and if f and g are left homotopic, right homotopic, or homotopic, then f̂and ĝ are, respectively, left homotopic, right homotopic, or homotopic.Proof. We will prove part 1; the proof of part 2 is dual.If f and g are left homotopic, let X q X ! Cyl(X) ! X be a cylinderobject for X such that there is a left homotopy H : Cyl(X) ! Y from f to g. IfeX q eX ! Cyl( eX) ! eX is the cylinder object of Lemma 9.2.1, then we have theDraft: August 12, 1997



130 9. FIBRANT AND COFIBRANT APPROXIMATIONSsolid arrow diagram eX q eX�� ~fq~g // eY��Cyl( eX) // eH 55Cyl(X) H // YSince eY ! Y is a trivial �bration, the dotted arrow eH exists, and is a left homotopyfrom ~f to ~g.If f and g are right homotopic, let Y ! Path(Y ) ! Y � Y be a path objectfor Y such that there is a right homotopy K : X ! Path(Y ) from f to g. IfeY ! Path(eY )! eY � eY is the path object of Lemma 9.2.1, then we have the solidarrow diagram eX eK //�� ~f�~g &&Path(eY ) //�� eY � eY��X K // Path(Y ) // Y � YSince the right hand square is a pullback, the dotted arrow eK exists and is a righthomotopy from ~f to ~g.9.3. Approximations and weak equivalencesLemma 9.3.1. Let M and N be model categories, let g0; g1 : X ! Y be mapsin M, and let F: M! N be a functor.1. If F takes trivial co�brations between co�brant objects inM into weak equiv-alences in N, the object X is co�brant, and g0 is left homotopic to g1, thenF(g0) is a weak equivalence if and only if F(g1) is a weak equivalence.2. If F takes trivial �brations between �brant objects in M into weak equiv-alences in N, the object Y is �brant, and g0 is right homotopic to g1 (seeDe�nition 8.3.2), then F(g0) is a weak equivalence if and only if F(g1) is aweak equivalence.Proof. This follows from Lemma 9.7.4 and Proposition 8.5.6.Proposition 9.3.2. LetM and N be model categories, let g : X ! Y be a mapin M, and let F: M! N be a functor.1. If F takes trivial co�brations between co�brant objects inM into weak equiv-alences in N and there is a co�brant approximation ~g : eX ! eY to g (seeDe�nition 9.1.8) such that F(~g) is a weak equivalence, then F takes everyco�brant approximation to g into a weak equivalence.2. If F takes trivial �brations between �brant objects in M into weak equiv-alences in N and there is a �brant approximation ĝ : bX ! bY to g (seeDe�nition 9.1.8) such that F(ĝ) is a weak equivalence, then F takes every�brant approximation to g into a weak equivalence.Draft: August 12, 1997



9.4. THE CLASSIFYING SPACE OF A SMALL CATEGORY 131Proof. We will prove part 1; the proof of part 2 is similar.Proposition 9.1.9 implies that we can choose a co�brant approximation ~g0 : eX 0 !eY 0 to g such that the weak equivalences i0X : eX 0 ! X and i0Y : eY 0 ! Y are trivial�brations. It is su�cient to show that F(~g0) is a weak equivalence if and only if Ftakes every other co�brant approximation to g into a weak equivalence.If ~g : eX ! eY is some other co�brant approximation to g, then we have the solidarrow diagram eX 0 ~g0 //i0X   AAAAAAA eY 0i0Y��~~~~~~~X g // YeXhX OO iX >>}}}}}}}} ~g // eYiY__@@@@@@@@ hYOOin which i0X and i0Y are trivial �brations and iX and iY are weak equivalences. Prop-osition 9.1.6 implies that there are weak equivalences hX : eX ! eX 0 and hY : eY ! eY 0such that i0XhX = iX and i0Y hY = iY . Thus, i0Y ~g0hX = gi0XhX = giX = iY ~g =i0Y hY ~g. Since i0Y is a trivial �bration and eX is co�brant, Proposition 8.3.21 impliesthat ~g0hX is left homotopic to hY ~g, and so Lemma 9.3.1 implies that F(~g0hX ) is aweak equivalence if and only if F(hY ~g) is a weak equivalence. Since Corollary 8.5.2implies that F(hX) and F(hY ) are weak equivalences, the \two out of three" axiomfor weak equivalences (see De�nition 8.1.2) implies that F(~g0) is a weak equivalenceif and only if F(~g) is a weak equivalence.9.4. The classifying space of a small categoryDefinition 9.4.1. If C is a small category, then the classifying space of C (alsocalled the nerve of C) is the simplicial set BC in which an n-simplex � is a diagramin C of the form �0 �0�! �1 �1�! � � � �n�1���! �nand the face and degeneracy maps are de�ned bydj� = 8><>:�1 �1�! �2 �2�! � � � �n�1���! �n if j = 0�0 �0�! � � � �j�2���! �j�1 �j�j�1����! �j+1 �j+1���! � � � �n�1���! �n if 0 < j < n�0 �0�! �1 �1�! � � � �n�2���! �n�1 if j = n(9.4.2)sj� = �0 �0�! � � � �j�1���! �j 1�j��! �j �j�! �j+1 �j+1���! � � � �n�1���! �nIf F : C! D is a functor between small categories, then F induces a map of simplicialsets BF: BC! BD de�ned byBF(�0 �0�! �1 �1�! � � � �n�1���! �n) = F�0 F�0��! F�1 F�1��! � � � F�n�1����! F�nExample 9.4.3. Let G be a discrete group. If we consider G to be a categorywith one object and with morphisms equal to the group G, then BG is the standardclassifying space of the group G, i.e., �1BG � G and �iBG � 0 for i 6= 1.Draft: August 12, 1997



132 9. FIBRANT AND COFIBRANT APPROXIMATIONSProposition 9.4.4. If the small category C has either a terminal or an initialobject, then the geometric realization of BC is contractible.Proposition 9.4.5. If C is a small category, then there is a natural homeomor-phism of topological spaces ��BC�� � ��BCop��.Definition 9.4.6. Let M be a model category.1. If X is an object of M, we let CofAp(X) denote the category whose ob-jects are co�brant approximations to X (see De�nition 9.1.1) and whosemorphisms are maps of co�brant approximations (see De�nition 9.1.3).2. If X is an object of M, we let FibAp(X) denote the category whose objectsare �brant approximations to X and whose morphisms are maps of �brantapproximations.Proposition 9.4.7. Let M be a model category.1. If X is an object in M, then BCofAp(X) (see De�nition 9.4.1) (which mayexist only in a higher universe, since CofAp(X) is not, in general, small) (see,e.g., [51, page 17]) is contractible. If C is a small subcategory of CofAp(X),then there exists a small subcategory D of CofAp(X) such that C � D andBD is contractible.2. If X is an object in M, then BFibAp(X) (which may exist only in a higheruniverse, since FibAp(X) is not, in general, small) is contractible. If C is asmall subcategory of FibAp(X), then there exists a small subcategory D ofFibAp(X) such that C � D and BD is contractible.Proof. This follows from Fix This Reference!, Proposition 9.1.2 and Prop-osition 9.1.6. 9.5. Equivalence classes of weak equivalencesDefinition 9.5.1. Let M be a model category, and let C be a class of maps inM. 1. If X and Y are objects in M and n � 0, then a zig-zag of elements of C oflength n from X to Y is a diagram of the formX f1�!W1 f2 ��W2 f3�! � � � fn�1 ��� Wn�1 fn�! Ywhere(a) each fi is an element of C,(b) each fi can point either to the left or to the right, and(c) consecutive fis can point in either the same direction or in oppositedirections.2. If X, Y , and Z are objects in M andX f1�!W1 f2 �� � � � fn�1 ��� Wn�1 fn�! Y and Y g1�! V1 g2 �� � � � gk�1 ��� Vk�1 gk�! Zare, respectively, a zig-zag in C from X to Y and a zig-zag in C from Y toZ, then the composition of those zig-zags is the zig-zag in C of length n+ kfrom X to ZX f1�!W1 f2 �� � � � fn�1 ��� Wn�1 fn�! Y g1�! V1 g2 �� � � � gk�1 ��� Vk�1 gk�! ZDefinition 9.5.2. Let M be a model category.Draft: August 12, 1997



9.5. EQUIVALENCE CLASSES OF WEAK EQUIVALENCES 1331. If X and Y are objects in M, then X and Y are weakly equivalent if thereis a zig-zag of weak equivalences from X to Y (see De�nition 9.5.1).2. If C is a category and F and G are functors from C to M, then F and Gare naturally weakly equivalent if for every object A in C there is a naturalzig-zag of weak equivalencesF(A) �=�!W1(A) �= � W2(A) �=�!W3(A) �= � � � � �=�!Wn(A) �= � G(A)from F(A) to G(A).Definition 9.5.3. Let M be a model category. If X and Y are objects in M,then we de�ne an equivalence relation on the zip-zags of weak equivalences from Xto Y (which is a set only in a higher universe) by taking the equivalence relationgenerated by the relation:1. If two consecutive maps in a zig-zag point in the same direction, composethem; i.e.,X f1�!W1  � � � !Wk1 fk�!Wk fk+1���!Wk+1  � � � ! Yequals X f1�!W1  � � � !Wk1 fk+1fk����!Wk+1  � � � ! Y2. If a map in a zig-zag is immediately followed by the same map pointing inthe opposite direction, remove the pair of maps; i.e.,X f1�!W1  � � � !Wk�1 fk�!Wk fk �� Wk�1  � � � ! Yequals X f1�! W1  � � � !Wk�1  � � � ! YIf two zig-zags of weak equivalences are equivalent under the equivalence relationgenerated by that relation, then they will be called equivalent zig-zags of weakequivalences.Proposition 9.5.4. Let M be a model category. If X, Y , and Z are objects inM, then composition of zig-zags of weak equivalences (see De�nition 9.5.1) passes toequivalence classes of zig-zags of weak equivalences (see De�nition 9.5.3) to de�nethe composition of an equivalence class of zig-zags of weak equivalences from X toY with an equivalence class of zig-zags of weak equivalences from Y to Z.Proof. This follows directory from the de�nitions.Theorem 9.5.5. Let M be a category, let C be a subcategory of M, and letX and Y be objects in M. If every small subcategory of C is contained in a smallsubcategory of C whose classifying space is simply connected, then any two zig-zagsin C from X to Y are equivalent.Proof. This follows because the equivalence classes of zig-zags in C fromX toY are the morphisms in the edge-path groupoid of the classifying space of C fromX to Y . Draft: August 12, 1997



134 9. FIBRANT AND COFIBRANT APPROXIMATIONS9.6. The homotopy category of a model categoryDefinition 9.6.1. If M is a category and S is a class of maps in M, then alocalization of M with respect to S is a category LSM and a functor  : M! LSMsuch that1. if s 2 S, then (s) is an isomorphism, and2. if N is a category and F: M ! N is a functor such that F(s) is an isomor-phism for every s in S, then there is a unique functor � : LSM ! N suchthat � = F.The usual argument shows that if the localization ofM with respect to S exists,then it is unique up to a unique isomorphism. Thus, we will speak of the localizationof M with respect to S.Definition 9.6.2. If M is a model category, then the Quillen homotopy cate-gory of M is the localization of M with respect to the class of weak equivalences,which we denote by  : M! HoM.We will show that the Quillen homotopy category of a model categoryM exists(see Theorem 9.6.4), and that it is equivalent to the classical homotopy category ofM (see De�nition 8.3.25 and Theorem 9.6.7).Lemma 9.6.3. LetM be a model category, let N be a category, and let F: M!N be a functor that takes weak equivalences in M to isomorphisms in N. Iff; g : X ! Y are maps in M such that either f l' g or f r' g (see De�nition 8.3.2),then F(f) = F(g).Proof. We will consider the case f l' g; the case f r' g is similar.If f l' g, then there is a cylinder object (see De�nition 8.3.2) X q X i0qi1���!Cyl(X) p�! X for X and a map H : Cyl(X) ! Y such that Hi0 = f and Hi1 = g.Since p is a weak equivalence, F(p) is an isomorphism. Since pi0 = pi1, this impliesthat F(i0) = F(i1). Thus, F(f) = F(H)F(i0) = F(H)F(i1) = F(g).Lemma 9.6.3 implies that a functor F: M ! N that takes weak equivalencesto isomorphisms must identify homotopic maps. Thus, when searching for theQuillen homotopy category ofM (see De�nition 9.6.2), a natural object to consideris the classical homotopy category of M (see De�nition 8.3.25). Proposition 8.3.26implies that if we restrict ourselves to the full subcategory of M spanned by theco�brant-�brant objects, then identifying homotopic maps turns weak equivalencesinto isomorphisms, and so the classical homotopy category serves as the Quillenhomotopy category of this subcategory.To deal with objects that are not co�brant-�brant, we note that, if eX is weaklyequivalent to X and eY is weakly equivalent to Y , then, in any category in whichweak equivalences have become isomorphisms, the set of maps from X to Y will beisomorphic to the set of maps from eX to eY . This suggests that we should chooseeX and eY to be co�brant-�brant objects weakly equivalent to, respectively, X andY , and de�ne HoM(X;Y ) to be the set of homotopy classes of maps from eX to eYin M. This is what we shall do to de�ne HoM.Theorem 9.6.4. IfM is a model category, then the Quillen homotopy categoryof M (see De�nition 9.6.2) exists.Draft: August 12, 1997



9.6. THE HOMOTOPY CATEGORY OF A MODEL CATEGORY 135Proof. For every co�brant object X, let eCX = X and let iX : eCX ! Xbe the identity map. For every non-co�brant object X, factor the map from theinitial object to X into a co�bration followed by a trivial �bration to obtain aco�brant object eCX and a trivial �bration iX : eCX ! X. (In the terminology ofDe�nition 9.1.1, we have chosen a �brant co�brant approximation to X.)For every �brant object X, let bFX = X and let jX : X ! bFX be the identitymap. For every non-�brant object X, factor the map fromX to the terminal objectinto a trivial co�bration followed by a �bration to obtain a �brant object bFX anda trivial co�bration jX : X ! bFX. (In the terminology of De�nition 9.1.1, we havechosen a co�brant �brant approximation to X.)We de�ne the category HoM as follows:1. The objects of HoM are the objects of M.2. If X and Y are objects of M, then HoM(X;Y ) = �(bFeCX; bFeCY ) (see Nota-tion 8.3.15).3. If X, Y , and Z are objects of M, then the compositionHoM(Y; Z) �HoM(X;Y )! HoM(X;Z)is the composition of homotopy classes of maps between co�brant-�brantobjects in M�(bFeCY; bFeCZ) � �(bFeCX; bFeCY )! �(bFeCX; bFeCZ):We now de�ne the functor  : M! HoM. We let  be the identity on the classof objects. For every map f : X ! Y in M, we have the solid arrow diagram; //�� eCYiY��eCX iX //eC(f) 77X f // Y(where ; denotes the initial object of M), and we can choose a dotted arrow eC(f)that makes the diagram commute. (In the terminology of De�nition 9.1.8, eC(f) is aco�brant approximation to f .) Proposition 8.3.21 implies that eC(f) is well de�nedup to left homotopy, and so Proposition 8.3.17 implies that it is well de�ned up toright homotopy. We now have the solid arrow diagrameCX eC(f) //jeCX �� eCY jeCY // bFeCY��bFeCX //bFeC(f) 66 �(where � denotes the terminal object of M), and we can choose a dotted arrowbFeC(f) that makes the diagram commute. Proposition 8.3.21 implies that bFeC(f) iswell de�ned up to homotopy, and we de�ne (f) to the the element of �(bFeCX; bFeCY )represented by bFeC(f) (see Proposition 8.3.18).To see that  is a functor, we note that, for every object X of M, Proposi-tion 8.3.21 implies that eC(1X ) l' 1eCX , and so eC(1X ) r' 1eCX , and so bFeC(1X) 'Draft: August 12, 1997



136 9. FIBRANT AND COFIBRANT APPROXIMATIONS1bFeCX . Similarly, if f : X ! Y and g : Y ! Z are maps in M, then Proposi-tion 8.3.21 implies that eC(g)eC(f) l' eC(gf), and so bFeC(g)bFeC(g) ' bFeC(gf). Thus,we have de�ned the category HoM and the functor  : M! HoM.We will now show that  takes weak equivalences in M to isomorphisms inHoM. If f : X ! Y is a weak equivalence, then the \two out of three" propertyof weak equivalences (see De�nition 8.1.2) implies that eC(f) and bFeC(f) are weakequivalences, and so Proposition 8.3.26 implies that bFeC(f) is a homotopy equiv-alence. Thus, the homotopy class of bFeC(f) is an isomorphism, i.e., (f) is anisomorphism in HoM.It remains only to show that if N is a category and F: M! N is a functor thattakes weak equivalences inM to isomorphisms in N, then there is a unique functor� : HoM ! N such that � = F. Let F: M ! N be such a functor. For everyobject X of HoM, we let �(X) = F(X). If g : X ! Y is a map in HoM, then g isa homotopy class of maps bFeCX ! bFeCY in M. Lemma 9.6.3 implies that F takesall elements of that homotopy class to the same map of N, and so we can let�(g) = F(iY )�F(jeCY )��1F(g)F(jeCX )�F(iX )��1(where by F(g) we mean F applied to some map in the homotopy class g). To seethat � is a functor, we note that an identity map in HoM is a homotopy class ofmaps inM containing an identity map, and composition of maps between co�brant-�brant objects of M is well de�ned on homotopy classes (see Proposition 8.3.22).Thus, � is a functor.To see that � = F, we note that  is the identity on objects, and � wasde�ned to agree with F on objects. If f : X ! Y is a map in M, then we have thecommutative diagram bFeCX bFeC(f) // bFeCYeCXjeCX OO eC(f) //iX �� eCYjeCYOO iY��X f // Y:Since F takes weak equivalences to isomorphisms in N, we haveF(f) = F(iY )�F(jeCY )��1F�bFeC(f)�F(jeCX)�F(iX )��1:Since (f) is the homotopy class of bFeC(f), this implies that �(f) = F(f).Finally, to see that � is the unique functor satisfying � = F, we note thatevery map of HoM is a composition of maps in the image of  and inverses of theimage under  of a weak equivalence of M.Remark 9.6.5. The proof of Theorem 9.6.4 did not use a functorial co�brantapproximation eC, but instead let eCX equal X when X is co�brant (and a similarremark applies to the �brant approximation bF). This was done so that if X and Yare co�brant-�brant objects of M, then HoM(X;Y ) is the set of homotopy classesof maps in M from X to Y .Draft: August 12, 1997



9.7. DERIVED FUNCTORS 137Theorem 9.6.6. IfM is a model category, then the classical homotopy categoryof M (see De�nition 8.3.25) is naturally isomorphic to the full subcategory of theQuillen homotopy category of M spanned by the co�brant-�brant objects.Proof. If X and Y are co�brant-�brant objects ofM, then the proof of Theo-rem 9.6.4 sets bFeCX equal to X, bFeCY equal to Y , and HoM(X;Y ) equal to �(X;Y )(see Remark 9.6.5).Theorem 9.6.7. If M is a model category, then the embedding of the classicalhomotopy category into the Quillen homotopy category (see Theorem 9.6.6) is anequivalence of categories.Proof. Let � denote the embedding �Mcf ! HoM described in Theorem 9.6.6.To de�ne � : HoM ! �Mcf , let eC and bF be as in the proof of Theorem 9.6.4. IfX is an object of HoM, let �(X) = bFeCX. If X and Y are objects of HoM, thenHoM(X;Y ) = �(bFeCX; bFeCY ), and we let � be the \identity map" fromHoM(X;Y )to �Mcf(X;Y ).Since �� is the identity functor of �Mcf , it remains only to de�ne a natu-ral equivalence � from the identity functor of HoM to ��. If X is an objectof HoM, then ��(X) = bFeCX, and so HoM�X; ��(X)� = HoM(X; bFeCX) =�(bFeCX; bFeCbFeCX) = �(bFeCX; bFeCX) (see Remark 9.6.5); we let �(X) : X ! ��Xbe the homotopy class of the identity map of bFeCX in M.Proposition 9.6.8. Let M be a model category. If g : X ! Y is a map in M,then g is a weak equivalence if and only if (g) is an isomorphism in HoM.Proof. If g is a weak equivalence, then Theorem 9.6.4 implies that (g) is anisomorphism. Conversely, if (g) is an isomorphism, then bFeC(g) (see the proof ofTheorem 9.6.4) is a homotopy equivalence, and so Theorem 8.6.5 and the \two outof three" property of weak equivalences implies that g is a weak equivalence.9.7. Derived functorsDefinition 9.7.1. Let M be a model category, let C be a category, and letF: M! C be a functor.1. A left derived functor of F is a functor LF: HoM ! C together with anatural transformation � : L �  ! F such that, if G: HoM! C is a functorand � : G� ! F is a natural transformation, then there is a unique naturaltransformation � : G! LF such that � = �(� � ).2. A right derived functor of F is a functor RF: HoM ! C together with anatural transformation � : F! RF� such that, if G: HoM! C is a functorand � : F! G� is a natural transformation, then there is a unique naturaltransformation � : RF! G such that � = (� � )�.Remark 9.7.2. The usual argument shows that if a left derived functor of Fexists, then it is unique up to a unique natural equivalence. Thus, we will speak ofthe left derived functor of F. A similar remark applies to right derived functors.Remark 9.7.3. The left derived functor of F: M ! C is also known as theright Kan extension of F along  : M ! HoM (see [41, page 232]). Similarly, theright derived functor of F: M ! C is also known as the left Kan extension of Falong  : M! HoM. Draft: August 12, 1997



138 9. FIBRANT AND COFIBRANT APPROXIMATIONSLemma 9.7.4. Let M and N be model categories, and let F: M ! N be afunctor.1. If F takes trivial co�brations between co�brant objects inM to weak equiva-lences in N, f; g : X ! Y are left homotopic maps inM, and X is co�brant,then F(f) is left homotopic to F(g).2. If F takes trivial �brations between �brant objects inM to weak equivalencesin N, f; g : X ! Y are right homotopic maps in M, and Y is �brant, thenF(f) is right homotopic to F(g).Proof. We will prove part 1; the proof of part 2 is dual.Since f and g are left homotopic, there is a cylinder object X q X i0qi1���!Cyl(X) p�! X for X and a map H : Cyl(X) ! Y such that Hi0 = f and Hi1 = g.Since pi0 = 1X , we have F(p)F(i0) = 1F(X), and, since i0 is a trivial co�bration(see Lemma 8.3.6), the \two out of three" property of weak equivalences (see De�-nition 8.1.2) implies that F(p) is a weak equivalence. The result now follows fromProposition 8.3.4.Lemma 9.7.5. LetM be a model category, let C be a category, and let F: M!C be a functor.1. If F takes trivial co�brations between co�brant objects inM to isomorphismsin C, f; g : X ! Y are left homotopic maps in M, and X is co�brant, thenF(f) = F(g).2. If F takes trivial �brations between �brant objects in M to isomorphismsin C, f; g : X ! Y are right homotopic maps in M, and Y is �brant, thenF(f) = F(g).Proof. We will prove part 1; the proof of part 2 is dual.Since f and g are left homotopic, there is a cylinder object X q X i0qi1���!Cyl(X) p�! X for X and a map H : Cyl(X) ! Y such that Hi0 = f and Hi1 = g.Since pi0 = 1X , we have F(p)F(i0) = 1F(X), and, since i0 is a trivial co�bration (seeLemma 8.3.6), F(i0) is an isomorphism, and so F(p) is an isomorphism. Since pi0 =1X = pi1, F(i0) = �F(p)��1 = F(i1). Thus, F(f) = F(H)F(i0) = F(H)F(i1) =F(g).Proposition 9.7.6. Let M be a model category, let C be a category, and letF: M! C be a functor.1. If F takes trivial co�brations between co�brant objects to isomorphisms inC, then the left derived functor of F exists.2. If F takes trivial �brations between �brant objects to isomorphisms in C,then the right derived functor of F exists.Proof. We will prove part 1; the proof of part 2 is dual.Let eC be as in the proof of Theorem 9.6.4. We de�ne a functor D: M! C asfollows: If X is an object of M, we let D(X) = F(eCX). If f : X ! Y is a map inM, then eC(f) : eCX ! eCY is well de�ned up to left homotopy, and so Lemma 9.7.5implies that F�eC(f)� is well de�ned; we let D(f) = F�eC(f)�. To see that D is afunctor, we note that eC(1X) l' 1eCX and so D(1X) = 1DX , and if f : X ! Y andg : Y ! Z are maps in M, then eC(g)eC(f) l' eC(gf), and so D(g)D(f) = D(gf).Draft: August 12, 1997



9.7. DERIVED FUNCTORS 139If f : X ! Y is a weak equivalence in M, then eC(f) is a weak equivalencebetween co�brant objects, and so Corollary 8.5.3 implies that D(f) is an iso-morphism. Thus, the universal property of HoM (see De�nition 9.6.2 and Def-inition 9.6.1) implies that there is a unique functor LF: HoM ! C such thatLF �  = D. We de�ne a natural transformation � : LF �  ! F by letting�(X) = F(iX ) : LF � (X) = D(X) = F(eCX) ! F(X). We will show that thepair (LF; �) is the left derived functor of F.If G: HoM ! C is a functor and � : G �  ! F is a natural transformation,then we have the solid arrow diagramG � (eCX) �(eCX) //(G�)(iX) �� F(eCX) = (LF � )(X)F(iX )=�(X)��G � (X) �(X) //�(X) 55 F(X)(9.7.7)and so we de�ne a natural transformation � : G! LF by letting �(X) = ��(eCX)���(G � )(iX )��1. If X is co�brant, then F(iX ) is an isomorphism, and so �(X)is the only possible map that makes Diagram 9.7.7 commute. Since eCX � X forevery object X in HoM, this implies the uniqueness of � in general.9.7.8. Total derived functors.Definition 9.7.9. Let M and N be model categories and let F: M ! N be afunctor.1. A total left derived functor of F is a left derived functor (see De�nition 9.7.1)of the composition M F�! N �N��! HoN. Thus, a total left derived functor ofF is a functor LF: HoM ! HoN together with a natural transformation� : LF � �M ! �N � F such that the pair (LF; �) is \closest to �N � F fromthe left" (see De�nition 9.7.1). We will often refer to LF: HoM! HoN asthe total left derived functor of F, without explicitly mentioning the naturaltransformation �.2. A total right derived functor of F is a right derived functor of the compositionM F�! N �N��! HoN. Thus, a total right derived functor of F is a functorRF: HoM ! HoN together with a natural transformation � : �N � F !RF � �M such that the pair (RF; �) is \closest to �N � F from the right"(see De�nition 9.7.1). We will often refer to RF: HoM ! HoN as thetotal right derived functor of F, without explicitly mentioning the naturaltransformation �.Proposition 9.7.10. Let M and N be model categories, and let F: M! N bea functor.1. If F takes trivial co�brations between co�brant objects inM into weak equiv-alences in N, then the total left derived functor LF: HoM! HoN exists.2. If F takes trivial �brations between �brant objects in M into weak equiva-lences in N, then the total right derived functor RF: HoM! HoN exists.Proof. This follows from Proposition 9.7.6. Draft: August 12, 1997



140 9. FIBRANT AND COFIBRANT APPROXIMATIONS9.8. Quillen functorsDefinition 9.8.1. Let M and N be model categories, and let F: M � N :Ube a pair of adjoint functors. We will say that1. (F;U) is a Quillen pair,2. F is a left Quillen functor, and3. U is a right Quillen functorif 1. the left adjoint F preserves both co�brations and trivial co�brations, and2. the right adjoint U preserves both �brations and trivial �brations.Proposition 9.8.2. If M and N are model categories and F: M � N :U is apair of adjoint functors, then the following are equivalent:1. The pair (F;U) is a Quillen pair.2. The left adjoint F preserves both co�brations and trivial co�brations.3. The right adjoint U preserves both �brations and trivial �brations.4. The left adjoint F preserves co�brations and the right adjoint U preserves�brations.5. The left adjoint F preserves trivial co�brations and the right adjoint U pre-serves trivial �brations.Proof. This follows from Proposition 8.2.3 and Proposition 8.2.8.Definition 9.8.3. Let M and N be model categories, and let F: M � N :Ube a Quillen pair (see De�nition 9.8.1). We will say that1. (F;U) is a pair of Quillen equivalences,2. F is a left Quillen equivalence, and3. U is a right Quillen equivalenceif for every co�brant object B in M, every �brant object X in N, and every mapf : B ! UX in M, the map f is a weak equivalence in M if and only if thecorresponding map f ] : FB ! X is a weak equivalence in N.Lemma 9.8.4. Let M be a model category and let iX : eCX ! X and jX : X !bFX be the constructions used in the proof of Theorem 9.6.4.1. IfW is co�brant andX is �brant, then iX induces an isomorphismof the setsof homotopy classes of maps (iX )� : �(W; eCX) ! �(W;X) that is natural inboth W and X.2. If X is co�brant and Z is �brant, then jX induces an isomorphism of theset of homotopy classes of maps (jX )� : �(bFX;Z)! �(X;Z) that is naturalin both X and Z.Proof. This follows from Proposition 8.3.21.Lemma 9.8.5. Let M and N be model categories, and let F: M � N :U be aQuillen pair (see De�nition 9.8.1).1. If B is a co�brant object in M and B _ B ! Cyl(B) ! B is a cylinderobject for B, then FB _ FB ! FCyl(B)! FB is a cylinder object for FB.2. If X is a �brant object in N and X ! Path(X) ! X �X is a path objectfor X, then UX ! UPath(X) ! UX �UX is a path object for UX.Draft: August 12, 1997



9.8. QUILLEN FUNCTORS 141Proof. We will prove part 1; the proof of part 2 is dual.Since B is co�brant, Lemma 8.3.6 and the \two out of three" property ofweak equivalences (see De�nition 8.1.2) imply that the map FCyl(B) ! FB isa weak equivalence. Since F is a left adjoint, F(B _ B) � FB _ FB, and soFB _ FB ! FCyl(B) ! FB is a cylinder object for FB.Lemma 9.8.6. Let M and N be model categories and let F: M � N :U be aQuillen pair (see De�nition 9.8.1).1. If f; g : A! B are left homotopic maps in M and A is co�brant, then F(f)is left homotopic to F(g).2. If f; g : X ! Y are right homotopic maps in N and Y is �brant, then U(f)is right homotopic to U(g).Proof. This follows from Lemma 9.8.5.Proposition 9.8.7. Let M and N be model categories, and let F:M � N :Ube a Quillen pair (see De�nition 9.8.1). If X is a co�brant object in M and Y is a�brant object in N, then the adjointness isomorphism between F and U induces anatural isomorphismof the sets of homotopy classes of maps �(FX;Y ) � �(X;UY ).Proof. The adjointness of F and U gives us a natural isomorphism of setsof maps N(FX;Y ) � M(X;UY ); we must show that this passes to homotopyclasses. Lemma 9.8.5 implies that if two maps X ! UY in M are left homotopic,then the corresponding maps FX ! Y are left homotopic, and that if two mapsFX ! Y in N are right homotopic, then the corresponding maps X ! UY areright homotopic.Lemma 9.8.8. Let M be a model category, let A be co�brant, and let W , X,Y , and Z be �brant. If f : V !W is a weak equivalence and the diagramV f //f �� W // Y��W // X // Zcommutes, then the diagram �(A;W ) //�� �(A; Y )���(A;X) // �(A;Z)(9.8.9)also commutes. Draft: August 12, 1997



142 9. FIBRANT AND COFIBRANT APPROXIMATIONSProof. If we choose a functorial �brant approximation on M (see Proposi-tion 9.1.2), then we have the diagramV f //jV   AAAAAAAAf �� W //jW  AAAAAAAA Y jY ��????????��bV f̂ //f̂ �� cW // bY��W jW   AAAAAAAA // X //jX   AAAAAAAA Z jZ ��????????cW // bX // bZin which f̂ , jW , jX , jY , and jZ are weak equivalences between �brant objects.Since the front rectangle commutes and f̂� : �(A; bV )! �(A;cW ) is an isomorphism(see Corollary 8.5.4), the square�(A;cW ) //�� �(A; bY )���(A; bX) // �(A; bZ)commutes, and Corollary 8.5.4 implies that this square is isomorphic to the squareof Diagram 9.8.9.Lemma 9.8.10. Let M be a model category and let iY : eCY ! Y and jY : Y !bFY be the constructions used in the proof of Theorem 9.6.4. If W is co�brant,then the map bF(iY ) : bFeCY ! bFY induces an isomorphism of the sets of homotopyclasses of maps bF(iY ) : �(W; bFeCY )! �(W; bFY ) that is natural in Y .Proof. The \two out of three" property of weak equivalences (see De�ni-tion 8.1.2) implies that bF(iY ) is a weak equivalence of �brant objects, and soCorollary 8.5.4 implies that bF(iY )� : �(W; bFeCY ) ! �(W; bFY ) is an isomorphism.It remains only to show that this is natural in Y .If f : Y ! Z is a map in M, then we have the diagrameCY eCf //jeCY ""EEEEEEEEiY �� eCZ jeCZ ""EEEEEEEEiZ ��bFeCY bFeC(f) //bF(iY ) �� bFeCZbF(iZ)��Y f //jY ""FFFFFFFFF Z jZ ""FFFFFFFFbFY bFf // bFZDraft: August 12, 1997



9.8. QUILLEN FUNCTORS 143in which all the squares except possibly the front one commute. A diagram chaseshows that bF(iZ) � bFeC(f) � jeCY = bF(f) � bF(iY ) � jeCY , and so Lemma 9.8.8 nowimplies that the square �W; bFeCY //�� �Q; bFeCZ���(W; bFY ) // �(W; bFZ)commutes.Theorem 9.8.11. Let M and N be model categories. If F : M � N :U is aQuillen pair (see De�nition 9.8.1), then1. the total left derived functor LF: HoM! HoN of F exists,2. the total right derived functor RU: HoN! HoM of U exists, and3. the functors LF and RU are an adjoint pair.Proof. The existence of the functors LF andRU follows fromProposition 9.7.10.To see that LF and RU are adjoint, let X be an object in M, let Y be an object inN, let eC and bF be the constructions in M as in the proof of Theorem 9.6.4, and leteC0 and bF0 be the analogous constructions in N; then we have natural isomorphismsHoN(LFX;Y ) = HoN�F(eCX); Y �= ��bF0eC0F(eCX); bF0eC0Y �= ��bF0F(eCX); bF0eC0Y � because F(eCX) is co�brant� ��F(eCX); bF0eC0Y � see Lemma 9.8.4� ��F(eCX); bF0Y � see Lemma 9.8.10 and Lemma 9.8.6� ��eCX;U(bF0Y )� see Proposition 9.8.7� ��bFeCX;U(bF0Y )� see Lemma 9.8.4� ��bFeCX; bFeCU(bF0Y )� because eCU(bF0Y ) is �brant= HoM�X;U(bF0Y )�= HoM(X;RUY ):Theorem 9.8.12. Let M and N be model categories and let F : M � N :Ube a Quillen pair. If (F;U) is a pair of Quillen equivalences (see De�nition 9.8.3),then the total derived functors LF: HoM � HoN :RU (see Theorem 9.8.11) areequivalences of the homotopy categories HoM and HoN.Proof. Fill this in!! Draft: August 12, 1997
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CHAPTER 10Simplicial model categories10.1. Simplicial model categoriesWe adopt the de�nition of a simplicial model category used in [26].Notation 10.1.1. If f : A! B and p : X ! Y are maps in Spc(�), thenMap(A;X) �Map(A;Y ) Map(B; Y )will denote the pullback of the diagram of simplicial setsMap(A;X)!Map(A; Y ) Map(B; Y ):Definition 10.1.2. A simplicial model category is a model category M (seeDe�nition 8.1.2) together with functorsMap(X;Y ) 2 SS for X;Y 2MX 
K 2M for X 2M and K 2 SSXK 2M for X 2M and K 2 SSsuch that the following two axioms hold:M6: The above functors are a closed cartesian action of SS onM, i.e., for X;Y 2M and K;L 2 SS there are natural isomorphismsX 
 (K � L) � (X 
K) 
 LX 
�[0] � XMap(X;Y )0 �M(X;Y )Map(X 
K;Y ) � Map�K;Map(X;Y )� � Map(X;Y K)such that the following three diagrams commute:X 
 �K � (L�M )� //�� (X 
K)
 (L�M )��X 
 �(K � L)�M����X 
 (K � L)�
M // �(X 
K)
 L�
MX 
 (K ��[0]) //''OOOOOOOOOOOO (X 
K) 
�[0]wwooooooooooooX 
K145 Draft: August 12, 1997



146 10. SIMPLICIAL MODEL CATEGORIESX 
 (�[0]�K) //''OOOOOOOOOOOO (X 
�[0])
KwwooooooooooooX 
KM7: If i : A ! B is a co�bration and p : X ! Y is a �bration, then the map ofsimplicial setsMap(B;X)!Map(A;X) �Map(A;Y ) Map(B; Y )is a �bration that is a trivial �bration if either i or p is a weak equivalence.Remark 10.1.3. Axiom M7 is the homotopy lifting extension theorem, whichwas originally a theorem of D. M. Kan for categories of simplicial objects (see [38]).Theorem 10.1.4. The de�nitions of De�nition 1.1.3 and De�nition 1.1.5 giveeach of our categories SS, SS�, Top, and Top� the structure of a simplicial modelcategory.Proof. See [34] or [46, Chapter II, Section 3].Lemma 10.1.5. Let M be a simplicial model category. If X and Y are objectsof M, then, for every n � 0, the set of n-simplices of Map(X;Y ) is naturallyisomorphic to the set of map M(X 
�[n]; Y ).Proof. Since the set of n-simplices of a simplicial set K is naturally isomor-phic to the set of maps SS(�[n];K), axiom M6 of De�nition 10.1.2 yields naturalisomorphisms Map(X;Y )n � SS��[n];Map(X;Y )�� Map��[n];Map(X;Y )�0� Map(X 
�[n]; Y )0�M(X 
�[n]; Y ):Proposition 10.1.6. Let M be a simplicial model category.1. If i : A! B is a co�bration and X is �brant, then the map of simplicial setsi� : Map(B;X)!Map(A;X) is a �bration.2. If A is co�brant and p : X ! Y is a �bration, then the map of simplicialsets p� : Map(A;X) !Map(A; Y ) is a �bration.Proof. This follows from axiom M7 (see De�nition 10.1.2).Lemma 10.1.7. Let M be a category with a closed cartesian action of SS (seeDe�nition 10.1.2). If A ! B and X ! Y are maps in M and (K;L) is a pair ofsimplicial sets, then the following are equivalent:1. The dotted arrow exists in every solid arrow diagram of the formL //�� Map(B;X)��K // 55Map(A;X) �Map(A;Y ) Map(B; Y )Draft: August 12, 1997



10.2. WEAK EQUIVALENCES OF MAPPING SPACES 1472. The dotted arrow exists in every solid arrow diagram of the formA //�� XK��B // 99XL �Y L Y K3. The dotted arrow exists in every solid arrow diagram of the formA
K qA
L B 
 L //�� X��B 
K //77 YProof. This follows from the adjointness properties in axiom M6 (see De�ni-tion 10.1.2).Proposition 10.1.8. If M is a model category with a closed cartesian actionof SS (see De�nition 10.1.2), then axiom M7 (see De�nition 10.1.2) is equivalent toeach of the following:1. If i : A! B is a co�bration in M and j : L! K is a co�bration in SS, thenthe induced map A 
K qA
L B 
 L! B 
Kis a co�bration in M which is also a weak equivalence if either i or j is aweak equivalence.2. If j : L ! K is a co�bration in SS and p : X ! Y is a �bration in M, thenthe induced map XK ! XL �YL Y Kis a �bration in M which is also a weak equivalence if either j or p is a weakequivalence.Proof. This follows from Lemma 10.1.7 and Proposition 8.2.3.10.2. Weak equivalences of mapping spacesProposition 10.2.1. Let M be a simplicial model category.1. If X is co�brant and g : Y ! Z is a trivial �bration, then g induces a trivial�bration of simplicial sets g� : Map(X;Y )!Map(X;Z).2. If Z is �brant and h : X ! Y is a trivial co�bration, then h induces a trivial�bration of simplicial sets h� : Map(Y; Z)!Map(X;Z).Proof. This follows directly from axiom M7 (see De�nition 10.1.2).Corollary 10.2.2. Let M be a simplicial model category.1. If X is co�brant and g : Y ! Z is a weak equivalence of �brant objects,then g induces a weak equivalence of simplicial sets g� : Map(X;Y ) !Map(X;Z).2. If Z is �brant and h : X ! Y is a weak equivalence of co�brant objects, thenh induces a weak equivalence of simplicial sets h : Map(Y; Z)!Map(X;Z).Proof. This follows from Proposition 10.2.1 and Corollary 8.5.2.Draft: August 12, 1997



148 10. SIMPLICIAL MODEL CATEGORIESLemma 10.2.3. Let C be a small category and let M be a simplicial modelcategory.1. If X : C ! M is a diagram in M and K a simplicial set, then there is anatural isomorphism(colimX)
K � colim(X 
K):2. If X is an object of M and K : C! SS is a diagram of simplicial sets, thenthere is a natural isomorphismX 
 (colimK) � colim(X 
K):Proof. We will prove part 1; the proof of part 2 is similar.If Y is an object of M, then we have natural isomorphismsM�(colimX)
K;Y � �M(colimX; Y K)� limM(X; Y K)� limM(X 
K;Y )�M�colim(X 
K); Y �(see axiom M6 of De�nition 10.1.2), and the composition of these must be inducedby a natural isomorphism (colimX)
K � colim(X 
K).Proposition 10.2.4. IfM is a simplicial model category, C is a small category,X : C ! M is a diagram in M, and Y is an object of M, then there are naturalisomorphisms of simplicial setsMap(colimX ; Y ) � limMap(X ; Y )Map(Y; limX) � limMap(Y;X):Proof. We will prove that the �rst isomorphism exists; the proof of the secondis similar.For every n � 0, Lemma 10.1.5, Lemma 10.2.3, and axiom M6 of De�ni-tion 10.1.2 yield natural isomorphismsMap(colimX; Y )n � SS��[n];Map(colimX ; Y )��M�(colimX)
�[n]; Y ��M�colim(X 
�[n]); Y �� limM(X 
�[n]; Y )� limSS��[n];Map(X ; Y )�� limMap(X; Y )n:Corollary 10.2.5. Let M be a simplicial model category, and let Y be anobject of M. If S is a set and Xs is an object of M for every s 2 S, then there is anatural isomorphism of simplicial setsMap�as2SXs; Y � �Ys2SMap(Xs; Y ):Proof. This follows from Lemma 10.1.5 and Proposition 10.2.4.Draft: August 12, 1997



10.3. HOMOTOPY LIFTING 14910.3. Homotopy liftingIf i and p are maps in a model category M, axiom M4 (see De�nition 8.1.2)implies that (i; p) is a lifting-extension pair (see De�nition 8.2.1) if i is a co�bration,p is a �bration, and at least one of i and p is a weak equivalence. In a simplicialmodel category, a stronger statement is possible. Axiom M7 (see De�nition 10.1.2)says that if i : A ! B is a co�bration and p : X ! Y is a �bration, then the mapof simplicial setsMap(B;X) �!Map(A;X)�Map(A;Y ) Map(B; Y )(10.3.1)is a �bration, and it is a trivial �bration if at least one of i and p is a weakequivalence.Definition 10.3.2. Let M be a simplicial model category. If i : A ! B andp : X ! Y are maps for which the map of simplicial sets (10.3.1) is a trivial �bration,then (i; p) is called a homotopy lifting extension pair, and i is said to have thehomotopy left lifting property with respect to p and p is said to have the homotopyright lifting property with respect to i.Proposition 10.3.3. Let M be a simplicial model category.1. If B is co�brant and p : X ! Y is a �bration, then p has the homotopy rightlifting property with respect to the map from the initial object to B if andonly if p induces a weak equivalence p� : Map(B;X) �= Map(B; Y ).2. If X is �brant and i : A ! B is a co�bration, then i has the homotopy leftlifting property with respect to the map from X to the terminal object ifand only if i induces a weak equivalence i� : Map(B;X) �= Map(A;X).Proof. This follows from Proposition 10.1.6.Proposition 10.3.4. Let M be a simplicial model category. If i : A ! B andp : X ! Y are maps such that (i; p) is a homotopy lifting-extension pair (see De�-nition 10.3.2), then (i; p) is a lifting-extension pair (see De�nition 8.2.1).Proof. This follows because a trivial �bration of simplicial sets is surjectiveon the set of vertices.Proposition 10.3.5. Let M be a simplicial model category.1. A map is a co�bration if and only if it has the homotopy left lifting propertywith respect to all trivial �brations.2. A map is a trivial co�bration if and only if it has the homotopy left liftingproperty with respect to all �brations.3. A map is a �bration if and only if it has the homotopy right lifting propertywith respect to all trivial co�brations.4. A map is a trivial �bration if and only if it has the homotopy right liftingproperty with respect to all co�brations.Proof. This follows from axiomM7 (see De�nition 10.1.2), Proposition 10.3.4,and Proposition 8.2.3.The following lemma describes the homotopy lifting property in terms of thelifting property.Lemma 10.3.6. If i : A ! B and p : X ! Y are maps in a simplicial modelcategory, then the following are equivalent: Draft: August 12, 1997



150 10. SIMPLICIAL MODEL CATEGORIES1. The pair (i; p) is a homotopy lifting-extension pair (see De�nition 10.3.2).2. For every pair of simplicial sets (K;L), the map p has the right liftingproperty with respect to the mapA
K qA
L B 
 L! B 
K:3. For every n � 0, the map p has the right lifting property with respect to themap A 
�[n]qA
@�[n] B 
 @�[n]! B 
�[n]:4. For every pair of simplicial sets (K;L), the map i has the left lifting propertywith respect to the mapXK ! Y K �Y L XL:5. For every n � 0, the map i has the left lifting property with respect to themap X�[n] ! Y �[n] �Y @�[n] X@�[n]:Proof. Since a map of simplicial sets is a co�bration if and only if it is aninclusion and a trivial �bration if and only if it has the right lifting property withrespect to the maps @�[n]! �[n] for n � 0, this follows from Lemma 10.1.7 andProposition 8.2.3.Lemma 10.3.7. Let M be a simplicial model category, and let p be a map inM. 1. The class of maps with the homotopy left lifting property with respect to pis closed under pushouts.2. The class of maps with the homotopy right lifting property with respect top is closed under pullbacks.Proof. This follows from Lemma 10.3.6 and Lemma 8.2.5.Lemma 10.3.8. Let M be a simplicial model category, and let p be a map inM. 1. The class of maps with the homotopy left lifting property with respect to pis closed under retracts.2. The class of maps with the homotopy right lifting property with respect top is closed under retracts.Proof. This follows from Lemma 10.3.6 and Lemma 8.2.7.Proposition 10.3.9. LetM be a simplicialmodel category, and let C be a classof maps in M.1. If every map g : X ! Y in M can be factored as X j�! W p�! Y where p isin C and j has the homotopy left lifting property with respect to every mapin C, then a map has the left lifting property with respect to every map in Cif and only if it has the homotopy left lifting property with respect to everymap in C.2. If every map g : X ! Y inM can be factored as X j�!W p�! Y where j is inC and p has the homotopy right lifting property with respect to every mapin C, then a map has the right lifting property with respect to every map inDraft: August 12, 1997



10.3. HOMOTOPY LIFTING 151C if and only if it has the homotopy right lifting property with respect toevery map in C.Proof. We will prove part 1; the proof of part 2 is similar.Proposition 10.3.4 implies that if a map has the homotopy left lifting propertywith respect to every map in C, then it has the left lifting property with respect toevery map in C.Conversely, if the map g : X ! Y has the left lifting property with respect toevery map in C, factor g as X j�!W p�! Y where p is in C and j has the homotopyleft lifting property with respect to every map in C. The retract argument (seeProposition 8.2.2) implies that g is a retract of j, and so the result follows fromLemma 10.3.8.Proposition 10.3.10. Let M be a simplicial model category.1. If i : A! B has the homotopy left lifting property with respect to p : X ! Yand (K;L) is a pair of simplicial sets, then A 
K qA
L B 
 L ! B 
 Khas the homotopy left lifting property with respect to p.2. If p : X ! Y has the homotopy right lifting property with respect to i : A!B and (K;L) is a pair of simplicial sets, then XK ! Y K �Y L XL has thehomotopy right lifting property with respect to i.Proof. We will prove part 2; the proof of part 1 is similar.Lemma 10.3.6 implies that it is su�cient to show that the mapXK ! Y K �YL XLhas the right lifting property with respect to the mapA 
�[n]qA
@�[n] B 
 @�[n]! B 
�[n]:Lemma 10.1.7 implies that this is equivalent to showing that the map X ! Y hasthe right lifting property with respect to the map(A
�[n]qA
@�[n] B 
 @�[n])
K q(A
�[n]qA
@�[n]B
@�[n])
L (B 
�[n])
 L! (B 
�[n])
K:Lemma 10.2.3 and the isomorphisms of axiomM6 (see De�nition 10.1.2) imply thatthis map is isomorphic to the mapB 
 (@�[n]�K q@�[n]�L �[n]� L)qA
(@�[n]�Kq@�[n]�L�[n]�L) A
 (�[n]�K)! B 
 (�[n]�K):Lemma 10.3.6 implies that this map has the left lifting property with respect toX ! Y , and so the proof is complete.Corollary 10.3.11. Let M be a simplicial model category, and let (K;L) bea pair of simplicial sets.1. If A ! B is a trivial co�bration in M, then A 
K qA
L B 
 L ! B 
Kis also a trivial co�bration.2. If X ! Y is a trivial �bration inM, then XK ! Y K�Y LXL is also a trivial�bration.Proof. This follows from Proposition 10.3.5 and Proposition 10.3.10.Draft: August 12, 1997



152 10. SIMPLICIAL MODEL CATEGORIES10.4. Simplicial homotopy10.4.1. De�nitions. If X is co�brant and Y is �brant, then all notions ofhomotopy for maps from X to Y coincide and are equivalence relations (see Prop-osition 10.4.4). Since not all of our spaces are co�brant and �brant, we need toconsider the version of homotopy most naturally associated with weak equivalencesof function spaces: simplicial homotopy.Definition 10.4.2. LetX and Y be objects of a simplicialmodel category, andlet g and h be mapsX ! Y (i.e., vertices of Map(X;Y ) (see De�nition 10.1.2)). Wewill follow Quillen [46, Chapter II, Section 1, De�nition 4] and say that g is strictlysimplicially homotopic to h (g ss' h) if there is a one simplex of Map(X;Y ) whoseinitial vertex is g and whose �nal vertex is h, and that g and h are simpliciallyhomotopic (g s' h) if they are equivalent under the equivalence relation generatedby the relation of strict simplicial homotopy.Definition 10.4.3. The map g : X ! Y is a simplicial homotopy equivalenceif there is a map h : Y ! X such that gh s' 1Y and hg s' 1X .In general, strict simplicial homotopy need not be an equivalence relation, sinceMap(X;Y ) need not be a �brant simplicial set. In Top(�), however, Map(X;Y ) isisomorphic to the total singular complex of the space (in the category of compactlygenerated Hausdor� spaces) of continuous maps X ! Y , and so it is always a�brant simplicial set (see Corollary 1.1.8). (Strict simplicial homotopy in Top(�) isexactly the classical de�nition of homotopy which is, of course, always an equiva-lence relation.) In SS(�) every space is co�brant, and so Map(X;Y ) will be a �brantsimplicial set if Y is a �brant space (see Theorem 10.1.4).Proposition 10.4.4 (Quillen). If g and h are simplicially homotopic, then theyare both left homotopic and right homotopic. If X is co�brant and Y is �brant,then the strict simplicial, simplicial, left, and right homotopy relations on the setof maps X ! Y coincide and are equivalence relations.Proof. This is [46, Chapter II, Section 2, Proposition 5].This immediately implies the following corollaries.Corollary 10.4.5. If g and h are simplicially homotopic, then they representthe same morphism in the homotopy category HoM.Corollary 10.4.6. A simplicial homotopy equivalence is a weak equivalence.10.4.7. Simplicially homotopic maps.Proposition 10.4.8. If X and Y are objects of a simplicial model categoryand g and h are maps from X to Y , then g s' h if and only if g and h are in thesame component of the simplicial set Map(X;Y ).Proof. This follows directly from the de�nitions.Corollary 10.4.9. Let X, Y , andW be objects of a simplicialmodel category.1. If the map g : X ! Y induces a weak equivalence g� : Map(W;X) �= Map(W;Y ),then g induces an isomorphism of the sets of simplicial homotopy classes ofmaps g� : [W;X] � [W;Y ].Draft: August 12, 1997



10.4. SIMPLICIAL HOMOTOPY 1532. If the map g : X ! Y induces a weak equivalence g� : Map(Y;W ) �= Map(X;W ),then g induces an isomorphism of the sets of simplicial homotopy classes ofmaps g� : [Y;W ] � [X;W ].Proof. This follows from Proposition 10.4.8.Corollary 10.4.10. Let X, Y , and W be objects of a simplicial model cate-gory.1. If W is co�brant and g : X ! Y is a trivial �bration, then g induces anisomorphism of the sets of simplicial homotopy classes of maps g� : [W;X] �[W;Y ].2. If W is �brant and g : X ! Y is a trivial co�bration, then g induces anisomorphism of the sets of simplicial homotopy classes of maps g� : [Y;W ] �[X;W ].Proof. This follows from Proposition 10.2.1 and Corollary 10.4.9.Corollary 10.4.11. Let X, Y , and W be objects of a simplicial model cate-gory.1. If W is co�brant and g : X ! Y is a weak equivalence of �brant objects,then g induces an isomorphism of the sets of simplicial homotopy classes ofmaps g� : [W;X] � [W;Y ].2. If W is �brant and g : X ! Y is a weak equivalence of co�brant objects,then g induces an isomorphism of the sets of simplicial homotopy classes ofmaps g� : [Y;W ] � [X;W ].Proof. This follows from Corollary 10.2.2 and Corollary 10.4.9.Corollary 10.4.12. If g; h : X ! Y are simplicially homotopic, j : W ! Xand k : Y ! Z, then kg s' kh and gj s' hj.Proof. This follows from Proposition 10.4.8.Definition 10.4.13. A generalized interval is a simplicial set that is a union of�nitely many one simplices with vertices identi�ed so that its geometric realizationis homeomorphic to a unit interval.Proposition 10.4.14. If g; h : X ! Y , then g and h are simplicially homotopicif and only if there is a generalized interval J and a map of simplicial sets J !Map(X;Y ) taking the ends of J to g and h.Proof. This follows from Proposition 10.4.8.Remark 10.4.15. A map J ! Map(X;Y ) as in Proposition 10.4.14 will becalled a simplicial homotopy from g to h. The maps X 
J ! Y and X ! Y J thatcorrespond under the isomorphisms of De�nition 10.1.2 will also be called simplicialhomotopies from g to h.Proposition 10.4.16. If i : A! B has the homotopy left lifting property withrespect to p : X ! Y (see De�nition 10.3.2), then for every commutative solid arrowDraft: August 12, 1997



154 10. SIMPLICIAL MODEL CATEGORIESdiagram A //i �� Xp��B //h >> Ythere exists a map h : B ! X making both triangles commute, and the map h isunique up to simplicial homotopy.Proof. This follows from De�nition 10.3.2 and Proposition 10.4.8.Corollary 10.4.17. If we have the solid arrow diagramA j //i �� Cp��B q //h >> Din a simplicial model category such that both i and j have the homotopy left liftingproperty with respect to each of p and q, then there exists a map h : B ! C, uniqueup to simplicial homotopy, such that hi = j and ph = q, and any such map is asimplicial homotopy equivalence.Proof. This follows from Proposition 10.4.16.Lemma 10.4.18. An isomorphism in a simplicial model category has both thehomotopy left lifting property and the homotopy right lifting property with respectto every map in the category.Proof. This follows from the fact that an isomorphism induces an isomor-phism of the simplicial set of maps from (or to) any �xed object.Proposition 10.4.19. Let g : X ! Y be a map in a simplicial model category.1. If g has the homotopy left lifting property with respect to the maps fromeach ofX and Y to the terminal object of the category, then g is the inclusionof a strong deformation retract, i.e., there is a map r : Y ! X such thatrg = 1X and gr s' 1Y , where the simplicial homotopy (see Remark 10.4.15)is constant on X.2. If g has the homotopy right lifting property with respect to the maps fromthe initial object of the category to each of X and Y , then there is a maps : Y ! X such that gs = 1Y and sg s' 1X , where the simplicial homotopy(see Remark 10.4.15) lies over the identity map of Y .Proof. We will prove part 1; the proof of part 2 is similar.We have the solid arrow diagramXg �� X��Y r >> // �(in which \�" represents the terminal object of the category), and so Corollary 10.4.17and Lemma 10.4.18 imply that there exists a map r : Y ! X such that rg = 1X .Draft: August 12, 1997



10.4. SIMPLICIAL HOMOTOPY 155Thus, we can construct the solid arrow diagramX 
�[1]qX
@�[1] Y 
 @�[1] //�� Y��Y 
�[1] 66 // �in which the top map is g � prX on X 
�[1] and gr q 1Y on Y 
 @�[1]. Proposi-tion 10.3.10 implies that the vertical map on the left has the homotopy left liftingproperty with respect to the vertical map on the right, and so Proposition 10.3.4implies that the dotted arrow exists, and the proof is complete.Corollary 10.4.20. Let g : X ! Y be a map in a simplicial model category.1. If both X and Y are �brant and g is a trivial co�bration, then g is a sim-plicial homotopy equivalence. In particular, g is the inclusion of a strongdeformation retract.2. If bothX and Y are co�brant and g is a trivial �bration, then g is a simplicialhomotopy equivalence. In particular, g has a right inverse that is a simplicialhomotopy inverse.Proof. This follows from Proposition 10.4.19.10.4.21. Weak equivalences of function spaces.Proposition 10.4.22. If g; h : X ! Y are simplicially homotopic and W isany object, then g� s' h� : Map(W;X) ! Map(W;Y ) and g� s' h� : Map(Y;W ) !Map(X;W ).Proof. Let X ! Y J be a simplicial homotopy from g to h (where J is ageneralized interval). We then have the map of simplicial sets Map(W;X) !Map(W;Y J ), which corresponds to a map Map(W;X) ! Map(W 
 J; Y ), whichcorresponds to a map Map(W;X) ! Map�J;Map(W;Y )�, which corresponds to amap Map(W;X)
 J !Map(W;Y ), which is a simplicial homotopy from g� to h�.The second assertion is proved similarly, starting with a simplicial homotopyX 
 J ! Y .Corollary 10.4.23. If g : X ! Y is a simplicial homotopy equivalence, then,for any object W , the maps g� : Map(W;X)!Map(W;Y ) and g� : Map(Y;W )!Map(X;W ) are simplicial homotopy equivalences of simplicial sets.Proof. This follows from Proposition 10.4.22.Note that these corollaries made no assumptions about whether any of theobjects were �brant or co�brant.Proposition 10.4.24. If g : X ! Y is a map in a simplicial model category,then g is a simplicial homotopy equivalence if either of the following two conditionsis satis�ed:1. The map g induces isomorphisms of the sets of simplicial homotopy classesof maps g� : [X;X] � [X;Y ] and g� : [Y;X] � [Y; Y ].2. The map g induces isomorphisms of the sets of simplicial homotopy classesof maps g� : [Y;X] � [X;X] and g� : [Y; Y ] � [X;Y ]. Draft: August 12, 1997



156 10. SIMPLICIAL MODEL CATEGORIESProof. We will prove this using condition 1; the proof using condition 2 issimilar.The isomorphism g� : [Y;X] � [Y; Y ] implies that there is a map h : Y ! Xsuch that gh s' 1Y . Corollary 10.4.12 and the isomorphism g� : [X;X] � [X;Y ]now imply that h induces an isomorphism h� : [X;Y ] � [X;X], and so there is amap k : X ! Y such that hk s' 1X . Thus, h is a simplicial homotopy equivalence,and so g is its inverse and is thus a simplicial homotopy equivalence as well.Proposition 10.4.25. If g : X ! Y is a map in a simplicial model category,then g is a simplicial homotopy equivalence if either of the following two conditionsis satis�ed:1. The map g induces weak equivalences of simplicial sets g� : Map(X;X) �=Map(X;Y ) and g� : Map(Y;X) �= Map(Y; Y ).2. The map g induces weak equivalences of simplicial sets g� : Map(Y;X) �=Map(X;X) and g� : Map(Y; Y ) �= Map(X;Y ).Proof. This follows from Proposition 10.4.24 and Corollary 10.4.9.10.5. Detecting weak equivalencesProposition 10.5.1. Let M be a simplicial model category. If g : X ! Y is amap in M, then g is a weak equivalence if either of the following two conditions issatis�ed:1. For every �brant object Z, the map of function spaces g� : Map(Y; Z) !Map(X;Z) is a weak equivalence of simplicial sets.2. For every co�brant object W , the map of function spaces g� : Map(W;X)!Map(W;Y ) is a weak equivalence of simplicial sets.Proof. We will prove part 1; the proof of part 2 is dual.Choose co�brant �brant approximations (see De�nition 9.1.1) iX : X ! eX andiY : Y ! eY and a �brant approximation ~g : eX ! eY to g (see De�nition 9.1.8). IfZ is a �brant object, then we have the commutative squareMap(X;Z) Map(Y; Z)g�ooMap( eX;Z)(iX)� OO Map(eY ; Z)(iY )�OO~g�ooin which all the maps except ~g� are weak equivalences of simplicial sets (see Prop-osition 10.2.1). This implies that ~g� is also a weak equivalence, and so Proposi-tion 10.4.25 implies implies that ~g is a simplicial homotopy equivalence. Thus, ~g isa weak equivalence, and so g is a weak equivalence and the proof is complete.Proposition 10.5.2. Let M be a simplicial model category, let g : X ! Y bea map in M, and let W be an object in M.1. If W is co�brant and if ~g : eX ! eY is a �brant approximation to g (see De�-nition 9.1.8) such that the induced map of simplicial sets ~g� : Map(W; eX)!Map(W; eY ) is a weak equivalence, then for any other �brant approxima-tion ĝ : bX ! bY to g, the induced map of simplicial sets ĝ� : Map(W; bX) !Map(W; bY ) is a weak equivalence.Draft: August 12, 1997



10.5. DETECTING WEAK EQUIVALENCES 1572. If W is �brant and if ~g : eX ! eY is a co�brant approximation to g (see De�-nition 9.1.8) such that the induced map of simplicial sets ~g� : Map(eY ;W )!Map( eX;W ) is a weak equivalence, then for any other co�brant approxima-tion ĝ : bX ! bY to g, the induced map of simplicial sets ĝ� : Map(bY ;W ) !Map(bY ;W ) is a weak equivalence.Proof. This follows from Proposition 9.3.2 and Proposition 10.2.1.Proposition 10.5.3. Let M be a simplicial model category, let f : X ! Y bea map in M, and let W be an object in M.1. If X and Y are �brant and fW !W is a co�brant approximation to W suchthat the induced map of simplicial sets f� : Map(fW;X)! Map(fW;Y ) is aweak equivalence, then for any other co�brant approximation cW ! W toW , the induced map of simplicial sets f� : Map(cW;X) ! Map(cW;Y ) is aweak equivalence.2. If X and Y are co�brant andW ! fW is a �brant approximation to W suchthat the induced map of simplicial sets f� : Map(Y;fW ) ! Map(X;fW ) is aweak equivalence, then for any other �brant approximationW ! cW to W ,the induced map of simplicial sets f� : Map(Y;cW )!Map(X;cW ) is a weakequivalence.Proof. We will prove part 1; the proof of part 2 is dual.Choose a �brant co�brant approximationW !W toW (see Proposition 9.1.2).There are maps of co�brant approximations (see De�nition 9.1.3) fW ! W andcW ! W , both of which are weak equivalences (see Proposition 9.1.6). Thus, wehave the diagramMap(cW;X)�� Map(W;X)�=oo �� �= // Map(fW;X)��Map(cW;Y ) Map(W;Y )�=oo �= // Map(fW;Y )and Corollary 10.2.2 implies that all the horizontal maps are weak equivalences.Theorem 10.5.4. If g : X ! Y is a map in a simplicial model category, thenthe following are equivalent:1. The map g is a weak equivalence.2. For some �brant approximation ~g : eX ! eY to g (see De�nition 9.1.8) andevery co�brant object W , the map of simplicial sets ~g� : Map(W; eX) !Map(W; eY ) is a weak equivalence.3. For every �brant approximation ~g : eX ! eY to g and every co�brant objectW , the map of simplicial sets ~g� : Map(W; eX) ! Map(W; eY ) is a weakequivalence.4. For some co�brant approximation ~g : eX ! eY to g (see De�nition 9.1.8)and every �brant object Z, the map of simplicial sets ~g� : Map(eY ; Z) !Map( eX;Z) is a weak equivalence. Draft: August 12, 1997



158 10. SIMPLICIAL MODEL CATEGORIES5. For every co�brant approximation ~g : eX ! eY to g and every �brant ob-ject Z, the map of simplicial sets ~g� : Map(eY ; Z) ! Map( eX;Z) is a weakequivalence.Proof. Proposition 10.5.2 implies that 2 is equivalent to 3 and that 4 is equiv-alent to 5.Proposition 10.5.1 implies that any of 2, 3, 4 or 5 implies 1.Corollary 10.2.2 implies that 1 implies both 2 and 4, and so the proof is com-plete.Corollary 10.5.5. Let M be a simplicial model category, and let g : X ! Ybe a map in M.1. If X and Y are �brant, then g is a weak equivalence if and only if, for everyco�brant object W in M, the map g� : Map(W;X)!Map(W;Y ) is a weakequivalence of simplicial sets.2. If X and Y are co�brant, then g is a weak equivalence if and only if, forevery �brant object Z in M, the map g� : Map(Y; Z) ! Map(X;Z) is aweak equivalence of simplicial sets.Proof. This follows from Theorem 10.5.4.Proposition 10.5.6. If M is a simplicial model category, � is an ordinal, andX0 //g0 �� X1 //g1 �� X2 //g2 �� � � �Y0 // Y1 // Y2 // � � �is a map of �-sequences in M such that1. each of the maps g� : X� ! Y� (for � < �) is a weak equivalence of co�brantobjects and2. each of the maps X� ! X�+1 and Y� ! Y�+1 (for � < �) is a co�bration,then the induced map of colimits (colimg�) : colimX� ! colimY� is a weak equiv-alence.Proof. Let Z be a �brant object of M. Theorem 10.5.4 implies that it issu�cient to show that the map Map(colimY�; Z) ! Map(colimX�; Z) is a weakequivalence of simplicial sets.Corollary 10.2.2 implies that the map g� : Map(Y�; Z)!Map(X�; Z) is a weakequivalence of �brant simplicial sets for every � < �, and so the diagram� � � // Map(Y2; Z) //�� Map(Y1; Z) //�� Map(Y0; Z)��� � � // Map(X2; Z) // Map(X1; Z) // Map(X0; Z)is a weak equivalence of towers of �brations of �brant simplicial sets. Thus, theinduced map limMap(Y�; Z)! limMap(X�; Z) is a weak equivalence, and so theresult follows from Proposition 10.2.4.Draft: August 12, 1997



10.6. SIMPLICIAL FUNCTORS 15910.6. Simplicial functorsIf M and N are simplicial model categories and F: M ! N is a functor, thenwe often want to consider whether F can be extended to a simplicial functor, i.e.,whether the de�nition of F can be extended to de�ne a natural map of simplicialsets Map(X;Y )!Map(FX;FY )(10.6.1)that is compatible with composition and with the isomorphisms Map(X;Y )0 �M(X;Y ) and Map(FX;FY )0 � N(FX;FY ).If F is to be a simplicial functor, then given an n-simplex in Map(X;Y ), i.e.,a map � : X 
�[n]! Y (see Lemma 10.1.5), we must assign to it an n-simplex ofMap(FX;FY ), i.e., a map FX 
�[n]! FY . We can attempt to use F(�) : F(X 
�[n])! FY , but then we need a map� : FX 
�[n]! F(X 
�[n])to compose with F(�). If we ensure that � yields a natural isomorphism � : FX 
�[0] � F(X 
�[0]) that commutes with the natural isomorphisms X 
�[0] � X,then the map (10.6.1) would be an extension of F on Map(X;Y )0 �M(X;Y ). Thiswould allow us to de�ne the map (10.6.1) for each pair of objects X and Y , buteven if we require that � be natural in both X and �[n], we still could not be surethat the function (10.6.1) commutes with composition of functions, i.e., that thediagram Map(X;Y )�Map(Y; Z) //�� Map(X;Z)��Map(FX;FY )�Map(FY;FZ) // Map(FX;FZ)commutes. For this, � must have an additional property.Given n-simplices � 2Map(X;Y )n and � 2Map(Y; Z)n, i.e., functions � : X
�[n]! Y and � : Y 
�[n]! Z, their composition in Map(X;Z)n is the compo-sitionX 
�[n] 1
D���! X 
 (�[n]��[n]) � (X 
�[n])
�[n] �
1���! Y 
�[n] ��! Z(where D : �[n]! �[n]� �[n] is the diagonal map). If we apply F and composewith the natural transformation �, then we get the n-simplexFX 
�[n] ��! F(X 
�[n])F(1
D)�����! F�X 
 (�[n]��[n])� � F�(X 
�[n])
�[n]�F(�
1)�����! F(Y 
�[n]) F(�)���! F(Z)of Map(FX;FZ). Since � is natural, this can also be written as the composition(10.6.2) FX 
�[n] 1
D���! FX 
 (�[n]��[n])��! F�X 
 (�[n]��[n])� � F�(X 
�[n])
�[n]�F(�
1)�����! F(Y 
�[n]) F(�)���! F(Z)Draft: August 12, 1997



160 10. SIMPLICIAL MODEL CATEGORIESIf we start with the same n-simplices � and �, apply F to each, and composeeach with the natural transformation �, then we get the pair of simplicesFX 
�[n] ��! F(X 
�[n]) F(�)���! FYFY 
�[n] ��! F(Y 
�[n]) F(�)���! FZin Map(FX;FY )n �Map(FY;FZ)n. If we compose these, then we get the elementFX 
�[n] 1
D���! FX 
 (�[n]��[n])� (FX 
�[n])
�[n] �
1��! F(X 
�[n])
�[n]F(�)
1�����! FY 
�[n] ��! F(Y 
�[n]) F(�)���! FZof Map(FX;FZ)n. Since � is natural, this can also be written as the composition(10.6.3) FX 
�[n] 1
D���! FX 
 (�[n]��[n])� (FX 
�[n])
�[n] �
1��! F(X 
�[n])
�[n]��! F�(X 
�[n])
�[n]� F(�
1)�����! F(Y 
�[n]) F(�)���! FZSince we want the composition (10.6.2) to equal the composition (10.6.3), we mustrequire that the diagramFX 
 (�[n]��[n])� �� � // (FX 
�[n])
�[n]�
1��F(X 
�[n])
�[n]���F�X 
 (�[n]��[n])� � // F�(X 
�[n])
�[n]�commute.This leads us to the following theorem.Theorem 10.6.4. Let M and N be simplicial model categories. A functorF: M ! N can be extended to a simplicial functor if and only if, for every �-nite simplicial set K and object X of M, there is a map � : FX 
K ! F(X 
K),natural in both X and K, such that1. for every object X ofM, � de�nes an isomorphism � : (FX)
�[0] � F(X
�[0]) such that the triangle(FX) 
�[0] � //� &&LLLLLLLLLL F(X 
�[0])�xxrrrrrrrrrrFXcommutes, andDraft: August 12, 1997



10.6. SIMPLICIAL FUNCTORS 1612. for every object X of M and �nite simplicial sets K and L, the diagramFX 
 (K � L)��� � // (FX 
K) 
 L�
1��F(X 
K) 
 L���F�X 
 (K � L)� � // F�(X 
K) 
 L�commutes.Proof. We have isomorphismsMap(X;Y )n � SS��[n];Map(X;Y )� �M(X 
�[n]; Y )that are natural in X, Y , and �[n], and so we can de�ne F: Map(X;Y )n !Map(FX;FY )n as the compositionM(X 
�[n]; Y ) F(�;�)����! N�F(X 
�[n]);FY � ���! N(FX 
�[n];FY ):The discussion preceding the statement of the theorem explains why this yields asimplicial functor.Conversely, if F : M! N is simplicial, then we can de�ne � as the map corre-sponding to the compositionK !Map(X;X 
K) F(�;�)����! Map�FX;F(X 
K)�(where the �rst map above is adjoint to the identity map of X 
 K) under theisomorphismSS�K;Map�FX;F(X 
K)�� � N�FX 
K;F(X 
K)�:Example 10.6.5. Let M be a simplicial model category. If W is an object inM, then the functor Map(W;�) : M ! SS is simplicial. In this case, for (f; k) 2�Map(W;X) 
 K�n we have �(f; k) = f � �k, where �k is the composition of theprojection W 
�[n]! �[n] with the map �[n]! K that takes the nondegeneraten-simplex of �[n] to k.Proposition 10.6.6. Let M and N be simplicial model categories, let C be asmall category, and let X be a C-diagram of functors M! N and natural transfor-mations between them. If for each � 2 C there is a map �� as in Theorem 10.6.4that is natural in � and that extends X� to a simplicial functor, then there is amap � that extends colim�2CX� to a simplicial functor.Proof. Let � = colim�2C ��. Draft: August 12, 1997
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CHAPTER 11Proper model categories11.1. PropernessDefinition 11.1.1. Let M be a model category (see De�nition 8.1.2), and letA f //i �� Bj��C g // D(11.1.2)be a commutative square in M.1. The model category M will be called left proper if, whenever f is a weakequivalence, i is a co�bration, and the square (11.1.2) is a pushout, the mapg is also a weak equivalence.2. The model category M will be called right proper if, whenever g is a weakequivalence, j is a �bration, and the square (11.1.2) is a pullback, the mapf is also a weak equivalence.3. The model categoryM will be called proper if it is both left proper and rightproper.Proposition 11.1.3 (C. L. Reedy, [50]). Let M be a model category and letC h //g �� Xp��D k // Y(11.1.4)be a commutative square in M.1. If p is a �bration, k is a weak equivalence, D and Y are �brant objects, andthe square (11.1.4) a pullback, then h is a weak equivalence.2. If g is a co�bration, h is a weak equivalence, C and X are co�brant objects,and the square (11.1.4) a pushout, then k is a weak equivalence.Proof. Fill this in!Corollary 11.1.5. Let M be a model category.1. If every object of M is co�brant, then M is left proper.2. If every object of M is �brant, then M is right proper.3. If every object of M is both co�brant and �brant, then M is proper.Proof. This follows from Proposition 11.1.3.Corollary 11.1.6. The categories SS and SS� are both left proper.163 Draft: August 12, 1997



164 11. PROPER MODEL CATEGORIESProof. This follows from Corollary 11.1.5.Corollary 11.1.7. The categories Top and Top� are both right proper.Proof. This follows from Corollary 11.1.5.11.1.8. Topological spaces.Lemma 11.1.9. Let f : X ! Y be a map of path connected topological spaces.If f induces an isomorphismof fundamental groups f� : �1(X;x0) � �1�Y; f(x0)� forsome point x0 2 X and an isomorphism of homology f� : H�(X; f�A) � H�(Y ;A)for every local coe�cient system A on Y , then f is a weak equivalence.Proof. It is su�cient to show that the induced map of total singular complexesis a weak equivalence. Since this is a map of connected simplicial sets inducingan isomorphism of fundamental groups, it is su�cient to show that it inducesisomorphisms of all higher homotopy groups, and for this it is su�cient to showthat the induced map of universal covers Ŝing f : ŜingX ! ŜingY induces anisomorphism of all homology groups. Since the homology groups H�(ŜingX) arenaturally isomorphic to the local coe�cient homology groups H��SingX;Z[�1X]�,the proof is complete.Theorem 11.1.10. A map of topological spaces f : X ! Y is a weak equiv-alence if and only if it induces an isomorphism of the sets of path componentsf� : �0X � �0Y and, for each path component of X and the corresponding com-ponent of Y , isomorphisms of fundamental groups and of homology with all localcoe�cient systems.Proof. The conditions are clearly necessary, and the converse follows fromLemma 11.1.9.Proposition 11.1.11. Let f : X ! Y be a weak equivalence of topologicalspaces. If n � 0 and � : Sn ! X is a map, then the induced map f̂ : X [� Dn+1 !Y [f� Dn+1 is a weak equivalence.Proof. We will use Theorem 11.1.10. It follows immediately that f̂ inducesan isomorphism on the set of path components.If n = 0 or n = 1, then the van Kampen theorem implies that f̂ induces anisomorphism on the fundamental group of each path component. If n > 1, then thefundamental groups of the components of X and Y were unchanged when the cellswere attached.To see that f̂ induces an isomorphism of homology with arbitrary local coe�-cients, we let Tn+1 = fx 2 Rn+1 �� 0 < ��x�� � 1geX = X [f Tn+1bX = X [f Dn+1and let eY and bY be the corresponding constructions for Y . Since X is a deformationretract of eX and Y is a deformation retract of eY , the induced map ~f : eX ! eY is aweak equivalence. If Bn+1 is the interior of Dn+1, then the subsets eX and Bn+1 ofDraft: August 12, 1997



11.1. PROPERNESS 165bX are an excisive pair, and so a Mayer-Vietoris argument shows that f̂ induces anisomorphism of homology with arbitrary local coe�cients.Theorem 11.1.12. If f : X ! Y is a weak equivalence of topological spaces,s : X !W is a co�bration, and the squareX s //f �� Wg��Y // Zis a pushout, then g is a weak equivalence.Proof. The co�bration s must be a retract of a relative cell complex t : X !U . If X t //f �� Uh��Y // Vis a pushout, then g is a retract of h, and so it is su�cient to show that h is aweak equivalence. If we write t as a trans�nite composition of maps, each of whichattaches a single cell, then a trans�nite induction using Proposition 11.1.11 andProposition 2.2.4 implies that h is a weak equivalence.Theorem 11.1.13. The categories Top and Top� are proper model categories.Proof. This follows from Theorem 11.1.12 and Corollary 11.1.7.Proposition 11.1.14. The geometric realization functor commutes with �nitelimits.Proof. See [33, page 49].Theorem 11.1.15. The categories SS and SS� are proper model categories.Proof. The geometric realization functor commutes with pullbacks (see Prop-osition 11.1.14). Since the geometric realization of a �bration of simplicial sets is a�bration (see [47]), right properness follows from the right properness of Top andTop� (see Theorem 11.1.13), and left properness follows from Corollary 11.1.6.Theorem 11.1.16. The categories Top, Top�, SS, and SS� are proper modelcategories.Proof. This follows from Theorem 11.1.13 and Theorem 11.1.15.11.1.17. Properness and lifting. We are indebted to D. M. Kan for thefollowing proposition.Proposition 11.1.18. Let M be a model category.1. LetM be left proper, let g : A! B be a co�bration, let p : X ! Y be a �bra-tion, and let ~g : eA ! eB be a co�brant approximation (see De�nition 9.1.8)to g such that ~g is a co�bration. If p has the right lifting property withrespect to ~g, then p has the right lifting property with respect to g.Draft: August 12, 1997



166 11. PROPER MODEL CATEGORIES2. Let M be right proper, let g : A ! B be a co�bration, let p : X ! Y be a�bration, and let p̂ : bX ! bY is a �brant approximation (see De�nition 9.1.8)to p such that p̂ is a �bration. If g has the left lifting property with respectto p̂, then g has the left lifting property with respect to p.Proof. We will prove part 2; the proof of part 1 is dual.We have the diagram A //g �� X iX //p�� bXp̂��B // Y iY // bYin which both iX and iY are weak equivalences. If we let P be the pullback Y �bY bX ,then we have the diagram A //g �� X iX //k %%LLLLLLp �� bXp̂��P h 99rrrrrrjyyrrrrrrB // Y iY // bYand, since g has the left lifting property with respect to p̂, it also has the left liftingproperty with respect to j (see Lemma 8.2.5).If we now consider the category (A #M #Y ) of objects of M under A and overY , then B, X, and P are objects in this category. Since g has the left liftingproperty with respect to j, we know that there is a map in this category from B toP , and we must show that there is a map in this category from B to X.The category of objects under A and over Y is a model category in which amap is a co�bration, �bration, or weak equivalence if and only if it is one inM (seeTheorem 8.4.1). Since j is a pullback of the �bration p̂, it is also a �bration, and soX and P are �brant objects in our category, and B is a co�brant object. If we knewthat k was a weak equivalence, then the result would follow from Corollary 8.5.5.Since iY is a weak equivalence, p̂ is a �bration, and M is a right proper modelcategory, the map h is also a weak equivalence. Since iX = hk and both iX and hare weak equivalences, k is also a weak equivalence, and the proof is complete.Corollary 11.1.19. Let M be a simplicial model category.1. LetM be left proper, let g : A! B be a co�bration, let p : X ! Y be a �bra-tion, and let ~g : eA ! eB be a co�brant approximation (see De�nition 9.1.8)to g such that ~g is a co�bration. If p has the homotopy right lifting prop-erty with respect to ~g (see De�nition 10.3.2), then p has the homotopy rightlifting property with respect to g.2. Let M be right proper, let g : A ! B be a co�bration, let p : X ! Y be a�bration, and let p̂ : bX ! bY be a �brant approximation (see De�nition 9.1.8)to p such that p̂ is a �bration. If g has the homotopy left lifting propertywith respect to p̂ (see De�nition 10.3.2), then g has the homotopy left liftingproperty with respect to p.Draft: August 12, 1997



11.1. PROPERNESS 167Proof. This follows from Proposition 11.1.18 and Lemma 10.3.6.11.1.20. Properness and sequential colimits. We are indebted to D.M. Kanfor the following proposition.Proposition 11.1.21. Let M be a left proper simplicial model category (seeDe�nition 11.1.1). If � is an ordinal andX0 //g0 �� X1 //g1 �� X2 //g2 �� � � �Y0 // Y1 // Y2 // � � �is a map of �-sequences in M such that1. each of the maps X� ! X�+1 and Y� ! Y�+1 (for � < �) is a co�bration;2. each of the maps g� : X� ! Y� (for � < �) is a weak equivalence;then the induced map (colimg�) : colimX� ! colimY� is a weak equivalence.Proof. We construct a �-sequence Z0 ! Z1 ! Z2 ! � � � intermediate be-tween the given ones by letting Z� be the pushout Y0 qX0 X� for every � < �.Proposition 8.2.12 implies that Z� ! Z�+1 is a co�bration for every � < �, andwe have maps of �-sequencesX0 //h0 �� X1 //h1 �� X2 //h2 �� � � �Z0 //k0 �� Z1 //k1 �� Z2 //k2 �� � � �Y0 // Y1 // Y2 // � � �such that1. each of the maps Z0 ! Z� (for � < �) is a co�bration,2. the map k0 : Z0 ! Y0 is an isomorphism, and3. (since M is left proper) each of the maps k� : Z� ! Y� (for � < �) is a weakequivalence.Since left adjoints commute with colimits, colimZ� is isomorphic to the pushoutY0 qX0 (colimX�) (see Lemma 8.4.2); thus, the map colimX� ! colimZ� is aweak equivalence. Thus, it is su�cient to show that colimZ� ! colimY� is a weakequivalence. Since k0 : Z0 ! Y0 is an isomorphism, each of the maps k� : Z� ! Y�(for � < �) is a weak equivalence of co�brant objects in the category (Z0 #M) ofobjects under Z0 (see Theorem 8.4.1). Thus, Proposition 10.5.6 implies that themap colimZ� ! colimY� is a weak equivalence, and the proof is complete.Proposition 11.1.22. Let M be a left proper simplicial model category. If �is an ordinal andX0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)is a �-sequence in M such that X� ! X�+1 is a co�bration for every � < �, thenthere is a �-sequenceeX0 ! eX1 ! eX2 ! � � � ! eX� ! � � � (� < �)Draft: August 12, 1997



168 11. PROPER MODEL CATEGORIESand a map of �-sequenceseX0 //g0 �� eX1 //g1 �� eX2 //g2 �� � � � // eX� //g� �� � � � (� < �)X0 // X1 // X2 // � � � // X� // � � � (� < �)such that1. every eX� is co�brant,2. every g� : eX� ! X� is a weak equivalence,3. every eX� ! eX�+1 is a co�bration, and4. the map colim�<� eX� ! colim�<�X� is a weak equivalence.Proof. We will de�ne the eX� inductively. We begin by choosing a co�brantapproximation g0 : eX0 ! X0 to X0 (see Proposition 9.1.2). If � + 1 < � and wehave de�ned g� : eX� ! X�, then we factor the composition eX� ! X� ! X�+1 intoa co�bration followed by a trivial �bration, to obtain eX� ! eX�+1 g�+1���! X�+1. If� < � and � is a limit ordinal, then Proposition 11.1.21 implies that colim�<� eX� !colim�<�X� is a weak equivalence, and so we can construct the eX� as required.Proposition 11.1.21 implies that the map colim�<� eX� ! colim�<�X� is a weakequivalence, and so the proof is complete.11.2. Homotopy pullbacks and homotopy �bersIf all objects in a model category M were �brant, then we would de�ne homo-topy pullbacks and homotopy �bers in terms of the homotopy limit functor (seeDe�nition 19.1.10). Unfortunately, homotopy limits are homotopy invariants onlyfor diagrams of �brant objects (see Theorem 20.6.10). However, in a right propermodel category (see De�nition 11.1.1), we can de�ne a homotopy pullback functor(see De�nition 11.2.2) that is always homotopy invariant (see Proposition 11.2.4)and that is naturally weakly equivalent to the homotopy limit when all the ob-jects in the diagram are �brant (see Proposition 19.4.3). The homotopy �ber ofthe map X ! Y over a point (see De�nition 11.2.17) of Y will be de�ned so thatit is a �brant object weakly equivalent to the homotopy pullback of the diagramX ! Y  � (where \�" denotes the terminal object of M) (see De�nition 11.2.19and Remark 11.2.21).11.2.1. Homotopy pullbacks. If M is a right proper model category (seeDe�nition 11.1.1), then the homotopy pullback of the diagram X g�! Z h � Y isconstructed by replacing g and h by �brations and then taking a pullback (seeDe�nition 11.2.2). In order to have a well de�ned functor, we need to choose a�xed functor to convert our maps into �brations. We will show, however, that anyother factorization into a weak equivalence followed by a �bration yields an objectnaturally weakly equivalent to the homotopy pullback and that, in fact, only one ofthe maps must be converted to a �bration (see Proposition 11.2.7). Thus, if eitherof the maps is already a �bration, then the pullback is naturally weakly equivalentto the homotopy pullback (see Corollary 11.2.8).Definition 11.2.2. LetM be a right proper model category (see De�nition 11.1.1),and let E be an arbitrary but �xed functorial factorization of every map g : X ! YDraft: August 12, 1997



11.2. HOMOTOPY PULLBACKS AND HOMOTOPY FIBERS 169into X ig�! E(g) pg�! Y , where ig is a trivial co�bration and pg is a �bration. Thehomotopy pullback of the diagram X g�! Z h � Y is de�ned to be the pullback ofthe diagram E(g) pg�! Z ph �� E(h).Lemma 11.2.3. Let M be a right proper model category. If g : X ! Y is aweak equivalence and h : W ! Z is a �bration, then, for any map k : Y ! Z, thenatural map from the pullback of the diagram X kg�! Z h � W to the pullback ofthe diagram Y k�! Z h � W is a weak equivalence.Proof. We have the commutative diagramX �Z W //�� Y �Z W //�� Wh��X g // Y k // Zin which the vertical maps are all �brations. Since g is a weak equivalence, theresult follows from Proposition 8.2.12.Proposition 11.2.4 (Homotopy invariance of the homotopy pullback). LetMbe a right proper model category. If we have the diagramX g //�� Z�� Yhoo ��eX ~g // eZ eY~hooin which the vertical maps are weak equivalences, then the induced map of homo-topy pullbacks E(g) �Z E(h)! E(~g)�eZ E(~h)is a weak equivalence.Proof. It is su�cient to show that if g, h, ~g, and ~h are �brations, then themap of pullbacks X �Z Y ! eX �eZ eY is a weak equivalence. This map equals thecomposition X �Z Y ! ( eX �eZ Z)�Z Y � eX �eZ Y ! eX �eZ eY :Since M is a right proper model category, the map X ! eX �eZ Z is a weak equiv-alence, and Lemma 11.2.3 implies that the last map in the composition is a weakequivalence.Corollary 11.2.5. Let M be a right proper model category. If k : W ! X isa weak equivalence, then the homotopy pullback of the diagram X g�! Z h � Y isnaturally weakly equivalent to the homotopy pullback of the diagramW gk�! Z h �Y . Draft: August 12, 1997



170 11. PROPER MODEL CATEGORIESProof. We have the commutative diagramW gk //k �� Z YhooX g // Z Yhooin which the vertical maps are weak equivalences, and so the result follows fromProposition 11.2.4.Corollary 11.2.6. Let M be a right proper model category. If the mapsr; s : X ! Z are left homotopic (see De�nition 8.3.2), right homotopic, or (if Mis a simplicial model category) simplicially homotopic (see De�nition 10.4.2), thenthe homotopy pullback of the diagram X r�! Z h � Y is weakly equivalent to thehomotopy pullback of the diagram X s�! Z h � Y .Proof. We will prove this in the case that r and s are left homotopic; the proofin the case that they are right homotopic is similar, and either of these cases impliesthe corollary in the case that they are simplicially homotopic, since maps that aresimplicially homotopic are both left and right homotopic (see Proposition 10.4.4).If r and s are left homotopic, there is a diagramX i0�i1 C H�! Zsuch that Hi0 = r, Hi1 = s, and both i0 and i1 are weak equivalences. Thecorollary now follows from Corollary 11.2.5.Proposition 11.2.7. LetM be a right proper model category. IfX jg�!Wg qg�!Z and Y jh�!Wh qh�! Z are factorizations of, respectively, g : X ! Z and h : Y ! Z,jg and jh are weak equivalences, and qg and qh are �brations, then the homotopypullback of the diagram X g�! Z h � Y is naturally weakly equivalent to each ofWg �Z Wh, Wg �Z Y , and X �Z Wh.Proof. If E is the natural factorization used in De�nition 11.2.2, then Lemma11.2.3implies that the homotopy pullback E(g)�Z E(h) is naturally weakly equivalent toboth E(g) �Z Y and X �Z E(h). Lemma 11.2.3 implies that these are naturallyweakly equivalent to E(g) �Z Wh and Wg �Z E(h) respectively, and that these arenaturally weakly equivalent to X �ZWh and Wg �Z Y , respectively. Lemma 11.2.3implies that both of these are naturally weakly equivalent to Wg �ZWh, and so theproof is complete.Corollary 11.2.8. Let M be a right proper model category. If at least oneof the maps g : X ! Z and h : Y ! Z is a �bration, then the pullback X �Z Y isnaturally weakly equivalent to the homotopy pullback of the diagramX g�! Z h � Y .Proof. This follows from Proposition 11.2.7.In Proposition 19.4.3, we show that if M is a right proper simplicial modelcategory and X, Y , and Z are �brant, then the homotopy pullback of the diagramX ! Z  Y is naturally weakly equivalent to the homotopy limit of that diagram(see De�nition 19.1.10).Draft: August 12, 1997



11.2. HOMOTOPY PULLBACKS AND HOMOTOPY FIBERS 171Proposition 11.2.9. Let M be a right proper model category. If the verticalmaps in the diagram X //�� Z�� Yoo ��eX // eZ eYooare weak equivalences and at least one map in each row is a �bration, then the mapof pullbacks X �Z Y ! eX �eZ eY is a weak equivalence.Proof. This follows from Corollary 11.2.8 and Proposition 11.2.4.Proposition 11.2.10. Let M be a right proper model category. If we havea diagram X g�! Z h � Y in which at least one of g and h is a �bration and ifĥ : bY ! bZ is a �brant approximation to h, then the pullback of h along g has a�brant approximation that is a pullback of ĥ.Proof. We have the diagramW //k �� Y iY //h �� bY ĥ��X g // Z iZ // bZin which W is the pullback X �Z Y and iY and iZ are weak equivalences, and wemust show that there is a pullback of ĥ that is a �brant approximation to k. Ifwe factor the composition iZg : X ! bZ as X iX�! bX ĝ�! bZ where iX is a trivialco�bration and ĝ is a �bration, then we can let cW = bX �bZ bY and we have thediagram W //iW!!BBBk �� Y ��>>>h ��cW //k̂�� bY ĥ��X g //!!BBB ZiZ ��???bX ĝ // bZin which the front and back squares are pullbacks. Proposition 11.2.9 now impliesthat iW is a weak equivalence, and so the pullback k̂ of ĥ is a �brant approximationto k.11.2.11. Homotopy �ber squares.Definition 11.2.12. If M is a right proper model category, then a squareA //�� C��B // Dwill be called a homotopy �ber square if the natural map from A to the homotopypullback (see De�nition 11.2.2) of the diagram B ! D  C is a weak equivalence.Draft: August 12, 1997



172 11. PROPER MODEL CATEGORIESProposition 11.2.13. If M is a right proper model category and we have thediagram A //fA  AAA�� B fB!!BBB��A0 //�� B0��C //fC   AAA DfD !!BBBC0 // D0in which fA, fB , fC , and fD are weak equivalences, then the front square is ahomotopy �ber square if and only if the back square is a homotopy �ber square.Proof. If P is the homotopy pullback of the diagram C ! D  B and P 0 isthe homotopy pullback of the diagram C 0 ! D0  B0, then we have the diagramA //fA �� P��A0 // P 0and Proposition 11.2.4 implies that the map on the right is a weak equivalence.Since fA is a weak equivalence, this implies that the top map is a weak equivalenceif and only if the bottom map is a weak equivalence.Proposition 11.2.14. Let M be a right proper model category. If the frontand back squares of the diagramA //fA  AAA�� B fB!!BBB��A0 //�� B0��C //fC   AAA DfD !!BBBC0 // D0are homotopy �ber squares and if fB , fC , and fD are weak equivalences, then fAis a weak equivalence.Proof. This follows from Proposition 11.2.4.Proposition 11.2.15. Let M be a right proper model category. If the righthand square in the diagram A //�� B //�� C��D // E // Fis a homotopy �ber square, then the left hand square is a homotopy �bers squareif and only if the combined square is a homotopy �ber square.Draft: August 12, 1997



11.2. HOMOTOPY PULLBACKS AND HOMOTOPY FIBERS 173Proof. Factor C ! F as C i�! G p�! F where i is a trivial co�bration and pis a �bration, and let P = E �F G and P 0 = D �F G. We now have the diagramA //k �� B //j�= �� Ci�= ��P 0 //�� P //q�� Gp��D // E // Fand Proposition 11.2.7 implies that j is a weak equivalence. Proposition 8.2.12implies that P 0 is the pullback D �E P , and so Proposition 11.2.7 implies that kis a weak equivalence if and only if the (original) left hand square is a homotopy�ber square. Since Proposition 11.2.7 implies that k is a weak equivalence if andonly if the (original) combined square is a homotopy �ber square, the proof iscomplete.11.2.16. Homotopy �bers.Definition 11.2.17. If M is a model category and Z is an object in M, thenby a point of Z we will mean a map � ! Z (where \�" is the terminal object ofM).Definition 11.2.18. IfM is a model category, g : Y ! Z is a map, and z : � !Z is a point of Z (see De�nition 11.2.17), then the �ber of g over z is the pullbackof the diagram � z�! Z g � Y .Definition 11.2.19. Let M be a right proper model category. If g : Y ! Z isa map and z : � ! Z is a point of Z, then the homotopy �ber HFibz(g) of g over zis the pullback of the diagram � z�! Z pg �� E(Y ) (see De�nition 11.2.2).Proposition 11.2.20. If M is a right proper model category, g : Y ! Z is amap in M, and z : � ! Z is a point of Z, then the homotopy �ber of g over Z is a�brant object in M that is naturally weakly equivalent to the homotopy pullbackof the diagram � z�! Z g � Y .Proof. This follows from Proposition 8.2.6 and Proposition 11.2.7.Remark 11.2.21. The homotopy �ber of the map g : Y ! Z over a pointz : � ! Z was not de�ned to be the homotopy pullback of the diagram � z�! Z g � Ybecause that homotopy pullback need not be a �brant object in M.Proposition 11.2.22. Let M be a right proper model category. If g : Y ! Zis a �bration and z : � ! Z is a point of Z, then the �ber of g over z is naturallyweakly equivalent to the homotopy �ber of g over z.Proof. This follows from Proposition 11.2.20 and Corollary 11.2.8.Proposition 11.2.23. Let M be a right proper model category. If g : Y ! Zis a map and z : � ! Z and z0 : � ! Z are points of Z that are (either left orright) homotopic, then the homotopy �ber of g over z is weakly equivalent to thehomotopy �ber of g over z0.Proof. This follows from Proposition 11.2.20 and Corollary 11.2.6.Draft: August 12, 1997



174 11. PROPER MODEL CATEGORIESCorollary 11.2.24. If h : Y ! Z is a map in Spc and z and z0 are pointsin the same path component of Z, then the homotopy �ber of h over z is weaklyequivalent to the homotopy �ber of h over z0.Proof. This follows from Proposition 11.2.23.Proposition 11.2.25. Let M be a right proper model category. If Z is anobject of M, z : � ! Z is a point of Z, and � ! P ! Z is a factorization of z intoa weak equivalence followed by a �bration, then the homotopy �ber of any maph : Y ! Z over z is naturally weakly equivalent to P �Z Y .Proof. This follows from Proposition 11.2.7.Proposition 11.2.26. If h : Y ! Z is a map in Top and z is a point of Z, thenthe total singular complex of the homotopy �ber of h over z is naturally homotopyequivalent to the corresponding homotopy �ber of (Singh) : SingY ! SingZ.Proof. If E is the factorization in Top of De�nition 11.2.2 and iz : � ! Zis the constant map to z, then Sing(�) ! SingE(iz) ! SingZ is a factorizationof Sing(�) ! SingZ into a weak equivalence followed by a �bration. Since thetotal singular complex functor commutes with pullbacks and all the simplicial setsinvolved are �brant, the result now follows from Proposition 11.2.25.Proposition 11.2.27. If h : Y ! Z is a map in SS and z is a vertex of Z,then the geometric realization of the homotopy �ber of h over z is naturally weaklyequivalent to the corresponding homotopy �ber of ��h�� : ��Y ��! ��Z��.Proof. Since the geometric realization functor commutes with pullbacks (see[33, page 49]), this is similar to the proof of Proposition 11.2.26.11.3. Homotopy pushouts and homotopy co�bersProposition 11.3.1. Let M be a left proper model category. If the verticalmaps in the diagram Z�� Xoo �� // Y��eZ eXoo // eYare weak equivalences and at least one map in each row is a co�bration, then theinduced map of pushouts Z qX Y ! eZ q eX eY is a weak equivalence.Proof. This follows from Proposition 11.2.9 and Proposition 8.1.6 (see Re-mark 8.1.7).Proposition 11.3.2. Let M be a left proper model category. If we have adiagram Y g � X h�! W in which at least one of g and h is a co�bration and if~g : eX ! eY is a co�brant approximation to g, then the pushout of g along h has aco�brant approximation that is a pushout of ~g.Draft: August 12, 1997



11.3. HOMOTOPY PUSHOUTS AND HOMOTOPY COFIBERS 175Proof. We have the diagrameX iX //~g �� X h //g�� Wk��eY iY // Y // Zin which Z is the pushout Y qX W and iX and iY are weak equivalences, and wemust show that there is a pushout of ~g that is a co�brant approximation to k. If wefactor the composition hix : eX ! W as eX ~h�! fW iW��! W where ~h is a co�brationand iW is a trivial �bration, then we can let eZ = eY q eXfW and we have the diagrameX ~h //��@@@~g �� fW !!BBB~k ��X //g �� Wk��eY //  @@@ eZ iZ!!BBBBY // Zin which the front and back squares are pushouts. Proposition 11.3.1 now impliesthat iZ is a weak equivalence, and so the pushout ~k of ~g is a co�brant approximationto Proposition 11.3.3. If the diagram in Top(�)A i //�� B��C // Dis a pushout and i is a co�bration, then the natural map of simplicial sets SingCqSingASingB ! SingD is a weak equivalence.Proof. Since left adjoints commute with pushouts, there is a natural homeo-morphism ��SingCqSingASingB�� � ��SingC��qj SingAj ��SingB��, and so it is su�cientto show that the map ��SingC��qjSingAj ��SingB��! ��SingD�� is a weak equivalence.We have the diagram ��SingC���� ��SingA��oo //�� ��SingB����C Aoo // Band Proposition 11.3.1 implies that the map ��SingC�� qjSingAj ��SingB�� ! D is aweak equivalence. Since this map factors through the weak equivalence ��SingD��!D, the result follows from the \two out of three" axiom for weak equivalences.Draft: August 12, 1997
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CHAPTER 12Ordinals, cardinals, and trans�nite composition12.1. Ordinals and cardinalsFor a thorough discussion of the de�nitions and basic properties of ordinals andcardinals, see [25, Chapter II].12.1.1. Ordinals.Definition 12.1.2. 1. A preordered set is a set with a relation that isreexive and transitive.2. A partially ordered set is a preordered set in which the relation is also anti-symmetric.3. A totally ordered set is a partially ordered set in which every pair of elementsis comparable.4. A well ordered set is a totally ordered set in which every nonempty subsethas a �rst element.We adopt the de�nition of ordinals that arranges it so that an ordinal is thewell ordered set of all lesser ordinals, and every well ordered set is isomorphic to aunique ordinal (see, e.g., [25, Chapter II]). Thus, the union of a set of ordinals isan ordinal, and it is the least upper bound of the set.Remark 12.1.3. We will often consider a preordered set to be a small categorywith objects equal to the elements of the set and a single morphism from the objects to the object t if s � t.Definition 12.1.4. If S is a totally ordered set and T is a subset of S, thenT will be called 0-right co�nal (or 0-terminal) in S if for every s 2 S there existst 2 T such that s � t.Remark 12.1.5. What we here call 0-right co�nal has classically been calledco�nal (see De�nition 14.4.5, De�nition 14.4.6, and Remark 14.4.12).Theorem 12.1.6. If C is a cocomplete category, S is a totally ordered set, Tis a 0-right co�nal subset of S, and X : S ! C is a functor, then the natural mapcolimT X ! colimS X is an isomorphism.Proof. The classical proof works.Proposition 12.1.7. If S is a totally ordered set, then there is a 0-right co�nalsubset T of S that is well ordered.Proof. We will prove the proposition by considering the set of well orderedsubsets of S. We will show that this set has a maximal element, and that a maximalelement must be 0-right co�nal in S. 177 Draft: August 12, 1997



178 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONLet U be the set of pairs (�; f : �! S) where � is an ordinal and f is a one toone order preserving function. We de�ne a preorder on U by de�ning (�; f) � (�; g)if � � � and f = gj�. If U 0 � U is a chain (i.e., a totally ordered subset ofU ), let � = S(�u;fu)2U 0 �u, and de�ne f : � ! S to be the colimit of the fu for(�u; fu) 2 U 0. The pair (�; f) is an element of U , and it is an upper bound for thechain. Thus, Zorn's lemma implies that U has a maximal element, and it remainsonly to show that a maximal element of U must be 0-right co�nal.If (�m; fm) is a maximal element of U and the image of fm : �m ! S is not0-right co�nal, then there is an element s of S such that fm(�) < s for all � 2 �m.Thus, we can de�ne g : (�m + 1) ! S by extending fm to include s in its image.This would imply that (�m; fm) was not a maximal element of U , and so the imageof fm : �m ! S must actually be a 0-right co�nal well ordered subset of S.12.1.8. Cardinals.Definition 12.1.9. A cardinal is an ordinal that is of greater cardinality thanany lesser ordinal.Definition 12.1.10. If X is a set, then the cardinal of X is the unique cardinalwhose underlying set has a bijection with X.Definition 12.1.11. If  is a cardinal, then by Succ() we will mean the suc-cessor of , i.e., the �rst cardinal greater then .Definition 12.1.12. A cardinal  is regular if, whenever A is a set whosecardinal is less than  and for every a 2 A there is a set Sa whose cardinal is lessthan , the cardinal of the set Sa2A Sa is less than .Example 12.1.13. The countable cardinal @0 is a regular cardinal. This is justthe statement that a �nite union of �nite sets is �nite.Proposition 12.1.14. The product of two cardinals, at least one of which isin�nite, equals the greater of the two cardinals.Proof. See [25, page 53].Proposition 12.1.15. If  is in�nite and a successor cardinal, then  is regular.Proof. Let � be the cardinal such that  = Succ(�). If a set has cardinalless than , then its cardinal is less than or equal to �. Let B be a set whosecardinal is � and, for every b 2 B, let Sb be a set whose cardinal is �. Then, if thecardinals of A and every Sa for a 2 A are all less than , we have card(Sa2A Sa) �card(Sb2B Sb) � � � � = � < .Proposition 12.1.16. If � is an in�nite cardinal and  = ��, then � = .Proof. � = (��)�= ���= ��= :Draft: August 12, 1997



12.2. TRANSFINITE COMPOSITION 179Lemma 12.1.17. Let S be a set whose cardinal is �. If � < �, then the collectionT of subsets of S whose cardinal is � has cardinal �.Proof. The product Q� S has cardinal �� = �, and it has a subset that mapsonto T . Thus, the cardinal of T is at most �. Since the collection of one elementsubsets of S has cardinal �, the cardinal of T must be exactly �.Lemma 12.1.18. If M is a category, X, Y , and Z are objects of M, and X isa retract of Y , then the cardinal of M(X;Z) is less than or equal to the cardinalof M(Y; Z), and the cardinal of M(Z;X) is less than or equal to the cardinal ofM(Z; Y ).Proof. If i : X ! Y and r : Y ! X are maps such that ri = 1X , then(ri)� : M(X;Z) !M(X;Z) is the identity map. Thus, i� : M(Y; Z) !M(X;Z) isa surjection. Similarly, r� : M(Z; Y )!M(Z;X) is a surjection.12.2. Trans�nite compositionDefinition 12.2.1. Let C be a category that is closed under colimits.1. If � is an ordinal, then a �-sequence in C is a functor X : � ! C (seeRemark 12.1.3) (i.e., a diagramX0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)in C) such that, for every limit ordinal  < �, the induced map colim�< X� !X is an isomorphism.2. The composition of the �-sequence is the map X0 ! colim�<�X� .Definition 12.2.2. If C is a category and D is a subcategory of C, then atrans�nite composition of maps in D is the composition of some �-sequence X0 !X1 ! X2 ! � � � ! X� ! � � � (� < �) (for some ordinal �, possibly �nite) inC such that, for every � < �, the map X� ! X�+1 is in D. (The signi�cance ofthe �-sequence being a �-sequence in C is that, for every limit ordinal  < �, thecolimit colim�< X� is formed in C.)Lemma 12.2.3. Let C be a category, let � be a limit ordinal, and let X : �! Cbe a functor. If the functor Y : �! C is de�ned byY0 = X0Y�+1 = X� if � + 1 < �Y� = colim<� X if � < � and � is a limit ordinalthen Y is a �-sequence in C, and colim�<�X� = colim�<� Y� .Proof. This follows directly from the de�nitions.Definition 12.2.4. If C is a category, � is a limit ordinal, and X : �! C is afunctor, then the �-sequence Y obtained from the functor X as in Lemma 12.2.3will be called the reindexing of X.Proposition 12.2.5. If C is a category, S is a set, and gs : Cs ! Ds is a map inC for every s 2 S, then the coproduct qgs : qCs ! qDs is a trans�nite compositionof pushouts of the gs, one for each element of S. Draft: August 12, 1997



180 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONProof. Choose a well ordering of the set S. There is a unique ordinal � thatis isomorphic to the ordered set S (see, e.g., [25, Chapter II]), and we will identifyS with �. We de�ne a �-sequence (see De�nition 12.2.1) by lettingX� = �a�<�D��q � a���<�C��for all � < �, with the maps in the sequence being the obvious ones. For each� < �, we have a pushout diagramC��� g� // D���X� // X�+1and so we have a �-sequence of pushouts of the gs whose composition is qgs.Proposition 12.2.6. Let C be a category. If the map X ! Y is the composi-tion of the �-sequenceX = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)(12.2.7)(for some ordinal �) in which each map X� ! X�+1 is the composition of the�-sequence X� = W �0 ! W �1 !W �2 ! � � � !W �� ! � � � (� < �)(12.2.8)(for some ordinal �), then the set P = f(�; �) �� � < �; � < �g is well ordered bythe dictionary order, i.e.,(�1; �1) < (�2; �2) if �1 < �2 or �1 = �2 and �1 < �2.We de�ne a quotient eP of P as follows: For each � that is a successor ordinal (i.e.,for each � for which there is an ordinal �� such that � = �� + 1), we identify(�; �) with (� + 1; 0). The well ordering on P induces a well ordering on eP , andso there is a unique ordinal � for which there is an isomorphism of ordered setsf : � � eP , and this isomorphism is also unique. If we de�ne a functor Y : �! C byY () = W �f()�, then Y is a �-sequence in C.Proof. We need only show that if  < � and  is a limit ordinal, then Y () =colim�< Y (�). This follows directly from our hypotheses.Definition 12.2.9. The �-sequence of Proposition 12.2.6 will be said to havebeen obtained by interpolating the sequences of (12.2.8) into the sequence (12.2.7).Proposition 12.2.10. The �-sequence of (12.2.7) is 0-right co�nal (see De�-nition 12.1.4) in the �-sequence of Proposition 12.2.6.Proof. This follows directly from the de�nition.Lemma 12.2.11. Let C be a category, let D be a subcategory of C, and let � bean ordinal. If the mapX ! Y is the composition of a �-sequence X = X0 ! X1 !X2 ! � � � ! X� ! � � � (� < �) in which each map X� ! X�+1 is a trans�nitecomposition of maps in D, then interpolating (see De�nition 12.2.9) the sequencesfor each X� ! X�+1 into the original �-sequence gives a �-sequence (for someordinal �) of maps in D whose composition is the map X ! Y .Draft: August 12, 1997



12.2. TRANSFINITE COMPOSITION 181Proof. This follows directly from the de�nitions.Proposition 12.2.12. Let C be a category, and let D be a subcategory of C.If the map g : X ! Y is a trans�nite composition of pushouts of coproducts ofelements of D, then g is a trans�nite composition of pushouts of elements of D.Proof. This follows from Proposition 12.2.5 and Lemma 12.2.11.Proposition 12.2.13. Let C be a category, let I be a set of maps in C, and let �be a regular cardinal (see De�nition 12.1.12). If the mapX ! Y is the compositionof a �-sequence X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)(12.2.14)in which each map X� ! X�+1 is a trans�nite composition, indexed by an ordinalwhose cardinal is less than �, of pushouts of coproducts of elements of I, theninterpolating the sequences for the X� ! X�+1 into the sequence (12.2.14) (seeDe�nition 12.2.9) yields a �-sequence (indexed by the same ordinal �) of pushoutsof coproducts of elements of I.Proof. Lemma 12.2.11 implies that there is an ordinal � such that the mapX ! Y is the composition of a �-sequence of pushouts of coproducts of elementsof I, and so it remains only to show that the ordinal � constructed in the proof ofLemma 12.2.11 equals �. Since the cardinal of � equals that of a union, indexed by�, of sets of cardinal less than �, the cardinal of � equals �. Since any ordinal lessthan � is contained within a subunion, indexed by an ordinal less than �, of sets ofcardinal less than �, and � is a regular cardinal, that subunion would have cardinalless than �, i.e., � is the �rst ordinal having its cardinal, and so � is a cardinal, andso � = �.12.2.15. Trans�nite composition and lifting in model categories.Lemma 12.2.16. IfM is a category and p : X ! Y is a map inM, then the classof maps with the left lifting property with respect to p is closed under trans�nitecomposition (see De�nition 12.2.1).Proof. Given a �-sequence of maps with the left lifting property with respectto p and a lifting problem for the composition of the �-sequence, a lift can beconstructed by a trans�nite induction.Proposition 12.2.17. If M is a category and p : X ! Y is a map in M, thenthe class of maps with the left lifting property with respect to p is closed underpushouts, trans�nite composition, and retracts.Proof. This follows from Lemma 8.2.5, Lemma12.2.16, and Lemma 8.2.7.Proposition 12.2.18. If M is a simplicial model category and C is a classof maps in M, then the class of maps in M that have the homotopy left liftingproperty with respect to every element of C is closed under pushouts, trans�nitecompositions, and retracts.Proof. This follows from Lemma 10.3.6 and Proposition 12.2.17.Proposition 12.2.19. IfM is a model category, then the classes of co�brationsand of trivial co�brations are closed under pushouts, trans�nite compositions, andretracts. Draft: August 12, 1997



182 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONProof. This follows from Proposition 8.2.3 and Proposition 12.2.17.Lemma 12.2.20. Let M be a model category and let p : X ! Y be a map inM. If S is a totally ordered set and W : S ! M is a functor such that if s; t 2 Sand s � t, then W s !W t has the left lifting property with respect to p, then forevery s 2 S the mapW s ! colimt�sW t has the left lifting property with respectto p.Proof. Proposition 12.1.7 implies that we can choose a 0-right co�nal subsetT of ft 2 S �� t � sg such that T is well ordered. There is a unique ordinal � thatis isomorphic to T (see, e.g., [25, Chapter II]), and so we have a 0-right co�nalfunctor � ! M. If we reindex this functor (see De�nition 12.2.4), then we havea �-sequence of maps with the left lifting property with respect to p. The lemmanow follows from Lemma 12.2.16 and Theorem 12.1.6.Proposition 12.2.21. Let M be a model category, and let S be a totally or-dered set. If W : S ! M is a functor such that, if s; t 2 S and s � t, thenW s !W t is a co�bration, then, for every s 2 S, the mapW s ! colimt�sW t isa co�bration.Proof. This follows from Proposition 8.2.3 and Proposition 12.2.17.12.3. Small objectsDefinition 12.3.1. Let C be a cocomplete category and let D be a subcategoryof C.1. If � is a cardinal, then an object W in C is �-small relative to D if, for everyregular cardinal (see De�nition 12.1.12) � � � and every �-sequence (seeDe�nition 12.2.1)X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)in C such that the map X� ! X�+1 is in D for every ordinal � such that� + 1 < �, the map of sets colim�<� C(W;X�) ! C(W; colim�<�X�) is anisomorphism.2. An object is small relative to D if it is �-small relative to D for some cardinal�, and it is small if it is small relative to C.Example 12.3.2. In the category SS(�), every simplicial set with �nitely manynondegenerate simplices is @0-small relative to the subcategory of inclusions ofsimplicial sets (where @0 is the �rst in�nite cardinal).Example 12.3.3. LetX be a �nite cell complex in Top(�) (see De�nition 2.2.1).Corollary 2.2.7 implies X is @0-small relative to the subcategory of inclusions ofcell complexes (where @0 is the �rst in�nite cardinal).Example 12.3.4. Let X be an object of SS(�). If � is the �rst in�nite cardinalgreater than the cardinal of the set of nondegenerate simplices of X, then X is�-small relative to the subcategory of inclusions (see Proposition 12.1.15). Thus,every simplicial set is small relative to the subcategory of inclusions.Example 12.3.5. Let X be a cell complex in Top(�) (see De�nition 2.2.1). If� is the �rst in�nite cardinal greater than the cardinal of the set of cells of X (seeProposition 12.1.15), then Proposition 2.2.4 implies that X is �-small relative toDraft: August 12, 1997



12.3. SMALL OBJECTS 183the subcategory of relative cell complexes. Thus, every cell complex is small relativeto the subcategory of relative cell complexes.Lemma 12.3.6. If C is a cocomplete category, D is a subcategory of C, and Iis a set of objects in C that are small relative to D, then there is a cardinal � suchthat every element of I is �-small relative to D.Proof. For every object A of I let �A be a cardinal such that A is �A-smallrelative to D. If we let � be the union SA2I �A, then every object of I is �-smallrelative to D.Proposition 12.3.7. Let C be a cocomplete category and let D be a subcate-gory of C. If � is a cardinal and X is an object in C that is �-small relative to D,then any retract of X is �-small relative to D.Proof. Let i : W ! X and r : X ! W be maps such that ri = 1W . If � is aregular cardinal such that � � � and Z0 ! Z1 ! Z2 ! � � � ! Z� ! � � � (� < �) isa �-sequence in D, then we have the commutative diagramcolim�<� C(W;Z�)�� colim r� // 1colimC(W;Z�) ++colim�<� C(X;Z�)�� colim i� // colim�<� C(W;Z�)��C(W; colim�<� Z�) r� // 1C(W;colimZ�) 33C(X; colim�<� Z�) i� // C(W; colim�<� Z�)Thus, the map colim�<� C(W;Z�)! C(W; colim�<� Z�) is a retract of the isomor-phism colim�<� C(X;Z�)! C(X; colim�<� Z�), and is thus an isomorphism.Proposition 12.3.8. Let C be a cocomplete category and let D be a subcate-gory of C. If I is a small category andW : I! C is a diagram in C such thatW i issmall relative to D for every object i in I, then colimi2IW i is small relative to D.Proof. Let  be a cardinal such that W i is -small relative to D for everyobject i in I (see Lemma 12.3.6), let � be the cardinal of the set of morphismsin I, and let � be the �rst cardinal greater than both  and �; we will show thatcolimi2IW i is �-small relative to D.Let � be a regular cardinal such that � � �, and letX0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)be a �-sequence in C such that the map X� ! X�+1 is in D for all � < �.If we have a map f : colimi2IW i ! colim�<�X� , then for every object j in Ithe composition of f with the natural map W j ! colimi2IW i de�nes a mapfj : W j ! colim�<�X� . Since W j is small relative to D and � is a large enoughregular cardinal, there exists an ordinal �j < � such that fj factors through X�j .If we let ~� = Sj2Ob I �j , then (since � is a regular cardinal) ~� < �, and the dottedDraft: August 12, 1997



184 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONarrow ~gj exists in the diagram W j fj ##GGGGGGGGG~gj ��X~� // colim�<� X�for every object j in I.If s : j ! k is a morphism in I, then the compositionW j W s��!W k ~gk�! X~� neednot equal the map ~gj : W j ! X~� , but their compositions with the natural mapX~� ! colim�<�X� are equal. Since the natural map of sets colim�<� C(W j ; X�)!C(W j; colim�<�X�) is an isomorphism, there must exist an ordinal �̂s < � suchthat their compositions with the map X~� ! X�̂s are equal. If we let �̂ =S(s : j!k)2I �̂s, then (since � is a regular cardinal) we have �̂ < �. If, for everyobject j of I, we let ĝj equal the composition W j ~gj�! X~� ! X�̂ , then for everymorphism s : j ! k in I the triangleW j Ws //ĝj !!CCCCCCCC W k̂gk��X�̂commutes, and so the ĝj de�ne a map g : colimi2IW i ! X�̂ whose compositionwith the natural map X�̂ ! colim�<�X� equals f . Thus, the mapcolim�<� C(colimi2I W i; X�)! C(colimi2I W i; colim�<� X�)is surjective.To show that that map is also injective, let g0 : colimi2IW i ! X�� be a mapwhose composition with the natural map X�� ! colim�<�X� equals f . For everyobject j in I the compositionsW j ! colimi2I W i g�!X�̂ ! colim�<� X�and W j ! colimi2I W i g0�! X�� ! colim�<� X�are equal, and so there exists an ordinal �j < � such that the compositionsW j ! colimi2I W i g�! X�̂ ! X�jand W j ! colimi2I W i g0�! X�� ! X�jare equal. If we let � = Sj2Ob(I)�j , then � < �, and the compositions colimi2IW i !X�̂ ! X� and colimi2IW i ! X�� ! X� are equal, and so the mapcolim�<� C(colimi2I W i; X�)! C(colimi2I W i; colim�<� X�)is an isomorphism.Draft: August 12, 1997



12.4. THE SMALL OBJECT ARGUMENT 185Corollary 12.3.9. Let C be a cocomplete category, let D be a subcategory ofC, and let I be a set of maps in C whose domains and codomains are small relativeto D. If X is small relative to D and the map X ! Y is a trans�nite compositionof pushouts of elements of I, then Y is small relative to D.Proof. This follows from Proposition 12.3.8.12.4. The small object argumentDefinition 12.4.1. Let C be a category, and let I be a set of maps in C.1. The subcategory of I-injectives is the subcategory of maps that have theright lifting property (see De�nition 8.2.1) with respect to every element ofI.2. The subcategory of I-co�brations is the subcategory of maps that have theleft lifting property (see De�nition 8.2.1) with respect to every I-injective.An object is I-co�brant if the map to it from the initial object of C is anI-co�bration.Remark 12.4.2. The term I-injective comes from the theory of injective classes([32]). The map p : X ! Y is an I-injective if and only if, in the category (C #Y )of objects over Y , the object p is injective relative to the class of maps whose imageunder the forgetful functor (C #Y )! C is an element of I.Example 12.4.3. If I is the set of inclusions @�[n] ! �[n] in SS, then theI-injectives are the trivial �brations, and the I-co�brations are the inclusions ofsimplicial sets (see Proposition 8.2.3).Example 12.4.4. If J is the set of inclusions �[n; k]! �[n] in SS, then the J-injectives are the Kan �brations, and the J-co�brations are the trivial co�brations(see Proposition 8.2.3).Proposition 12.4.5. Let C be a category, and let J and K be sets of maps inC. If the subcategory of J-injectives equals the subcategory of K-injectives, thenthe subcategory of J-co�brations equals the subcategory of K-co�brations.Proof. This follows directly from the de�nitions.Definition 12.4.6. If C is a category that is closed under small colimits andI is a set of maps in C, then1. the subcategory of relative I-cell complexes (also known as the subcategoryof regular I-co�brations) is the subcategory of maps that can be constructedas a trans�nite composition (see De�nition 12.2.2) of pushouts (see De�ni-tion 8.2.10) of elements of I,2. an object is an I-cell complex if the map to it from the initial object of C isa relative I-cell complex, and3. a map is an inclusion of I-cell complexes if it is a relative I-cell complexwhose domain is an I-cell complex.Remark 12.4.7. Note that De�nition 12.4.6 de�nes a relative I-cell complexto be a map that can be constructed as as trans�nite composition of pushouts ofelements of I, but it does not assume that there is any preferred such construction.In De�nition 12.5.3 we de�ne a presented relative I-cell complex to be a relativeI-cell complex together with a choice of such a construction. Draft: August 12, 1997



186 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONProposition 12.4.8. If C is a category and I is a set of maps in C, then everyrelative I-cell complex is an I-co�bration (see De�nition 12.4.1).Proof. This follows from Lemma 8.2.5 and Lemma 12.2.16.Proposition 12.4.9. If M is a category and I is a set of maps in M, then aretract of a relative I-cell complex is an I-co�bration.Proof. This follows from Proposition 12.4.8 and Lemma 8.2.7.Definition 12.4.10. Let M be a cocomplete category and let I be a set ofmaps in M.1. If � is a cardinal, then an object is �-small relative to I if it is �-smallrelative to the subcategory of relative I-cell complexes (see De�nition 12.3.1and De�nition 12.4.6).2. An object is small relative to I if it is �-small relative to I for some cardinal�.Definition 12.4.11. If M is a category and I is a set of maps in M, thenwe will follow D. M. Kan and say that I permits the small object argument if thedomains of the elements of I are small relative to I (see De�nition 12.4.10 andDe�nition 12.4.6).Proposition 12.4.12 (The small object argument). If C is a cocomplete cat-egory and I is a set of maps in C that permits the small object argument (seeDe�nition 12.4.11), then there is a functorial factorization of every map in C intoa relative I-cell complex (see De�nition 12.4.6) followed by an I-injective (see Def-inition 12.4.1).Proof. Lemma 12.3.6 implies that we can choose a regular cardinal � suchthat every domain of an element of I is �-small relative to the subcategory ofrelative I-cell complexes. If g : X ! Y is a map in C, then we will factor g asX j�! EI p�! Y , where j is the trans�nite composition of a �-sequenceX = E0 // p0 ((RRRRRRRRRRRRRRRR E1 //p1   AAAAAAAA E2 //p2�� � � � // E� //p�vvnnnnnnnnnnnnnnn � � � (� < �)Yin which each E� ! E�+1 is a pushout of a coproduct of elements of I, eachE� comes with a map p� : E� ! Y such that all the triangles commute, andp = colim�<� p�.Draft: August 12, 1997



12.4. THE SMALL OBJECT ARGUMENT 187We begin by letting E0 = X and letting p0 : E0 ! Y equal g. Given E�, wehave the solid arrow diagrama(Ai!Bi)2IM(Ai;E� )�M(Ai;Y )M(Bi;Y )Ai //�� E� //p� �� E�+1p�+1��a(Ai!Bi)2IM(Ai;E� )�M(Ai;Y )M(Bi;Y )Bi // 77Yand we let E�+1 be the pushout (`Bi) q(`Ai) E�. If  is a limit ordinal, welet E = colim�< E�, and we let EI = colim�<� E� . The construction of thefactorization X ! EI ! Y makes it clear that it is functorial. Proposition 12.2.5,Lemma 8.2.11, and Lemma 12.2.11 imply that X ! EI is a relative I-cell complex,and so it remains only to show that EI ! Y is an I-injective.Given an element A! B of I and a solid arrow diagramA //�� EI��B //>> Y(12.4.13)we must show that the dotted arrow exists. Since EI = colim�<� E� and A is�-small relative to I, the natural map of sets colim�<�M(A;E�)!M(A;EI) is anisomorphism. Thus, the map A ! EI factors through E� ! EI for some � < �,and we have the solid arrow diagramA //�� E� //�� E�+1 //||yyyyyyyy EIuulllllllllllllllllB // 66YThe construction of E�+1 implies that the dotted arrow exists, and this dottedarrow de�nes the dotted arrow in Diagram 12.4.13.Definition 12.4.14. Let C be a cocomplete category, let I be a set of maps inC, and let � be an ordinal. If we apply the construction in the proof of Proposi-tion 12.4.12 to a map g : X ! Y using the set I and the ordinal � to obtain thefactorization X ! EI ! Y , then we will call EI the object obtained by applyingthe small object factorization with the set I and the ordinal � to the map g.Proposition 12.4.15. Let C be a cocomplete category, let I be a set of maps inC, and let � be an ordinal. If the map g : X ! Y is a retract of the map ~g : eX ! eYand we apply the small object factorization to both g and ~g using the set I and theordinal � (see De�nition 12.4.14), then the factorization X ! EI ! Y obtainedfrom g is a retract of the factorization eX ! eEI ! eY obtained from ~g.Proof. At each step in the construction of EI and eEI , the factorization X !E� ! Y is a retract of the factorization eX ! eE� ! eY . Draft: August 12, 1997



188 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONCorollary 12.4.16. Let C be a cocomplete category and let I be a set of mapsin C. If � is a regular cardinal such that the domains of the elements of I are �-small relative to I, then there is a functorial factorization of every map in C intothe composition of a �-sequence of pushouts of coproducts of elements of I followedby an I-injective.Proof. This follows from the proof of Proposition 12.4.12.Corollary 12.4.17. Let C be a cocomplete category and let I be a set of mapsin C that permits the small object argument (see De�nition 12.4.11). If g : X ! Yis a map with the left lifting property (see De�nition 8.2.1) with respect to everyI-injective (see De�nition 12.4.1), then g is a retract of a relative I-cell complex.Proof. If we apply the factorization of Proposition 12.4.12 to g, we obtainX j�! EI p�! Y in which j is a relative I-cell complex and p is an I-injective. Theresult now follows from the retract argument (see Proposition 8.2.2).Corollary 12.4.18. If C is a cocomplete category, I is a set of maps in Cthat permits the small object argument, and g : X ! Y is an I-co�bration (seeDe�nition 12.4.1), then g is a retract of a relative I-cell complex.Proof. This follows from Corollary 12.4.17.Lemma 12.4.19. Let C be a cocomplete category, let I be a set of maps in Mthat permit the small object argument, and let � be a regular cardinal such thatthe domain of every element of I is �-small relative to I (see Lemma 12.3.6). If� is an ordinal and X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �) is a �-sequenceof I-co�brations, then there is a �-sequence eX0 ! eX1 ! eX2 ! � � � ! eX� ! � � �(� < �) of relative I-cell complexes and maps of �-sequencesX0 �0 //i0 �� X1 �1 //i1 �� X2 �2 //i2 �� � � � // X� �� //i� �� � � �eX0 �0 //r0 �� eX1 �1 //r1 �� eX2 �2 //r2 �� � � � // eX� �� //r� �� � � �X0 �0 // X1 �1 // X2 �2 // � � � // X� �� // � � �(12.4.20)such that, for every � < �,1. the composition r�i� is the identity map of X� , and2. the map �� : eX� ! eX�+1 is the composition of a �-sequence of pushouts ofcoproducts of elements of I.Proof. We let eX0 = X0, and we let both i0 and r0 be the identity map ofX0. If � is an ordinal such that � + 1 < � and we've de�ned the sequence througheX� , then we apply the factorization of Corollary 12.4.16 to the map ��r� : eX� !X�+1 to obtain eX� ���! eX�+1 r�+1���! X�+1, in which �� is the composition of a�-sequence of pushouts of coproducts of elements of I and r�+1 is an I-injective.Draft: August 12, 1997



12.5. SUBCOMPLEXES OF RELATIVE I-CELL COMPLEXES 189Since r�+1��i� = ��r�i� = ��, we now have the solid arrow diagramX� �� i� //�� �� eX�+1r�+1��X�+1i�+1 ;;X�+1in which �� is an I-co�bration and r�+1 is an I-injective, and so there exists adotted arrow i�+1 such that i�+1�� = ��i� and r�+1i�+1 = 1X�+1 .For every limit ordinal  such that  < �, we let eX = colim�< eX� , i =colim�< i� , and r = colim�<� r�.Theorem 12.4.21. Let C be a cocomplete category and let I be a set of mapsin C that permits the small object argument. IfW is an object that is small relativeto I, then it is small relative to the subcategory of all I-co�brations.Proof. Let � be a cardinal such thatW is �-small relative to I. Lemma 12.3.6implies that there is a cardinal � such that the domain of every element of I is �-small relative to I. If � is the �rst cardinal greater than both � and �, then we willshow that W is �-small relative to the subcategory of I-co�brations.Let � be a regular cardinal such that � � � and let X0 ! X1 ! X2 ! � � � !X� ! � � � (� < �) be a �-sequence of I-co�brations. Lemma 12.4.19 implies thatthere is a �-sequence eX0 ! eX1 ! eX2 ! � � � ! eX� ! � � � (� < �) of relative I-cellcomplexes and maps of �-sequences as in Diagram 12.4.20 satisfying the conclusionof Lemma 12.4.19. Proposition 12.2.13 implies that, after interpolations, the �-sequence eX0 ! eX1 ! eX2 ! � � � ! eX� ! � � � (� < �) is a �-sequence of relativeI-cell complexes, and so Proposition 12.2.10 and Corollary 14.4.11 imply that themap of sets colim�<�M(W; eX�) ! M(W; colim�<� eX�) is an isomorphism. Sincethe map of sets colim�<�M(W;X�) ! M(W; colim�<�X�) is a retract of thisisomorphism, it is also an isomorphism.12.5. Subcomplexes of relative I-cell complexesIfM is a cocomplete category and I is a set of maps inM, then a relative I-cellcomplex is a map that can be constructed as a trans�nite composition of pushoutsof coproducts of elements of I (see De�nition 12.4.6 and Proposition 12.2.12). Toconsider \subcomplexes" of a relative I-cell complex, we need to choose a \presen-tation" of it (see De�nition 12.5.2), i.e., a particular such construction. In De�-nition 12.5.3, we de�ne a presented relative I-cell complex to be a relative I-cellcomplex together with a chosen presentation.12.5.1. Presentations of relative I-cell complexes.Definition 12.5.2. Let M be a cocomplete category and let I be a set ofmaps in M. If f : X ! Y is a relative I-cell complex (see De�nition 12.4.6), thena presentation of f is a pair consisting of a �-sequenceX = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)(for some ordinal �) and a sequence of ordered triples�(T � ; e�; h�)	�<�such that Draft: August 12, 1997



190 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITION1. the composition of the �-sequence is isomorphic to f ,2. every T � is a set,3. every e� is a function e� : T � ! I,4. for every � < �, if i 2 T � and e�i is the element Ci ! Di of I, then h�i is amap h�i : Ci ! X� , and5. every X�+1 is the pushoutaT� Ci //` h�i �� aT� Di��X� // X�+1:If the map f : ; ! Y (where ; is the initial object ofM) is a relative I-cell complex,then a presentation of f will also be called a presentation of Y .Definition 12.5.3. If M is a cocomplete category and I is a set of maps inM, then a presented relative I-cell complex is a relative I-cell complex f : X ! Ytogether with a particular presentation �X = X0 ! X1 ! X2 ! � � � ! X� !� � � (� < �); fT �; e�; h�g�<�� of it (see De�nition 12.5.2). A presented relativeI-cell complex in which X = ; (the initial object of M) will be called a presentedI-cell complex.Definition 12.5.4. Let M be a cocomplete category, let I be a set of mapsin M, and let (f : X ! Y;X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� <�); fT �; e�; h�g�<�) be a presented relative I-cell complex (see De�nition 12.5.3).1. The presentation ordinal of f is �.2. The set of cells of f is `�<� T �.3. The size of f is the cardinal of the set of cells of f .4. If e is a cell of f , the presentation ordinal of e is the ordinal � such thate 2 T �.5. If � < �, then the �-skeleton of f is X� .12.5.5. Subcomplexes of relative I-cell complexes.Definition 12.5.6. IfM is a cocomplete category, I is a set of maps inM, and(f : X ! Y;X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<�) isa presented relative I-cell complex, then a subcomplex of f consists of a sequenceof ordered triples f( eT � ; ~e�; ~h�)g�<� such that1. every eT � is a subset of T � , and ~e� is the restriction of e� to eT �,2. there is a �-sequenceX = eX0 ! eX1 ! eX2 ! � � � ! eX� ! � � � (� < �)(called the �-sequence associated with the subcomplex) and a map of �-sequences eX0 //�� eX1 //�� eX2 //�� � � �X0 // X1 // X2 // � � �Draft: August 12, 1997



12.5. SUBCOMPLEXES OF RELATIVE I-CELL COMPLEXES 191such that, for every � < � and every i 2 eT �, the map ~h�i : Ci ! eX� is afactorization of the map h�i : Ci ! X� through the map eX� ! X�, and3. every eX�+1 is the pushoutaeT� Ci //q~h�i �� aeT� Di��eX� // eX�+1:Remark 12.5.7. Although a subcomplex of a cell complex is de�ned to bea sequence of triples f(eT �; ~e�; ~h�)g�<� (see De�nition 12.5.6), we will often abuselanguage and refer to the �-sequence associated with the subcomplex, or the colimitof that �-sequence, as the subcomplex.12.5.8. The case of monomorphisms.Proposition 12.5.9. If M is a cocomplete category and I is a set of maps inM such that relative I-cell complexes are monomorphisms, then a subcomplex of apresented relative I-cell complex is entirely determined by its set of cells f eT �g�<�(see De�nition 12.5.6).Proof. The de�nition of a subcomplex implies that the maps eX� ! X� are allinclusions of subcomplexes. Since inclusions of subcomplexes are monomorphisms,there is at most one possible factorization ~h�i of each h�i through eX� ! X� .Proposition 12.5.10. Let M be a cocomplete category and let I be a set ofmaps in M such that relative I-cell complexes are monomorphisms. If (f : X !Y;X = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<�) is a pre-sented relative I-cell complex, then an arbitrary subcomplex of f can be constructedby the following inductive procedure:1. Choose an arbitrary subset eT 0 of T 0.2. If � < � and we have de�ned feT g<�, then we have determined the objecteX� and the map eX� ! X� (where eX� is the object that appears in the�-sequence associated to the subcomplex). Consider the setfi 2 T � �� h�i : Ci ! X� factors through eX� ! X�gChoose an arbitrary subset eT � of this set. For every i 2 eT �, there is aunique map ~h�i : Ci ! eX� that makes the diagramCi h�i   AAAAAAAA~h�i ��eX� // X� Draft: August 12, 1997



192 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONcommute. We let eX�+1 be the pushoutaeT� Ci //` ~h� �� aeT� Di��eX� // eX�+1Proof. This follows directly from the de�nitions.Remark 12.5.11. If M is a cocomplete category, I is a set of maps in M suchthat relative I-cell complexes are monomorphisms, and (f : X ! Y;X = X0 !X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<�) is a presented relativeI-cell complex, then not every sequence feT �g�<� of subsets of fT �g�<� determinesa subcomplex of f . Given such a sequence feT �g�<�, it determines a subcomplex off if and only if it satis�es the inductive conditions described in Proposition 12.5.10.12.6. CompactnessDefinition 12.6.1. Let M be a cocomplete model category and let I be a setof maps in M.1. If � is a cardinal, then an object W in M is �-compact relative to I if, forevery presented relative I-cell complex f : X ! Y (see De�nition 13.2.4),every map from W to Y factors through a subcomplex of f of size (seeDe�nition 12.5.4) at most �.2. An object W in M is compact relative to I if it is �-compact relative to Ifor some cardinal �.Example 12.6.2. If M = SS(�) and I is the set of inclusions f@�[n]! �[n] ��n � 0g, then every �nite simplicial set is !-compact relative to I (where ! is thecountable cardinal). If � is an in�nite cardinal and X is a simplicial set of size �,then X is �-compact relative to I.Example 12.6.3. If M = Top(�) and I is the set of inclusions ���@�[n]�� !���[n]�� �� n � 0	, then Corollary 2.2.7 implies that every �nite cell complex is !-compact relative to I (where ! is the countable cardinal). If � is an in�nite cardinaland X is a cell complex of size �, then Corollary 2.2.7 implies that X is �-compactrelative to I.Proposition 12.6.4. Let M be a cocomplete category and let I be a set ofmaps inM. If � is a cardinal and an object W is �-compact relative to I, then anyretract of W is �-compact relative to I.Proof. Let i : V ! W and r : W ! V be maps such that ri = 1V . Iff : X ! Y is a relative I-cell complex and f : V ! Y is a map, then the mapfr : W ! Y must factor through some subcomplex Z of Y of size at most �. Thus,fri : V ! Y factors through Z, and fri = f .Proposition 12.6.5. Let M be a cocomplete category and let I be a set ofmaps in M. If � and � are cardinals such that � < �, then any object that is�-compact relative to I is also �-compact relative to I.Proof. This follows directly from the de�nitions.Draft: August 12, 1997



12.7. EFFECTIVE MONOMORPHISMS 193Proposition 12.6.6. If M is a cocomplete category, I is a set of maps in M,and S is a set of objects that are compact relative to I, then there is a cardinal �such that every element of S is �-compact relative to I.Proof. For each element X of S, let �X be a cardinal such that X is �X-compact relative to I. If � is the cardinal of SX2S �X , then Proposition 12.6.5implies that every element of S is �-compact relative to I.Proposition 12.6.7. LetM be a cocomplete category and let I be a set of mapsinM such that relative I-cell complexes are monomorphisms. If � is a cardinal andW is an object that is �-compact relative to I (see De�nition 12.6.1), then W is(�+ 1)-small relative to I.Proof. Let � be a regular cardinal such that � > �, and let X0 ! X1 !X2 ! � � � ! X� ! � � � (� < �) be a �-sequence of inclusions of relative I-cellcomplexes. Since inclusions of relative I-cell complexes are monomorphisms, themap colim�<�M(W;X�)!M(W; colim�<�X�) is injective, and it remains only toshow that it is surjective.IfW ! colim�<�X� is a map, then (since W is �-compact) there is a subcom-plex K of colimX�, of size at most �, such that the map factors through K. Foreach cell of K there is an ordinal � < � such that that cell contained in X� . Since� is a regular cardinal, the union � of these � is less than �, and K is contained inX�. 12.7. E�ective monomorphismsDefinition 12.7.1. Let M be a category that is closed under pushouts. Themap f : A ! B is an e�ective monomorphism if f is the equalizer of the pair ofnatural inclusions B � B qA B.Example 12.7.2. IfM is the category of sets, then the class of e�ective monomor-phisms is the class of injective maps.Proposition 12.7.3. If M is a category that is closed under pushouts, then amap is an e�ective monomorphism if and only if it is the equalizer of some pair ofparallel maps.Proof. If f : A ! B is an e�ective monomorphism, then it is de�ned to bethe equalizer of a particular pair of maps. Conversely, if f : A! B is the equalizerof the maps B g�h W , then the maps g and h factor asB i0�i1 B qA B gqh��!W;and we must show that f is the equalizer of i0 and i1. Since (g q h)i0 = g and(g q h)i1 = h, this follows directly from the de�nitions.Remark 12.7.4. An e�ective monomorphism is the dual to what Quillen hascalled an e�ective epimorphism (see [46, Part II, page 4.1]). E�ective epimorphismshave also been called regular epimorphisms (see [7, De�nition 4.3.1]).Proposition 12.7.5. An e�ective monomorphism is a monomorphism.Draft: August 12, 1997



194 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITIONProof. Let f : A ! B be an e�ective monomorphism, and let g : W ! Aand h : W ! A be maps such that fg = fh. If i0 and i1 are the natural mapsB ! B qAB, then i0fg = i0fh and i0fg = i1fh, Since f is the equalizer of i0 andi1, this implies that g = h.
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CHAPTER 13Co�brantly generated model categories13.1. IntroductionA model category structure on a category consists of three classes of maps(weak equivalences, �brations, and co�brations) satisfying �ve axioms (see De�ni-tion 8.1.2). Any two of these classes determine the third, but there are other waysto determine the three classes of maps as well. For example, the �brations areexactly the maps with the right lifting property (see De�nition 8.2.1) with respectto all trivial co�brations, and so the class of trivial co�brations determines the classof �brations. Similarly, the trivial �brations are exactly the maps with the rightlifting property with respect to all co�brations, and so the class of co�brations de-termines the class of trivial �brations. Since the weak equivalences are exactly themaps that can be written as the composition of a trivial co�bration followed by atrivial �bration, this shows that the classes of co�brations and of trivial co�bra-tions entirely determine the model category structure. In some model categories,this leads to a convenient description of the model category structure.For example, the standard model category structure on the category of simpli-cial sets can be described as follows:� A map is a co�bration if it is a retract of a trans�nite composition (seeDe�nition 12.2.2) of pushouts of the maps @�[n]! �[n] for all n � 0.� A map is a trivial �bration if it has the right lifting property with respectto the maps @�[n]! �[n] for all n � 0.� A map is a trivial co�bration if it is a retract of a trans�nite composition(see De�nition 12.2.2) of pushouts of the maps �[n; k]! �[n] for all n � 0and 0 � k � n.� A map is a �bration if it has the right lifting property with respect to themaps �[n; k]! �[n] for all n � 0 and 0 � k � n.� A map is a weak equivalence if it is the composition of a trivial co�brationfollowed by a trivial �bration.These ideas lead to the notion (due to D. M. Kan) of a co�brantly generatedmodel category (see De�nition 13.2.1).13.2. Co�brantly generated model categoriesDefinition 13.2.1. A co�brantly generated model category is a model categoryM such that1. there exists a set I of co�brations (called a set of generating co�brations)that permits the small object argument (see De�nition 12.4.11) and suchthat a map is a trivial �bration if and only if it has the right lifting propertywith respect to every element of I, and195 Draft: August 12, 1997



196 13. COFIBRANTLY GENERATED MODEL CATEGORIES2. there exists a set J of trivial co�brations (called a set of generating trivialco�brations) that permits the small object argument and such that a mapis a �bration if and only if it has the right lifting property with respect toevery element of J .Remark 13.2.2. Although the set I of generating co�brations is not part ofthe structure of a co�brantly generated model category, we will often assume thatsome particular set I of generating co�brations has been chosen.Proposition 13.2.3. If M is a co�brantly generated model category and I isa set of generating co�brations for M, then there is a regular cardinal � such thatthe domain of every element of I is �-small relative to I.Proof. This follows from Lemma 12.3.6.Definition 13.2.4. If M is a co�brantly generated model category with gen-erating co�brations I, then a relative I-cell complex (see De�nition 12.4.6) will becalled a relative cell complex, and an I-cell complex (see De�nition 12.4.6) will becalled a cell complex. If ; ! X (where ; is the initial object of M) is a �nite com-position of pushouts of elements of I, then X will be called a �nite cell complex. IfX is a cell complex and g : X ! Y is a relative I-cell complex, then g will be calledan inclusion of a subcomplex.We will show in Proposition 13.2.9 that in a co�brantly generated model cate-gory the class of co�brations equals the class of retracts of relative cell complexes,and the class of trivial co�brations equals the class of retracts of relative J-cellcomplexes.Example 13.2.5. The model category SS is co�brantly generated. The gener-ating co�brations are the inclusions @�[n] ! �[n] for n � 0, and the generatingtrivial co�brations are the inclusions �[n; k]! �[n] for n > 0 and 0 � k � n.Example 13.2.6. The model category SS� is co�brantly generated. The gener-ating co�brations are the inclusions @�[n]+ ! �[n]+ for n � 0, and the generatingtrivial co�brations are the inclusions �[n; k]+! �[n]+ for n > 0 and 0 � k � n.Example 13.2.7. The model category Top is co�brantly generated. The gener-ating co�brations are the inclusions ��@�[n]��! ���[n]�� for n � 0, and the generatingtrivial co�brations are the inclusions ���[n; k]��! ���[n]�� for n > 0 and 0 � k � n.Example 13.2.8. The model category Top� is co�brantly generated. The gen-erating co�brations are the inclusions ��@�[n]��+ ! ���[n]��+ for n � 0, and thegenerating trivial co�brations are the inclusions ���[n; k]��+ ! ���[n]��+ for n > 0and 0 � k � n.Proposition 13.2.9. Let M be a co�brantly generated model category (seeDe�nition 13.2.1) with generating co�brations I and generating trivial co�brationsJ . 1. The class of co�brations of M equals the class of retracts of relative I-cellcomplexes (see De�nition 12.4.6).2. The class of trivial �brations of M equals the class of I-injectives (see De�-nition 12.4.1).3. The class of trivial co�brations of M equals the class of retracts of relativeJ-cell complexes.Draft: August 12, 1997



13.2. COFIBRANTLY GENERATED MODEL CATEGORIES 1974. The class of �brations of M equals the class of J-injectives.Proof. This follows from Proposition 8.2.3, Proposition 12.4.9, and Corol-lary 12.4.17.Proposition 13.2.10. Let M be a co�brantly generated model category withgenerating co�brations I. If W is an object that is small relative to I, then it issmall relative to the subcategory of all co�brations.Proof. This follows from Theorem 12.4.21.Corollary 13.2.11. Let M be a co�brantly generated model category withgenerating co�brations I. If the codomains of the elements of I are small relativeto the I, then every co�brant object ofM is small relative to the subcategory of allco�brations.Proof. This follows fromCorollary 12.3.9, Corollary 13.2.13, Proposition 12.3.7,and Proposition 13.2.10.Corollary 13.2.12. LetM be a co�brantly generated model category. If I is aset of generating co�brations forM and � is a regular cardinal such that the domainof every element of I is �-small relative to I, then there is a functorial factorizationof every map in M into a co�bration that is the composition of a �-sequence ofpushouts of coproducts of elements of I followed by a trivial �bration.Proof. This follows from Corollary 12.4.16 and Proposition 13.2.9.Corollary 13.2.13. If M is a co�brantly generated model category with gen-erating co�brations I, then every co�brant object inM is a retract of a cell complex(see De�nition 13.2.4).Proof. This follows from Proposition 13.2.9.Proposition 13.2.14. Let M be a co�brantly generated model category, andlet I be a set of generating co�brations for M. If J is a set of generating trivialco�brations forM, then there is a set eJ of generating trivial co�brations forM suchthat1. there is a bijection between the sets J and eJ under which correspondingelements have the same domain, and2. the elements of eJ are relative I-cell complexes.Proof. Factor each element j : C ! D of J as C ~|�! eD p�! D where ~| isa relative I-cell complex and p is a trivial �bration (see Corollary 13.2.12). Theretract argument (see Proposition 8.2.2) implies that j is a retract of ~|. Since j andp are weak equivalences, ~| is also a weak equivalence, and so ~| is a trivial co�bration.Thus, if we let eJ = f~|gj2J , then eJ satis�es conditions 1 and 2, and it remains onlyto show that eJ is a set of generating trivial co�brations for M. Proposition 12.4.5implies that it is su�cient to show that the subcategory of eJ-injectives equals thesubcategory of J-injectives (i.e., of �brations).Since every ~| is a trivial co�bration, every J-injective is a eJ-injective (see Prop-osition 8.2.3). Since every j is a retract of ~|, Lemma 8.2.7 implies that everyeJ-injective is a J-injective. Draft: August 12, 1997



198 13. COFIBRANTLY GENERATED MODEL CATEGORIESProposition 13.2.15. IfM is a co�brantly generated model category with gen-erating co�brations I, then every object X has a �brant co�brant approximation~{ : eX ! X such that eX is a cell complex.Proof. This follows from Proposition 12.4.12, Proposition 12.4.8, and Prop-osition 13.2.9.Proposition 13.2.16. If M is a co�brantly generated model category withgenerating co�brations I, then every map g : X ! Y has a co�brant approxi-mation ~g : eX ! eY such that ~g : eX ! eY is an inclusion of a subcomplex and bothiX : eX ! X and iY : eY ! Y are trivial �brations.Proof. Choose a co�brant approximation iX : eX ! X such that eX is a cellcomplex and iX is a trivial �bration (see Proposition 13.2.15). We can then factorthe composition eX iX�! X g�! Y as eX ~g�! eY iY�! Y where ~g is a relative I-cellcomplex and iY is a trivial �bration (see Proposition 12.4.12). The result nowfollows from Proposition 12.4.8 and Proposition 13.2.9.13.3. Recognizing co�brantly generated model categoriesTheorem 13.3.1 (D. M. Kan). LetM be a category that is closed under smalllimits and colimits and let W be a class of maps in M that is closed under retractsand satis�es the \two out of three" axiom (axiom M2 of De�nition 8.1.2). If I andJ are sets of maps in M such that1. both I and J permit the small object argument (see De�nition 12.4.11),2. every J-co�bration is both an I-co�bration and an element of W ,3. every I-injective is both a J-injective and an element of W , and4. one of the following two conditions holds:(a) a map that is both an I-co�bration and an element of W is a J-co�bration, or(b) a map that is both a J-injective and an element ofW is an I-injective,then there is a co�brantly generated model category structure (see De�nition 13.2.1)on M in which W is the class of weak equivalences, I is the set of generatingco�brations, and J is the set of generating trivial co�brations.Proof. We de�ne the weak equivalences to be the elements ofW , the co�bra-tions to be the I-co�brations, and the �brations to be the J-injectives. We mustshow that axioms M1 through M5 are satis�ed (see De�nition 8.1.2).Axioms M1 and M2 are part of our assumptions, and axiom M3 follows fromthe assumptions on W , the de�nition of I-co�bration (see De�nition 12.4.1), andLemma 8.2.7.If we apply the small object argument (Proposition 12.4.12) to the set I, thenassumption 3 implies that this satis�es axiom M5 part 1, and if we apply the smallobject argument to the set J , then assumption 2 implies that this satis�es axiomM5 part 2.It remains only to show that axiom M4 is satis�ed. The proof of axiom M4depends on which part of assumption 4 is satis�ed. If assumption 4a is satis�ed,then axiom M4 part 2 is clear. For axiom M4 part 1, if f : X ! Y is both a�bration and a weak equivalence, we can factor it as X g�! Z h�! Y where g is anI-co�bration and h is an I-injective. Axiom M2 and assumption 3 imply that gDraft: August 12, 1997



13.4. COMPACTNESS 199is also a weak equivalence, and so assumption 4a implies that g is a J-co�bration.Since f is a J-injective, the retract argument (Proposition 8.2.2) implies that f isa retract of h, and is thus an I-injective (see Lemma 8.2.7). This proves axiom M4part 1, and so the proof in the case that assumption 4a is satis�ed is complete. Theproof in the case in which assumption 4b is satis�ed is similar.13.4. CompactnessDefinition 13.4.1. LetM be a co�brantly generated model category with gen-erating co�brations I.1. If � is a cardinal, then an object W in M is �-compact if it is �-compactrelative to I (see De�nition 12.6.1).2. An object W in M is compact if there is a cardinal � for which it is �-compact.Example 13.4.2. If M = SS(�), then every �nite simplicial set is !-compact(where ! is the countable cardinal). If � is an in�nite cardinal and X is a simplicialset of size �, then X is �-compact.Example 13.4.3. If M = Top(�), then Corollary 2.2.7 implies that every �nitecell complex is !-compact (where ! is the countable cardinal). If � is an in�nitecardinal and X is a cell complex of size �, then Corollary 2.2.7 implies that X is�-compact.Proposition 13.4.4. Let M be a co�brantly generated model category withgenerating co�brations I. if � is a cardinal and an object W in M is �-compact,then any retract of W is �-compact.Proof. This follows from Proposition 12.6.4.Proposition 13.4.5. Let M be a co�brantly generated model category withgenerating co�brations I. If � and � are cardinals such that � < �, then any objectin M that is �-compact is also �-compact.Proof. This follows directly from the de�nitions.Proposition 13.4.6. IfM is a co�brantly generated model category with gen-erating co�brations I and S is a set of objects that are compact, then there is acardinal � such that every element of S is �-compact.Proof. This follows from Proposition 12.6.6.
Draft: August 12, 1997



Draft: August 12, 1997



CHAPTER 14Diagrams in a co�brantly generated modelcategory14.1. Free cell complexesIn Section 14.2, we will show that there is a model category structure on thecategory of diagrams in a co�brantly generated model category in which the freecell complexes and their retracts are the co�brant objects. The fact that the C-diagram of simplicial sets B(C #�) is a free cell complex (see Corollary 14.6.8) willimply that a map of diagrams that is a weak equivalence of �brant spaces at eachobject of C induces a weak equivalence of the homotopy limits of the diagrams(see Theorem 20.6.10). We will also show that if a diagram of spaces is a freecell complex, then its homotopy colimit is weakly equivalent to its colimit (seeProposition 20.9.1).14.1.1. Free diagrams of sets. In this section, we de�ne free diagrams ofsets. This will be used in the next section to de�ne free diagrams in a category ofdiagrams, which will be used in Section 14.1.23 to de�ne free cell complexes in acategory of diagrams in a co�brantly generated model category.Definition 14.1.2. If C is a small category and � is an object in C, the freeC-diagram of sets generated at position � is the C-diagram of sets F �� for whichF�� (�) = C(�; �)for every object � in C. A free C-diagram of sets is a C-diagram of sets that is acoproduct of C-diagrams of the form F�� .Proposition 14.1.3. If C is a small category and � is an object in C, then, forevery object S of SetC, there is a natural isomorphismSetC(F �� ;S) � S�:Proof. This is the Yoneda lemma (see, e.g., [7, page 11] or [41, page 61]).Example 14.1.4. If C is a small category and S is a set, the free C-diagram ofsets on the set S generated at position � is the C-diagram of sets F�S = `S F�� .Thus, for every object � in C, F �S(�) = as2S C(�; �):Example 14.1.5. The diagram of sets A ! B is free if and only if the mapA! B is an inclusion.Example 14.1.6. The diagram of sets A ! C  B is free if and only if themaps A! C and B ! C are inclusions with disjoint images in C.201 Draft: August 12, 1997



202 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYExample 14.1.7. The diagram of sets A1 ! A2 ! A3 ! � � � is free if and onlyif all of the maps in the diagram are inclusions.Example 14.1.8. The diagram of sets A1  A2  A3  � � � is free if and onlyif all of the maps are inclusions and the inverse limit of the diagram is empty.Example 14.1.9. If a discrete group G is considered to be a category with oneobject and morphisms equal to the elements of G, then a free G-diagram of sets iswhat classically is called a free G-set.Example 14.1.10. If C is a small category and P : C ! Set is the constantdiagram at a point, then P is free if and only if each connected component of Chas an initial object.Example 14.1.11. If � is the simplicial category (see De�nition 16.1.2) andC = �op, then a C-diagram of sets is a simplicial set. The free C-diagram of setsgenerated at position [n] is the simplicial set �[n]. Thus, the set of k-simplices of�[n] equals the set ��[k]; [n]�.Example 14.1.12. If C is the category �op so that F [n]� is �[n] (see Exam-ple 14.1.11), then Proposition 14.1.3 is the statement that, for every simplicial setX, the set SS(�[n]; X) is naturally isomorphic to the set of n-simplices of X.Proposition 14.1.13. If C is a small category and � is an object in C, thenthe functor F�� : Set ! SetC (see Example 14.1.4) is left adjoint to the functorSetC ! Set that evaluates at �, i.e., for every set S and every C-diagram of sets Tthere is a natural isomorphismSetC(F �S ;T ) � Set(S;T �):Proof. This follows from Proposition 14.1.3.14.1.14. Free diagrams. In this section, we de�ne free diagrams in a cate-gory of diagrams (see De�nition 14.1.17). In section Section 14.1.23, we will applythis to the generating co�brations (see De�nition 13.2.1) of a co�brantly generatedmodel category M to obtain the free cells, which are the generating co�brations inthe category of C-diagrams in M.Definition 14.1.15. Let M be a model category. If X is an object in M andS is a set, then by X 
 S we will mean the object in M obtained by taking thecoproduct, indexed by S, of copies of X. Thus,X 
 S �aS X:Definition 14.1.16. If M is a model category, C is a small category, S : C !Set is a diagram of sets, and X is an object in M, then by X 
 S : C!M we willmean the C-diagram in M such that(X 
 S)� = X 
 S�for every object � in C (see De�nition 14.1.15).Definition 14.1.17. If M is a model category, X is an object in M, C is asmall category, and � is an object in C, then the free diagram on X generated at �is the C-diagram X 
 F�� (see De�nition 14.1.16 and De�nition 14.1.2). At everyobject � of C, this is `C(�;�)X.Draft: August 12, 1997



14.1. FREE CELL COMPLEXES 203Proposition 14.1.18. IfM is a model category, C is a small category, and � isan object of C, then the functor � 
 F�� : M !MC (see De�nition 14.1.17) is leftadjoint to the functor MC !M that evaluates at �, i.e., for every object X in Mand every diagram Y in MC, there is a natural isomorphismMC(X 
 F �� ;Y ) �M(X;Y �):Proof. This follows from Proposition 14.1.13.Definition 14.1.19. If C is a small category, let Cdisc be the discrete categorywith objects equal to the objects of C. IfM is a model category and X is an objectin M(Cdisc), we de�ne an object F (X) in MC byF (X) = a�2Ob(C)X� 
 F��(see De�nition 14.1.17), so that, for every object � in C, we have�F (X)�� = a�2Ob(C) aC(�;�)X�:Corollary 14.1.20. If M is a model category and C is a small category, thenthe functor F : M(Cdisc) ! MC of De�nition 14.1.19 is left adjoint to the forgetfulfunctor U : MC !M(Cdisc), i.e., if X is an object in M(Cdisc) and Y is an object inMC, then there is a natural isomorphismMC�F (X);Y � �M(Cdisc)(X ;UY ):Proof. This follows from Proposition 14.1.18.Definition 14.1.21. If C is a small category, let Cdisc be the discrete categorywith objects equal to the objects of C. If S 2 Set(Cdisc), we de�ne a C-diagram ofsets F (S) by F (S) = a�2Ob(C)F�S�(see Example 14.1.4), so that, for every object � in C, we have�F (S)�� = a�2Ob(C) as2S� C(�; �):Theorem 14.1.22. The functor F : Set(Cdisc) ! SetC of De�nition 14.1.21 isleft adjoint to the forgetful functor U : SetC ! Set(Cdisc), i.e., if S 2 Set(Cdisc) andT 2 SetC, there is a natural isomorphismSetC�F (S);T � � Set(Cdisc)(S;UT ):Proof. This follows from Proposition 14.1.13.14.1.23. Free cell complexes. Relative free cell complexes are the analoguesfor diagrams of topological spaces of relative cell complexes for topological spaces(see De�nition 2.2.1). Relative free cell complexes and their retracts will be theco�brations in the model category of C-diagrams in a co�brantly generated modelcategory (see Theorem 14.2.1). We will �rst describe free cells, which will be thegenerating co�brations in this model category (see De�nition 13.2.1).Draft: August 12, 1997



204 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYDefinition 14.1.24. Let C be a small category, and let � be an object in C. IfM is a co�brantly generated model category with generating co�brations I, then afree cell generated at � in MC is a map of the formA
 F�� ! B 
 F ��(see De�nition 14.1.17) where A ! B is an element of I. At every object � in C,this is the map aC(�;�)A! aC(��)B:Example 14.1.25. Let C be a small category and let � be an object in C.� A free cell generated at � in TopC is a map of the form��@�[n]��
 F�� ! ���[n]��
 F ��for some n � 0.� A free cell generated at � in TopC� is a map of the form��@�[n]��+ 
 F�� ! ���[n]��+ 
 F��for some n � 0.� A free cell generated at � in SSC is a map of the form@�[n]
 F�� ! �[n]
 F��for some n � 0.� A free cell generated at � in SSC� is a map of the form@�[n]+ 
 F�� ! �[n]+ 
 F ��for some n � 0.Definition 14.1.26. If M is a model category, J is a set of maps of M, and Cis a small category, then J 
 C will denote the set of maps of MC of the formCj 
 F �� ! Dj 
 F��(see De�nition 14.1.17) where j : Cj ! Dj is a map in J and � is an object in C.Proposition 14.1.27. IfM is a category, C is a small category, and J is a set ofmaps inM, then the map g : X ! Y inMC is a J
C-injective (see De�nition 12.4.1)if and only if g� : X� ! Y � is a J-injective for every object � in C.Proof. This follows from Proposition 14.1.18.Definition 14.1.28. IfM is a model category and C is a small category, then arelative free cell complex inMC is a map that is a trans�nite composition (see De�-nition 12.2.2) of pushouts (see De�nition 8.2.10) of free cells (see De�nition 14.1.24).A free cell complex inMC is a diagramX such that the map from the initial objectof MC to X is a relative free cell complex. An inclusion of free cell complexes is arelative free cell complex whose domain is a free cell complex.The relative free cell complexes and their retracts will be the co�brations inthe model category of C-diagrams in a co�brantly generated model categoryM (seeTheorem 14.2.1).Draft: August 12, 1997



14.3. DIAGRAMS IN A SIMPLICIAL MODEL CATEGORY 20514.2. The model category of C-diagramsTheorem 14.2.1. Let C be a small category, and let M be a co�brantly gen-erated model category (see De�nition 13.2.1) with generating co�brations I andgenerating trivial co�brations J .1. The category MC of diagrams X : C ! M is a co�brantly generated modelcategory in which a map X ! Y is� a weak equivalence if X� ! Y � is a weak equivalence inM for everyobject � in C,� a �bration if X� ! Y � is a �bration in M for every object � in C,and� a co�bration if it is a retract of a trans�nite composition of pushoutsof elements of I 
 C.The generating co�brations of MC are the elements of I 
C, and the gener-ating trivial co�brations are the elements of J 
 C.2. If M is a proper model category (see De�nition 11.1.1), then the modelcategory of part 1 is proper.Proof. For part 1, let W be the class of maps X ! Y such that X� ! Y �is a weak equivalence for all � 2 Ob(C). We will show that the class W and thesets I 
 C and J 
 C satisfy the hypotheses of Theorem 13.3.1.Condition 1 follows from Proposition 14.1.18. Condition 2 holds because itholds for I and J in M and a trans�nite composition of trivial co�brations is atrivial co�bration (see Proposition 12.2.19). Proposition 14.1.27 implies condition 3and condition 4b, and so the proof of part 1 is complete.For part 2, since pushouts and pullbacks in MC are constructed objectwise,and both �brations and weak equivalences are de�ned objectwise, part 2 of De�ni-tion 11.1.1 is clear. Since a map in I 
C is a co�bration at each object of C, part 1of De�nition 11.1.1 is also clear, and the proof of part 2 is complete.14.3. Diagrams in a simplicial model categoryDefinition 14.3.1. Let M be a simplicial model category. If C is a smallcategory, X : C ! M is a C-diagram in M, and K is a simplicial set, then wede�ne C-diagrams X 
 K and XK in M by letting (X 
 K)� = X� 
 K and(XK)� = (X�)K for � 2 Ob(C) and, if (� : �! �0) 2 C, then (X
K)� = X�
1Kand (XK)� = X (1K)� .Definition 14.3.2. Let M be a simplicial model category. If C is a smallcategory and X ;Y : C ! M are C-diagrams in M, then Map(X ;Y ) is de�nedto be the simplicial set whose set of n-simplices is the set of maps of diagramsX 
 �[n] ! Y (see De�nition 14.3.1), and whose face and degeneracy maps areinduced by the standard maps between the �[n].Theorem 14.3.3. If C is a small category and M is a simplicial co�brantlygenerated model category, then the model category structure of Theorem 14.2.1with the simplicial structure of De�nition 14.3.1 and De�nition 14.3.2makesMC asimplicial model category.Proof. De�nition 14.3.1 and De�nition 14.3.2 satisfy axiom M6 (see De�ni-tion 10.1.2) because the constructions are all done objectwise andM is a simplicialmodel category. For axiom M7, Proposition 10.1.8 implies that it is su�cient toDraft: August 12, 1997



206 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYshow that if j : K ! L is a co�bration of simplicial sets and p : X ! Y is a �brationin MC, then XL ! XK �Y K Y L is a �bration that is also a weak equivalence ifeither j or p is a weak equivalence. Since both �brations and weak equivalences inMC are de�ned objectwise, this follows from the assumption that M is a simplicialmodel category, and so the proof is complete.14.4. Overcategories and undercategoriesThe category of simplices of a simplicial set will be de�ned as an overcategory(see De�nition 16.1.11). Overcategories and undercategories will also be used tode�ne a model category structure on a category of diagrams in a model categoryindexed by a Reedy category (see De�nition 16.3.2).Definition 14.4.1. If C and D are categories, F : C! D is a functor, and � isan object of D, then the category (F #�) of objects of C over � is the category inwhich an object is a pair (�; �) where � is an object of C and � is a map F� ! � inD, and a morphism from the object (�; �) to the object (�0; �0) is a map � : � ! �0in C such that the triangle F� F� //�   AAAAAAAA F�0�0~~||||||||�commutes.If C = D and F is the identity functor, then we use (C #�) to denote thecategory (F #�). An object of (C #�) is a map � ! � in C, and a morphism from� ! � to �0 ! � is a map � ! �0 in C such that the triangle� //��>>>>>>>> �0�����������commutes.Definition 14.4.2. If C and D are categories, F : C! D is a functor, and � isan object of D, then the category (� #F) of objects of C under � is the category inwhich an object is a pair (�; �) where � is an object of C and � is a map �! F� inD, and a morphism from the object (�; �) to the object (�0; �0) is a map � : � ! �0in C such that the triangle � �0 !!BBBBBBBB�~~}}}}}}}}F� F� // F�0commutes. The opposite (�#F)op is the category in which an object is a pair (�; �)where � is an object of C and � is a map �! F� in D, and a morphism from theDraft: August 12, 1997



14.4. OVERCATEGORIES AND UNDERCATEGORIES 207object (�; �) to the object (�0; �0) is a map � : �0 ! � in C such that the triangle� �0 !!BBBBBBBB�~~}}}}}}}}F� F�0F�oocommutes.If C = D and F is the identity functor, then we use (� #C) to denote thecategory (�#F). An object of (�#C) is a map �! � in C, and a morphism from�! � to �! �0 is a map � ! �0 in C such that the triangle� ��@@@@@@@����������� // �0commutes. The opposite (� #C)op is the category in which an object is a map� ! � in C, and a morphism from � ! � to � ! �0 is a map �0 ! � in C suchthat the triangle � ��@@@@@@@����������� �0oocommutes.Proposition 14.4.3. If C is a small category and � is an object of C, thenthere is a natural isomorphism of categories(� #C)op � (Cop #�)Proof. An object of (Cop #�) is a map � ! � in C, and a morphism in(Cop #�) from �! � to �! �0 is a map �0 ! � of C such that the triangle� ��@@@@@@@����������� �0oocommutes. An object of (� #C) is a map � ! � in C, and a morphism in (�#C)from �! � to �! �0 is a map � ! �0 in C such that the triangle� ��@@@@@@@����������� // �0commutes. Thus, an object of (� #C)op is a map � ! � in C and a morphism in(� #C)op from �! � to �! �0 is a map �0 ! � such that the triangle� ��@@@@@@@����������� �0oo Draft: August 12, 1997



208 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYcommutes.14.4.4. Co�nal functors.Definition 14.4.5. Let C and D be small categories and let F: C ! D be afunctor.� The functor F is left co�nal (or initial) if for every object � of D the spaceB(F #�) (see De�nition 9.4.1 and De�nition 14.4.1) is contractible.� The functor F is right co�nal (or terminal) if for every object � of D thespace B(� #F) (see De�nition 14.4.2) is contractible.If C is a subcategory of D and F is the inclusion, then if F is left co�nal or rightco�nal we will say that C is, respectively, a left co�nal subcategory or a right co�nalsubcategory of D.We will show in Theorem 19.5.11 that these are the correct notions when con-sidering homotopy limits and homotopy colimits.Definition 14.4.6. Let C and D be small categories and let F: C ! D be afunctor.� The functor F is 0-left co�nal (or 0-initial) if for every object � of D thespace B(F #�) (see De�nition 14.4.1) is non-empty and connected.� The functor F is 0-right co�nal (or 0-terminal) if for every object � of Dthe space B(� #F) (see De�nition 14.4.2) is non-empty and connected.It is classical that these are the proper notions when considering limits andcolimits.Proposition 14.4.7. Let C and D be small categories, and let F: C! D be afunctor.1. If F is left co�nal, then it is 0-left co�nal.2. If F is right co�nal, then it is 0-right co�nal.Proof. This follows directly from the de�nitions.Theorem 14.4.8. Let M be a category that is closed under limits. If C and Dare small categories and F: C! D is a 0-initial functor, then, for every D-diagramX in M, the natural map limDX ! limC F�X is an isomorphism.Proof. The standard proof works.Corollary 14.4.9. Let M be a category that is closed under limits. If C andD are small categories and F: C ! D is a left co�nal functor, then, for everyD-diagram X in M, the natural map limDX ! limC F�X is an isomorphism.Proof. This follows from Proposition 14.4.7 and Theorem 14.4.8.Theorem 14.4.10. Let M be a category that is closed under limits. If C andD are small categories and F: C ! D is a 0-terminal functor, then, for everyD-diagramX inM, the natural map colimCF�X ! colimDX is an isomorphism.Proof. The standard proof works (see, e.g., [41, page 213]).Corollary 14.4.11. Let M be a category that is closed under limits. If C andD are small categories and F: C ! D is a right co�nal functor, then, for everyD-diagramX inM, the natural map colimCF�X ! colimDX is an isomorphism.Draft: August 12, 1997



14.5. DIAGRAMS OF UNDERCATEGORIES AND OVERCATEGORIES 209Proof. This follows from Proposition 14.4.7 and Theorem 14.4.10.Remark 14.4.12. The reader should be aware that there are conicting usesof the above terms in the literature. Our de�nitions are those of Bous�eld and Kan([15, page 316]) and [26]. Heller ([35, page 54]) uses the terms homotopically initialand homotopically �nal for what we here call initial and �nal, while MacLane ([41,pages 213{214]) uses the terms initial and �nal for what we here call 0-initial and0-terminal.14.5. Diagrams of undercategories and overcategoriesIn this section, for every small category C we de�ne a natural Cop-diagram ofsimplicial sets B(� #C)op that will be used to de�ne the homotopy colimit of aC-diagram of spaces (see De�nition 19.1.2), and a natural C-diagram of simplicialsets B(C #�) that will be used to de�ne the homotopy limit of a C-diagram ofspaces (see De�nition 19.1.10). We also derive a relation between them (see Corol-lary 14.5.11) that we will use to obtain a relation between the homotopy colimitand the homotopy limit functors (see Corollary 20.3.19).14.5.1. Diagrams of undercategories.Definition 14.5.2. If C and D are small categories and F: C! D is a functor,then, for each object � of D, we have the category (� #F)op, the opposite of thecategory of objects of C under � (see De�nition 14.4.2). If � : � ! �0 is a map inD, then � induces a functor �� : (�0 #F)op ! (� #F)op, de�ned on objects by��(�0 ��! F�) = � ���! F�:If we take the classifying space of each undercategory (see De�nition 9.4.1), weobtain the Dop-diagram of simplicial sets B(� #F)op which, on the object � of D,takes the value B(� #F)op. Thus, an n-simplex of B(� #F)op(�) = B(� #F)op is acommutative diagram in D �||xxxxxxxx �� ((RRRRRRRRRRRRRRRRF�0 F�1F�0oo � � �F�1oo F�nF�n�1oowith face and degeneracy maps de�ned as in (9.4.2).As in De�nition 14.4.2, if C = D and F is the identity functor, then we useB(� #C)op to denote the diagram of the opposites of the undercategories, and ann-simplex of B(� #C)op(�) = B(� #C)op is a commutative diagram in C�}}zzzzzzzz �� ((RRRRRRRRRRRRRRR�0 �1�0oo � � ��1oo �n�n�1oowith face and degeneracy maps de�ned as in (9.4.2).Lemma 14.5.3. If C is a small category and � is an object of C, then B(� #C)opis contractible.Proof. This follows from Proposition 9.4.4, since (� #C)op has the terminalobject 1� : �! �. Draft: August 12, 1997



210 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYThe Cop-diagram B(� #C)op will be used to de�ne the homotopy colimit func-tor (see De�nition 19.1.2). Lemma 14.5.3 implies that, in the model category ofCop-diagrams of simplicial sets (see Theorem 14.2.1), the Cop-diagram B(�#C)opis weakly equivalent to the constant diagram at a point. We will show in Corol-lary 14.6.8 that B(�#C)op is also a free Cop-diagram, i.e., that B(�#C)op is aco�brant approximation to the constant diagram at a point (see De�nition 9.1.1).This will imply (in Theorem 20.8.4) that if we use a di�erent co�brant approxima-tion to the constant diagram at a point in the de�nition of the homotopy colimitof a diagram, then, for a diagram of co�brant spaces, we will get a space weaklyequivalent to the homotopy colimit.Proposition 14.5.4. If C and D are small categories and F: C! D is a func-tor, then the colimit of the Dop-diagram of classifying spaces of undercategoriescolimDop B(� #F) is naturally isomorphic to BC.Proof. We de�ne a map colimDop B(�#F)! BC by taking the simplex (�0 !�1 ! � � � ! �n; � : �! F�0) of B(�#F) to the simplex �0 ! �1 ! � � � ! �n of BC.This map is onto because the simplex �0 ! �1 ! � � � ! �n of BC is in the image of(�0 ! �1 ! � � � ! �n; 1F�0 : F�0 ! F�0), and it is one to one because the simplex(�0 ! �1 ! � � � ! �n; � : � ! F�0) of B(� #F) is identi�ed with the simplex(�0 ! �1 ! � � � ! �n; 1F�0 : F�0 ! F�0) of B(F�0 #F) in colimB(� #F).Remark 14.5.5. We will show in Proposition 14.6.9 that the Dop-diagramB(� #F) is also a free cell complex (see De�nition 14.1.28). It will then followfrom Proposition 20.9.1 that the natural map hocolimB(� #F)! colimB(� #F) isa weak equivalence, and so hocolimB(� #F) is naturally weakly equivalent to BC.14.5.6. Diagrams of overcategories.Definition 14.5.7. If C and D are small categories and F: C! D is a functor,then, for each object � of D, we have the category (F #�), the category of objectsof C over � (see De�nition 14.4.1). If � : � ! �0 is a map in D, then � induces afunctor �� : (F #�)! (F #�0), de�ned on objects by��(F� ��! �) = F� ���! �0:If we take the classifying space of each overcategory (see De�nition 9.4.1), we obtainthe D-diagram of simplicial sets B(F #�) which, on the object � of D, takes thevalue B(F #�). Thus, an n-simplex of B(F #�)(�) = B(F #�) is a commutativediagram in D F�0 F�0 // ""FFFFFFFF F�1 F�1 //�� � � � F�n�1 // F�nvvllllllllllllllll�with face and degeneracy maps de�ned as in (9.4.2).As in De�nition 14.5.2, if C = D and F is the identity functor, then we useB(C #�) to denote the diagramof overcategories, and an n-simplex of B(C #�)(�) =Draft: August 12, 1997



14.6. RECOGNIZING FREE CELL COMPLEXES 211B(C #�) is a commutative diagram in C�0 �0 // !!DDDDDDDD �1 �1 //�� � � � �n�1 // �nvvmmmmmmmmmmmmmmm�with face and degeneracy maps de�ned as in (9.4.2).Lemma 14.5.8. If C is a small category and � is an object of C, then B(C #�)is contractible.Proof. This follows from Proposition 9.4.4, since (C #�) has the terminalobject 1� : �! �.The C-diagram B(C #�) will be used to de�ne the homotopy limit functor (seeDe�nition 19.1.10). Lemma 14.5.8 implies that in the model category of C-diagramsof simplicial sets (see Theorem 14.2.1), the C-diagram B(C #�) is weakly equivalentto the constant diagram at a point. We will show in Corollary 14.6.8 that B(C #�) isalso a free C-diagram, i.e., that B(C #�) is a co�brant approximation to the constantdiagram at a point (see De�nition 9.1.1). This will imply (in Theorem 20.8.1) thatif we use a di�erent co�brant approximation to the constant diagram at a point inthe de�nition of the homotopy limit of a diagram, then, for a diagram of �brantobjects, we will get an object weakly equivalent to the homotopy limit.14.5.9. Relations.Proposition 14.5.10. If C is a small category, then the isomorphism (� #C)op �(Cop #�) of Proposition 14.4.3 is natural in the object � of C.Proof. This follows directly from the de�nitions.Corollary 14.5.11. If C is a small category, then there is a natural isomor-phism of Cop-diagrams of simplicial setsB(� #C)op � B(Cop #�):Proof. This follows from Proposition 14.5.10.14.6. Recognizing free cell complexesTheorem 14.6.1. If C is a small category and X is a C-diagram of (pointed orunpointed) simplicial sets, then X is a free cell complex if and only if there is asequence S = fS0, S1, S2 : : :g of Cdisc-diagrams of sets (where Cdisc is the discretecategory with objects equal to the objects of C) such that1. For n � 0 and � 2 Ob(C), the set Sn� is a set of n-simplices of X�.2. For n � 0, � 2 Ob(C) and 0 � i � n, we have si(Sn�) � Sn+1� (i.e., S isclosed under degeneracies).3. For n � 0, the natural map F (Sn) ! Xn (see Theorem 14.1.22) is anisomorphismof C-diagrams of sets (whereXn is the C-diagramof n-simplicesof X� for each � 2 Ob(C) and, if we are working in the category of pointedsimplicial sets, Xn omits the basepoint and its degeneracies).Draft: August 12, 1997



212 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYRemark 14.6.2. The reader should note the similarity between the free cellcomplexes among diagrams of simplicial sets and the free simplicial groups amongsimplicial groups (see, e.g., [40, Section 5]). Since a C-diagram of simplicial setsis equivalently a simplicial object in the category of C-diagrams of sets, we arecomparing the de�nitions of free simplicial groups and free simplicial C-diagramsof sets. This similarity can be made more precise by noting that a group is analgebra over the \underlying set of the free group" triple on the category of sets(see, e.g., [4, page 339] or [42, pages 176{177]), while a C-diagram of sets is analgebra over the \underlying Cdisc-diagram of sets on the free C-diagram of sets"triple on the category of Cdisc-diagrams of sets. The sequence S in Theorem 14.6.1is the analogue for C-diagrams of simplicial sets of a basis of a free simplicial group(see De�nition 14.6.3). Free cell complexes are also free objects in the category ofsimplicial C-diagrams of sets in the sense of [38, De�nition 5.1].Proof of Theorem 14.6.1. We will prove the theorem in the category ofunpointed simplicial sets; the proof for pointed simplicial sets is nearly identical.We �rst assume that there is a sequence S0, S1, S2 : : : of Cdisc-diagrams ofsets satisfying conditions (1) through (3), and we will show that the n-skeletonXn of X can be obtained from the (n� 1)-skeleton Xn�1 of X as a pushout of acoproduct of free cells. Proposition 12.2.5 and Lemma 12.2.11 will then imply thatX is a free cell complex.We begin by noting that X0 = �[0]
 F (S0) (see De�nition 14.1.21 and De�-nition 14.1.16). We now assume that n is a positive integer. For each � 2 Ob(C),let eSn� � Sn� be the subset of nondegenerate simplices. If � 2 eSn�, then all faces of� are contained in Xn�1� , and so � de�nes a map @� : @�[n] ! Xn�1� . Proposi-tion 14.1.18 implies that this de�nes a map of C-diagrams @�
F �� : @�[n]
F�� !Xn�1, and we can take the coproduct of these to obtaina�2eSn� @� 
 F �� : a�2eSn� @�[n]
 F �� = @�[n]
 F �eSn� !Xn�1:If we combine these for all � 2 Ob(C), we obtain the mapa�2Ob(C)@�[n]
 F�eSn� = @�[n]
 F (eSn)!Xn�1(see De�nition 14.1.21), and condition (3) implies that the square@�[n]
 F (eSn) //�� Xn�1���[n]
 F (eSn) // Xnis a pushout, which completes the �rst direction of the proof.We now assume that X is a free cell complex. If  is an ordinal and; !X1 !X2 ! � � � !X� ! � � � (� < )Draft: August 12, 1997



14.6. RECOGNIZING FREE CELL COMPLEXES 213is a presentation of X as a trans�nite composition of pushouts of free cells, thenfor each 0 < � < , we have a pushout diagram@�[n]
 F�� //�� X����[n]
 F �� // XSucc(�)(see De�nition 12.1.11) for some integer n � 0 and some � 2 Ob(C). Let S� be theunion (for each 0 � � <  such that XSucc(�) is obtained from X� by attachinga free cell based at � (see De�nition 14.1.24)) of the images of �n 
 1� and itsdegeneracies (where �n is the nondegenerate n-simplex of �[n]) in X , and let Sn�be the set of n-simplices that occur in S�. Since for each 0 � � <  the diagramX is enlarged by adding the free diagram of simplices generated by the imagesof �n 
 1� and its degeneracies, it is clear that the sets Sn satisfy conditions (1)through (3), and so the proof is complete.Definition 14.6.3. If C is a small category and X is a C-diagram of simplicialsets that is a free cell complex, then a sequence S0;S1;S2; : : : as in Theorem 14.6.1will be called a basis for X, and an element of an Sn� will be called a generatorof the free cell complex X . We will use S to denote the sequence S0;S1;S2; : : : .We will let eSn� � Sn� be the subset of nondegenerate simplices, and we will call anelement of an eSn� a nondegenerate generator of X. An element of an Sn�� eSn� willbe called a degenerate generator.Theorem 14.6.4. Let C be a small category and let X : C ! SS(�) be a C-diagram of simplicial sets. If S = fS0;S1;S2; : : :g is a sequence of Cdisc-diagramsof sets, then X is a free cell complex with basis S if and only if:1. For n � 0 and � 2 Ob(C), the set Sn� is a set of n-simplices of X�.2. For n � 0, � 2 Ob(C) and 0 � i � n, we have si(Sn�) � Sn+1� (i.e., S isclosed under degeneracies).3. If n � 0, � 2 Ob(C) and � is an n-simplex of X� (where, if SS(�) = SS�,then � is neither the basepoint nor one of its degeneracies), there exist unique� 2 Ob(C), � 2 Sn� and  : �! � in C such that X(�) = � .Proof. This follows directly from Theorem 14.6.1 and De�nition 14.1.21.Proposition 14.6.5. If C and D are small categories and F : C! D is a func-tor, then the Dop-diagram of simplicial sets B(�#F )op (see De�nition 14.5.2) andthe D-diagram of simplicial sets B(F #�) (see De�nition 14.5.7) are both free cellcomplexes.Proof. If � 2 Ob(C), let S� be the set of simplices (of all dimensions) ofB(F�#F )op of the form F� 1F� ((QQQQQQQQQQQQQQQ��{{xxxxxxxxF�0 F�1F�0oo � � �F�1oo F�F�n�1oo(14.6.6)and let Sn� be the set of n-simplices in S�. The Cdisc-diagrams of sets S0;S1;S2; : : :satisfy the conditions of Theorem 14.6.1, and so B(�#F )op is a free cell complex.Draft: August 12, 1997



214 14. DIAGRAMS IN A COFIBRANTLY GENERATED MODEL CATEGORYThe proof for B(F #�) is similar, using the simplices of B(F #�) of the formF�0 F�0 // ##FFFFFFFF F�1 F�1 //�� � � � F�n�1 // F�1F�vvmmmmmmmmmmmmmmmF�(14.6.7)Corollary 14.6.8. If C is a small category, the Cop-diagram of simplicial setsB(� #C)op (see De�nition 14.5.2) and the C-diagram of simplicial sets B(C #�) (seeDe�nition 14.5.7) are both free cell complexes.Proposition 14.6.9. If C and D are small categories and F : C! D is a func-tor, then the Dop-diagram of simplicial sets B(� #F ) is a free cell complex.Proof. This is similar to the proof of Proposition 14.6.5.Lemma 14.6.10. If X : C ! SS is a free cell complex then X+ : C ! SS�(de�ned by X+� = (X�)+ for all � 2 Ob(C)) is also a free cell complex.Proof. This follows from Theorem 14.6.4.Proposition 14.6.11. If C is a small category and X : C ! SS(�) is a freecell complex, then ��X�� : C ! Top(�) (de�ned by ��X��� = ��X���) is also a free cellcomplex.Proof. This follows from the de�nition of free cell complex and the fact thatif @�
 F�� //�� X����
 F �� // XSucc(�)is a pushout of C-diagrams of simplicial sets, then��@���
 F�� //�� ��X����������
 F �� // ��XSucc(�)��is a pushout of C-diagrams of topological spaces.14.7. Maps from free cell complexesProposition 14.7.1. Let C be a small category and let X : C! SS(�) be a freecell complex with basis S = fS0;S1;S2; : : :g. If n � 0 and we let Y be the freecell complex with basis T = fT 0;T 1;T 2; : : :g whereT k = (Sk if k � nSk � eSk if k > n(see De�nition 14.6.3), then for each � 2 Ob(C), Y � is the n-skeleton of X�.Proof. This follows from an examination of the proof of Theorem 14.6.1.Draft: August 12, 1997



14.7. MAPS FROM FREE CELL COMPLEXES 215Proposition 14.7.2. Let C be a small category, X : C! SS(�) a free cell com-plex with basis S0;S1;S2; : : : and Xn : C ! SS(�) the C-diagram of n-skeletonsof X , i.e., Xn� is the n-skeleton of X� for all � 2 Ob(C). If Y : C ! SS(�) is aC-diagram of spaces and g : Xn ! Y is a map of C-diagrams, then extensions of gto the (n+1)-skeleton ofX correspond to maps of Cdisc-diagrams h : eSn+1 ! Y n+1such that dih� = g�di for � 2 Ob(C) and 0 � i � n + 1.Proof. This follows directly from the de�nitions.
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CHAPTER 15Cellular model categoriesA cellular model category is a co�brantly generated model category (see De�ni-tion 13.2.1) in which the cell complexes (see De�nition 13.2.4) are well behaved (seeDe�nition 15.1.1). I am not aware of any co�brantly generated model categoriesthat fail to be cellular model categories.15.1. Cellular model categoriesDefinition 15.1.1. A cellular model category is a co�brantly generated (seeDe�nition 13.2.1) model category M for which there are a set I of generating co�-brations and a set J of generating trivial co�brations such that1. both the domains and the codomains of the elements of I are compact (seeDe�nition 13.4.1),2. the domains of the elements of J are small relative to I (see De�nition 12.4.10),and3. inclusions of relative cell complexes (see De�nition 13.2.4) are e�ective monomor-phisms (see De�nition 12.7.1).Remark 15.1.2. Although the sets I and J in De�nition 15.1.1 are not partof the structure of a cellular model category, we will generally assume that somespeci�c sets I and J satisfying the conditions of De�nition 15.1.1 have been chosen.15.1.3. Examples of cellular model categories. We still need to writeout the proofs of the following propositions:Proposition 15.1.4. The categories SS, Top, SS�, and Top� are cellular modelcategories.Proposition 15.1.5. IfM is a cellular model category and C is a small category,then the diagram category MC is a cellular model category.Proposition 15.1.6. If M is a cellular model category and Z is an object ofM, then the overcategory (M #Z) is a cellular model category.Proposition 15.1.7. If M is a cellular model category and C is a small sim-plicial category, then the category MC of simplicial diagrams is a cellular modelcategory.Proposition 15.1.8. If M is a pointed cellular model category with an actionby pointed simplicial sets, then the category of spectra over M (as in [14]) is acellular model category.Proposition 15.1.9. If M is a pointed cellular model category with an actionby pointed simplicial sets, then J. H. Smith's category of symmetric spectra overM [52, 36] is a cellular model category.217 Draft: August 12, 1997



218 15. CELLULAR MODEL CATEGORIES15.1.10. Recognizing cellular model categories.Theorem 15.1.11. If M is a model category, then M is a cellular model cate-gory if there are sets I and J of maps in M such that1. a map is a trivial �bration if and only if it has the right lifting property withrespect to every element of I,2. a map is a �bration if and only if it has the right lifting property with respectto every element of J ,3. the domains and codomains of the elements of I are compact relative to I,4. the domains of the elements of J are small relative to I, and5. relative I-cell complexes are e�ective monomorphisms.Proof. We need only show that I is a set of generating co�brations for Mand that J is a set of generating trivial co�brations for M. Proposition 12.6.7and Proposition 12.7.5 imply that I permits the small object argument (see De�ni-tion 12.4.11), and so I is a set of generating co�brations forM. Proposition 13.2.10now implies that J is a set of generating trivial co�brations for M.15.2. Subcomplexes in cellular model categoriesProposition 15.2.1. If M is a cellular model category, then a subcomplexof a presented relative cell complex is entirely determined by its set of cells (seeDe�nition 12.5.4).Proof. This follows from Proposition 12.5.9 and Proposition 12.5.10.Thus, if f : X ! Y is a presented relative cell complex, then the union of a setof subcomplexes of f is well de�ned. The intersection of a family of subcomplexesis also well de�ned, but there is no guarantee that an intersection of subcomplexesexists (see, however, Proposition 15.2.3).15.2.2. Intersections of subcomplexes. The main result of this sectionis Theorem 15.2.6, which asserts that the intersection of two subcomplexes of apresented cell complex always exists. We have not been able to determine whetheran arbitrary intersection of subcomplexes must exist.Proposition 15.2.3. Let M be a cellular model category and let X be a pre-sented cell complex. If K and L are subcomplexes of X such that their intersectionK \ L exists (see Remark 12.5.11), then the pushout squareK \L //�� Kv��L u // K [ Lis a pullback square.Draft: August 12, 1997



15.3. COMPACTNESS IN CELLULAR MODEL CATEGORIES 219Proof. If f : W ! L and g : W ! K are maps such that vg = uf , then wehave the solid arrow diagramW g &&h ##f ��K \ L t //s �� Kv �� i0 //i1 // K qK\L Lr��L u // K [ L i00 //i01 // (K [ L) qL (K [ L)in which the left hand square commutes, ri0 = i00v, and ri1 = i01v. We now haveri0g = i00vg = i00uf = i01uf = i01vg = ri1g; since r is an inclusion of a subcomplex, itis a monomorphism(see Proposition 12.7.5), and so i0g = i1g. Since t is an inclusionof a subcomplex (and, thus, an e�ective monomorphism), this implies that there isa unique map h : W ! K \ L such that th = g. Since ush = vth = vg = uf andu is an inclusion of a subcomplex (and, thus, a monomorphism), we have sh = f ,and the proof is complete.Theorem 15.2.4. Let M be a cellular model category and let �X; ; = X0 !X1 ! X2 ! � � � ! X� ! � � � (� < �); fT �; e�; h�g�<�� be a presented cellcomplex. If fU�g�<� and fV �g�<� are subcomplexes of X (see Remark 12.5.11),then the sequence f eT �g�<� such that eT � = U� \ V � for all � < � determines asubcomplex of X.Proof. We must show that the sequence feT �g�<� can be constructed by theinductive procedure of Proposition 12.5.10. Since Proposition 12.5.10 allows eT 0 tobe any subset of T 0, the induction is begun.Suppose now that � is an ordinal such that � < �, and that the condition issatis�ed for eT  for all  < �. We must show that, if i 2 eT �, then h�i : Ci ! X� fac-tors through eX� ! X� . Since eT � = U� \V �, this follows from Proposition 15.2.3,and so the proof is complete.Definition 15.2.5. The subcomplex f eT �g�<� of Theorem 15.2.4 will be calledthe intersection of the subcomplexes fU�g�<� and fV �g�<�.Theorem 15.2.6. Let M be a cellular model category, and let X be a cellcomplex. If K and L are subcomplexes (see Remark 12.5.7) of X (relative to somepresentation of X), then the subcomplex K \ L of X exists.Proof. This follows from Theorem 15.2.4.15.3. Compactness in cellular model categoriesProposition 15.3.1. IfM is a cellular model category then there is a cardinal� such that if � is a cardinal andX is a cell complex of size � , then X is �� -compact(see De�nition 13.4.1).Proof. Since the domains and codomains of the elements of I are compact,we can choose an in�nite cardinal � such that each of these domains and codomainsis �-compact (see Proposition 13.4.6). Draft: August 12, 1997



220 15. CELLULAR MODEL CATEGORIESIf � is a cardinal and X is a cell complex of size � , then we can choose apresentation of X (see De�nition 12.5.2), indexed by an ordinal � whose cardinal is� , that has no two cells with the same presentation ordinal (see De�nition 12.5.4).Thus, we have a �-sequence ; = X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �) whosecolimit is X and such that every X�+1 (for � + 1 < �) is obtained as a pushoutA�+1 //�� B�+1��X� // X�+1(15.3.2)for some element A�+1 ! B�+1 of I. If Y is a presented cell complex and f : X ! Yis a map, then we must show that there is a subcomplex K of Y , of size at most�� , through which f factors. We will show by induction on � that for every � < �the composition X� ! X ! Y factors through a subcomplex K� of Y of size atmost �� . The map f will then factor through the union of the fK�g�<� (since theinclusion of that union into Y is a monomorphism; see Proposition 12.7.5), whichis of size at most (�� )� = �� .The induction is begun by noting that X0 = ; (the initial object of M). If� + 1 < � and the composition X� ! X ! Y factors through a subcomplex K� ofY of size at most �� , then the composition of the attaching map B�+1 ! X�+1 !X ! Y (see Diagram 15.3.2) also factors through a subcomplex of size at most �� ,and (since � is in�nite) the union of these subcomplexes will be of size at most ��(see Proposition 12.1.14). Finally, if � is a limit ordinal such that � < � and forevery � < � the composition X� ! X ! Y factors through a subcomplex K� of Yof size at most �� , then the composition X� ! X ! Y factors through the unionS�<�K�, which is of size at most �� .Definition 15.3.3. IfM is a cellular model category, then the smallest cardinal� satisfying the conclusion of Proposition 15.3.1 will be called the size of the cellsof M. 15.4. Smallness in cellular model categoriesThe main result of this section is Theorem 15.4.3, which asserts that all co�-brant objects in a cellular model category are small relative to the subcategory ofall co�brations.Lemma 15.4.1. If M is a cellular model category with generating co�brationsI, then every cell complex (see De�nition 13.2.4) is small relative to I.Proof. This follows from Proposition 12.6.7 and Corollary 12.3.9.Lemma 15.4.2. If M is a cellular model category with generating co�brationsI, then every co�brant object of M is small relative to I.Proof. This follows fromCorollary 13.2.13, Proposition 12.3.7 and Lemma15.4.1.Theorem 15.4.3. IfM is a cellular model category, then every co�brant objectis small relative to the subcategory of co�brations.Proof. This follows from Lemma 15.4.2 and Proposition 13.2.10.Draft: August 12, 1997



15.5. BOUNDING THE SIZE OF CELL COMPLEXES 221Theorem 15.4.4. IfM is a cellular model category and J is a set of generatingtrivial co�brations for M as in De�nition 15.1.1, then the domains of the elementsof J are small relative to the subcategory of all co�brations.Proof. This follows from De�nition 15.1.1 and Proposition 13.2.10.Proposition 15.4.5. Let M be a cellular model category. If S is a set ofco�brations with co�brant domains and J is a set of generating trivial co�brationsfor M as in De�nition 15.1.1, then there is a functorial factorization of every mapX ! Y as X p�! W q�! Y where p is a relative (S [ J)-cell complex and q is an(S [ J)-injective.Proof. Theorem 15.4.3 and Theorem 15.4.4 imply that the domains of theelements of S [ J are small relative to S [ J , and so the result follows from Prop-osition 12.4.12.Proposition 15.4.6. LetM be a left proper cellular model category, and let Sbe a set of inclusions of subcomplexes. If X ! X0 is the inclusion of a subcomplexand we apply a small object factorization using the set S and some ordinal � (seeDe�nition 12.4.14) to both of the maps X ! � and X0 ! � to obtain the diagramX //�� ES //�� ���X0 // E0S // �then the map ES ! E0S is the inclusion of a subcomplex.Proof. Using Proposition 12.7.5, one can check inductively that, at each stagein the construction of the factorization, the map E� ! (E�)0 is the inclusion of asubcomplex. 15.5. Bounding the size of cell complexesThe main result of this section is Proposition 15.5.3, which asserts that if asmall object factorization (see De�nition 12.4.14) is applied to a map between\large enough" cell complexes, then the resulting cell complex is no larger than theones with which you started.Proposition 15.5.1. LetM be a cellular model category. IfX is a cell complex(see De�nition 13.2.4), then there is a cardinal � such that, if � is a cardinal andY is a cell complex of size �, then the set M(X;Y ) has cardinal at most ��.Proof. Let � be the size of the cells of M (see De�nition 15.3.3), and let �be the size of X. There is only a set of isomorphism classes of cell complexes ofsize at most �� , and so we can choose a set fY�g�2A of representatives of thoseisomorphism classes. We let � be the cardinal of the set `�2AM(X;Y�).Let � be a cardinal, and let Y be a cell complex of size �. If � � �� , then Y isisomorphic to one of the Y�, and so the cardinal of M(X;Y ) is at most � � ��. If� > �� , then any map from X to Y must factor through a subcomplex of Y thatis isomorphic to one of the Y� (see Proposition 15.3.1). Since � > �� , the set ofsuch subcomplexes of Y has cardinal at most � (see Lemma 12.1.17), and so theset M(X;Y ) has cardinal at most ��. Draft: August 12, 1997



222 15. CELLULAR MODEL CATEGORIESCorollary 15.5.2. Let M be a cellular model category. If X is a co�brantobject, then there is a cardinal � such that, if � is a cardinal and Y is a cellcomplex of size �, then the set M(X;Y ) has cardinal at most ��.Proof. This follows fromProposition 15.5.1, Lemma12.1.18, and Corollary 13.2.13.Proposition 15.5.3. Let M be a cellular model category with generating co�-brations I. If K is a set of relative I-cell complexes with co�brant domains, thenthere is a cardinal � such that, for every cardinal � such that � � �, if g : X ! Yis a map of cell complexes of size at most � and EK is the object constructed byapplying the small object factorization with the set K and an ordinal � � � to themap g (see De�nition 12.4.14), then EK is a cell complex of size at most �.Proof. Let � be an in�nite cardinal at least as large as each of the followingcardinals:� for each domain of an element of K, the cardinal � as in Corollary 15.5.2,� for each codomain of an element of K, the cardinal � as in Corollary 15.5.2,� for each relative I-cell complex in K, the cardinal of the set of cells in thatrelative I-cell complex, and� the cardinal of the set K.If � is a cardinal such that � � � and � is an ordinal such that � � �, let g : X ! Ybe a map of cell complexes of size at most �, and let X = X0 ! X1 ! X2 ! � � � !X� ! � � � (� < �) be the �-sequence constructed by applying the small objectfactorization with the set K and the ordinal � to g. We will show by trans�niteinduction that, for � < �, the complex X� has size at most �. Since Succ(�) (seeDe�nition 12.1.11) is a regular cardinal (see Proposition 12.1.15), this will implythe proposition.We begin the induction by noting that X0 = X. If we now assume that � < �and that X� has size at most �, then the domain of each element of K has at most�� = � maps to X� , the codomain has at most �� = � maps to Y , and there areat most � elements of K. Thus, X�+1 is built from X� by pushing out at most� � � � � = � maps, each of which attaches at most � cells to X� , and so X�+1has size at most �.If � is a limit ordinal, then X� is a colimit of complexes of size at most �. Since� < � � �, this implies that X� is of size at most �, and the proof is complete.Definition 15.5.4. Let M be a cellular model category with generating co�-brations I, and let � be the smallest regular cardinal such that1. the domains of the elements of I are �-small relative to I (see De�ni-tion 12.4.10), and2. � is at least as great as the smallest in�nite cardinal � satisfying the conclu-sion of Proposition 15.5.3 for the set I.We de�ne a natural cylinder object (see De�nition 8.3.2) X qX ! CylM(X) ! Xon M by applying the small object factorization with the set I and the ordinal �to the fold map 1X q 1X : X qX ! X (see De�nition 12.4.14).Proposition 15.5.5. Let M be a cellular model category. If � is as in De�-nition 15.5.4, � is a cardinal such that � � �, and X is a cell complex of size atmost �, then the natural cylinder object CylM(X) (see De�nition 15.5.4) is of sizeat most �.Draft: August 12, 1997



15.5. BOUNDING THE SIZE OF CELL COMPLEXES 223Proof. This follows from Proposition 15.5.3.
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CHAPTER 16The Reedy model category structureThe Reedy model category structure will be de�ned for diagrams in a modelcategory indexed by a Reedy category (see De�nition 16.3.2). The main examplesof Reedy categories are the cosimplicial and simplicial indexing categories, and,more generally, categories of simplices of simplicial sets (see De�nition 16.1.11) andtheir opposites. The standard model category structures on categories of simplicial(or cosimplicial) objects in a model category are examples of Reedy model categorystructures.The Reedy model category structure on the category of cosimplicial spacesdi�ers from the one de�ned by using the co�brantly generated model categorystructure on spaces (see Theorem 14.2.1) in that, although it has the same weakequivalences, it has more co�brations. A cosimplicial object in a model categorywill be Reedy co�brant if for every n � 0 the map from the colimit of objectsof lower degree to the object of degree n is a co�bration (see De�nition 16.3.2).Thus, the cosimplicial standard simplex (see De�nition 16.1.9) is a Reedy co�brantdiagram of simplicial sets (see Corollary 16.4.10).The Reedy model category structure was de�ned �rst (in [15, Chapter X]) forthe category of cosimplicial spaces. It was then de�ned for the category of simplicialobjects in a model category in [50, Section 1] (see also [14, Theorem B.6]) and thecategory of cosimplicial objects in a model category (see [30, Section 2.4]). Thecommon generalization of these indexing categories is due to D. M. Kan, and iscalled a Reedy category (see De�nition 16.2.2).16.1. The category of simplices of a simplicial setIf X is a simplicial set, we will de�ne a category �X whose objects are thesimplices of X and whose morphisms from the simplex � to the simplex � are thesimplicial operators that take � to � (see De�nition 16.1.11). Note the reversalof direction: If @i� = �, then @i corresponds to a morphism that takes � to � .This is because a simplicial set is a functor �op ! Set, while �X is de�nedas an overcategory using a covariant functor � ! SS. A diagram indexed by�X is a sort of generalized cosimplicial object, and a diagram indexed by �opXis a sort of generalized simplicial object (see Example 16.1.13, De�nition 16.1.5,De�nition 16.1.7, and Proposition 20.10.2). Categories of the form �X or �opX(for a simplicial set X) are the most important examples of Reedy categories (seeDe�nition 16.2.2).16.1.1. The simplicial category.Definition 16.1.2 (The simplicial category). If n is a nonnegative integer, welet [n] denote the ordered set (0; 1; 2; : : :; n). The category � is the category withobjects the [n] for n � 0 and with morphisms �([n]; [k]) the weakly monotone225 Draft: August 12, 1997



226 16. THE REEDY MODEL CATEGORY STRUCTUREfunctions [n] ! [k], i.e., the functions � : [n] ! [k] such that �(i) � �(j) for0 � i � j � n.Remark 16.1.3. The simplicial category � (see De�nition 16.1.2) is a skeletalsubcategory of the category whose objects are the �nite ordered sets and whosemorphisms are the weakly monotone maps.Example 16.1.4. A simplicial set is a functor �op ! Set.Definition 16.1.5. A simplicial space is a functor �op ! Spc(�).Notation 16.1.6. IfX is a simplicial object, we will usually denote the objectX [n] by Xn.Definition 16.1.7. A cosimplicial space is a functor �! Spc(�).Notation 16.1.8. If X is a cosimplicial object, we will usually denote theobject X [n] by Xn.Definition 16.1.9. The cosimplicial standard simplex is the cosimplicial sim-plicial set �: �! SS (see De�nition 16.1.2) that takes the object [n] of � to thestandard n-simplex �[n]. The simplicial set �[n] has as k-simplices the weaklymonotone functions [k]! [n], i.e., �[n]k = �([k]; [n]).16.1.10. Categories of simplices.Definition 16.1.11. Let � be the simplicial category (see De�nition 16.1.2),and let F: � ! SS be the functor that takes [n] to �[n]. If K is a simplicial set,then �K, the category of simplices of K, is de�ned to be the overcategory (F #K)(see De�nition 14.4.1). Thus, �K is the category with objects the simplicial maps�[n]! K (for some n � 0) and with morphisms from � : �[n]! K to � : �[k]! Kthe commutative triangles of simplicial maps�[n] //� !!CCCCCCCC �[k]�}}{{{{{{{{KProposition 16.1.12. If K is a simplicial set, then there is a natural isomor-phism of sets Ob(�K) � `n�0Kn. If � is an n-simplex (for some n > 0), k isan integer satisfying 0 � k � n, and @k� = �, then @k corresponds under thisisomorphism to a morphism from �� : �[n� 1]! K to �� : �[n]! K (where thecharacteristic map �� of an n-simplex � is the unique map �[n] ! K that takesthe non-degenerate n-simplex of �[n] to � ).Proof. This follows from the one to one correspondence between n-simplicesof K and maps of simplicial sets �[n]! K (see Example 14.1.12).Example 16.1.13. If K is the one point simplicial set (i.e., Kn = � for alln � 0), then �K is the simplicial category � (see De�nition 16.1.2).Proposition 16.1.14. If K is a simplicial set and G: �K ! SS is the �K-diagram of simplicial sets that takes the object � : �[n]! K of �K to �[n], thenthere is a natural isomorphism colim�K G � K.Draft: August 12, 1997



16.2. REEDY CATEGORIES AND THEIR DIAGRAM CATEGORIES 227Proof. The objects � : �[n] ! K of �K come with natural maps G(�) !K that commute with the structure maps of G, and so there is a natural mapcolim�K G ! K. Since every n-simplex � of K de�nes an object �� : �[n] ! Kof �K for which the image of the natural map G(��) ! K contains �, the mapcolim�K G! K is surjective.To show that the map colim�K G ! K is injective, assume that there areobjects � : �[m]! K and � : �[n]! K of �K together with a k-simplex � of �[m]and a k-simplex � of �[n] such that the image in K of � under G(�) ! K equalsthe image in K of � under G(� ) ! K. This implies that there is a commutativesquare in SS �[k] �� //�� �� �[n]����[m] � // Kwhich we can regard as a diagram in �K. This diagram in �K implies that theimage of � in colim�K G equals the image of � in colim�K G, and so the naturalsurjection colim�K G! K is a natural isomorphism.16.2. Reedy categories and their diagram categories16.2.1. Reedy categories.Definition 16.2.2. A Reedy Category is a small category C together with twosubcategories �!C (the direct subcategory) and  �C (the inverse subcategory), bothof which contain all the objects of C, in which every object can be assigned anonnegative integer (called its degree) such that1. Every non-identity morphism of �!C raises degree.2. Every non-identity morphism of  �C lowers degree.3. Every morphism g in C has a unique factorization g = �!g  �g where �!g is in�!C and  �g is in  �C .Remark 16.2.3. De�nition 16.2.2 implies that a Reedy category consists of acategory and two subcategories, subject to certain conditions. The function thatassigns to each object its degree is not a part of the structure, but we will oftenimplicitly assume that a degree function has been chosen.Example 16.2.4. The simplicial category (see De�nition 16.1.2) is a Reedycategory in which the object [n] has degree n, the direct subcategory consists ofthe injective maps, and the inverse subcategory consists of the surjective maps.Example 16.2.5. If X is a simplicial set, then the category �X of simplicesof X (see De�nition 16.1.11) is a Reedy category in which the degree of an objectis the dimension of the simplex of X to which it corresponds, the direct subcate-gory consists of the morphisms corresponding to iterated face maps in X, and theinverse subcategory consists of the morphisms corresponding to iterated degener-acy maps of X. Note that Example 16.2.4 is a special case of this example (seeExample 16.1.13).Proposition 16.2.6. If C is a Reedy category, then Cop is a Reedy category inwhich the degrees of the objects are unchanged, �!Cop = ( �C )op, and  �Cop = (�!C )op.Draft: August 12, 1997



228 16. THE REEDY MODEL CATEGORY STRUCTUREProof. This follows directly from the de�nitions.Definition 16.2.7. If C is a Reedy category with a degree function (see Re-mark 16.2.3) and n is a nonnegative integer, the n-�ltration Fn C is the full sub-category of C whose objects are the objects of C of degree less than or equal ton. Example 16.2.8. If C is a Reedy category, then the 0-�ltration of C is a cate-gory with no non-identity maps.Example 16.2.9. If X is a simplicial set and C = �X (see Example 16.2.5),then the n-�ltration of C is not the same as �(Xn), the category of simplices of then-skeleton of the simplicial set X. This is because Fn C has no objects of degreegreater than n, while �(Xn) has among its objects the high dimensional simplicesof X that are degeneracies of simplices of dimension less than or equal to n. Therelationship between Fn C and �(Xn) is that �(Xn) is the left Kan extension (see[41, page 232]) of Fn C along the inclusion Fn C! C (see also [3, page 6]).Proposition 16.2.10. If C is a Reedy category, then each of its �ltrations (seeDe�nition 16.2.7) is a Reedy category with the obvious structure, and C equals theunion of the increasing sequence of subcategories F0 C � F1 C � F2 C � � � � .Proof. This follows directly from the de�nitions.16.2.11. Diagrams indexed by a Reedy category. Diagrams indexed by aReedy category and maps of such diagrams are most naturally analyzed inductivelyon the degree of the object. In this section, we assume that we have a Reedycategory with a degree function (see Remark 16.2.3), and we describe how to de�nea diagram indexed by the Reedy category inductively on the degree of the objectin the Reedy category. In Remark 16.2.19, we summarize this description in termsof the latching objects and matching objects of the diagram, which are de�nedin De�nition 16.2.17. In Section 16.2.20, we will describe how to de�ne a mapbetween two such diagrams. We will use this analysis in Section 16.3 to de�ne amodel category structure on a category of diagrams in a model category indexedby a Reedy category.Since the 0-�ltration of a Reedy category contains no non-identity maps, wecan de�ne a diagramX : F0 C!M by choosing an object X� ofM for each object� of C of degree 0.Suppose that we have a diagram X : Fn�1 C ! M indexed by the (n � 1)-�ltration of a Reedy category C, and we wish to extend it to a diagramX : Fn C!M. We begin by choosing an object X� in M for each object � of C of degreen. For each object � of Fn�1 C and map � ! � in Fn C, we must choose a mapX� !X� in M. We must do this so that if � ! �0 is a map in Fn�1 C and� //��>>>>>>>> �0�����������Draft: August 12, 1997



16.2. REEDY CATEGORIES AND THEIR DIAGRAM CATEGORIES 229is a commutative triangle in Fn C, then the triangle in MX� //!!DDDDDDDD X�0||zzzzzzzzX�commutes. If In : Fn�1 C! Fn C is the inclusion functor, then this is equivalent tochoosing a map colim(In#�)X !X�. (The object colim(In#�)X is the value on �of the left Kan extension of X : Fn�1 C ! M along the inclusion Fn�1 C ! Fn C(see [41, page 233]).)Similarly, for each object  of Fn�1 C and map �!  in Fn C, we must choosea map X� !X , such that if  ! 0 is a map in Fn�1 C and� ��????????���������� // 0is a commutative triangle in Fn C, then the triangle in MX� ""DDDDDDDD}}zzzzzzzzX // X0commutes. This is equivalent to choosing a map X� ! lim(�#In)X . (The objectlim(�#In)X is the value on � of the right Kan extension of X : Fn�1 C!M alongthe inclusion Fn�1 C! Fn C (see [41, page 233]).)The maps colim(In#�)X ! X� and X� ! lim(�#In)X cannot be totallyarbitrary. If � !  is a map in Fn�1 C and� ��????????� ??�������� // is a commutative triangle in Fn C, then the triangle in MX� !!DDDDDDDDX� ==zzzzzzzz // Xmust commute. This is equivalent to requiring that the compositioncolim(In#�)X !X� ! lim(�#In)Xbe a factorization of the natural mapcolim(In#�)X ! lim(�#In)X :We will now show that the de�nition of a Reedy category implies that this lastcondition su�ces to construct an extension of X from Fn�1 C to Fn C.Draft: August 12, 1997



230 16. THE REEDY MODEL CATEGORY STRUCTURETheorem 16.2.12. Let C be a Reedy category, let M be a category closedunder limits and colimits, let n be a positive integer, and let X : Fn�1 C ! Mbe a diagram. If for each object � of C of degree n we choose an object X�of M and a factorization colim(In#�)X ! X� ! lim(�#In)X of the naturalmap colim(In#�)X ! lim(�#In)X, then this uniquely determines an extensionX : Fn C!M of the diagramX .Proof. The discussion above explains why our choices determine everythingexcept the maps X� ! X�0 for a map � ! �0 in Fn C between objects of de-gree n. Given such a map, if �  �g�! � �!g�! �0 is the factorization describedin De�nition 16.2.2, then we must de�ne X� ! X�0 to be the compositionX� ! X� ! X�0 . It remains only to show that, if � ! �0 ! �00 are com-posable maps in Fn C between objects of degree n, then the triangleX� ""FFFFFFFF||yyyyyyyyX�0 // X�00commutes.Let �  �g�! � �!g�! �0 and �0  �h�! �0 �!h�! �00 be the factorization of De�ni-tion 16.2.2 applied to � ! �0 and �0 ! �00, respectively. If the factorization ofDe�nition 16.2.2 applied to  �h �!g  �g : �! �0 is �  �k�! �00 �!k�! �0, then we have thecommutative diagram � �k�� �g~~~~~~~~~~��!g���������� �00�!k���0  �h // �0 �!h // �00.Since �!h �!k  �k = �!h �h �!g  �g and �!h �!k is in �!C , the factorization �  �k�! �00 �!h �!k���!�00 must be the factorization of � ! �00 described in De�nition 16.2.2. Thus,it is su�cient to show that the composition X�  �k ���! X�00 �!k ���! X�0 equals thecomposition X�  �g ���!X� �!g ���!X�0  �h ���!X�0 .Since both of the maps X� !X�00 and X� !X� are de�ned as the compo-sition of our map X� ! lim(�#In)X with a projection from the limit, the �rst ofthese maps equals the compositionX� ! lim(�#In)X !X�00 �!k ���!X�0while the second equals the compositionX� ! lim(�#In)X !X� �!g ���!X�0  �h ���!X�0 :The universal property of the limit implies that these are equal, and so the proofis complete.Draft: August 12, 1997



16.2. REEDY CATEGORIES AND THEIR DIAGRAM CATEGORIES 23116.2.13. Latching objects and matching objects. In this section, we showthat the colimits and limits used in Section 16.2.11 to construct diagrams indexedby a Reedy category and those used in Section 16.2.20 to construct maps of such di-agrams have a particularly convenient form. These colimits and limits are the latch-ing objects and matching objects (see De�nition 16.2.17). We continue to assumethat we have chosen a degree function for our Reedy category (see Remark 16.2.3).Definition 16.2.14. Let C be a Reedy category and let � be an object of C.If � is of degree n, then we let �!I n : Fn�1�!C ! Fn�!C and  �I n : Fn�1 �C ! Fn �Cbe the inclusion functors.1. The latching category �(�!C #�)�1�� of C at � is the overcategory (�!I n #�).This is the largest subcategory of (�!C #�) that does not contain the identitymap of �.2. Thematching category �(� # �C )�1�� of C at � is the undercategory (� # �I n).This is the largest largest subcategory of (� # �C ) that does not contain theidentity map of �.Proposition 16.2.15. Let C be a Reedy category and let � be an object of C.1. The opposite of the latching category of C at � is naturally isomorphic tothe matching category of Cop at �.2. The opposite of the matching category of C at � is naturally isomorphic tothe latching category of Cop at �.Proof. This follows from Proposition 16.2.6 and Proposition 14.4.3.Proposition 16.2.16. Let C be a Reedy category, let � be an object of C ofdegree n, and let In : Fn�1 C! Fn C be the inclusion functor.1. The category �(�!C #�) � 1�� is a right co�nal subcategory (see De�ni-tion 14.4.5) of both (In #�) and ((Fn C) #�).2. The category �(� # �C ) � 1�� is a left co�nal subcategory of both (�# In)and �� # (Fn C)�.Proof. We will prove part 1; the proof of part 2 is similar.If � ! � is an object of (In #�), then we can factor it as �  �g�! �� �!g�! � where �g 2  �C and �!g 2 �!C . This gives us the object�  �g //��>>>>>>>> ���!g�����������of �(� ! �) # �(�!C #�)� 1���. The uniqueness of the factorization in De�nition 16.2.2implies that this object is initial in �(� ! �) # �(�!C #�)� 1���, and so Proposi-tion 9.4.4 implies that �(�# �C ) � 1�� is right co�nal in (In #�). The proof that�(� # �C ) � 1�� is right co�nal in ((Fn C) #�) is identical to this, and so the proofof the proposition is complete.Definition 16.2.17. Let C be a Reedy category, let M be a model category,let X 2 Ob(MC) be a diagram, and let � be an object of C. We use X to denoteDraft: August 12, 1997



232 16. THE REEDY MODEL CATEGORY STRUCTUREalso the induced �(�!C #�) � 1��-diagram (de�ned on objects by X (�!�) = X�)and the induced �(�# �C )� 1��-diagram (de�ned on objects by X (�!�) = X�).1. The latching object ofX at � is L�X = colim((�!C #�)�1�)X and the latchingmap of X at � is the natural map L�X !X�.2. Thematching object ofX at � is M�X = lim((�# �C )�1�)X and the matchingmap of X at � is the natural map X� !M�X.The objects colim(In#�)X and lim(�#In)X (where X is a diagram de�ned onthe (n � 1)-�ltration of a Reedy category) were used in Section 16.2.11 to con-struct diagrams indexed by a Reedy category. The objects colim((Fn C)#�)X andlim(�#(Fn C))X will be used in Section 16.2.20 to analyze maps between such dia-grams. Corollary 16.2.18 shows that all of these colimits are latching objects of Xand all of these limits are matching objects of X .Corollary 16.2.18. Let C be a Reedy category, let M be a model category,let � be an object of C of degree n, and let X 2 Ob(MC) be a diagram. IfIn : Fn�1 C! Fn C is the inclusion functor, thencolim(In#�)X � L�X � colim((Fn C)#�)X and lim(�#In)X � M�X � lim(�#(Fn C))X(see De�nition 16.2.17).Proof. This follows from Proposition 16.2.16 and Corollary 14.4.9.Remark 16.2.19. In light of De�nition 16.2.17 and Corollary 16.2.18, the dis-cussion in Section 16.2.11 can be summarized as follows: If C is a Reedy category,Mis a model category, X : Fn�1 C!M is a diagram indexed by the (n�1)-�ltrationof C, and � is an object of C of degree n, then there is a natural map L�X !M�Xfrom the latching object of X at � to the matching object of X at �. ExtendingX to a diagram Fn C ! M is equivalent to choosing, for every object � of degreen, an object X� and a factorization L�X ! X� ! M�X of that natural map,and this can be done independently for each of the objects of degree n.16.2.20. Maps between diagrams. Maps between diagrams indexed by aReedy category are most naturally analyzed inductively on the degree of the objects.We assume that we have chosen a degree function for our Reedy category (seeRemark 16.2.3).Let C be a Reedy category, letM be a model category, and letX ;Y : C!M beC-diagrams inM. Since the 0-�ltration of a Reedy category contains no non-identitymaps, a map f : X jF0 C ! Y jF0 C is determined by choosing a map X� ! Y � forevery object � of degree 0.Suppose that f : XjFn�1 C ! Y jFn�1 C is a map of the restrictions of the dia-grams to the (n � 1)-�ltration of C. For every object � of C of degree n we havethe solid arrow diagramcolim((Fn C)#�)X //�� X� //�� lim(�#(Fn C))X��colim((Fn C)#�)Y // Y � // lim(�#(Fn C))YDraft: August 12, 1997



16.3. THE REEDY MODEL CATEGORY STRUCTURE 233and extensions of f to the n-�ltration of C correspond to a choice, for every object �of degree n, of a dotted arrow that makes both squares commute. Corollary 16.2.18implies that this diagram is isomorphic to the diagramL�X //�� X� //�� M�X��L�Y // Y � // M�YThus, if A, B, X , and Y are objects in MC and we have a diagramA //�� X��B //h >> Y(16.2.21)in which the dotted arrow h is de�ned only on the restriction of B to the (n � 1)-�ltration of C, then for every object � of C of degree n we have an induced solidarrow diagram L�B qL�A A� //�� X���B� // 55Y � �M�Y M�Xand there is a map B� ! X� for every object � of degree n that makes bothtriangles commute if and only if h can be extended over the restriction of B to then-�ltration of C so that both triangles in Diagram 16.2.21 commute. This is themotivation for the de�nitions of the relative latching map and relative latching map,and their appearance in the de�nitions of Reedy co�bration and Reedy �bration (seeDe�nition 16.3.2).Definition 16.2.22. Let C be a Reedy category, let M be a model category,let X and Y be C-diagrams in M, and let f : X ! Y be a map of C-diagrams.1. If � is an object in C, then the relative latching map of f at � is the mapL�Y qL�X X� ! Y � (see De�nition 16.2.17).2. If � is an object in C, then the relative matching map of f at � is the mapX� ! Y � �M�Y M�X.16.3. The Reedy model category structureIf C is a Reedy category and M is a model category, we will de�ne a modelcategory structure onMC, the category of C-diagrams inM, called the Reedy modelcategory structure. If M is a simplicial model category, then we will show thatthe simplicial structure of De�nition 14.3.1 and De�nition 14.3.2 makes the Reedymodel category structure on MC a simplicial model category.IfM is a co�brantly generated model category, then the Reedy model categorystructure will have the same weak equivalences as the model category structureof Theorem 14.2.1, but it will have a larger class of co�brations (see Proposi-tion 16.4.1). Thus, free cell complexes and their retracts will be co�brant in theReedy model category structure, as will some diagrams that are not retracts of freecell complexes. Draft: August 12, 1997



234 16. THE REEDY MODEL CATEGORY STRUCTURE16.3.1. Statement of the theorem.Definition 16.3.2. Let C be a Reedy category, letM be a model category, andlet X;Y : C!M be C-diagrams in M.1. A map of diagrams f : X ! Y is a Reedy weak equivalence if, for everyobject � of C, the map f� : X� ! Y � is a weak equivalence in M.2. A map of diagrams f : X ! Y is a Reedy co�bration if, for every object �of C, the relative latching map (see De�nition 16.2.22)L�Y qL�X X� ! Y �is a co�bration in M.3. A map of diagrams f : X ! Y is a Reedy �bration if, for every object � ofC, the relative matching map (see De�nition 16.2.22)X� ! Y � �M�Y M�Xis a �bration in M.Theorem 16.3.3. Let C be a Reedy category and let M be a model category.1. The category MC of C-diagrams in M with the Reedy weak equivalences,Reedy co�brations, and Reedy �brations (see De�nition 16.3.2) is a modelcategory.2. If M is a left proper, right proper, or proper model category (see De�ni-tion 11.1.1), then the model category of part 1 is, respectively, left proper,right proper, or proper.3. If M is a simplicial model category (see De�nition 10.1.2), then the modelcategory of part 1 with the simplicial structure de�ned in De�nition 14.3.1and De�nition 14.3.2, is a simplicial model category.The proof of Theorem 16.3.3 is in Section 16.3.11.16.3.4. Trivial co�brations and trivial �brations. It is not obvious howto identify those maps of diagrams that are both Reedy co�brations and Reedyweak equivalences, or those maps that are both Reedy �brations and Reedy weakequivalences. In this section, we will show that f is both a Reedy co�bration anda Reedy weak equivalence if and only if each of the maps L�Y qL�X X� ! Y �is a trivial co�bration in M, and that f is both a Reedy �bration and a Reedyweak equivalence if and only if each of the mapsX� ! Y ��M�Y M�X is a trivial�bration in M (see Theorem 16.3.10). We will use this theorem in Section 16.3.11to prove Theorem 16.3.3.Lemma 16.3.5. Let C be a Reedy category, let M be a model category, letf : X ! Y be a map of C-diagrams in M, let � be an object in C, and let S be aclass of maps in M.1. If for every object � in C whose degree is less than that of � the relativelatching map L�Y qL�X X� ! Y �has the left lifting property (see De�nition 8.2.1) with respect to every ele-ment of S, then the induced map of latching objects L�X ! L�Y has theleft lifting property with respect to every element of S.Draft: August 12, 1997



16.3. THE REEDY MODEL CATEGORY STRUCTURE 2352. If for every object � in C whose degree is less than that of � the relativematching map X� ! Y � �M�Y M�Xhas the right lifting property (see De�nition 8.2.1) with respect to everyelement of S, then the induced map of matching objects M�X !M�Y hasthe right lifting property with respect to every element of S.Proof. We will prove part 1; the proof of part 2 is dual. We assume that wehave chosen a degree function for C (see Remark 16.2.3).There is a �ltration of the category �(�!C #�)� 1�� in which Fk�(�!C #�)� 1��is the full subcategory of �(�!C #�)� 1�� whose objects are the maps � ! � in �!Csuch that the degree of � is less than or equal to k. Thus, F0�(�!C #�)� 1�� has nonon-identity maps, and Fdeg(�)�1�(�!C #�)� 1�� = �(�!C #�)� 1��. If E ! B is anelement of S and we have the solid arrow diagramL�X //�� E��L�Y //h == Bthen we will de�ne the map h by de�ning it inductively over colimFk((�!C #�)�1�) Y .For objects � ! � of (�!C #�) such that � is of degree zero, the latching objectsL�X and L�Y are the initial object of M, and so the map X� ! Y � equals themap L�Y qL�X X� ! Y �, which we have assumed has the left lifting propertywith respect to E ! B. Thus, there exists a dotted arrow h that makes bothtriangles commute in the diagram X� //�� E��Y � //h >> BSince F0�(�!C #�)�1�� has no non-identitymaps, this de�nes h on F0�(�!C #�)�1��.For the inductive step, we assume that 0 < k < deg(�) and that the map hasbeen de�ned on colimFk�1((�!C #�)�1�) Y . Let � ! � be an object of �(�!C #�) �1�� such that � is of degree k. The map � ! � de�nes a functor �(�!C # �) �1�� ! Fk�1�(�!C #�)� 1�� which, de�nes the map h on L�Y . Thus, we have thecommutative diagram L�Y qL�X X� //�� E��Y � // Band the vertical map on the left is assumed to have the left lifting property withrespect to E ! B. This implies that the map h can be de�ned on Y �, and thediscussion in Section 16.2.20 explains why this can be done independently for thevarious objects of degree k. This completes the induction, and the proof.Draft: August 12, 1997



236 16. THE REEDY MODEL CATEGORY STRUCTURELemma 16.3.6. Let C be a Reedy category, let M be a model category, letf : X ! Y be a map of C-diagrams in M, and let S be a class of maps in M.1. If for every object � in C the relative latching mapL�Y qL�X X� ! Y �has the left lifting property with respect to every element of S, then forevery object � in C the map f� : X� ! Y � has the left lifting propertywith respect to every element of S.2. If for every object � in C the relative matching mapX� ! Y � �M�Y M�Xhas the right lifting property with respect to every element of S, then forevery object � in C the map f� : X� ! Y � has the right lifting propertywith respect to every element of S.Proof. We will prove part 1; the proof of part 2 is dual.The relative latching map X� ! L�Y qL�X X� is a pushout of the mapL�X ! L�Y , and so Lemma 16.3.5 implies that it has the left lifting propertywith respect to every element of S. Since the composition of this map with themap L�Y qL�X X� ! Y � is the map f� : X� ! Y �, the proof is complete.Proposition 16.3.7. Let C be a Reedy category, let M be a model category,and let f : X ! Y be a map of C-diagrams in M.1. If f is a Reedy co�bration, then for every object � in C both the mapf� : X� ! Y � and the induced map of latching objects L�X ! L�Y areco�brations in M.2. If f is a Reedy �bration, then for every object � in C both the map f� : X� !Y � and the induced map of matching objects M�X !M�Y are �brationsin M.Proof. This follows from Lemma16.3.5, Lemma 16.3.6, and Proposition 8.2.3.Proposition 16.3.8. Let C be a Reedy category, let M be a model category,and let f : X ! Y be a map of C-diagrams in M.1. If for every object � of C the relative latching map L�Y qL�XX� ! Y � is atrivial co�bration, then for every object � in C both the map f� : X� ! Y �and the induced map of latching objects L�X ! L�Y are trivial co�bra-tions.2. If for every object � in C the relative matching mapX� ! Y ��M�Y M�Xis a trivial �bration, then for every object � in C both the map f� : X� !Y � and the induced map of matching objects M�X ! M�Y are trivial�brations.Proof. This follows from Lemma16.3.5, Lemma 16.3.6, and Proposition 8.2.3.Proposition 16.3.9. Let C be a Reedy category, let M be a model category,and let f : X ! Y be a map of C-diagrams in M.1. If f is both a Reedy co�bration and a Reedy weak equivalence, then forevery object � in C the map f� : X� ! Y �, the induced map of latchingDraft: August 12, 1997



16.3. THE REEDY MODEL CATEGORY STRUCTURE 237objects L�X ! L�Y , and the relative latching map L�Y qL�X X� ! Y �are trivial co�brations.2. If f is both a Reedy �bration and a Reedy weak equivalence, then for everyobject � in C the map f� : X� ! Y �, the induced map of matching objectsM�X !M�Y , and the relative matching map X� ! Y � �M�Y M�X aretrivial �brations.Proof. We will prove part 1; the proof of part 2 is dual. We assume that wehave chosen a degree function for C (see Remark 16.2.3).Proposition 16.3.7 implies that f� is a co�bration for every object � in C. Sincef is a Reedy weak equivalence, this implies that f� is a trivial co�bration for everyobject � in C.We will prove that the maps L�X ! L�Y and L�Y qL�X X� ! Y � aretrivial co�brations for every object � of C by induction on the degree of �. IfL�X ! L�Y is a trivial co�bration in M for some particular object � of C, then,since X� ! L�Y qL�XX� is a pushout of L�X ! L�Y , this map is also a trivialco�bration. Since the weak equivalence f� : X� ! Y � equals the compositionX� ! L�Y qL�X X� ! Y �, this implies that the co�bration L�Y qL�X X� !Y � is actually a trivial co�bration.If � is of degree 0, then L�X and L�Y are both the initial object of M, andso L�X ! L�Y is the identity map, which is certainly a trivial co�bration.We now assume that n is a positive integer, L�X ! L�Y is a trivial co�brationfor all objects � of degree less than n, and � is an object of degree n. The discussionabove explains why our inductive hypothesis implies that L�Y qL�X X� ! Y � isa trivial co�bration for all objects � of degree less than n, and so Lemma 16.3.5and Proposition 8.2.3 imply that L�X ! L�Y is a trivial co�bration.Theorem 16.3.10. Let C be a Reedy category, let M be a model category, andlet f : X ! Y be a map of C-diagrams in M.1. The map f is both a Reedy co�bration and a Reedy weak equivalence if andonly if for every object � in C the relative latching map L�Y qL�XX� ! Y �is a trivial co�bration in M.2. The map f is both a Reedy �bration and a Reedy weak equivalence if andonly if for every object � in C the relative matching map X� ! Y � �M�YM�X is a trivial �bration in M.Proof. This follows from Proposition 16.3.8 and Proposition 16.3.9.16.3.11. Proof of Theorem 16.3.3. For part 1, we must show that axiomsM1 through M5 of De�nition 8.1.2 are satis�ed. Axioms M1 and M2 follow fromthe fact that limits, colimits, and weak equivalences of diagrams are all de�nedobjectwise.Axiom M3 follows from the observation that if the map g : X ! Y is a retractof the map h : W ! Z, then, for each object � of C, the relative latching mapL�Y qL�XX� ! Y � is a retract of the relative latchingmap L�ZqL�WW � ! Z�and the relative matching map X� ! Y � �M�Y M�X is a retract of the relativematching mapW � ! Z� �M�Z M�W .If we choose a degree function for C (see Remark 16.2.3), then the maps requiredby axiom M4 are constructed inductively on the degree of the objects of C, usingTheorem 16.3.10 (see the discussion in Section 16.2.20). Draft: August 12, 1997



238 16. THE REEDY MODEL CATEGORY STRUCTUREThe factorizations required by axiom M5 are also constructed inductively onthe degree of the objects of C. For axiom M5 part 1, if g : X ! Y is a map inMC,then, for every object � of degree zero of C, we have a functorial factorization of g�in M as X� i�! Z� h�! Y � with i a co�bration and h a trivial �bration. If we nowassume that g has been factored on all objects of degree less than n and that � is anobject of degree n, then we have the induced map L�ZqL�XX� ! Y ��M�Y M�Z.We can now factor this map (functorially) in M asL�Z qL�X X� i�! Z� h�! Y � �M�Y M�Zwith i a co�bration and h a trivial �bration to obtain Z�. This completes theconstruction, and Theorem 16.3.10 implies that it has the required properties. Theproof for axiom M5 part 2 is similar, and so MC is a model category, and the proofof part 1 is complete.For part 2, Proposition 16.3.7 implies that a Reedy co�bration is an objectwiseco�bration and a Reedy �bration is an objectwise �bration. Since weak equivalencesare de�ned objectwise and both pushouts and pullbacks are constructed objectwise,the conditions of De�nition 11.1.1 follow if they hold in M.For part 3, if M is a simplicial model category, then axiom M6 of De�ni-tion 10.1.2 follows because the constructions are all done objectwise and M is asimplicial model category, and so it remains only to show that axiom M7 follows aswell. Proposition 10.1.8 implies that it is su�cient to show that if i : A ! Bis a Reedy co�bration and j : K ! L is a co�bration of simplicial sets, thenA
LqA
KB
K ! B
L is a Reedy co�bration that is also a weak equivalenceif either i or j is a weak equivalence. Thus, we must show that, for every object �of C, the mapL�(B 
 L) qL�(A
LqA
KB
K) (A
 LqA
K B 
K)� ! (B 
 L)�is a co�bration in M that is also a weak equivalence if either i or j is a weakequivalence. Since each latching object is a colimit, Lemma 10.2.3 implies that thismap is isomorphic to the map�(L�B qL�A A�)
 L� q(L�BqL�AA�)
K B� 
K ! B� 
 L:Since i : A ! B is a Reedy co�bration and M is a simplicial model category, thismap is a co�bration that is a weak equivalence if either i or j is a weak equivalence,and so the proof is complete.16.4. Reedy co�brant diagramsProposition 16.4.1. Let C be a Reedy category, let M be a co�brantly gener-ated model category (see De�nition 13.2.1), and let X ;Y 2MC be C-diagrams inM. 1. If the map f : X ! Y is a Reedy �bration (see De�nition 16.3.2), then itis also a �bration in the co�brantly generated model category structure onMC (see Theorem 14.2.1).2. If the map f : X ! Y is a co�bration in the co�brantly generated modelcategory structure on MC, then it is a Reedy co�bration.Proof. Part 1 follows from Proposition 16.3.7.Part 2 follows from part 1 and Proposition 8.2.3, since the weak equivalencesare the same in both model category structures.Draft: August 12, 1997



16.4. REEDY COFIBRANT DIAGRAMS 239Corollary 16.4.2. If C is a Reedy category, M is a co�brantly generatedmodel category, X;Y 2MC are C-diagrams inM, and f : X ! Y is a relative freecell complex (see De�nition 14.1.28), then f is a Reedy co�bration.Proof. This follows from Theorem 14.2.1 and Proposition 16.4.1.Corollary 16.4.3. If C is a Reedy category, M is a co�brantly generatedmodel category, and X : C ! M is a free cell complex (see De�nition 14.1.28),then X is Reedy co�brant.Proof. This follows from Corollary 16.4.2.Corollary 16.4.4. If C is a Reedy category, then the Cop-diagram B(�#C)opand the C-diagram B(C #�) (see Section 14.5) are both Reedy co�brant.Proof. This follows from Corollary 14.6.8 and Corollary 16.4.3.Lemma 16.4.5. Let C be a Reedy category, X 2 SpcC(�) a C-diagram of spaces,and Y an object of Spc(�). If X is Reedy co�brant in SpcC(�) and Y is �brant inSpc(�), then YX is Reedy �brant in SpcCop(�) and Map(X ; Y ) is Reedy �brant inSSCop (see Proposition 16.2.6).Proof. If � is an object of C and L�X is the latching object of X at � (seeDe�nition 16.2.17), then Proposition 16.2.15 implies thatY L�X = Y colim((�!C #�)�1�)X = lim((�!C #�)�1�)op YX = lim((�# �Cop)�1�)Y X = M��YX�;i.e., that Y L�X is the matching object at � of the Cop-diagram YX . Since thelatching map L�X ! X� is a co�bration and Y is �brant, this implies that thematching map YX� ! M��YX� is a �bration, and so YX is a Reedy �brantCop-diagram. Since the total singular complex functor is a right adjoint, it com-mutes with limits, and so Proposition 1.1.7 now implies that the matching mapMap(X�; Y )! M��Map(X ; Y )� is also a �bration, and so Map(X ; Y ) is a Reedy�brant Cop-diagram, and the proof is complete.Proposition 16.4.6. A simplicial space is Reedy co�brant if, for every inte-ger n � 0, the map from the colimit of the diagram of lower degree spaces anddegeneracy maps to the nth space is a co�bration.Proof. This follows from De�nition 16.3.2.Corollary 16.4.7. A simplicial object in SS(�) is always Reedy co�brant.Proof. The latching map (see De�nition 16.2.17) of a simplicial object isalways an inclusion, and an inclusion in SS(�) is a co�bration. Thus, the resultfollows from Proposition 16.4.6.Proposition 16.4.8. Let C be a Reedy category, let X;Y : C ! Spc(�) be C-diagrams of spaces, and let f : X ! Y be a map of C-diagrams. If the restriction off to the direct subcategory (see De�nition 16.2.2) of C is a relative free cell complex(see De�nition 14.1.28), then f is a Reedy co�bration.Proof. The hypotheses imply that, for each object � of C, the map L�Y qL�XX� ! Y � is a relative cell complex. Draft: August 12, 1997



240 16. THE REEDY MODEL CATEGORY STRUCTUREProposition 16.4.9. A cosimplicial space is Reedy co�brant if and only if forevery integer n � 0 the map from the colimit of the diagram of lower degree spacesand coface maps to the nth space is a co�bration.Proof. This follows from De�nition 16.3.2.Corollary 16.4.10. The cosimplicial standard simplex (see De�nition 16.1.9)is Reedy co�brant.Proof. Each of the latching maps (see De�nition 16.2.17) is the inclusion ofthe boundary of a simplex into that simplex.16.5. Bisimplicial setsDefinition 16.5.1. Let C be a small category. If F : Cop ! SS and G: C! SSare diagrams of simplicial sets, then the tensor product F 
C G of F and G is thesimplicial set that is the coequalizer of the diagrama(� : �!�0)2CF(�0)� F(�) �� a�2Ob(C)F(�)�G(�)where the map � on the summand � : � ! �0 is F(1�0) � G(�) : F(�0) � G(�) !F(�0)�G(�0) and the map  on the summand � : �! �0 is F(�)�G(1�) : F(�0)�G(�)! F(�)� G(�).Remark 16.5.2. The tensor product of functors (see De�nition 16.5.1) is aspecial case of a coend of a functor H: Cop � C ! SS, where H(K;L) = K � L(see Remark 19.2.4). We use the name \tensor product" because of the similarityto the case in which a ring R is viewed as an additive category (with one object,and with morphisms equal to the elements of R). In this case, a left R-moduleis just an additive functor G: R ! A from R to the category of abelian groups,and a right R-module is an additive functor F: Rop ! A. If H: Rop � R ! A isde�ned by H(�; �) = F(�) 
 G(�), then F 
R G is the usual tensor product of aright R-module with a left R-module.Definition 16.5.3. If X is a bisimplicial set, i.e., an object of SS�op, then therealization of X is the simplicial set ��X�� = X 
� � (see De�nition 16.5.1 andDe�nition 16.1.9).Theorem 16.5.4. If X is a bisimplicial set, then the realization of X is natu-rally isomorphic to the diagonal simplicial set of X.Proof. See, e.g., [49, page 94].Theorem 16.5.5 (A. K. Bous�eld and E. M. Friedlander, [14]). If f : X ! Yis a map of bisimplicial sets such that1. as a map of horizontal simplicial objects in the category of simplicial sets(i.e., (Xn)k =Xn;k), f is a Reedy �bration, and2. as a map of vertical simplicial objects in the category of simplicial sets(i.e., (Xn)k = Xk;n), f is an objectwise �bration (i.e., every induced mapX�;n ! Y �;n is a �bration of simplicial sets),then the induced map of diagonals diag f : diagX ! diagY is a �bration of sim-plicial sets.Proof. This is [14, Lemma B.9].Draft: August 12, 1997



16.5. BISIMPLICIAL SETS 241Definition 16.5.6. If X is a bisimplicial set, i.e., an object of SS�op , andY is a simplicial set, then Map(X ; Y ) is the cosimplicial simplicial set given byMap(X; Y )n = Map(Xn; Y ), with coface and codegeneracy maps induced by theface and degeneracy maps of X .Theorem 16.5.7. IfX : �op ! SS is a bisimplicial set, Y : �! SS is a cosim-plicial simplicial set, and Z is a simplicial set, then there is a natural isomorphismof simplicial sets Map(X 
� Y ; Z) � Map�Y ;Map(X; Z)�:Proof. We have the coequalizer diagram of simplicial setsa(� : [n]![m])2�Xm � Y n �� an�0Xn � Y n ! X 
� Y :Since the functor ���[k] : SS! SS is a left adjoint, the diagrama(� : [n]![m])2�Xm � Y n ��[k] � an�0Xn � Y n ��[k]! (X 
� Y )��[k]is also a coequalizer diagram, and so we have the equalizer diagramSS�(X 
� Y )��[k]; Z�! Yn�0SS(Xn � Y n ��[k]; Z)� Y(� : [n]![m])2� SS(Xm � Y n ��[k]; Z)which is isomorphic to the diagramSS�(X 
� Y )��[k]; Z�! Yn�0SS�Y n ��[k];Map(Xn; Z)�� Y(� : [n]![m])2� SS�Y n ��[k];Map(Xm; Z)�:This implies that the diagramMap(X 
� Y ; Z)! Yn�0Map�Y n;Map(Xn; Z)�� Y(� : [n]![m])2�Map�Y n;Map(Xm; Z)�is an equalizer diagram, from which the result follows.Theorem 16.5.8. If f : X ! Y is a map of bisimplicial sets, such that fn : Xn !Y n is a weak equivalence of simplicial sets for every n � 0, then the induced mapof realizations ��f�� : ��X��! ��Y �� is a weak equivalence of simplicial sets.Proof. It is su�cient to show that if Z is a �brant simplicial set, the theinduced map ��f��� : Map���Y ��; Z�!Map���X��; Z� is a weak equivalence (see Corol-lary 10.5.5).Corollary 16.4.7 implies that X and Y are Reedy co�brant. Since Z is �-brant, Lemma 16.4.5 implies that the map Map(Y ; Z) ! Map(X ; Z) is a mapof Reedy �brant cosimplicial simplicial sets, and Corollary 10.2.2 implies that itDraft: August 12, 1997



242 16. THE REEDY MODEL CATEGORY STRUCTUREis a Reedy weak equivalence of cosimplicial simplicial sets. Since � (see De�ni-tion 16.1.9) is a co�brant cosimplicial simplicial set (see Corollary 16.4.10), themap Map��;Map(Y ; Z)�!Map��;Map(X ; Z)� is a weak equivalence of simpli-cial sets (see Corollary 10.2.2 and Theorem 16.3.3). This is isomorphic to the mapMap(Y 
��; Z)!Map(X
��; Z) (see Theorem 16.5.7), which is the de�nitionof the map Map���Y ��; Z�!Map���X��; Z� (see De�nition 16.5.3).Corollary 16.5.9. If X : �op ! SS is a bisimplicial set such that the nat-ural map s(X0) ! X from the constant simplicial simplicial set to X is a weakequivalence, then the natural map X0 ! ��X�� is a weak equivalence.Proof. This follows from Theorem 16.5.8.16.6. Quillen functorsProposition 16.6.1. Let C be a Reedy category and let M and N be modelcategories.1. If F: M � N :U is a Quillen pair (see De�nition 9.8.1), then the inducedfunctors FC :MC � NC :UC form a Quillen pair.2. If (F;U) is a pair of Quillen equivalences, then so is the induced pair (FC;UC).Proof. The induced functors FC and UC are adjoint (see, e.g., [7, page 107]),and so for part 1 is is su�cient to show that FC preserves both co�brations andtrivial co�brations (see Proposition 9.8.2). If f : A ! B is a co�bration or atrivial co�bration in MC, then for every object � in C the relative latching mapL�B qL�A A� ! B� is, respectively, a co�bration or a trivial co�bration in M(see Theorem 16.3.10). Since the latching objects L�A and L�B are de�ned ascolimits (see De�nition 16.2.17) and left adjoints commute with colimits, the relativelatching map L�FB qL�FA FA� ! FB� is isomorphic to the map F(L�B qL�AA�) ! FB�, and is thus, respectively, a co�bration or a trivial co�bration inN. Thus, FC is a left Quillen functor. Part 2 follows immediately, since weakequivalences in MC and NC are de�ned objectwise in C.Corollary 16.6.2. Let C be a Reedy category, let M and N be model cate-gories, and let F:M� N :U be a Quillen pair.1. If B : C!M is a co�brant C-diagram inM, then FB : C! N is a co�brantC-diagram in N.2. If X : C ! N is a �brant C-diagram in N, then UX : C ! M is a �brantC-diagram in M.Proof. This follows from Proposition 16.6.1.
Draft: August 12, 1997



CHAPTER 17Homotopy function complexesIf C is a category and W is a subcategory of C (the maps of which we call\weak equivalences"), then W. G. Dwyer and D. M. Kan de�ne the simpliciallocalization sLWC of C with respect to W to be the derived functor of localizationof C with respect to W (see [29, 27, 28]). Thus, sLWC is a simplicial category,i.e., a category enriched over simplicial sets, and they show that for every pairof objects (X;Y ) in C the set �0sLWC(X;Y ) of components of the simplicial setsLWC(X;Y ) is isomorphic to the set of maps from X to Y in the localization of Cwith respect to W, i.e., the set of maps from X to Y in the homotopy category ofC (see De�nition 9.6.2). They also show that if M is a simplicial model categoryand W is its subcategory of weak equivalences, then when X is co�brant and Y is�brant the simplicial set Map(X;Y ) that is part of the simplicial structure ofM isnaturally weakly equivalent to sLWM(X;Y ). Since a weak equivalence Y ! Z inM always induces a weak equivalence sLWM(X;Y ) �= sLWM(X;Z), while the mapMap(X;Y ) ! Map(X;Z) is guaranteed to be a weak equivalence only when X isco�brant and both Y and Z are �brant (and a similar statement is true for weakequivalences of the �rst argument), this implies that the simplicial set sLWM(X;Y )is the \correct" function complex of maps from X to Y .Dwyer and Kan show that ifM is a model category and ifW is the subcategoryof weak equivalences in M, then these function complexes can be computed (up toweak equivalence) using resolutions in the model category M (see [28]). In thischapter, we de�ne a homotopy function complex to be a function complex obtainedfrom the Dwyer-Kan construction in the model category M (see De�nition 17.2.2).We present a self-contained development of the properties of these homotopy func-tion complexes, with no explicit reference to the more general construction of thesimplicial localization of Dwyer and Kan.17.1. ResolutionsIn this section, we de�ne cosimplicial and simplicial resolutions of objects ina model category. These will be used in Section 17.2 to de�ne homotopy functioncomplexes between objects in a model category (see De�nition 17.2.2).Notation 17.1.1. Let M be a model category.� The category of cosimplicial objects in M will be denoted M�, and thecategory of simplicial objects in M will be denoted M�op .� If X is an object in M, then the constant cosimplicial object at X will bedenoted cX, and constant simplicial object at X will be denoted sX.Definition 17.1.2. Let M be a model category, and let X be an object in M.� A cosimplicial resolution of X is a co�brant approximation (see De�ni-tion 9.1.1)fX ! cX to cX (see Notation 17.1.1) in the Reedy model category243 Draft: August 12, 1997



244 17. HOMOTOPY FUNCTION COMPLEXESstructure (see De�nition 16.3.2) onM�. A �brant cosimplicial resolution isa cosimplicial resolution in which the weak equivalence fX ! cX is a Reedytrivial �bration. We will sometimes use the term cosimplicial resolution torefer to the object fX without explicitly mentioning the weak equivalencefX ! cX.� A simplicial resolution ofX is a �brant approximation sX !cX to sX in theReedy model category structure on M�op . A co�brant simplicial resolutionis a simplicial resolution in which the weak equivalence sX !cX is a Reedytrivial co�bration. We will sometimes use the term simplicial resolution torefer to the object cX without explicitly mentioning the weak equivalencesX !cX .Proposition 17.1.3. IfM is a model category, then every object has a natural�brant cosimplicial resolution and a natural co�brant simplicial resolution.Proof. This follows from Proposition 9.1.2.Proposition 17.1.4. Let M be a simplicial model category.1. If X is an object in M and W ! X is a co�brant approximation to X,then the cosimplicial object fW in which fW n = W 
�[n] is a cosimplicialresolution of X.2. If Y is an object inM and Y ! Z is a �brant approximation to Y , then thesimplicial object bZ in which bZn = Z�[n] is a simplicial resolution of Y .Proof. We will prove part 1; the proof of part 2 is similar.Since all of the inclusions �[0] ! �[n] are trivial co�brations and W is co�-brant, all of the maps W � W 
�[0]! W 
�[n] are trivial co�brations. Thus,fW is weakly equivalent to cX. Since each @�[n]! �[n] is a co�bration and W isco�brant, each latching mapW 
 @�[n]!W 
�[n] is a co�bration, and so fW isco�brant.Corollary 17.1.5. Let M be a simplicial model category.1. If X is a co�brant object in M, then the cosimplicial object fX in whichfXn = X 
�[n] is a cosimplicial resolution of X.2. If Y is a �brant object in M, then the simplicial object bY in which bY n =Y �[n] is a simplicial resolution of Y .Proof. This follows from Proposition 17.1.4.Proposition 17.1.6. Let M be a model category, and let X be an object inM. 1. If fX ! cX is a cosimplicial resolution of X (see De�nition 17.1.2), thenfX0 ! X is a co�brant approximation to X. If fX ! cX is a �brant cosim-plicial resolution of X, then fX0 ! X is a �brant co�brant approximationto X.2. If sX ! cX is a simplicial resolution of X, then X ! cX0 is a �brantapproximation to X. If sX ! cX is a co�brant simplicial resolution of X,then X !cX0 is a co�brant �brant approximation to X.Proof. This follows from Proposition 16.3.7.Draft: August 12, 1997



17.1. RESOLUTIONS 245Definition 17.1.7. Let M be a model category.1. If fX i�! cX and fX 0 i0�! cX are cosimplicial resolutions of X, then a mapof cosimplicial resolutions from (fX; i) to (fX 0; i0) is a map g : fX !fX 0 suchthat i0g = i.2. If sX j�! cX and sX j0�! cX0 are simplicial resolutions of X, then a map ofsimplicial resolutions from (cX; j) to (cX 0; j0) is a map g : cX !cX 0 such thatgj = j0.Lemma 17.1.8. Let M be a model category.1. If (fX; i) and (fX 0; i0) are cosimplicial resolutions of X and g : fX !fX 0 is amap of cosimplicial resolutions, then g is a weak equivalence.2. If (cX ; j) and (cX 0; j0) are simplicial resolutions of X and g : cX ! cX 0 is amap of simplicial resolutions, then g is a weak equivalence.Proof. This follows from Lemma 9.1.4.Proposition 17.1.9. Let M be a model category.1. IffX ! cX is cosimplicial resolution ofX andfX 0 ! cX is a �brant cosimpli-cial resolution ofX, then there is a mapfX !fX 0 of cosimplicial resolutions,unique up to homotopy over cX, and any such map is a weak equivalence.2. If sX !cX is a simplicial resolution ofX and sX !cX 0 is a co�brant simpli-cial resolution of X, then there is a map cX 0 !cX of simplicial resolutions,unique up to homotopy under sX, and any such map is a weak equivalence.Proof. This follows from Proposition 9.1.6.Definition 17.1.10. Let M be a model category, and let g : X ! Y be a mapin M.1. A cosimplicial resolution of g consists of a cosimplicial resolution fX ! cXof X, a cosimplicial resolution eY ! cY of Y , and a map ~g : fX ! eY thatmakes the square fX ~g //�� eY��cX // cYcommute.2. A simplicial resolution of g consists of a simplicial resolution sX ! cX ofX, a simplicial resolution sY ! bY of Y , and a map ĝ : cX ! bY that makesthe square sX //�� sY��cX ĝ // bYcommute.Remark 17.1.11. The e�ect of De�nition 17.1.2 and De�nition 17.1.10 is thatDraft: August 12, 1997



246 17. HOMOTOPY FUNCTION COMPLEXES� a cosimplicial resolution of an object or map in a model category is exactlya Reedy co�brant approximation to a constant cosimplicial object or map,and� a simplicial resolution of an object or map in a model category is exactly aReedy �brant approximation to a constant simplicial object or map.This is the explanation of the terminology \�brant cosimplicial resolution" and\co�brant simplicial resolution".Proposition 17.1.12. LetM be a model category, and let g : X ! Y be a mapin M.1. There exists a natural cosimplicial resolution ~g : fX ! eY of g such that fXand eY are �brant cosimplicial resolutions of, respectively, X and Y , and ~gis a Reedy co�bration.2. There exists a natural simplicial resolution ĝ : cX ! bY of g such that cX andbY are co�brant simplicial resolutions of, respectively, X and Y , and ĝ is aReedy �bration.Proof. This follows from Proposition 9.1.9.Proposition 17.1.13. LetM be a model category, and let g : X ! Y be a mapin M.1. If fX ! cX is a cosimplicial resolution of X and eY ! cY is a �brantcosimplicial resolution of Y , then there exists a resolution ~g : fX ! eY of g,and ~g is unique up to homotopy in (M� # cY ).2. If sY ! bY is a simplicial resolution of Y and sX ! cX is a co�brantsimplicial resolution of X, then there exists a resolution ĝ : cX ! bY of g,and ĝ is unique up to homotopy in (sX #M�op).Proof. This follows from Proposition 9.1.10.Proposition 17.1.14. IfM is a model category and g : X ! Y is a weak equiv-alence in M, then every cosimplicial resolution of g and every simplicial resolutionof g are Reedy weak equivalences.Proof. This follows from the \two out of three" axiom for weak equivalences.17.1.15. Recognizing resolutions.Definition 17.1.16. Let M be a model category.1. If fX is a cosimplicial object inM, then we will say that fX is a cosimplicialresolution if there is an object X in M and a map fX ! cX that is acosimplicial resolution of X (see De�nition 17.1.2).2. If bY is a simplicial object in M, then we will say that bY is a simplicialresolution if there is an object Y in M and a map sY ! bY that is asimplicial resolution of Y .Proposition 17.1.17. Let M be a model category.1. If X is a cosimplicial object in M, then X is a cosimplicial resolution (seeDe�nition 17.1.16) if and only if X is Reedy co�brant and all of the cofaceand codegeneracy operators of X are weak equivalences.Draft: August 12, 1997



17.1. RESOLUTIONS 2472. If Y is a simplicial object inM, then Y is a simplicial resolution if and onlyif Y is Reedy �brant and all of the face and degeneracy operators of Y areweak equivalences.Proof. We will prove part 1; the proof of part 2 is dual.If X is a cosimplicial resolution, then it follows directly from the de�nitionsthat X is Reedy co�brant and all of the coface and codegeneracy operators of Xare weak equivalences. For the converse, the map X ! cX0 de�ned on Xn as anyn-fold iterated coface map is a cosimplicial resolution of X0.Lemma 17.1.18. Let M be a model category.1. If i : A ! B is a weak equivalence of cosimplicial resolutions in M, thenthere is a natural factorization of i as A q�! C r�! B such that C is acosimplicial resolution in M, q is a Reedy trivial co�bration, and r has aright inverse that is a Reedy trivial co�bration.2. If p : X ! Y is a weak equivalence of simplicial resolutions inM, then thereis a natural factorization of p as X q�! Z r�! Y such that Z is a simplicialresolution in M, r is a Reedy trivial �bration, and q has a left inverse thatis a Reedy trivial �bration.Proof. This follows from Lemma 8.5.1 and Proposition 17.1.17.17.1.19. Frames. Proposition 17.1.6 shows how a cosimplicial resolution ofan object in a model category yields a co�brant approximation to that object (anda similar statement is true for simplicial resolutions and �brant approximations).Frames (see De�nition 17.1.20) allow us to discuss the reverse operation (see Prop-osition 17.1.27).Definition 17.1.20. Let M be a model category, and let X be an object inM.� A cosimplicial frame on X is a cosimplicial object fX in M together witha weak equivalence fX ! cX (see Notation 17.1.1) in the Reedy modelcategory structure (see De�nition 16.3.2) on M� such that1. the induced map fX0 ! X is an isomorphism, and2. if X is a co�brant object in M, then fX is a co�brant object in M�.We will sometimes refer tofX as a cosimplicial frame onX, without explicitlymentioning the mapfX ! cX.� A simplicial frame on X is a simplicial object cX inM together with a weakequivalence sX ! cX in the Reedy model category structure on M�op suchthat1. the induced map X !cX0 is an isomorphism, and2. if X is a �brant object in M, then cX is a �brant object in M�op .We will sometimes refer to cX as a simplicial frame on X, without explicitlymentioning the map sX !cX.Remark 17.1.21. Note that De�nition 17.1.20 does not require cosimplicialframes on non-co�brant objects to be co�brant or simplicial frames on non-�brantobjects to be �brant. This was done in order to make Proposition 17.1.25 true.Proposition 17.1.22. Let M be a model category, and let X be an object inM. Draft: August 12, 1997



248 17. HOMOTOPY FUNCTION COMPLEXES1. IfX is co�brant, then any cosimplicial frame onX is a cosimplicial resolutionof X.2. If X is �brant, then any simplicial frame on X is a simplicial resolution ofX.Proof. This follows directly from the de�nitions.Lemma 17.1.23. If n � 0, then the inclusion of �[0] into �[n] as the initialvertex is the inclusion of a simplicial strong deformation retract.Proposition 17.1.24. If M is a simplicial model category, X is an object ofM, and n � 0, then the maps X 
�[0]! X 
�[n] and X�[n] ! X�[0] inducedby the inclusion of �[0] as the initial vertex of �[n] are weak equivalences.Proof. Lemma17.1.23 implies that these maps are simplicial homotopy equiv-alences.Proposition 17.1.25. If M is a simplicial model category and X is an objectin M, then the cosimplicial object fX in which fXn = X 
 �[n] is a cosimplicialframe on X, and the simplicial object bY in which bY n = X�[n] is a simplicial frameon X.Proof. This follows from Proposition 17.1.24 and Proposition 17.1.4.Definition 17.1.26. If M is a simplicial model category and X is an object inM, then the cosimplicial frame on X of Proposition 17.1.25 will be called the stan-dard cosimplicial frame on X, and the simplicial frame on X of Proposition 17.1.25will be called the standard simplicial frame on X.Proposition 17.1.27. Let M be a model category.1. If X is an object in M, eX ! X is a co�brant approximation to X, andfX 0 ! c eX is a cosimplicial frame on eX , then the induced map fX 0 ! cX isa cosimplicial resolution of X, and every cosimplicial resolution of X can beconstructed in this way.2. If X is an object in M, X ! bX is a �brant approximation to X, ands bX ! cX0 is a simplicial frame on bX , then the induced map sX ! cX 0 isa simplicial resolution of X, and every simplicial resolution of X can beconstructed in this way.Proof. This follows from Proposition 17.1.6.Theorem 17.1.28. If M is a model category, then there exists a functorialcosimplicial frame on every object in M and a functorial simplicial frame on everyobject in M.Proof. We will construct a functorial cosimplicial frame on M; the construc-tion of a functorial simplicial frame is dual.For every object X ofM, we will construct a functorial factorization ; !fX !cX of the map in M� from the initial object to cX such that1. the map fX ! cX is a Reedy trivial �bration,2. the induced mapfX0 ! X is the identity, and such that3. if X is co�brant in M, then the map ; !fX is a Reedy co�bration.Draft: August 12, 1997



17.1. RESOLUTIONS 249We will construct fX and the map fX ! cX inductively, and we begin by lettingfX0 = X. If n > 0 and we have constructed fX ! cX in degrees less than n, thenwe have the induced map LnfX ! (cX)n �MncX MnfX . We can factor this mapfunctorially in M as LnfX i�!fXn p�! (cX)n �MncX MnfXwith i a co�bration and p a trivial �bration. This complete the construction, andTheorem 16.3.10 implies that the mapfX ! cX is always a Reedy trivial �bration.If X is co�brant, then LnfX !fXn is a co�bration for all n � 0, and so fX is Reedyco�brant.Definition 17.1.29. Let M be a model category, and let g : X ! Y be a mapin M.1. A cosimplicial frame on g consists of a cosimplicial frame fX ! cX on X,a cosimplicial frame eY ! cY on Y , and a map ~g : fX ! eY that makes thesquare fX ~g //�� eY��cX // cYcommute.2. A simplicial frame on g consists of a simplicial frame sX ! cX on X, asimplicial frame sY ! bY on Y , and a map ĝ : cX ! bY that makes thesquare sX //�� sY��cX ĝ // bYcommute.Example 17.1.30. Let M be a simplicial model category.1. If i : A ! B is a map in M, let eA and eB be the cosimplicial objects inM such that eAn = A 
 �[n] and eBn = B 
 �[n], and let ~{ : eA ! eB bethe obvious map. Proposition 17.1.25 implies that ~{ is a cosimplicial frameon i, and Proposition 10.1.8 implies that ~{ is a Reedy co�bration if i is aco�bration in M.2. If p : X ! Y is a map in M, let cX and bY be the simplicial objects in Msuch that cXn = X�[n] and bY n = Y �[n], and let p̂ : cX ! bY be the obviousmap. Proposition 17.1.25 implies that p̂ is a simplicial frame on p, andProposition 10.1.8 implies that p̂ is a Reedy �bration if p is a �bration inM.Proposition 17.1.31. LetM be a model category, and let g : X ! Y be a mapin M.1. There is a natural cosimplicial frame ~g : fX ! eY on g that is a Reedyco�bration if g is a co�bration. Draft: August 12, 1997



250 17. HOMOTOPY FUNCTION COMPLEXES2. There is a natural simplicial frame ĝ : cX ! bY on g that is a Reedy �brationif g is a �bration.Proof. We will prove part 1; the proof of part 2 is dual.We begin by constructing a natural cosimplicial framefX ! cX on X as in theproof of Theorem 17.1.28.We will de�ne eY and ~g inductively. We let eY 0 = Y . If n > 0 and wehave constructed eY and ~g in degrees less than n, then we have the induced mapLn eY qLn eX fXn ! (cY )n �MncY Mn eY . We factor this map functorially in M asLn eY qLn eX fXn i�! eY n p�! (cY )n �MncY Mn eYwith i a co�bration and p a trivial �bration. This completes the construction,and Theorem 16.3.10 implies that the map eY ! cY is always a Reedy trivial�bration. Since LnfX ! fXn was constructed to be a co�bration for all n > 0,and Ln eY ! Ln eY qLn eX fXn is a pushout of that co�bration, the compositionLn eY ! Ln eY qLn eXfXn ! eY n is a co�bration for all n > 0. Thus, if Y is co�brant,then eY is Reedy co�brant. Finally, if g is a co�bration, then Ln eY qLn eXfXn ! eY nis a co�bration for all n � 0, and so ~g is a Reedy co�bration.17.1.32. Framed model categories.Definition 17.1.33. A framed model category is a model category M togetherwith1. a functorial cosimplicial frame (see De�nition 17.1.20)fX on every object Xin M, and2. a functorial simplicial frame cX on every object X in M.Proposition 17.1.34. If M is a model category, then there exists a framedmodel category structure on M.Proof. This follows from Theorem 17.1.28.Proposition 17.1.35. If M is a simplicial model category, then there is a nat-ural framing on M (called the standard framing) de�ned on objects X in M byfXn = X 
�[n] and cXn = X�[n] .Proof. This follows from Proposition 17.1.25.Remark 17.1.36. If M is a simplicial model category, and we make referenceto M in a context that calls for a framed model category, then we will consider Mas a framed model category using the standard framing of Proposition 17.1.35.17.2. Homotopy function complexesNotation 17.2.1. Let M be a model category.1. IfB is a cosimplicial object inM andX is an object inM, thenM(B; X) willdenote the simplicial set, natural in both B and X, de�ned byM(B; X)n =M(Bn; X), with face and degeneracy maps induced by the coface and code-generacy maps in B.2. If B is an object inM and X is a simplicial object inM, then M(B;X) willdenote the simplicial set, natural in both B and X , de�ned byM(B;X)n =M(B;Xn), with face and degeneracy maps induced by those in X.Draft: August 12, 1997



17.2. HOMOTOPY FUNCTION COMPLEXES 2513. If B is a cosimplicial object in M and X is a simplicial object in M, thenM(B;X) will denote the bisimplicial set, natural in both B and X, de�nedby M(B;X)n;k = M(Bk;Xn), with face and degeneracy maps induced bythe coface and codegeneracy maps in B and the face and degeneracy mapsin X .4. If B is a cosimplicial object in M and X is a simplicial object in M, thendiagM(B;X) will denote the simplicial set, natural in both B and X , de-�ned by �diagM(B;X)�n = M(Bn;Xn), with face and degeneracy mapsinduced by the coface and codegeneracy maps in B and the face and degen-eracy maps in X .Definition 17.2.2. Let M be a model category, and let B and X be objectsof M.� A left homotopy function complex from B to X is a simplicial set of the formM( eB; bX) (see Notation 17.2.1) for some cosimplicial resolution eB ! cB ofB (see De�nition 17.1.2) and some �brant approximation X ! bX to X.� A right homotopy function complex from B to X is a simplicial set of theform M( eB;cX) for some co�brant approximation eB ! B to B and somesimplicial resolution sX !cX of X.� a two-sided homotopy function complex from B to X is a simplicial set ofthe form diagM( eB;cX) for some cosimplicial resolution eB ! cB of B andsome simplicial resolution sX !cX of X.� A homotopy function complex fromB toX is either a left homotopy functioncomplex from B to X, a right homotopy function complex from B to X, ora two-sided homotopy function complex from B to X.Example 17.2.3. If M is a simplicial model category, B is a co�brant objectinM, and X is a �brant object inM, then Corollary 17.1.5 implies that Map(B;X)(i.e., the simplicial set that is part of the simplicial structure of M) is both a lefthomotopy function complex from B to X and a right homotopy function complexfrom B to X.Definition 17.2.4. LetM be a model category, letW , X, Y , and Z be objectsin M, and let g : X ! Y be a map.1. A map of left homotopy function complexes induced by g will mean either(a) the map ĝ� : M(fW ; bX) ! M(fW ; bY ) where fW is a cosimplicial res-olution of W and ĝ : bX ! bY is a �brant approximation to g (seeDe�nition 9.1.8), or(b) the map ~g� : M( eY ; bZ)!M(fX ; bZ) where ~g : fX ! eY is a cosimplicialresolution of g (see De�nition 17.1.10), and bZ is a �brant approxima-tion to Z.2. A map of right homotopy function complexes induced by g will mean either(a) the map ĝ� : M(fW;cX)!M(fW; bY ) where fW is a co�brant approxi-mation to W and ĝ : cX ! bY is a simplicial resolution of g, or(b) the map ~g� : M(eY ; bZ) ! M( eX; bZ) where ~g is a co�brant approxi-mation to g (see De�nition 9.1.8) and bZ is a simplicial resolution ofZ.3. A map of two-sided homotopy function complexes induced by g will meaneither Draft: August 12, 1997



252 17. HOMOTOPY FUNCTION COMPLEXES(a) the map diag ĝ� : diagM(fW ;cX) ! diagM(fW ; bY ) where fW is acosimplicial resolution of W and ĝ : cX ! bY is a simplicial resolutionof g, or(b) the map diag ~g� : diagM( eY ; bZ) ! diagM(fX ; bZ) where ~g : fX ! eYis a cosimplicial resolution of g and bZ is a simplicial resolution of Z.4. A map of homotopy function complexes induced by g will mean either a mapof left homotopy function complexes induced by g, a map of right homotopyfunction complexes induced by g, or a map of two-sided homotopy functioncomplexes induced by g.Example 17.2.5. Let M be a model category.1. If M�eC(�); bF (�)� is a left homotopy function complex on M, then for ob-jectsW , X, Y , and Z inM, a map g : X ! Y induces maps of left homotopyfunction complexesM� eC(Y ); bF (Z)� !M�eC(X); bF (Z)� andM� eC(W ); bF (X)�!M�eC(W ); bF (Y )�.2. If M� eC(�); bF (�)� is a right homotopy function complex on M, then forobjects W , X, Y , and Z in M, a map g : X ! Y induces maps of righthomotopy function complexes M� eC(W ); bF (X)� ! M� eC(W ); bF (Y )� andM� eC(Y ); bF (Z)�!M� eC(X); bF (Z)�.3. If diagM� eC(�); bF (�)� is a two-sided homotopy function complex on M,then for objects W , X, Y , and Z in M, a map g : X ! Y induces maps oftwo-sided homotopy function complexes diagM� eC(W ); bF (X)�! diagM�eC(W ); bF (Y )�and diagM� eC(Y ); bF (Z)�! diagM�eC(X); bF (Z)�.Definition 17.2.6. Let M be a model category.1. A left homotopy function complex onM is a functor from some subcategoryof Mop �M to SS that is a left homotopy function complex (see De�ni-tion 17.2.2) on every object in its domain and is a map of left homotopyfunction complexes (see De�nition 17.2.4) on every morphism in its domain.2. A right homotopy function complex onM is a functor from some subcategoryof Mop �M to SS that is a right homotopy function complex (see De�ni-tion 17.2.2) on every object in its domain and is a map of right homotopyfunction complexes on every morphism in its domain.3. A two-sided homotopy function complex onM is a functor from some subcat-egory ofMop�M to SS that is a two-sided homotopy function complex (seeDe�nition 17.2.2) on every object in its domain and is a map of two-sidedhomotopy function complexes on every morphism in its domain.4. A homotopy function complex on M is either a left homotopy function com-plex on M, a right homotopy function complex on M, or a two-sided homo-topy function complex on M.Proposition 17.2.7. If M is a model category, then there exist left homotopyfunction complexes de�ned on all of Mop �M, right homotopy function complexesde�ned on all ofMop �M, and two-sided homotopy function complexes de�ned onall of Mop �M.Proof. This follows from Proposition 17.1.3 and Proposition 9.1.2.Example 17.2.8. IfM is a model category and eC(X) is a natural cosimplicialframe on X (see De�nition 17.1.20), then M� eC(X); Y � is a left homotopy functionDraft: August 12, 1997



17.3. REALIZATIONS 253complex de�ned on the full subcategory of Mop � M determined by the objects(X;Y ) such that X is a co�brant object of M and Y is a �brant object of M.Similarly, if M is a model category and bF (X) is a natural simplicial frameon X, then M�X; bF (Y )� is a right homotopy function complex de�ned on the fullsubcategory ofMop�M determined by the objects (X;Y ) such that X is a co�brantobject of M and Y is a �brant object of M.Example 17.2.9. IfM is a model category,fX ! X is a cosimplicial resolutionofX, and Y ! bY is a �brant approximation to Y , thenM(fX ; bY ) is a left homotopyfunction complex de�ned on the subcategory ofMop�M consisting of the one object(X;Y ) and the identity map.Example 17.2.10. If M is a model category, fW ! W is a co�brant approx-imation to W , f : X ! Y is a map and f̂ : cX ! bY is a simplicial resolution off , then the diagram f̂� : M(fW;cX)!M(fW; bY ) de�nes a right homotopy functioncomplex de�ned on the subcategory of Mop �M with the two objects (W;X) and(W;Y ) and the single non-identity map (1opW ; f).Notation 17.2.11. If M is a model category and X and Y are objects in M,then we will use map(X;Y ) to denote some unspeci�ed homotopy function complex(see De�nition 17.2.2) from X to Y .17.3. RealizationsThis section contains a number of technical results needed for the homotopylifting extension theorems of Section 17.4.Definition 17.3.1. Let M be a model category.1. If X is a cosimplicial object in M and K is a simplicial set, then the objectX 
 K in M is de�ned to be the colimit of the (�K)-diagram in M (seeDe�nition 16.1.11) that takes each n-simplex of K to Xn.2. If Y is a simplicial object in M and K is a simplicial set, then the objectY K in M is de�ned to be the limit of the (�opK)-diagram in M that takeseach n-simplex of K to Y n.Proposition 17.3.2. If M is a model category, then the constructions of De�-nition 17.3.1 are natural in X, Y and K.Proof. This follows directly from the de�nitions.Proposition 17.3.3. If M = SS, the cosimplicial object X is the cosimplicialstandard simplex (see De�nition 16.1.9), and K is a simplicial set, then X 
K isnaturally isomorphic to K.Proof. This is a restatement of Proposition 16.1.14.Example 17.3.4. If M = Top, the cosimplicial object X is the geometric re-alization of the cosimplicial standard simplex (i.e., Xn = ���[n]��), and K is asimplicial set, then X 
K is the usual geometric realization of K.Lemma 17.3.5. Let M be a model category.1. If B is a cosimplicial object in M and n � 0, then B 
 �[n] is naturallyisomorphic to Bn. Draft: August 12, 1997



254 17. HOMOTOPY FUNCTION COMPLEXES2. If X is a simplicial object in M and n � 0, then X�[n] is naturally isomor-phic to Xn.Proof. The nondegenerate n-simplex of �[n] is a terminal object of �(�[n])and an initial object of �op(�[n]).Lemma 17.3.6. Let M be a model category.1. If B is a cosimplicial object in M and n � 0, then B 
 @�[n] is naturallyisomorphic to LnB, the latching object of B at [n] (see De�nition 16.2.17).2. IfX is a simplicial object inM and n � 0, then X@�[n] is naturally isomor-phic to MnX, the matching object of X at [n].Proof. We will prove part 1; the proof of part 2 is dual.If n � 0, then the latching object of B at n isLnB = colim((�!�#[n])�1[n])B = colimk<n�([k];[n])B(see De�nition 16.2.17). Since �([k]; [n]) is naturally isomorphic to the set of k-simplices of �[n], this is the colimit of the diagram with one copy of Bk for everyk-simplex of �[n] for k < n. The result now follows from De�nition 17.3.1.Proposition 17.3.7. Let M be a model category.1. If B is a cosimplicial object in M and n � 0, then the latching map (seeDe�nition 16.2.17) of B at [n] is naturally isomorphic to the map B 
@�[n]! B 
�[n].2. If X is a simplicial object in M and n � 0, then the matching map of X at[n] is naturally isomorphic to the map X�[n] !X@�[n].Proof. This follows from Lemma 17.3.5 and Lemma 17.3.6.Theorem 17.3.8. Let M be a model category.1. If A is a cosimplicial object inM, X is an object inM, and K is a simplicialset, then there is a natural isomorphism of setsSS�K;M(A; X)� �M(A
K;X):2. If B is an object in M, Y is a simplicial object in M, and K is a simplicialset, then there is a natural isomorphism of setsSS�K;M(B;Y )� �M(B;Y K):Proof. We will prove part 1; the proof of part 2 is similar.Since A 
 K is the colimit of a (�K)-diagram, a map in M from A 
 K toX corresponds to a coherent set of maps from each object in the diagram to X.Thus, each map A 
 K ! X is de�ned by a map An ! X for each n-simplex ofK that commute with the simplicial operators. This is also a description of a mapof simplicial sets from K to M(A; X).Proposition 17.3.9. Let M be a model category.1. If A is a cosimplicial object in M, C is a small category, and K : C ! SSis a C-diagram of simplicial sets, then the natural map colimC(A 
K) !A
 (colimCK) is an isomorphism.Draft: August 12, 1997



17.3. REALIZATIONS 2552. IfX is a simplicial object inM, C is a small category, andK : C! SS is a C-diagram of simplicial sets, then the natural mapX (colimCK) ! limCop(XK)is an isomorphism.Proof. This follows from the adjointness relations of Theorem 17.3.8.Proposition 17.3.10. Let M be a simplicial model category.1. If X is an object in M, fX is the standard cosimplicial frame on X (seeProposition 17.1.35), and K is a simplicial set, then fX 
 K is naturallyisomorphic to X 
K.2. If X is an object in M, cX is the standard simplicial frame on X, and K isa simplicial set, then cXK is naturally isomorphic to XK .Proof. This follows from Proposition 17.3.9 and Proposition 16.1.14.Lemma 17.3.11. Let M be a model category, and let (K;L) be a pair of sim-plicial sets.1. If A is a Reedy co�brant cosimplicial object in M, then the map A
 L !A
K is a co�bration in M.2. If X is a Reedy �brant simplicial object in M, then the map XK !XL isa �bration in M.Proof. Since an inclusion L! K of simplicial sets is a trans�nite compositionof pushouts of the maps @�[n] ! �[n] for n � 0, the map A 
 L ! A 
 K isa trans�nite composition of pushouts of the maps A 
 @�[n] ! A 
 �[n] forn � 0, and so part 1 follows from Proposition 17.3.9, Proposition 17.3.7, andProposition 12.2.19. The proof of part 2 is similar.Proposition 17.3.12. Let M be a model category.1. If A ! B is a Reedy trivial co�bration of cosimplicial objects in M andn � 0, then the induced map A
�[n]qA
@�[n] B 
 @�[n]! B 
�[n] isa trivial co�bration in M.2. If X ! Y is a Reedy trivial �bration of simplicial objects in M and n � 0,then the induced map X�[n] ! Y �[n] �Y @�[n] X@�[n] is a trivial �brationin M.Proof. This follows from Proposition 17.3.7 and Theorem 16.3.10.Proposition 17.3.13. Let M be a model category.1. IfA! B is a Reedy co�bration of cosimplicial objects inM and n � 0, thenthe induced mapA
�[n]qA
@�[n]B
@�[n]! B
�[n] is a co�bration.2. If X ! Y is a Reedy �bration of simplicial objects in M and n � 0, thenthe induced map X�[n] ! Y �[n] �Y @�[n] X@�[n] is a �bration.Proof. This follows from Proposition 17.3.7.Proposition 17.3.14. Let M be a model category.1. If i : A ! B is a map of cosimplicial objects in M, p : X ! Y is a map inM, and (K;L) is a pair of simplicial sets, then the following are equivalent:Draft: August 12, 1997



256 17. HOMOTOPY FUNCTION COMPLEXES(a) The dotted arrow exists in every solid arrow diagram of the formL //�� M(B; X)��K // 66M(A; X)�M(A;Y )M(B; Y ):(b) The dotted arrow exists in every solid arrow diagram of the formA 
K qA
L B 
 L //�� X��B 
K // 77 Y:2. If i : A! B is a map in M, p : X ! Y is a map of simplicial objects in M,and (K;L) is a pair of simplicial sets, then the following are equivalent:(a) The dotted arrow exists in every solid arrow diagram of the formL //�� M(B;X)��K // 66M(A;X)�M(A;Y )M(B;Y ):(b) The dotted arrow exists in every solid arrow diagram of the formA //�� XK��B // 99XL �Y L Y K :Proof. This follows from Theorem 17.3.8.Proposition 17.3.15. Let M be a model category.1. If i : A! B is a Reedy co�bration of cosimplicial objects in M, p : X ! Yis a �bration in M, and at least one of i and p is also a weak equivalence,then the map of simplicial setsM(B; X)!M(A; X)�M(A;Y )M(B; Y )is a trivial �bration.2. If i : A ! B is a co�bration in M, p : X ! Y is a Reedy �bration ofsimplicial objects inM, and at least one of i and p is also a weak equivalence,then the map of simplicial setsM(B;X)!M(A;X)�M(A;Y )M(B;Y )is a trivial �bration.Proof. A map of simplicial sets is a trivial �bration if and only if it has theright lifting property with respect to the maps @�[n] ! �[n] for n � 0, andso the result follows from Proposition 17.3.14, Proposition 17.3.12, and Proposi-tion 17.3.13.Draft: August 12, 1997



17.3. REALIZATIONS 257Proposition 17.3.15 may seem to be incomplete, in that it does not assert thefull homotopy lifting extension theorem. We will show in Theorem 17.4.1 that ifthe cosimplicial and simplicial objects are assumed to be cosimplicial and simplicialresolutions (see De�nition 17.1.16), then the full homotopy lifting extension theo-rem does hold. We now give an example that shows that it does not hold withoutthe assumption that the cosimplicial or simplicial objects are resolutions.Example 17.3.16. Let M be the category SS� of pointed simplicial sets. LetB be the cosimplicial object in M that is the free diagram on S1 generated at [1](see De�nition 14.1.17 and De�nition 16.1.2), so that Bn = W�([1];[n]) S1 (where�([1]; [n]) is the set of 1-simplices of �[n]). Corollary 16.4.3 implies that B is aReedy co�brant cosimplicial object.Let p : X ! Y be any �bration of �brant pointed simplicial sets for which theinduced homomorphism of fundamental groups p� : �1X ! �1Y is not surjective.We will show that the map of simplicial setsM(B; X)!M(B; Y ) is not a �bration.B1 is the wedge of three copies of S1 (indexed by [0; 0], [1; 1], and [0; 1]), B0is a single copy of S1, and the maps d0; d1 : B0 ! B1 take the S1 in B0 to thesummand indexed by, respectively, [0; 0] and [1; 1]. Thus, we can de�ne a 1-simplexof M(B; Y ) by sending the summands of B1 corresponding to [0; 0] and [1; 1] tothe basepoint of Y and sending the summand S1 of B1 corresponding to [0; 1] tosome 1-simplex of Y that represents an element of �1Y that is not in the imageof p� : �1X ! �1Y . If we de�ne a 0-simplex of M(B; X) by sending B0 to thebasepoint of X, then we have a solid arrow diagram�[0] //�� M(B; X)���[1] // ::M(B; Y )for which there is no dotted arrow making the triangles commute.Lemma 17.3.17. Let M be a model category.1. If A ! B is a Reedy co�bration of cosimplicial objects in M, n � 1, andn � k � 0, then the induced mapA
�[n]qA
�[n;k]B
�[n; k]! B
�[n]is a co�bration.2. If X ! Y is a Reedy �bration of simplicial objects in M, n � 1, andn � k � 0, then the induced map X�[n] ! Y �[n] �Y �[n;k] X�[n;k] is a�bration.Proof. We will prove part 1; the proof of part 2 is similar.We have the diagramA 
�[n� 1]qA
@�[n�1] B 
 @�[n� 1] //�� A 
�[n]qA
�[n;k] B 
 �[n; k]��B 
�[n� 1] // A
�[n]qA
@�[n] B 
 @�[n]��B 
�[n]Draft: August 12, 1997



258 17. HOMOTOPY FUNCTION COMPLEXESin which the square is a pushout, and so Proposition 17.3.13 implies that all of thevertical maps are co�brations. Our map is thus the composition of two co�brations.Lemma 17.3.18. If n > 1 and n � k � 0, then there is a �nite sequence ofinclusions of simplicial sets�[0] = K0 ! K1 ! K2 ! � � � ! Kp = �[n; k]where each map Ki ! Ki+1 for i < p is constructed as a pushout�[mi; li] //�� Ki���[mi] // Ki+1with mi < n.Proof. We let �[0] = K0 be vertex k of �[n]. We can then add in all the1-simplices of �[n; k] that contain that vertex, followed by the 2-simplices of �[n; k]that contain that vertex, etc., until we've added in all of �[n; k].Lemma 17.3.19. Let M be a model category.1. If A is a cosimplicial resolution in M, n � 1, and n � k � 0, then thenatural map A 
 �[n; k]! A
�[n] is a weak equivalence.2. If X is a simplicial resolution in M, n � 1, and n � k � 0, then the naturalmap X�[n] !X�[n;k] is a weak equivalence.Proof. We will prove part 1; the proof of part 2 is similar.We will prove the lemma by induction on n. If n = 1, then the result followsfrom Lemma 17.3.5 and Proposition 17.1.17.We now assume that A 
 �[m; l] ! A 
 �[m] is a weak equivalence for l �m < n. Lemma 17.3.18 implies that there is a �nite sequence of maps in MA 
�[0] = A
K0 ! A 
K1 ! A
K2 ! � � � ! A
Kp = A
 �[n; k]where each A 
Ki ! A
Ki+1 for i < p is constructed as a pushoutA
 �[mi; li] //�� A
Ki��A 
�[mi] // A
Ki+1with mi < n. Lemma 17.3.11 and the induction hypothesis imply that each of thesemaps is a trivial co�bration, and so A
�[0]! A
�[n; k] is a trivial co�bration.Since A
�[0]! A
�[n] is a weak equivalence, the \two out of three" propertyof weak equivalences implies the result.Proposition 17.3.20. Let M be a model category.1. If A ! B is a Reedy co�bration of cosimplicial resolutions in M, n > 1,and n � k � 0, then the map A
�[n]qA
�[n;k] B 
 �[n; k]! B 
�[n]is a trivial co�bration.2. If X ! Y is a Reedy �bration of simplicial resolutions in M, n > 1, andn � k � 0, then the mapX�[n] ! Y �[n]�Y �[n;k]X�[n;k] is a trivial �bration.Draft: August 12, 1997



17.4. HOMOTOPY LIFTING EXTENSION THEOREMS 259Proof. We will prove part 1; the proof of part 2 is similar.Lemma 17.3.17 implies that our map is a co�bration, and so it remains only toshow that it is a weak equivalence. Lemma 17.3.19 and Lemma 17.3.11 imply thatA
 �[n; k]! A 
�[n] is a trivial co�bration. Since the diagramA
 �[n; k] //�� B 
 �[n; k]��A
�[n] // A
�[n]qA
�[n;k]B 
 �[n; k]is a pushout, the mapB
�[n; k]! A
�[n]qA
�[n;k]B
�[n; k] is also a trivialco�bration. Since Lemma 17.3.19 implies that the map B 
 �[n; k]! B 
�[n] isa weak equivalence, the result follows from the \two out of three" property of weakequivalences. 17.4. Homotopy lifting extension theoremsTheorem 17.4.1 (The one-sided homotopy lifting extension theorem). Let Mbe a model category.1. If i : A ! B is a Reedy co�bration of cosimplicial resolutions in M andp : X ! Y is a �bration in M, then the map of simplicial setsM(B; X)!M(A; X)�M(A;Y )M(B; Y )is a �bration that is a trivial �bration if at least one of i and p is also a weakequivalence.2. If i : A ! B is a co�bration in M and p : X ! Y is a Reedy �bration ofsimplicial resolutions in M, then the map of simplicial setsM(B;X)!M(A;X)�M(A;Y )M(B;Y )is a �bration that is a trivial �bration if at least one of i and p is also a weakequivalence.Proof. A map of simplicial sets is a �bration if and only if it has the rightlifting property with respect to the maps �[n; k] ! �[n] for n > 0 and n � k �0, and so the result follows from Proposition 17.3.14, Proposition 17.3.20, andProposition 17.3.15.Corollary 17.4.2. Let M be a model category.1. If i : A! B is a Reedy co�bration of cosimplicial resolutions inM and X isa �brant object in M, then the map i� : M(B; X)!M(A; X) is a �brationof simplicial sets.2. If A is a cosimplicial resolution in M and p : X ! Y is a �bration in M,then the map p� : M(A; X)!M(A; Y ) is a �bration of simplicial sets.3. If i : A ! B is a co�bration in M and X is a simplicial resolution in M,then the map i� : M(B;X)!M(A;X) is a �bration of simplicial sets.4. If A is a co�brant object in M and p : X ! Y is a Reedy �bration ofsimplicial resolutions in M, then the map p� : M(A;X) ! M(A;Y ) is a�bration of simplicial sets.Proof. This follows from Theorem 17.4.1.Corollary 17.4.3. Let M be a model category. Draft: August 12, 1997



260 17. HOMOTOPY FUNCTION COMPLEXES1. If i : A ! B is a Reedy trivial co�bration of cosimplicial resolutions in Mand X is a �brant object in M, then the map i� : M(B; X)!M(A; X) is atrivial �bration of simplicial sets.2. If A is a cosimplicial resolution in M and p : X ! Y is a trivial �bration inM, then the map p� : M(A; X)!M(A; Y ) is a trivial �bration of simplicialsets.3. If i : A! B is a trivial co�bration in M and X is a simplicial resolution inM, then the map i� : M(B;X)!M(A;X) is a trivial �bration of simplicialsets.4. If A is a co�brant object in M and p : X ! Y is a Reedy trivial �brationof simplicial resolutions in M, then the map p� : M(A;X) ! M(A;Y ) is atrivial �bration of simplicial sets.Proof. This follows from Theorem 17.4.1.Proposition 17.4.4. Let M be a model category.1. If i : A ! B is a Reedy co�bration of cosimplicial resolutions in M andj : L! K is a co�bration of simplicial sets, then the map A
K qA
LB
L! B 
K is a co�bration in M that is a trivial co�bration if either i or jis a weak equivalence.2. If p : X ! Y is a Reedy �bration of simplicial resolutions in M and j : L!K is a co�bration of simplicial sets, then the map XK !XL �Y L Y K is a�bration inM that is a trivial �bration if either p or j is a weak equivalence.Proof. This follows from Proposition 8.2.3, Proposition 17.3.14, and Theo-rem 17.4.1.Definition 17.4.5. LetM be a model category. IfB is a cosimplicial object inM and X is a simplicial object inM, then the bisimplicial set M(B;X) (for whichM(B;X)n;k = M(Bk;Xn)) can be considered a simplicial object in the categoryof simplicial objects in M in two ways. We de�ne the horizontal simplicial objectto be the one whose object in degree n isM(B;Xn) (see Notation 17.2.1), and thevertical simplicial object to be the one whose object in degree k is M(Bk;X).Lemma 17.4.6. Let M be a model category, let B be a cosimplicial object inM, and let X be a simplicial object in M.1. If we consider M(B;X) as a horizontal simplicial object, then for every n �0 there is a natural isomorphismof simplicial objects (see De�nition 16.2.17)MnM(B;X) �M(B;MnX).2. If we consider M(B;X) as a vertical simplicial object, then for every n � 0there is a natural isomorphismof simplicial objectsMnM(B;X) �M(LnB;X).Proof. Since the matching object Mn is de�ned as a limit, part 1 follows fromthe universal mapping property of the limit. Since the latching object Ln is de�nedas a colimit, part 2 follows from Proposition 16.2.15 and the universal mappingproperty of the colimit.Lemma 17.4.7. LetM be a model category, let A! B be a map of cosimplicialobjects in M, and let X ! Y be a map of simplicial objects in M.Draft: August 12, 1997



17.4. HOMOTOPY LIFTING EXTENSION THEOREMS 2611. If all bisimplicial sets are considered horizontal simplicial objects, then forevery n � 0 there is a natural isomorphism of simplicial sets (see De�ni-tion 16.2.17)Mn�M(A;X) �M(A;Y )M(B;Y )� �M(A;MnX) �M(A;MnY )M(B;MnY ):2. If all bisimplicial sets are considered vertical simplicial objects, then forevery n � 0 there is a natural isomorphism of simplicial setsMn�M(A;X)�M(A;Y )M(B;Y )� �M(LnA;X)�M(LnA;Y )M(LnB;Y ):Proof. This follows from Lemma 17.4.6.Theorem 17.4.8 (The bisimplicial homotopy lifting extension theorem). LetMbe a model category. If i : A! B is a Reedy co�bration of cosimplicial resolutionsin M and p : X ! Y is a Reedy �bration of simplicial resolutions in M, then,for both the horizontal simplicial object structure (see De�nition 17.4.5) and thevertical simplicial object structure, the induced map of bisimplicial setsM(B;X)!M(A;X) �M(A;Y )M(B;Y )is a Reedy �bration of simplicial objects that is a Reedy trivial �bration if at leastone of i and p is a weak equivalence.Proof. We will prove this for the horizontal structure; the proof for the ver-tical structure is similar.Theorem 16.3.10 implies that it is su�cient to show that for every n � 0 themapM(B;X)n! �M(A;X)�M(A;Y )M(B;Y )�n �Mn(M(A;X)�M(A;Y )M(B;Y )) MnM(B;X)is a �bration of simplicial sets that is a trivial �bration if either of i and p is a weakequivalence. Lemma 17.4.6 and Lemma 17.4.7 imply that this map is isomorphicto the mapM(B;X)! �M(A;Xn)�M(A;Y n)M(B;Y n)��(M(A;MnX)�M(A;MnY )M(B;MnY ))M(B;MnX)The codomain of this map is the limit of the diagramM(A;Xn) //�� M(A;Y n)�� M(B;Y n)��ooM(A;MnX) // M(A;MnY ) M(B;MnY )ooM(B;MnX)hhPPPPPPPPPPPP OO 66nnnnnnnnnnnnand so our map is isomorphic to the mapM(B;Xn)!M(A;Xn)�(M(A;Y n)�M(A;MnY )M(A;MnX))�M(B;Y n)�M(B;MnY )M(B;MnX)�Draft: August 12, 1997



262 17. HOMOTOPY FUNCTION COMPLEXESSince p is a Reedy �bration, the map Xn ! Y n �MnY MnX is a �bration ofsimplicial sets, and so the result now follows from Theorem 17.4.1 and Theo-rem 16.3.10.Theorem 17.4.9 (The two-sided homotopy lifting extension theorem). Let Mbe a model category. If i : A! B is a Reedy co�bration of cosimplicial resolutionsin M and p : X ! Y is a Reedy �bration of simplicial resolutions in M, then theinduced map of simplicial setsdiagM(B;X)! diagM(A;X)�diagM(A;Y ) diagM(B;Y )is a �bration of �brant simplicial sets that is a trivial �bration if at least one of iand p is a weak equivalence.Proof. This follows fromTheorem 17.4.8, Proposition 16.3.7, Theorem 16.5.5,Proposition 16.3.8, Theorem 16.5.8, and Theorem 16.5.4.Corollary 17.4.10. If M is a model category and X and Y are objects in M,then all homotopy function complexes (see De�nition 17.2.2) from X to Y in Mare �brant simplicial sets.Proof. This follows from Theorem 17.4.1 and Theorem 17.4.9.Corollary 17.4.11. Let M be a model category.1. If i : A ! B is a Reedy co�bration of cosimplicial resolutions in M and Xis a simplicial resolution inM, then the induced map of two-sided homotopyfunction complexes diag i� : diagM(B;X)! diagM(A;X) is a �bration of�brant simplicial sets.2. If A is a cosimplicial resolution in M and p : X ! Y is a Reedy �brationof simplicial resolutions inM, then the induced map of two-sided homotopyfunction complexes diagp� : diagM(A;X)! diagM(A;Y ) is a �bration of�brant simplicial sets.Proof. This follows from Theorem 17.4.9 and Corollary 17.4.10.Corollary 17.4.12. Let M be a model category.1. If i : A ! B is a Reedy trivial co�bration of cosimplicial resolutions in Mand X is a simplicial resolution in M, then the induced map of two-sidedhomotopy function complexes diag i� : diagM(B;X) ! diagM(A;X) is atrivial �bration.2. If A is a cosimplicial resolution in M and p : X ! Y is a Reedy trivial�bration of simplicial resolutions in M, then the induced map of two-sidedhomotopy function complexes diag p� : diagM(A;X) ! diagM(A;Y ) is atrivial �bration.Proof. This follows fromTheorem 16.5.5, Theorem 17.4.8, Proposition 16.3.8,Theorem 16.5.8, and Theorem 16.5.4.17.5. Homotopy invarianceTheorem 17.5.1. Let M be a model category.1. If i : A ! B is a weak equivalence of cosimplicial resolutions in M and Xis a �brant object in M, then the map of left homotopy function complexesi� : M(B; X)!M(A; X) is a weak equivalence of �brant simplicial sets.Draft: August 12, 1997



17.6. UNIQUENESS OF HOMOTOPY FUNCTION COMPLEXES 2632. If A is a cosimplicial resolution in M and p : X ! Y is a weak equivalenceof �brant objects in M, then the map of left homotopy function complexesp� : M(A; X)!M(A; Y ) is a weak equivalence of �brant simplicial sets.3. If i : A! B is a weak equivalence of co�brant objects inM and X is a sim-plicial resolution in M, then the map of right homotopy function complexesi� : M(B;X)!M(A;X) is a weak equivalence of �brant simplicial sets.4. If A is a co�brant object in M and p : X ! Y is a weak equivalence of sim-plicial resolutions inM, then the map of right homotopy function complexesp� : M(A;X)!M(A;Y ) is a weak equivalence of �brant simplicial sets.5. If i : A ! B is a weak equivalence of cosimplicial resolutions in M and Xis a simplicial resolution in M, then the induced map of two-sided homo-topy function complexes diag i� : diagM(B;X)! diagM(A;X) is a weakequivalence of �brant simplicial sets.6. If A is a cosimplicial resolution in M and p : X ! Y is a weak equivalenceof simplicial resolutions in M, then the induced map of two-sided homo-topy function complexes diag p� : diagM(A;X) ! diagM(A;Y ) is a weakequivalence of �brant simplicial sets.Proof. This follows from Corollary 17.4.3, Corollary 17.4.12, Lemma 17.1.18,Lemma 8.5.1, and Corollary 17.4.10.Theorem 17.5.2. Let M be a model category and let W , X, Y , and Z beobjects in M. If g : X ! Y is a weak equivalence, then1. any map of homotopy function complexes g� : map(W;X) ! map(W;Y )induced by g (see De�nition 17.2.4) is a weak equivalence of �brant simplicialsets, and2. any map of homotopy function complexes g� : map(Y; Z) ! map(X;Z) in-duced by g is a weak equivalence of �brant simplicial sets.Proof. This follows from Theorem 17.5.1 and Proposition 17.1.14.Proposition 17.5.3. Let M be a model category, let B be a cosimplicial res-olution in M, and let X be a simplicial resolution in M.1. If we consider the bisimplicial set M(B;X) as a horizontal simplicial object(see De�nition 17.4.5) in the category of simplicial sets (so that in simplicialdegree n we have the simplicial setM(B;Xn)), thenM(B;X) is a simplicialresolution of the simplicial set M(B;X0).2. If we consider the bisimplicial set M(B;X) as a vertical simplicial objectin the category of simplicial sets (so that in simplicial degree n we have thesimplicial set M(Bn;X)), then M(B;X) is a simplicial resolution of thesimplicial set M(B0;X).Proof. We will prove part 1; the proof of part 2 is similar.Theorem 17.4.8 implies that M(B;X) is a �brant simplicial object, and Theo-rem 17.5.1 implies that, for every n > 0, the natural mapM(B;X0)!M(B;Xn)is a weak equivalence.17.6. Uniqueness of homotopy function complexesTheorem 17.6.1. Let M be a model category. IffX is a cosimplicial resolutionin M and bY is a simplicial resolution in M, then there is a natural diagram ofDraft: August 12, 1997



264 17. HOMOTOPY FUNCTION COMPLEXEShomotopy equivalences of �brant simplicial sets M(fX ; bY 0) �=�! diagM(fX; bY ) �= �M(fX0; bY ).Proof. Theorem 17.5.1 implies that the bisimplicial set M(fX; bY ) satis�esthe hypotheses of Corollary 16.5.9, and so Theorem 16.5.4 implies that there is anatural weak equivalence M(fX0; bY )! diagM(fX ; bY ). If we reverse the indices ofthe bisimplicial set M(fX ; bY ), we obtain a natural weak equivalence M(fX ; bY 0)!diagM(fX ; bY ). Corollary 17.4.10 implies that all these simplicial sets are �brant,and so these natural weak equivalences are natural homotopy equivalences.Theorem 17.6.2. LetM be a model category. Ifmap1 andmap2 are homotopyfunction complexes on M (see De�nition 17.2.6), then there is a natural zig-zag ofweak equivalences frommap1 to map2, unique up to an equivalence of such zig-zags(see De�nition 9.5.3), on the intersection of the domains of de�nition of map1 andmap2.Proof. Rewrite this, and �ll in the proof!!Proposition 17.6.3. Let M be a model category.1. (a) If eB is a cosimplicial resolution in M and f̂ ; ĝ : bX ! bY are lefthomotopic, right homotopic, or homotopic maps of �brant objectsin M, then the induced maps of left homotopy function complexesf̂�; ĝ� : M( eB; bX)!M( eB; bY ) are homotopic.(b) If ~f; ~g : eA ! eB are left homotopic, right homotopic, or homotopicmaps of cosimplicial resolutions in M and bX is a �brant object in M,then the induced maps of left homotopy function complexes ~f�; ~g� : M( eB; bX)!M( eA; bX) are homotopic.2. (a) If eB is a co�brant object in M and f̂ ; ĝ : cX ! bY are left homo-topic, right homotopic, or homotopic maps of simplicial resolutionsin M, then the induced maps of right homotopy function complexesf̂�; ĝ� : M( eB;cX)!M( eB; bY ) are homotopic.(b) If ~f ; ~g : eA ! eB are left homotopic, right homotopic, or homotopicmaps of co�brant objects in M and cX is a simplicial resolution inM, then the induced maps of right homotopy function complexes~f�; ~g� : M( eB;cX)!M( eA;cX) are homotopic.3. (a) If eB is a cosimplicial resolution inM and f̂ ; ĝ : cX ! bY are left homo-topic, right homotopic, or homotopic maps of simplicial resolutions inM, then the induced maps of two-sided homotopy function complexesdiag f̂�; diag ĝ� : diagM( eB;cX)! diagM( eB; bY ) are homotopic.(b) If ~f; ~g : eA ! eB are left homotopic, right homotopic, or homotopicmaps of cosimplicial resolutions in M and cX is a simplicial resolu-tion in M, then the induced maps of two-sided homotopy functioncomplexes diag ~f�; diag ~g� : diagM( eB;cX) ! diagM( eA;cX) are ho-motopic.Proof. We will prove part 1(a); the proofs of the other parts are similar.If f̂ and ĝ are left homotopic, then Proposition 8.3.20 implies that there is acylinder object bXq bX ! Cyl( bX) p�! bX for bX such that p is a trivial �bration and aleft homotopy H : Cyl( bX)! bY from f̂ to ĝ. Corollary 17.4.3 implies that the mapDraft: August 12, 1997



17.6. UNIQUENESS OF HOMOTOPY FUNCTION COMPLEXES 265M� eB;Cyl( bX)�!M( eB; bX) is a weak equivalence, and so Proposition 8.3.4 impliesthat f̂� and ĝ� are left homotopic. Corollary 17.4.10 and Proposition 8.3.18 nowimply that f̂� and ĝ� are homotopic.If f̂ and ĝ are right homotopic and if bY ! Path(bY )! bY � bY is a path objectfor bY and H : bX ! Path(bY ) is a right homotopy from f̂ to ĝ, then Theorem 17.5.1implies that the map M( eB; bY ) ! M� eB;Path(bY )� is a weak equivalence. Thus,Proposition 8.3.4 implies that f̂� and ĝ� are right homotopic. Corollary 17.4.10and Proposition 8.3.18 now imply that f̂� and ĝ� are homotopic.Proposition 17.6.4. LetM be a model category, let eC(X) ! cX be a natural�brant cosimplicial resolution of every object X in M, and let sY ! bF (Y ) be anatural co�brant simplicial resolution of every object Y in M.1. If eC 0(X) ! cX is a natural cosimplicial resolution of X de�ned on somesubcategory of M and Y ! bF 0(Y ) is a natural �brant approximation to Yde�ned on some subcategory of M, then there is a homotopy equivalencediagM� eC(X); bF (Y )� �=M� eC 0(X); bF 0(Y )�;de�ned up to homotopy and natural up to homotopy,wherever the homotopyfunction complex on the right is de�ned.2. If eC0(X) ! X is a natural co�brant approximation to X de�ned on somesubcategory of M and sY ! bF 0(Y ) is a natural simplicial resolution of Yde�ned on some subcategory of M, then there is a homotopy equivalencediagM� eC(X); bF (Y )� �=M� eC0(X); bF 0(Y )�;de�ned up to homotopy and natural up to homotopy,wherever the homotopyfunction complex on the right is de�ned.3. If eC 0(X) ! cX is a natural cosimplicial resolution of X de�ned on somesubcategory of M and sY ! bF 0(Y ) is a natural simplicial resolution of Yde�ned on some subcategory of M, then there is a homotopy equivalencediagM� eC(X); bF (Y )� �= diagM� eC0(X); bF 0(Y )�;de�ned up to homotopy and natural up to homotopy,wherever the homotopyfunction complex on the right is de�ned.Proof. For part 1, Proposition 17.1.6 implies that Y ! bF (Y )0 is a co�brant�brant approximation to Y , and so Proposition 9.1.6 implies that there is a weakequivalence of �brant approximations bF (Y )0 ! bF 0(Y ), unique up to homotopyunder Y . Proposition 9.1.10 implies that this weak equivalence is natural up tohomotopy. Proposition 17.1.9 implies that there is a weak equivalence of resolu-tions eC 0(X) ! eC(X), unique up to homotopy over cX, and Proposition 17.1.13implies that this weak equivalence is natural up to homotopy. Theorem 17.5.1 im-plies that these weak equivalences induce a weak equivalence M�eC(X); bF (Y )0�!M�eC0(X); bF 0(Y )�, and Proposition 17.6.3 implies that this weak equivalence is wellde�ned up to homotopy and that it is natural up to homotopy. Since all of these sim-plicial sets are �brant (see Corollary 17.4.10), this weak equivalence is a homotopyequivalence. If we compose this with a homotopy inverse to the natural homotopyequivalence M�eC(X); bF (Y )0� ! diagM� eC(X); bF (Y )� of Theorem 17.6.1, thenthis completes the proof of part 1. Draft: August 12, 1997



266 17. HOMOTOPY FUNCTION COMPLEXESThe proof of part 2 is similar to that of part 1.For part 3, Proposition 17.1.9 implies that there are weak equivalences of res-olutions eC 0(X) ! eC(X) (unique up to homotopy over cX) and bF (Y ) ! bF 0(Y )(unique up to homotopy under sY ), and Proposition 17.1.13 implies that eachof these is natural up to homotopy. Theorem 17.5.1 implies that these inducea weak equivalence diagM�eC(X); bF (Y )� ! diagM� eC 0(X); bF 0(Y )�, and Proposi-tion 17.6.3 implies that the homotopy class of this weak equivalence is independentof the choices of the weak equivalences of resolutions, and that it is natural upto homotopy. Since these homotopy function complexes are �brant simplicial sets,this weak equivalence is a homotopy equivalence.Theorem 17.6.5. Let M be a model category. If map1(X;Y ) and map2(X;Y )are homotopy function complexes on M (see De�nition 17.2.6), then there is a ho-motopy equivalence h1;2 : map1(X;Y )! map2(X;Y ), de�ned up to homotopy andnatural up to homotopy, such that ifmap3(X;Y ) is a third homotopy function com-plex and h1;3 : map1(X;Y ) ! map3(X;Y ) and h2;3 : map2(X;Y ) ! map3(X;Y )are the corresponding homotopy equivalences, then h2;3h1;2 ' h1;3.Proof. Choose a natural �brant cosimplicial resolution eC(X) ! cX for everyobject X in M and a natural co�brant simplicial resolution sY ! bF (Y ) for everyobject Y inM (see Proposition 17.1.3), and let map(X;Y ) = diagM�eC(X); bF (Y )�.Let h1 : map(X;Y )! map1(X;Y ) be the homotopy equivalence (de�ned up to ho-motopy and natural up to homotopy) of Proposition 17.6.4, and let h2 : map(X;Y )!map2(X;Y ) and h3 : map(X;Y ) ! map3(X;Y ) be de�ned similarly. We can nowlet h1;2 = h2h�11 , h1;3 = h3h�11 , and h2;3 = h3h�12 .Theorem 17.6.6. Let M be a model category.1. If B is an object inM and g : X ! Y is a map for which there is some mapof homotopy function complexes g� : map(B;X) ! map(B; Y ) induced byg that is a weak equivalence, then every such map of homotopy functioncomplexes induced by g is a weak equivalence.2. If X is an object in M and f : A! B is a map for which there is some mapof homotopy function complexes (see De�nition 17.2.4) f� : map(B;X) !map(A;X) induced by f that is a weak equivalence, then every such mapof homotopy function complexes induced by f is a weak equivalence.Proof. This follows from Theorem 17.6.5, Proposition 8.5.6, and the \two outof three" axiom (see De�nition 8.1.2).Proposition 17.6.7. IfM is a model category, then the homotopy equivalencesof Theorem 17.6.5 are independent (up to homotopy) of the choices of resolutionsmade in the proof.Proof. If eC1(X) ! cX and eC2(X) ! cX are natural �brant cosimplicialresolutions of every object X in M, then Proposition 17.1.9 implies that there areweak equivalences eC1(X) ! eC2(X) and eC2(X) ! eC1(X), unique up to homo-topy over cX and natural up to homotopy, and that these are inverse homotopyequivalences over cX. Similarly, if sY ! bF 1(Y ) and sY ! bF 2(Y ) are naturalco�brant simplicial resolutions of every object Y in M, then there are weak equiv-alences bF 1(Y ) ! bF 2(Y ) and bF 2(Y ) ! bF 1(Y ), unique up to homotopy under sYDraft: August 12, 1997



17.6. UNIQUENESS OF HOMOTOPY FUNCTION COMPLEXES 267and natural up to homotopy, and these are inverse homotopy equivalences undersY . The uniqueness clause of Proposition 17.1.9 implies that if eC 0(X) ! cX is acosimplicial resolution of X, then the map eC 0(X) ! eC1(X) (see the proof of Prop-osition 17.6.4) is homotopic to the composition eC 0(X) ! eC2(X) ! eC1(X). Simi-larly, if sY ! bF 0(Y ) is a simplicial resolution of Y , then the map bF 1(Y )! bF 0(Y )is homotopic to the composition bF 1(Y ) ! bF 2(Y ) ! bF 0(Y ). Thus, if map1(X;Y )and map2(X;Y ) are two-sided homotopy function complexes on M andh11 : diagM�eC1(X); bF 1(Y )�! map1(X;Y );h21 : diagM�eC2(X); bF 2(Y )�! map1(X;Y );h12 : diagM�eC1(X); bF 1(Y )�! map2(X;Y ); andh22 : diagM�eC2(X); bF 2(Y )�! map2(X;Y )are the homotopy equivalences constructed in the proof of Proposition 17.6.4, thenh12(h11)�1 ' h22(h21)�1. Similar remarks apply to the cases of left homotopy functioncomplexes and right homotopy function complexes.Theorem 17.6.8. Let M be a model category, and let X and Y be objectsin M. If map1(X;Y ) and map2(X;Y ) are homotopy function complexes andh : map1(X;Y ) �= map2(X;Y ) is a homotopy equivalence that is a compositionof 1. homotopy equivalences of left homotopy function complexes induced bymaps of cosimplicial resolutions of X or by maps of �brant approximationsto Y (see Lemma 17.1.8, Lemma 9.1.4, and Theorem 17.5.1),2. homotopy equivalences of right homotopy function complexes induced bymaps of co�brant approximations to X or by maps of simplicial resolutionsof Y ,3. homotopy equivalences of two-sided homotopy function complexes inducedby maps of cosimplicial resolutions of X or by maps of simplicial resolutionsof Y ,4. the homotopy equivalences of Theorem 17.6.1,or a homotopy inverse to one of these, then h is homotopic to the homotopy equiv-alence h1;2 of Theorem 17.6.5.Proof. It is su�cient to show that any of the homotopy equivalences of homo-topy function complexes listed above is homotopic to the corresponding homotopyequivalence of Theorem 17.6.5. We will consider the case in which there is a cosim-plicial resolution fX of X and a map g : bY ! bY 0 of �brant approximations to Ysuch that h is the homotopy equivalence g� : M(fX ; bY )!M(fX ; bY 0). The proofs inthe other cases are similar.Let eC(X) and bF (Y ) be the natural �brant cosimplicial resolution of X and thenatural co�brant simplicial resolution of Y chosen in the proof of Theorem 17.6.5.Proposition 17.1.6 implies that Y ! bF (Y )0 is a co�brant �brant approximation toY , and so Proposition 9.1.6 implies that the composition of the weak equivalencebF (Y )0 ! bY used in the proof of Proposition 17.6.4 with the map of �brant approx-imations g : bY ! bY 0 is homotopic under Y to the weak equivalence bF (Y )0 ! bY 0Draft: August 12, 1997



268 17. HOMOTOPY FUNCTION COMPLEXESused in the proof of Proposition 17.6.4. The result now follows from Proposi-tion 17.6.3.
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CHAPTER 18Applications of homotopy function complexes18.1. Homotopy classes of mapsLemma 18.1.1. Let M be a model category.1. If eA is a cosimplicial resolution in M, then eA0 q eA0 d0qd1����! eA1 s0�! eA0 is acylinder object (see De�nition 8.3.2) for eA0.2. If cX is a simplicial resolution in M, then cX0 s0�!cX1 d0�d1����!cX0 �cX0 is apath object for cX0.Proof. This follows directory from the de�nitions.Proposition 18.1.2. Let M be a model category.1. If eB is a cosimplicial resolution in M and X is a �brant object in M, thenthe set �0M( eB; X) is naturally isomorphic to the set of homotopy classes ofmaps from eB0 to X.2. If B is a co�brant object in M and cX is a simplicial resolution in M, thenthe set �0M(B;cX) is naturally isomorphic to the set of homotopy classes ofmaps from B to cX0.Proof. We will prove part 1; the proof of part 2 is similar.The set of vertices ofM( eB; X) is the set of maps from eB0 toX, and Lemma18.1.1implies that if two vertices of M( eB; X) represent the same element of �0M( eB; X),then those vertices (i.e., maps) from eB0 to X are homotopic. Finally, if two mapsfrom eB0 to X are homotopic, then Proposition 8.3.16 and Lemma 18.1.1 implythat there is a 1-simplex of M( eB; X) whose vertices are those maps.Lemma 18.1.3. Let M be a model category.1. If eB is a cosimplicial resolution in M and p : X ! Y is a map of �brant ob-jects inM that induces a weak equivalence of simplicial sets p� : M( eB; X) �=M( eB; Y ), then p induces an isomorphism of the sets of homotopy classes ofmaps p� : �( eB0; X) � �( eB0; Y ).2. If cX is a simplicial resolution in M and i : A! B is a map of co�brant ob-jects inM that induces a weak equivalence of simplicial sets i� : M(B;cX) �=M(A;cX), then i induces an isomorphism of the sets of homotopy classes ofmaps i� : �(B;cX0) � �(A;cX0).Proof. This follows from Proposition 18.1.2.Proposition 18.1.4. Let M be a model category.1. If B is co�brant and p : X ! Y is a map of �brant objects that inducesa weak equivalence of homotopy function complexes p� : map(B;X) !269 Draft: August 12, 1997



270 18. APPLICATIONS OF HOMOTOPY FUNCTION COMPLEXESmap(B; Y ), then p induces an isomorphism of the sets of homotopy classesof maps p� : �(B;X) � �(B; Y ).2. IfX is �brant and i : A! B is a map of co�brant objects that induces a weakequivalence of homotopy function complexes i� : map(B;X) ! map(A;X),then i induces an isomorphism of the sets of homotopy classes of mapsi� : �(B;X) � �(A;X).Proof. We will prove part 1; the proof of part 2 is dual.If eB is a cosimplicial resolution of B, then p induces a weak equivalencep� : M( eB; X)!M( eB; Y ) (see Theorem 17.6.6), and so Lemma 18.1.3 implies thatp induces an isomorphism p� : �( eB0; X) � �( eB0; Y ). Since eB0 ! B is a weakequivalence of co�brant objects, the result now follows from Corollary 8.5.4.Proposition 18.1.5. If M is a model category, then a map g : X ! Y is aweak equivalence if either of the following two conditions is satis�ed:1. The map g induces weak equivalences of homotopy function complexesg� : map(X;X) �= map(X;Y ) and g� : map(Y;X) �= map(Y; Y ):2. The map g induces weak equivalences of homotopy function complexesg� : map(Y;X) �= map(X;X) and g� : map(Y; Y ) �= map(X;Y ):Proof. We will prove this using condition 1; the proof using condition 2 issimilar.If ~g : eX ! eY is a co�brant approximation to g, then Theorem 17.5.2 implies that~g induces weak equivalences of homotopy function complexes ~g� : map( eX; eX) �=map( eX; eY ) and ~g� : map(eY ; eX) �= map(eY ; eY ). If ĝ : bX ! bY is a co�brant �-brant approximation to ~g, then ĝ is a map of co�brant-�brant objects, and The-orem 17.5.2 implies that ĝ induces weak equivalences of homotopy function com-plexes ĝ� : map( bX; bX) �= map( bX; bY ) and ĝ� : map(bY ; bX) �= map(bY ; bY ). Prop-osition 18.1.4 now implies that ĝ induces isomorphisms of the sets of homotopyclasses of maps ĝ� : �( bX; bX) � �( bX; bY ) and ĝ� : �(bY ; bX) � �(bY ; bY ), and so Propo-sition 8.3.28 implies that ĝ is a homotopy equivalence. Thus, ĝ is a weak equivalence,and so ~g is a weak equivalence, and so g is a weak equivalence.Theorem 18.1.6. IfM is a model category and g : X ! Y is a map inM, thenthe following are equivalent:1. The map g is a weak equivalence.2. For every object W inM the map g induces a weak equivalence of homotopyfunction complexes g� : map(W;X) �= map(W;Y ).3. For every co�brant object W in M the map g induces a weak equivalence ofhomotopy function complexes g� : map(W;X) �= map(W;Y ).4. For every object Z inM the map g induces a weak equivalence of homotopyfunction complexes g� : map(Y; Z) �= map(X;Z).5. For every �brant object Z in M the map g induces a weak equivalence ofhomotopy function complexes g� : map(Y; Z) �= map(X;Z).Proof. This follows from Theorem 17.5.2, Proposition 18.1.5, and Proposi-tion 9.1.2.Draft: August 12, 1997



18.2. HOMOTOPIC MAPS OF HOMOTOPY FUNCTION COMPLEXES 27118.2. Homotopic maps of homotopy function complexesLemma 18.2.1. If M is a model category and f; g : X ! Y are left homotopic,right homotopic, or homotopic, then both the induced maps of constant cosimpli-cial objects cf; cg : cX ! cY and the induced maps of constant simplicial objectssf; sg : sX ! sY are, respectively, left homotopic, right homotopic, or homotopic.Proof. The constant cosimplicial and constant simplicial objects obtainedfrom either a cylinder object for X or a path object for Y satisfy the conditions ofProposition 8.3.4.Proposition 18.2.2. Let M be a model category, and let W , X, Y , and Z beobjects in M.1. If f; g : X ! Y are left homotopic, right homotopic, or homotopic, and iff�; g� : map(W;X)! map(W;Y ) are maps of homotopy function complexesinduced by, respectively, f and g, then f� and g� are homotopic.2. If f; g : X ! Y are left homotopic, right homotopic, or homotopic, and iff�; g� : map(Z;W )! map(Z;W ) are maps of homotopy function complexesinduced by, respectively, f and g, then f� and g� are homotopic.Proof. We will prove part 1 in the case in which f� and g� are maps of lefthomotopy function complexes; the proof in the other cases (and of part 2) aresimilar.Let fW be a cosimplicial resolution ofW and let f̂ ; ĝ : bX ! bY be �brant approx-imations to, respectively, f and g, such that the maps f� and g� are, respectively,the maps f̂� : M(fW ; bX)!M(fW ; bY ) and ĝ� : M(fW ; bX)!M(fW ; bY ). If we factorthe weak equivalences X ! bX and Y ! bY as, respectively, X iX�! bX 0 pX��! bX andY iY�! bY 0 pY��! bY such that iX and iY are trivial co�brations and pX and pY are�brations, then the \two out of three" axiom implies that pX and pY are trivial�brations.The dotted arrow exists in the solid arrow diagramX f //iX �� Y iY // bY 0pY��bX 0 pX //f̂ 0 77bX f̂ // bYand a similar diagram implies that the corresponding map ĝ0 : bX0 ! bY 0 exists.Thus, f̂ 0 and ĝ0 are co�brant �brant approximations to, respectively, f and g, andwe have the diagram bX 0 f̂ 0 //ĝ0 //pX �� bY 0pY��bX f̂ //ĝ // bYin which pY f̂ 0 = f̂ pX and pY ĝ0 = ĝpX . Lemma 18.2.1 and Proposition 9.2.4 implythat if f and g are left homotopic, right homotopic, or homotopic, then f̂ 0 and ĝ0are, respectively, left homotopic, right homotopic, or homotopic. In any of theseDraft: August 12, 1997



272 18. APPLICATIONS OF HOMOTOPY FUNCTION COMPLEXEScases, Proposition 17.6.3 implies that the maps f̂ 0� : M(fW ; bX 0) ! M(fW ; bY 0) andĝ0� : M(fW ; bX 0)!M(fW ; bY 0) are homotopic. Since pX and pY are weak equivalencesof �brant objects, Theorem 17.5.1 implies that the maps M(fW ; bX 0) ! M(fW ; bX)and M(fW ; bY 0) ! M(fW ; bY ) are homotopy equivalences of �brant simplicial sets,and this implies that f̂� : M(fW ; bX) ! M(fW ; bY ) and ĝ� : M(fW ; bX) ! M(fW ; bY )are homotopic. 18.3. Homotopy orthogonal mapsIf M is a simplicial model category and if i : A ! B and p : X ! Y are mapssuch that either1. i is a trivial co�bration and p is a �bration, or2. i is a co�bration and p is a trivial �bration,then the map of function complexes Map(B;X) !Map(A;X)�Map(A;Y )Map(B; Y )is a trivial �bration (see axiom M7 of De�nition 10.1.2). If we also assume that1. A and B are co�brant, and2. X and Y are �brant,then the maps Map(A;X) ! Map(A; Y ) and Map(B; Y ) ! Map(A; Y ) are �bra-tions, and so the pullback Map(A;X) �Map(A;Y ) Map(B; Y ) is weakly equivalentto the homotopy pullback (see Corollary 11.2.8). It is only in this case (A and Bco�brant, X and Y �brant) that these function complexes are homotopy functioncomplexes, and in this case the \orthogonality" condition is equivalent to sayingthat the square Map(B;X) //�� Map(B; Y )��Map(A;X) // Map(A; Y )is a homotopy �ber square (see De�nition 11.2.12). Proposition 18.3.1 shows thatthis condition on a pair of maps is independent of the choice of homotopy functioncomplex, and then De�nition 18.3.3 de�nes what it means for a pair of maps (i; p)to be homotopy orthogonal.Proposition 18.3.1. Let M be a model category, and let i : A ! B andp : X ! Y be maps in M. If there is some homotopy function complex (see De�ni-tion 17.2.6) map(�;�) on M such that the squaremap(B;X) //�� map(B; Y )��map(A;X) // map(A; Y )(18.3.2)is a homotopy �ber square of simplicial sets (see De�nition 11.2.12), then Dia-gram 18.3.2 for any other homotopy function complex on M is also a homotopy�ber square.Proof. If map1(�;�) and map2(�;�) are homotopy function complexes onM, then Theorem 17.6.5 implies that there is a homotopy equivalence map1(�;�) �=Draft: August 12, 1997



18.3. HOMOTOPY ORTHOGONAL MAPS 273map2(�;�) that is natural up to homotopy. If we can alter these homotopy equiva-lences by homotopies to get maps from Diagram 18.3.2 for map1 to Diagram 18.3.2for map2 that commute on the nose, then the result will follow from Proposi-tion 11.2.13. If the maps map2(A;X) ! map2(A; Y ), map2(B; Y )! map2(A; Y ),and map2(B;X) ! map2(A;X)�map2(A;Y )map2(B; Y ) are �brations, then we canuse the homotopy lifting property (see Proposition 8.3.8) to alter the homotopyequivalences from map1 to map2 in our diagrams by homotopies so that we do geta map of diagrams. Thus, it is su�cient to show that for any homotopy functioncomplex, Diagram 18.3.2 maps to one with �brations as described. We will do thisfor left homotopy function complexes; the proofs for right and two-sided homotopyfunction complexes are similar.If map is a left homotopy function complex de�ned by the cosimplicial resolu-tion ~{ : eA ! eB to i and the �brant approximation p̂ : bX ! bY to p, then we canfactor ~{ into a co�bration followed by a trivial �bration eA ! eB0 ! eB and factorp̂ into a trivial co�bration followed by a �bration bX ! bX 0 ! bY . This yields adiagram M( eB; bX) //((QQQQ�� M( eB; bY ) ((PPPP��M( eB0; bX0) //�� M( eB0; bY )��M( eA; bX) //((QQQQ M( eA; bY ) ((PPPPM( eA; bX 0) // M( eA; bY )in which all four maps from the back square to the front square are weak equiva-lences (see Theorem 17.5.1), and Corollary 17.4.2 and Theorem 17.4.1 imply thatthe front square has the �brations required.Definition 18.3.3. If M is a model category and i : A ! B and p : X ! Yare maps in M, then we will say that1. (i; p) is a homotopy orthogonal pair,2. i is left homotopy orthogonal to p, and3. p is right homotopy orthogonal to iif the square map(B;X) //�� map(B; Y )��map(A;X) // map(A; Y )is a homotopy �ber square (see De�nition 11.2.12). (Proposition 18.3.1 implies thatthis is independent of the choice of homotopy function complex.)Proposition 18.3.4. IfM is a model category and g : X ! Y is a weak equiva-lence inM, then g is both left homotopy orthogonal and right homotopy orthogonalto every map in M.Proof. This follows from Proposition 17.1.14 and Theorem 17.4.1.Proposition 18.3.5. Let M be a model category. Draft: August 12, 1997



274 18. APPLICATIONS OF HOMOTOPY FUNCTION COMPLEXES1. If i : A! B is a map in M and p : X ! � is the map to the terminal objectofM, then (i; p) is a homotopy orthogonal pair if and only if i induces a weakequivalence of homotopy function complexes i� : map(B;X) �= map(A;X).2. If p : X ! Y is a map inM and i : ; ! B is the map from the initial object ofM, then (i; p) is a homotopy orthogonal pair if and only if p induces a weakequivalence of homotopy function complexes p� : map(B;X) �= map(A;X).Proof. This follows directly from the de�nitions.Proposition 18.3.6. Let M be a model category.1. If p : X ! Y is a map in M and we have a squareA �= //i �� A0i0��B �= // B0in which the horizontal maps are weak equivalences, then (i; p) is a homotopyorthogonal pair if and only if (i0; p) is one.2. If i : A! B is a map in M and we have a squareX �= //p �� X0p0��Y �= // Y 0in which the horizontal maps are weak equivalences, then (i; p) is a homotopyorthogonal pair if and only if (i; p0) is one.Proof. This follows from Proposition 11.2.13 and Theorem 17.5.2.Theorem 18.3.7. Let M be a model category. If i : A! B and p : X ! Y aremaps in M, then the following are equivalent:1. (i; p) is a homotopy orthogonal pair.2. For some cosimplicial resolution ~{ : eA ! eB of i such that ~{ is a Reedyco�bration and some �brant approximation p̂ : bX ! bY to p such that p̂ is a�bration, the map of simplicial setsM( eB; bX)!M( eA; bX)�M(eA;bY )M( eB; bY )is a trivial �bration.3. For every cosimplicial resolution ~{ : eA ! eB of i such that ~{ is a Reedyco�bration and every �brant approximation p̂ : bX ! bY to p such that p̂ is a�bration, the map of simplicial setsM( eB; bX)!M( eA; bX)�M(eA;bY )M( eB; bY )is a trivial �bration.4. For some co�brant approximation ~{ : eA! eB to i such that ~{ is a co�brationand some simplicial resolution p̂ : cX ! bY to p such that p̂ is a Reedy�bration, the map of simplicial setsM( eB;cX)!M( eA;cX)�M( eA;bY )M( eB; bY )Draft: August 12, 1997



18.3. HOMOTOPY ORTHOGONAL MAPS 275is a trivial �bration.5. For every co�brant approximation ~{ : eA! eB to i such that ~{ is a co�brationand every simplicial resolution p̂ : cX ! bY to p such that p̂ is a Reedy�bration, the map of simplicial setsM( eB;cX)!M( eA;cX)�M( eA;bY )M( eB; bY )is a trivial �bration.6. For some cosimplicial resolution ~{ : eA! eB i such that ~{ is a Reedy co�bra-tion and some simplicial resolution p̂ : cX ! bY to p such that p̂ is a Reedy�bration, the map of simplicial setsdiagM( eB;cX)! diagM( eA;cX)�diagM(eA; bY ) diagM( eB; bY )is a trivial �bration.7. For every cosimplicial resolution ~{ : eA! eB i such that ~{ is a Reedy co�bra-tion and every simplicial resolution p̂ : cX ! bY to p such that p̂ is a Reedy�bration, the map of simplicial setsdiagM( eB;cX)! diagM( eA;cX)�diagM(eA; bY ) diagM( eB; bY )is a trivial �bration.Proof. This follows fromProposition 18.3.1, Theorem 17.4.1, and Theorem 17.4.9.Proposition 18.3.8. Let M be a model category. If i : A! B and p : X ! Yare maps in M, then the following are equivalent:1. (i; p) is a homotopy orthogonal pair.2. For some cosimplicial resolution ~{ : eA ! eB of i such that ~{ is a Reedyco�bration, some �brant approximation p̂ : bX ! bY to p such that p̂ is a�bration, and every n � 0, the dotted arrow exists in every solid arrowdiagram of the formeA 
�[n]qeA
@�[n] eB 
 @�[n] //�� bX��eB 
�[n] //66 bY3. For every cosimplicial resolution ~{ : eA ! eB of i such that ~{ is a Reedyco�bration, every �brant approximation p̂ : bX ! bY to p such that p̂ is a�bration, and every n � 0, the dotted arrow exists in every solid arrowdiagram of the formeA 
�[n]qeA
@�[n] eB 
 @�[n] //�� bX��eB 
�[n] //66 bY4. For some co�brant approximation ~{ : eA! eB to i such that ~{ is a co�bration,some simplicial resolution p̂ : cX ! bY to p such that p̂ is a Reedy �bration,Draft: August 12, 1997



276 18. APPLICATIONS OF HOMOTOPY FUNCTION COMPLEXESand every n � 0, the dotted arrow exists in every solid arrow diagram of theform eA //�� cX�[n]��eB // 77bY �[n] �bY @�[n] cX@�[n]5. For every co�brant approximation~{ : eA! eB to i such that ~{ is a co�bration,every simplicial resolution p̂ : cX ! bY to p such that p̂ is a Reedy �bration,and every n � 0, the dotted arrow exists in every solid arrow diagram of theform eA //�� cX�[n]��eB // 77bY �[n] �bY @�[n] cX@�[n]Proof. Since a map of simplicial sets is a trivial �bration if and only if it hasthe right lifting property with respect to the map @�[n] ! �[n] for every n � 0,this follows from Theorem 18.3.7 and Proposition 17.3.14.Proposition 18.3.9. Let M be a model category. If i : A! B is a co�brationbetween co�brant objects, p : X ! Y is a �bration between �brant objects, and(i; p) is a homotopy orthogonal pair, then (i; p) is a lifting-extension pair.Proof. Proposition 17.1.31 implies that there is a cosimplicial frame ~{ : eA !eB on i such that ~{ is a Reedy co�bration. Proposition 18.3.8 now implies that eA
�[0]! eB 
�[0] has the left lifting property with respect to p, and Lemma 17.3.5implies that eA
�[0]! eB 
�[0] is isomorphic to the map i.Proposition 18.3.10. Let M be a model category.1. If i : A ! B is a co�bration between co�brant objects and p : X ! Y is amap such that i is left homotopy orthogonal to p, then any pushout of i isleft homotopy orthogonal to p.2. If p : X ! Y is a �bration between �brant objects and i : A ! B is a mapsuch that p is right homotopy orthogonal to i, then any pullback of p is righthomotopy orthogonal to i.Proof. We will prove part 1; the proof of part 2 is dual.If we choose a simplicial resolution p̂ : cX ! bY of p such that p̂ is a Reedy�bration (see Proposition 17.1.12), then Proposition 18.3.8 implies that i has theleft lifting property with respect to the map cX�[n] ! bY �[n] �bY @�[n] cX@�[n] forevery n � 0. Since any pushout of i is also a co�bration between co�brant objects,the result follows from Lemma 8.2.5 and Proposition 18.3.8.Corollary 18.3.11. Let M be a model category.1. If X is an object of M and i : A ! B is a co�bration between co�brantobjects that induces a weak equivalence of homotopy function complexesi� : map(B;X) �= map(A;X), then any pushout of i also induces a weakequivalence of homotopy function complexes to X.Draft: August 12, 1997



18.3. HOMOTOPY ORTHOGONAL MAPS 2772. If B is an object of M and p : X ! Y is a �bration between �brantobjects that induces a weak equivalence of homotopy function complexesp� : map(B;X) �= map(B; Y ), then any pullback of p also induces a weakequivalence of homotopy function complexes from B.Proof. This follows from Proposition 18.3.5 and Proposition 18.3.10.Proposition 18.3.12. Let M be a model category.1. If i : A ! B, j : B ! C, and p : X ! Y are maps in M such that (i; p) is ahomotopy orthogonal pair, then (j; p) is a homotopy orthogonal pair if andonly if (ji; p) is one.2. If i : A ! B, p : X ! Y , and q : Y ! Z are maps in M such that (i; q) is ahomotopy orthogonal pair, then (i; p) is a homotopy orthogonal pair if andonly if (i; qp) is one.Proof. This follows from Proposition 11.2.15.Proposition 18.3.13. Let M be a model category, and let i : A ! B andp : X ! Y be maps in M such that (i; p) is a homotopy orthogonal pair.1. If~{ : eA! eB is a cosimplicial resolution of i such that ~{ is a Reedy co�bration,then for every n � 0 the map eA
�[n]qeA
@�[n] eB 
 @�[n]! eB 
�[n] isleft homotopy orthogonal to p.2. If p̂ : cX ! bY is a simplicial resolution of p such that p̂ is a Reedy �bration,then for every n � 0 the map cX�[n] ! bY �[n] �bY @�[n] cX@�[n] is righthomotopy orthogonal to i.Proof. We will prove part 1; the proof of part 2 is dual.Proposition 17.3.7 and Proposition 16.3.7 imply that for every n � 0 the map�n : eA 
�[n]qeA
@�[n] eB 
 @�[n]! eB 
�[n] is a co�bration between co�brantobjects. Thus, Proposition 18.3.8 implies that if p̂ : cX ! bY is a simplicial resolutionof p such that p̂ is a Reedy �bration, then it is su�cient to show that �n has theleft lifting property with respect to the map �k : cX�[k] ! bY �[k] �bY @�[k] cX@�[k] forevery k � 0. We will do this by induction on n.Lemma 17.3.5 and Proposition 18.3.6 imply that for every n � 0 the mapeA 
 �[n]! eB 
 �[n] is left homotopy orthogonal to p. Since the map �0 is themap eA
�[0]! eB 
�[0], the induction is begun.We now assume that n > 0 and that the result is true for all lesser valuesof n. Lemma 16.3.5 now implies that Ln eA ! Ln eB has the left lifting propertywith respect to �k for every k � 0. Proposition 16.3.7 implies that Ln eA ! Ln eBis a co�bration between co�brant objects, and so Proposition 18.3.8 and Proposi-tion 18.3.10 imply that any pushout of Ln eA ! Ln eB is left homotopy orthogonalto p. Since Lemma 17.3.6 implies that the map eA
�[n]! eB
�[n] is isomorphicto the map Ln eA! Ln eB and the map eA
�[n]! eA
�[n]qeA
@�[n] eB 
 @�[n]is a pushout of it, this last map is left homotopy orthogonal to p. Since the compo-sition eA
�[n]! eA
�[n]qeA
@�[n] eB
@�[n]! eB
�[n] is also left homotopyorthogonal to p, Proposition 18.3.12 completes the inductive step.Draft: August 12, 1997



278 18. APPLICATIONS OF HOMOTOPY FUNCTION COMPLEXES18.4. Sequential colimitsProposition 18.4.1. If M is a model category, � is an ordinal, andX0 //g0 �� X1 //g1 �� X2 //g2 �� � � �Y0 // Y1 // Y2 // � � �is a map of �-sequences in M such that1. each of the maps g� : X� ! Y� (for � < �) is a weak equivalence of co�brantobjects, and2. each of the maps X� ! X�+1 and Y� ! Y�+1 (for � < �) is a co�bration,then the induced map of colimits (colimg�) : colimX� ! colimY� is a weak equiv-alence.Proof. If Z is an object ofM and sZ ! bZ is a simplicial resolution of Z, thenTheorem 18.1.6 implies that it is su�cient to show that the mapM(colimY�; bZ)!M(colimX�; bZ) is a weak equivalence of simplicial sets.Theorem 17.5.1 implies that the map g� : M(Y�; bZ) ! M(X�; bZ) is a weakequivalence of �brant simplicial sets for every � < �, and so the diagram� � � // M(Y2; bZ) //�� M(Y1; bZ) //�� M(Y0; bZ)��� � � // M(X2; bZ) // M(X1; bZ) // M(X0; bZ)is a weak equivalence of towers of �brations of �brant simplicial sets. Thus, theinduced map limM(Y�; bZ) ! limM(X�; bZ) is a weak equivalence. Since thismap is isomorphic to the map M(colimY�; bZ) ! M(colimX�; bZ), the proof iscomplete. 18.5. Properness18.5.1. Sequential colimits.Proposition 18.5.2. LetM be a left proper model category (see De�nition 11.1.1).If � is an ordinal and X0 //g0 �� X1 //g1 �� X2 //g2 �� � � �Y0 // Y1 // Y2 // � � �is a map of �-sequences in M such that1. each of the maps X� ! X�+1 and Y� ! Y�+1 (for � < �) is a co�bration;2. each of the maps g� : X� ! Y� (for � < �) is a weak equivalence;then the induced map (colimg�) : colimX� ! colimY� is a weak equivalence.Proof. This is identical to the proof of Proposition 11.1.21, except that weuse Proposition 18.4.1 in place of Proposition 10.5.6.Draft: August 12, 1997



18.5. PROPERNESS 279Proposition 18.5.3. Let M be a left proper model category. If � is an ordinaland X0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)is a �-sequence in M such that X� ! X�+1 is a co�bration for every � < �, thenthere is a �-sequenceeX0 ! eX1 ! eX2 ! � � � ! eX� ! � � � (� < �)and a map of �-sequenceseX0 //g0 �� eX1 //g1 �� eX2 //g2 �� � � � // eX� //g� �� � � � (� < �)X0 // X1 // X2 // � � � // X� // � � � (� < �)such that1. every eX� is co�brant,2. every g� : eX� ! X� is a weak equivalence,3. every eX� ! eX�+1 is a co�bration, and4. the map colim�<� eX� ! colim�<�X� is a weak equivalence.Proof. This is identical to the proof of Proposition 11.1.22, except that weuse Proposition 18.5.2 in place of Proposition 11.1.21.18.5.4. Homotopy orthogonal maps.Proposition 18.5.5. LetM be a left proper model category, and let p : X ! Ybe a map in M. If i : A! B is left homotopy orthogonal to p, the diagramA j //i �� Ck��B // Dis a pushout, and at least one of i and j is a co�bration, then k is left homotopyorthogonal to p.Proof. Let ~{ : eA ! eB be a co�brant approximation to i such that ~{ is aco�bration (see Proposition 9.1.9). Proposition 18.3.6 implies that ~{ is left homotopyorthogonal to p, and so Proposition 18.3.10 implies that any pushout of ~{ is lefthomotopy orthogonal to p. Since Proposition 11.3.2 implies that k has a co�brantapproximation that is a pushout of ~{, the result follows from Proposition 18.3.6.Proposition 18.5.6. Let M be a right proper model category, and let i : A!B be a map in M. If p : X ! Y is right homotopy orthogonal to i, the diagramW //r �� Xp��Z q // Yis a pullback, and at least one of p and q is a �bration, then r is right homotopyorthogonal to i. Draft: August 12, 1997



280 18. APPLICATIONS OF HOMOTOPY FUNCTION COMPLEXESProof. This is dual to Proposition 18.5.5 (see Remark 8.1.7).18.6. Quillen functors and resolutionsProposition 18.6.1. Let M and N be model categories and let F:M� N :Ube a Quillen pair (seeDe�nition 9.8.1).1. If eB is a cosimplicial resolution in M (see De�nition 17.1.16), then F eB is acosimplicial resolution in N.2. IfcX is a simplicial resolution in N, then UcX is a simplicial resolution inM.Proof. We will prove part 1; the proof of part 2 is dual.Corollary 16.6.2 implies that F eB is Reedy co�brant. Since eB is Reedy co�-brant, all of the objects eBn are co�brant inM, and so the coface and codegeneracyoperators are weak equivalences of co�brant objects. Thus, Corollary 8.5.2 impliesthat all of the coface and codegeneracy operators of F eB are weak equivalences.Proposition 18.6.2. Let M and N be model categories and let F:M� N :Ube a Quillen pair (see De�nition 9.8.1).1. If B is a co�brant object inM and eB is a cosimplicial resolution of B, thenF eB is a cosimplicial resolution of FB.2. If X is a �brant object in N andcX is a simplicial resolution of X, then UcXis a simplicial resolution of UX.Proof. This follows from Proposition 18.6.1 and Corollary 8.5.2.Corollary 18.6.3. Let C be a Reedy category, let M and N be small cate-gories, and let F:M� N :U be a Quillen pair.1. If i : A! B is a map of co�brant objects inM and ~{ : eA! eB is a cosimplicialresolution of i such that ~{ is a Reedy co�bration, then F~{ : F eA ! F eB is acosimplicial resolution of Fi and F~{ is a Reedy co�bration.2. If p : X ! Y is a map of �brant objects in N and p̂ : cX ! bY is a simplicialresolution of p such that p̂ is a Reedy �bration, then Up̂ is a simplicialresolution of Up and Up̂ is a Reedy �bration.Proof. This follows from Proposition 16.6.1 and Proposition 18.6.2.
Draft: August 12, 1997



CHAPTER 19Homotopy colimits and homotopy limitsThe main references for this chapter are [15, Chapters X through XII], [18],and [31]. Our de�nitions for diagrams of simplicial sets are essentially those of [15](see Remark 19.1.15). Our de�nitions for diagrams in a general model category aredue to D. M. Kan, who also established their properties using methods di�erentfrom the ones used here.19.1. Homotopy colimits and homotopy limits19.1.1. Homotopy colimits.Definition 19.1.2. LetM be a framed model category (see De�nition 17.1.33),and let C be a small category. IfX : C!M is a C-diagram inM, then the homotopycolimit hocolimX of X is de�ned to be the coequalizer of the mapsa(� : �!�0)2CfX� 
 B(�0 #C)op � // // a�2Ob(C)fX� 
 B(� #C)op(see De�nition 17.3.1, De�nition 9.4.1, and De�nition 14.4.2) where fX� is thenatural cosimplicial frame on X�, the map � on the summand � : � ! �0 is thecomposition of the map�� 
 1B(�0#C) : fX� 
 B(�0 #C)op !fX�0 
 B(�0 #C)opwith the natural injection into the coproduct, and the map  on the summand� : �! �0 is the composition of the map1 eX� 
 B(��) : fX� 
 B(�0 #C)op !fX� 
 B(� #C)op(where �� : (�0 #C)op ! (� #C)op; see De�nition 14.5.2) with the natural injectioninto the coproduct.For a discussion of the relation of our de�nition of the homotopy colimit tothat of [15], see Remark 19.1.15.Remark 19.1.3. If M is a simplicial model category, then for every object Xin M and every simplicial set K, the object fX 
 K (where fX is the standardcosimplicial frame on X; see Proposition 17.1.35) is naturally isomorphic to X 
K(see Proposition 17.3.10). Thus, if C is a small category and X : C ! M is a C-diagram in M, then hocolimX is naturally isomorphic to the coequalizer of themaps a(� : �!�0)2CX� 
 B(�0 #C)op � // // a�2Ob(C)X� 
 B(� #C)op281 Draft: August 12, 1997



282 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITSFor example, with the standard framings on the simplicial model categories SS,SS�, Top, and Top� (see Notation 1.1.2),fX� 
 B(� #C)op � 8>>><>>>:X� � B(� #C)op if M = SSX� ^ �B(� #C)op�+ if M = SS�X� � ��B(� #C)op�� if M = TopX� ^ ��B(� #C)op��+ if M = Top�(see De�nition 1.1.11).Example 19.1.4. If g : X ! Y is a map in Spc(�) (see Notation 1.1.2), thenthe homotopy colimit of this diagram is the mapping cylinder of g.Example 19.1.5. If Z h � X g�! Y are maps in Spc(�) (see Notation 1.1.2),then the homotopy colimit of this diagram is the double mapping cylinder of g andh. Proposition 19.1.6. If C is a small category and P : C ! SS is the diagramof simplicial sets in which P � is a single point for every object � in C, then thereis a natural isomorphism hocolimP � BCop.Proof. Remark 19.1.3 implies that hocolimP is naturally isomorphic to thecoequalizer of the mapsa(� : �!�0)2CB(�0 #C)op � // // a�2Ob(C)B(� #C)opwhere the map � is the identity map and the map  on the summand � : � ! �0is the composition of the map B(��) : B(�0 #C)op ! B(� #C)op with the naturalinjection into the coproduct. We de�ne a map B(� #C)op ! BCop by sending thesimplex � ((QQQQQQQQQQQQQQQ��}}{{{{{{{{�0 �1oo � � �oo �nooof B(� #C)op to the simplex �0  �1  � � �  �n of BCop. This de�nes a sur-jective map hocolimP ! BCop which is also injective because every simplex of`�2Ob(C) B(� #C)op that is mapped to �0  �1  � � �  �n is equal (in hocolimP )to the simplex �n 1�n ((QQQQQQQQQQQQQQQ��}}{{{{{{{{�0 �1oo � � �oo �nooDefinition 19.1.7. Let M be a framed model category, let C and D be smallcategories, and let F: C ! D be a functor. If X : D ! M is a D-diagram in M,then composition with F de�nes a C-diagram F�X in M which we will call theC-diagram induced by F . If � is an object in C, then (F�X)� = XF�, and if� : �! �0 in C, then (F�X)� = XF� : XF� !XF�0 .Draft: August 12, 1997



19.1. HOMOTOPY COLIMITS AND HOMOTOPY LIMITS 283Proposition 19.1.8. Let M be a framed model category. If C and D are smallcategories, F: C! D is a functor, andX : D!M is a D-diagram inM, then thereis a natural map hocolimC F�X ! hocolimD Xde�ned by sending]F�X�
B(� #C)op = fXF�
B(� #C)op to fXF�
B(F� #D)op.Proof. This follows directly from the de�nitions.It is often of interest to know conditions on a functor F that ensure that the nat-ural map of Proposition 19.1.8 is a weak equivalence for all D-diagrams of co�brantobjects. For this, see Theorem 19.5.11.19.1.9. Homotopy limits.Definition 19.1.10. LetM be a framedmodel category (see De�nition 17.1.33)and let C be a small category. IfX : C!M is a C-diagram inM, then the homotopylimit holimX of X is de�ned to be the equalizer of the mapsY�2Ob(C)(cX�)B(C#�) � // // Y(� : �!�0)2C(cX�0)B(C#�)(see De�nition 17.3.1, De�nition 9.4.1, and De�nition 14.4.1) where cX� is thestandard simplicial frame onX�, the projection of the map � on the factor � : �!�0 is the composition of a natural projection from the product with the map�1B(C#�)� : (cX�)B(C#�) ! (cX�0)B(C#�)and the projection of the map  on the factor � : � ! �0 is the composition of anatural projection from the product with the map(1 bX�0 )B(��) : (cX�0)B(C#�0) ! (cX�0)B(C#�)(where �� : (C #�)! (C #�0); see De�nition 14.5.7).For a discussion of the relation of our de�nition of the homotopy limit to thatof [15], see Remark 19.1.15.If C is a small category andM is a category of spaces (i.e., one of SS, SS�, Top,or Top�), then the homotopy limit of a C-diagram inM can be described as a spaceof maps between diagrams. If X is a space and K is a simplicial set, then the spacecXK (where cX is the standard simplicial frame on X; see Proposition 17.1.35) isnaturally isomorphic tocXK � 8>>><>>>:Map(K;X) if M = SSMap�(K+; X) if M = SS�map���K��; X� if M = Topmap����K��+; X� if M = Top� Draft: August 12, 1997



284 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITS(see Proposition 17.3.10 and De�nition 1.1.11). Thus, in these cases, De�nition 19.1.10de�nes holimX as the equalizer of the mapsY�2Ob(C)Map�B(C #�);X��� Y(� : �!�0)2CMap�B(C #�);X�0� if M = SSY�2Ob(C)Map��B(C #�)+;X��� Y(� : �!�0)2CMap��B(C #�)+;X�0� if M = SS�Y�2Ob(C)map���B(C #�)��;X��� Y(� : �!�0)2Cmap���B(C #�)��;X�0� if M = TopY�2Ob(C)map����B(C #�)��+;X��� Y(� : �!�0)2Cmap����B(C #�)��+;X�0� if M = Top�This is exactly the de�nition of the space of mapsfrom B(C #�) to X in SSC, if M = SSfrom B(C #�)+ to X in SSC� , if M = SS�from ��B(C #�)�� to X in TopC, if M = Topfrom ��B(C #�)��+ to X in TopC� , if M = Top�Proposition 19.1.11. If M is a category of spaces (i.e., one of SS, SS�, Top,or Top�), C is a small category, and X : C ! M is a C-diagram of spaces, thenholimX is naturally isomorphic to the space of mapsMap�B(C #�);X�; if M = SSMap��B(C #�)+;X�; if M = SS�map���B(C #�)��;X�; if M = Topmap����B(C #�)��+;X�; if M = Top�(see De�nition 1.1.6).Proof. This follows from the discussion immediately preceding the proposi-tion.Example 19.1.12. If g : X ! Y is a map in Spc(�)(seeNotation 1.1.2), thenthe homotopy limit of this diagram is the mapping path space of g.Remark 19.1.13. When considering diagrams of spaces, there is a fundamentaldi�erence between the homotopy colimit and the homotopy limit regarding thesigni�cance of working in a category of pointed spaces. In Section 20.7, we willshow that if X is a diagram of pointed spaces, then the homotopy colimit of Xformed in the category of pointed spaces is not, in general weakly equivalent tothe homotopy colimit formed in the category of unpointed spaces after forgettingthe basepoints of the spaces in the diagram X. However, the homotopy limit ofX formed in the category of pointed spaces is isomorphic (or homeomorphic) tothe space obtained by forgetting the basepoints of the spaces in X and formingthe homotopy limit in the category of unpointed spaces. This is because if X isan unpointed space and Y is a pointed space, then the space of pointed mapsmap�(X+ ; Y ) is isomorphic (or homeomorphic) to the space of unpointed mapsmap(X;Y ) (except that in the �rst case we've kept track of the basepoint of thespace of maps).Proposition 19.1.14. LetM be a framed model category. If C andD are smallcategories, F: C! D is a functor, andX : D!M is a D-diagram inM, then thereDraft: August 12, 1997



19.2. ADJOINTNESS 285is a natural map holimD X ! holimC F�X(see De�nition 19.1.7) induced by the natural map B(C #�)! B(D #F�).Proof. This follows directly from the de�nitions.It is often of interest to know conditions on a functor F that ensure that thenatural map of Proposition 19.1.14 is a weak equivalence for all D-diagrams of�brant objects. For this, see Theorem 19.5.11.Remark 19.1.15. There are two respects in which our de�nitions of the homo-topy colimit and the homotopy limit di�er from those of [15] (which uses the termhomotopy direct limit for the homotopy colimit). First, we use the diagrams of sim-plicial sets B(� #C)op and B(C #�) (see De�nition 19.1.2 and De�nition 19.1.10)where [15] uses the diagrams B(�#C) and B(C #�) (see [15, Chapter XII, Para-graph 2.1 and Chapter XI, Paragraph 3.2]. Since both B(� #C)op and B(�#C)are co�brant approximations to the constant Cop-diagram at a point (see Corol-lary 14.6.8), these two choices give de�nitions that are naturally weakly equivalentfor C-diagrams of co�brant spaces (see Theorem 20.8.4), but our de�nition waschosen to make Corollary 20.3.19 true. It is incorrectly stated in [15, Chapter XII,Proposition 4.1] that this is true for the de�nitions used in [15]; this is due toan error in the proof of [15, Chapter XII, Proposition 4.1]. This error is a minorone, since the spaces claimed there to be isomorphic are in fact naturally weaklyequivalent, which is all that was needed.The second di�erence between our de�nitions and those of [15] is that thede�nition of the classifying space (i.e., the nerve) of a category used in [15] is \op-posite" to our de�nition (see De�nition 9.4.1 and [15, Chapter XI, Paragraph 2.1]),i.e., if C is a small category, then the de�nition of BC used in [15] (which is calledthere the underlying space of the category) is isomorphic to our de�nition of BCop.The combined e�ect of the above two di�erences is that our de�nition of thehomotopy colimit is isomorphic to that of [15], but our de�nition of the homotopylimit is di�erent. Since the C-diagrams of simplicial sets B(C #�) and B(C #�)opare both free cell complexes (see De�nition 14.1.28), these two de�nitions of thehomotopy limit are naturally weakly equivalent for diagrams of �brant spaces (seeTheorem 20.8.1). 19.2. Adjointness19.2.1. Coends and ends.Definition 19.2.2. LetM be a framed model category (see De�nition 17.1.33)and let C be a small category.1. If X : C ! M is a C-diagram in M and K : Cop ! SS is a Cop-diagram ofsimplicial sets, then X 
C K is de�ned to be the object of M that is thecoequalizer of the mapsa(� : �!�0)2CfX� 
K�0 � // // a�2Ob(C)fX� 
K�Draft: August 12, 1997



286 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITS(see De�nition 17.3.1) where fX� is the natural cosimplicial frame on X�,the map � on the summand � : �! �0 is the composition of the map�� 
 1K�0 : fX� 
K�0 !fX�0 
K�0(where �� : fX� ! fX�0) with the natural injection into the coproduct, andthe map  on the summand � : �! �0 is the composition of the map1 eX� 
 �� : fX� 
K�0 !fX� 
K�(where �� : K�0 !K�) with the natural injection into the coproduct.2. If X : C ! M is a C-diagram in M and K : C ! SS is a C-diagram ofsimplicial sets, then homC(K ;X) is de�ned to be the equalizer of the mapsY�2Ob(C)(cX�)K� � // // Y(� : �!�0)2C(cX�0)K�(see De�nition 17.3.1) where cX� is the natural simplicial frame on X�, theprojection of the map � on the factor � : � ! �0 is the composition of anatural projection from the product with the map�1K�� : (cX�)K� ! (cX�0)K�(where �� : cX� ! cX�0) and the projection of the map  on the factor� : �! �0 is the composition of a natural projection from the product withthe map (1 bX�0 )K�� : (cX�0)K�0 ! (cX�0)K�(where �� : (C #�)! (C #�0); see De�nition 14.5.7).Example 19.2.3. Let M be a framed model category and let C be a smallcategory.1. If X : C !M is a C-diagram in M, then X 
C B(� #C)op is the homotopycolimit of X (see De�nition 19.1.2).2. IfX : C!M is a C-diagram inM, then homC(B(C #�);X) is the homotopylimit holimX of X (see De�nition 19.1.10).Remark 19.2.4. Let M be a framed model category and let C be a small cat-egory.1. The construction of the object X 
CK inM from the functor fX 
K : C�Cop ! M is an example of the general construction known as a coend (see[41, pages 222{223]). In the notation of [41], X 
C K = R �fX� 
K�.2. The construction of the object homC(K ;X) ofM from the functorcXK : C�Cop !M is an example of a general construction known as an end (see [41,pages 218{223] or [8, page 329]). In the notation of [41], homC(K;X) =R�(cX�)K� .Proposition 19.2.5. Let M be a framed model category and let C be a smallcategory.1. If X : C ! M is a C-diagram in M, and P : Cop ! SS is a single point forevery object � in C, then X 
C P is naturally isomorphic to colimX.2. If X : C ! M is a C-diagram in M, and P : C ! SS is a single point forevery object � in C, then homC(P ;X) is naturally isomorphic to limX.Draft: August 12, 1997



19.2. ADJOINTNESS 287Proof. For part 1, P� is naturally isomorphic to �[0] for every object � inCop, and so we have natural isomorphismsfX� 
 P � �fX� 
�[0]� (fX�)0 � X�(see Lemma 17.3.5). Under these isomorphisms, the map � of De�nition 19.2.2 isde�ned by �� : X� !X�0 and the map  is the identity.For part 2, P � is naturally isomorphic to �[0] for every object � in C, and sowe have natural isomorphismscXP �� � cX�[0]� � (cX�)0 � X�(see Lemma 17.3.5). Under these isomorphisms, the map � of De�nition 19.2.2 isde�ned by �� : X� !X�0 and the map  is the identity.Example 19.2.6. Let M be a framed model category and let C be a smallcategory.1. If P : Cop ! SS is a single point for every object � in Cop, then the uniquemap of Cop-diagrams B(� #C)op ! P induces a natural maphocolimX =cX 
C B(� #C)op !cX 
C P = colimXfor all C-diagrams X in M (see Example 19.2.3 and Proposition 19.2.5).2. If P : C! SS is a single point for every object � in C, then the unique mapof C-diagrams B(C #�)! P induces a natural maplimX = homC(P ;cX)! homC�B(C #�);cX� = holimXfor all C-diagrams X in M.19.2.7. Adjointness.Proposition 19.2.8. Let M be a framed model category and let C be a smallcategory.1. If X : C ! M is a C-diagram in M, K : Cop ! SS is a Cop-diagram ofsimplicial sets, and Z is an object inM, then there is a natural isomorphismof sets M(X 
CK ; Z) � SSCop�K ;M(fX; Z)�where fX is the natural cosimplicial frame on X and X 
C K is as inDe�nition 19.2.2.2. If X : C!M is a C-diagram in M, K : C! SS is a C-diagram of simplicialsets, and W is an object in M, then there is a natural isomorphism of setsM�W; homC(K;X)� � SSC�K;M(W;cX)�where cX is the natural simplicial frame on X and homC(K;X) is as inDe�nition 19.2.2.Proof. For part 1, X 
CK is de�ned as a colimit, and so M(X 
CK; Z) isnaturally isomorphic to the limit of the diagramY�2Ob(C)M(fX� 
K�; Z) �� // � // Y(� : �!�0)2CM(fX� 
K�0 ; Z)Draft: August 12, 1997



288 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITSTheorem 17.3.8 implies that this limit is naturally isomorphic to the limit of thediagramY�2Ob(C) SS�K�;M(fX�; Z)� �� // � // Y(� : �!�0)2C SS�K�0 ;M(fX�; Z)�which is the de�nition of SSCop�K;M(fX; Z)�.For part 2, homC(K;X) is de�ned as a limit, and so M�W; homC(K;X)� isnaturally isomorphic to the limit of the diagramY�2Ob(C)M�W; (cX�)K�� � // // Y(� : �!�0)2CM�W; (cX�0)K��Theorem 17.3.8 implies that this limit is naturally isomorphic to the limit of thediagramY�2Ob(C) SS�K�;M(W;cX�)� � // // Y(� : �!�0)2C SS�K�;M(W;cX�0)�which is the de�nition of SSC�K ;M(W;cX)�.Proposition 19.2.9. Let M be a framed model category and let C be a smallcategory.1. If X : C ! M is a C-diagram in M such that X� is co�brant for everyobject � in C and K : Cop ! SS is a Cop-diagram of simplicial sets that is aco�brant object in SSCop , then X 
CK is co�brant.2. If K : C ! SS is a C-diagram of simplicial sets that is a co�brant object inSSC and X : C!M is a C-diagram in M such that X� is �brant for everyobject � in C, then homC(K ;X) is �brant.Proof. For part 1, Proposition 8.2.3 implies that it is su�cient to show thatif p : Y ! Z is a trivial �bration in M, then the dotted arrow exists in every solidarrow diagram of the form ; //�� Yp��X 
CK //:: Z(where ; is the initial object ofM). Proposition 19.2.8 implies that this is equivalentto showing that the dotted arrow exists in every solid arrow diagram in SSCop ofthe form ; //�� M(fX ; Y )p���K // ;;M(fX ; Z)(where ; denotes the initial object of SSCop). Corollary 17.4.3 implies that the mapp� : M(fX�; Y ) ! M(fX�; Z) is a trivial �bration in SS for every object � in Cop,Draft: August 12, 1997



19.2. ADJOINTNESS 289and so p� is a trivial �bration in SSCop (see Theorem 14.2.1). Since K is co�brantin SSCop , the result follows.For part 2, Proposition 8.2.3 implies that it is su�cient to show that if i : A! Bis a trivial co�bration in M, then the dotted arrow exists in every solid arrowdiagram of the form A //i �� homC(K;X)��B //99 �(where � denotes the terminal object ofM). Proposition 19.2.8 implies that this isequivalent to showing that the dotted arrow exists in every solid arrow diagram inSSC of the form ; //�� M(B;cX)i���K // ;;M(A;cX)(where ; denotes the initial object of SSC). Corollary 17.4.3 implies that i�� : M(B;cXa)!M(A;cX�) is a trivial �bration in SSC for every object � in C, and so i� is a triv-ial �bration in SSC (see Theorem 14.2.1). Since K is co�brant in SSC, the resultfollows.Proposition 19.2.10. Let M be a framed model category and let C be a smallcategory.1. If X : C ! M is a C-diagram of co�brant objects in M and f : K ! K 0is a weak equivalence of co�brant Cop-diagrams of simplicial sets, then theinduced map f� : X 
C K ! X 
C K0 is a weak equivalence of co�brantobjects in M.2. If X : C ! M is a C-diagram of �brant objects in M and f : K ! K 0is a weak equivalence of co�brant C-diagrams of simplicial sets, then theinduced map f� : homC(K0;X) ! homC(K;X) is a weak equivalence of�brant objects in M.Proof. For part 1, Theorem 18.1.6 and Proposition 19.2.9 imply that it issu�cient to show that if bZ is a simplicial frame on a �brant object Z in M, thenthe map M(X 
C K0; bZ) ! M(X 
C K; bZ) is a weak equivalence of simplicialsets.Proposition 19.2.8 implies that, for every n � 0, the mapM(X 
CK0; bZn)!M(X
CK; bZn) is isomorphic to the map SSCop�K0;M(fX; bZn)�! SSCop�K;M(fX; bZn)�.Proposition 17.5.3 implies that M(fX ; bZ) is a simplicial resolution of M(fX ; Z),which is a �brant object in SSCop. Since f : K !K0 is a weak equivalence of co�-brant objects in SSCop, Theorem 17.5.2 implies that the map SSCop�K0;M(fX; bZ)�!SSCop�K ;M(eZ; bZ)� is a weak equivalence of simplicial sets. Since this map is iso-morphic to the mapM(X 
CK0; bZ)!M(X 
CK ; bZ), the result follows.For part 2, Theorem 18.1.6 and Proposition 19.2.9 imply that it is su�cientto show that if fW is a cosimplicial frame on a co�brant object W in M, thenDraft: August 12, 1997



290 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITSf� : M�fW ; homC(K 0;X)� ! M�fW ; homC(K ;X)� is a weak equivalence of sim-plicial sets. Proposition 19.2.8 implies that for every n � 0 the map of setsM�fW n; homC(K 0;X)�!M�fW n; homC(K ;X)� is isomorphic to the map SSC�K 0;M(fW n;cX)�!SSC�K;M(fWn;cX)�. Proposition 17.5.3 implies that M(fW ;cX) is a simplicialresolution of the �brant object M(W;cX) in SSC. Since f : K ! K0 is a weakequivalence of co�brant objects in uSSC, Theorem 17.5.2 implies that the mapuSSC�K0mM(fW ;cX)� ! SSC�K;M(fW ;cX)� is a weak equivalence of simplicialsets. Since this map is isomorphic to the mapM�fW ; homC(K0;X)�!M�fW ; homC(K;X)�,the result follows.Proposition 19.2.11. LetM be a model category and let C be a small category.1. IfK : Cop ! SS is a co�brant Cop-diagram of simplicial sets and f : X ! Yis an objectwise weak equivalence of C-diagrams of co�brant objects in M,then the induced map f� : X 
CK ! Y 
CK is a weak equivalence.2. If K : C ! SS is a co�brant C-diagram of simplicial sets and f : X ! Y isan objectwise weak equivalence of C-diagrams of �brant objects in M, thenthe induced map f� : homC(K ;X)! homC(K ;Y ) is a weak equivalence.Proof. For part 1, Theorem 18.1.6 and Theorem 19.3.1 imply that it is suf-�cient to show that if bZ is a simplicial frame on a �brant object Z in M, thenf� : M(Y 
C K; bZ)!M(X 
CK; bZ) is a weak equivalence of simplicial sets.Proposition 19.2.8 implies that, for every n � 0, the map of sets M(Y 
CK; bZn) ! M(X 
C K ; bZn) is isomorphic to the map SSCop�K;M( eY ; bZn)� !SSCop�K ;M(fX; bZn)�. Theorem 17.5.2 implies that for every object � in C themapM( eY �; Z)!M(fX�; Z) is a weak equivalence of �brant simplicial sets. Thus,the map M( eY ; Z) ! M(fX; Z) is a weak equivalence of �brant objects in SSCop(see Theorem 14.2.1). Since Proposition 17.5.3 implies that the map M( eY ; bZ) !M(fX; bZ) is a simplicial resolution of the mapM( eY ; Z)!M(fX ; Z) andK is a co�-brant object in SSCop, Theorem 17.5.2 implies that the map SSCop�K ;M( eY ; bZ)�!SSCop�K ;M(fX; bZ)� is a weak equivalence of simplicial sets. Since this map is iso-morphic to the mapM(X 
CK; bZ)!M(Y 
CK; bZ), the result follows.For part 2, Theorem 18.1.6 and Theorem 19.3.1 imply that it is su�cientto show that if fW is a cosimplicial frame on a co�brant object W in M, thenf� : M(fW ; homC(K;X)!M(fW ; homC(K;Y ) is a weak equivalence of simplicialsets. Proposition 19.2.8 implies that for every n � 0 the mapM(fW n; homC(K;X)!M(fW n; homC(K;Y ) is isomorphic to the map SSC�K;M(fWn;cX)�! SSC�K;M(fWn; bY )�.Thus, it is su�cient to show that the map SSC�K;M(fW ;cX)�! SSC�K;M(fW ; bY )�is a weak equivalence of simplicial sets.Theorem 17.5.2 implies that for every object � in C the map M(W;cX�) !M(W; bY �) is a weak equivalence of �brant simplicial sets. Thus, the mapM(W;cX)!M(W; bY ) is a weak equivalence of �brant objects in SSC (see Theorem 14.2.1). SinceProposition 17.5.3 implies that the mapM(fW ;cX)!M(fW ; bY ) is a simplicial res-olution of the map M(W;cX) ! M(W; bY ) and K is a co�brant object in SSC,Theorem 17.5.2 implies the result.Draft: August 12, 1997



19.4. HOMOTOPY PULLBACKS AND HOMOTOPY LIMITS 29119.3. Homotopy invarianceTheorem 19.3.1. Let M be a framed model category, and let C be a smallcategory.1. IfX : C!M is a C-diagram inM such thatX� is co�brant for every object� in C, then hocolimX is co�brant.2. If X : C!M is a C-diagram in M such that X� is �brant for every object� in C, then holimX is �brant.Proof. This follows from Proposition 19.2.9 and Corollary 14.6.8.Theorem 19.3.2. Let M be a framed model category, and let C be a smallcategory.1. If f : X ! Y is a map of C-diagrams in M such that f� : X� ! Y � isa weak equivalence of co�brant objects for every object � in C, then theinduced map of homotopy colimits f� : hocolimX ! hocolimY is a weakequivalence.2. If f : X ! Y is a map of C-diagrams in M such that f� : X� ! Y � is aweak equivalence of �brant objects for every object � in C, then the inducedmap of homotopy limits f� : holimX ! holimY is a weak equivalence.Proof. This follows from Proposition 19.2.11.19.4. Homotopy pullbacks and homotopy limitsIf M is a right proper framed model category, then the diagram X ! Z  Yhas both a homotopy pullback (see De�nition 11.2.2) and a homotopy limit (seeDe�nition 19.1.10). We will show that for �brant X, Y , and Z, the homotopypullback of a diagramX ! Z  Y is naturally weakly equivalent to the homotopylimit of that diagram (see Proposition 19.4.3). We begin by showing that, for amap of �brant objects, the \classical" method of converting a map into a �brationdoes provide a factorization into a weak equivalence followed by a �bration.Lemma 19.4.1. Let M be a framed model category, and let g : X ! Z be amap of �brant objects. If ev0 : bZ�[1] ! Z is the composition bZ�[1] (d1)����! bZ�[0] �bZ0 � Z (see Lemma 17.3.5) and the squareW ~g //k �� bZ�[1]ev0��X g // Zis a pullback, then1. the map ev1 ~g : W ! Z is a �bration (where ev1 : bZ�[1] ! Z is the compo-sition bZ�[1] (d0)����! bZ�[0] � bZ0 � Z),2. the map j : X !W (which is de�ned by the requirements that kj = 1X and~gj : X ! bZ�[1] is the map X g�! Z � bZ0 � bZ�[0] (s0)����! bZ�[1]) is a weakequivalence, and3. (ev1 ~g) � j = g. Draft: August 12, 1997



292 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITSProof. Since Z is �brant, bZ is Reedy �brant, and so ev0 is a trivial �bration.Thus, k is a trivial �bration. Since kj = 1X , this implies that j is a weak equiva-lence. Since the composition bZ�[0] (s0)����! bZ�[1] (d0)����! bZ�[0] is the identity map, itfollows that (ev1 ~g)j = g, and so it remains only to show that ev1 ~g is a �bration.Proposition 8.2.3 implies that it is su�cient to show that for every trivialco�bration A! B in M and every solid arrow diagramA r //�� Wev1 ~g��B s //>> Z(19.4.2)there exists a dotted arrow making both triangles commute. We �rst note that,since X is �brant, the map kr : A! X can be extended over B. Since W is de�nedas a pullback, it remains only to �nd an appropriate map B ! bZ�[1].If we compost our map B ! X with the composition X g�! Z � bZ0 � bZ�[0] !bZ@�[1] (where that last map is induced by the projection of @�[1] � �[0]� �[0]onto the second factor), then we have a map B ! bZ@�[1] that makes Thus, wehave the solid arrow diagram A //�� bZ�[1]��B // <<bZ@�[1]commute. Since bZ is Reedy �brant, Proposition 17.3.7 implies that bZ�[1] ! bZ@�[1]is a �bration, and so the dotted arrow exists in this diagram. This dotted arrowcombines with the map B ! X to de�ne the dotted arrow in Diagram 19.4.2.Proposition 19.4.3. Let M be a right proper framed model category. If X,Y , and Z are �brant objects, then the homotopy pullback (see De�nition 11.2.2)of the diagram X g�! Z h � Y is naturally weakly equivalent to the homotopy limit(see De�nition 19.1.10) of that diagram.Proof. If K is the simplicial set that is the union of two copies of �[1] withvertex 1 of both copies identi�ed to a single point, then the homotopy limit of thediagram X g�! Z h � Y is naturally isomorphic to the limit of the diagramX g ��???????? bZT   AAAAAAAA~~}}}}}}}} Yh����������Z Zwhere the two maps with domain bZK are de�ned by evaluation on vertex 0 ofthe two copies of �[1] (see De�nition 19.1.10). The limit of this last diagram isnaturally isomorphic to the limit of the diagramX g ��???????? bZ�[1] ev1 ""DDDDDDDDev0||zzzzzzzz bZ�[1] ev0 ""DDDDDDDDev1||zzzzzzzz Yh����������Z Z Z(19.4.4)Draft: August 12, 1997



19.5. COFINALITY 293(see Proposition 17.3.9). If Wg is the pullback of the diagram X g�! Z ev0 �� bZ�[1]and Wh is the pullback of the diagram Y h�! Z ev0 �� bZ�[1], then the limit of Dia-gram 19.4.4 is naturally isomorphic to the pullback of the diagramWg ! Z  Wh.Lemma 19.4.1 implies that the maps Wg ! Z and Wh ! Z arise as factorizationsof, respectively, g and h into a weak equivalence followed by a �bration, and so theresult follows from Proposition 11.2.7.19.5. Co�nalityIn this section, we characterize those functors between small categories thatinduce weak equivalences of homotopy limits for all diagrams of �brant objects,and those that induce weak equivalences of homotopy colimits for all diagrams ofco�brant objects.Proposition 19.5.1. LetM be a framed model category, let C and D be smallcategories, let F: C! D be a functor, and let X : D!M be a D-diagram in M.1. There is a natural isomorphism of objects in MhocolimC F�X � X 
D B(� #F)op(see De�nition 19.1.7 and De�nition 14.5.2).2. There is a natural isomorphism of objects in MholimC F�X � homD�B(F #�);X�(see De�nition 19.2.2 and De�nition 14.5.7).Proof. For part 1, we will show that for every object Z inM there is a naturalisomorphism of setsM�X 
D B(� #F)op; Z� �M(hocolimC F�X ; Z);the Yoneda lemma (see, e.g., [7, page 11], [41, page 61], or [5, pages 26{28]) willthen imply that that isomorphism is induced by an isomorphism hocolimCF�X �X 
D B(� #F)op.Example 19.2.3 implies that hocolimCF�X is naturally isomorphic to (F�X)
CB(� #C)op, and so Proposition 19.2.8 implies that there are natural isomorphismsM�X 
D B(� #F)op; Z� � SSDop�B(�#F)op;M(fX; Z)�(19.5.2) M(hocolimC F�X; Z) � SSCop�B(� #C)op;M(]F�X ; Z)�(19.5.3)(where fX is the natural cosimplicial frame on X). Proposition 14.6.5 impliesthat the Dop-diagram of simplicial sets B(� #F)op is a free cell complex with basisequal to the set of simplices described in Diagram 14.6.6, and that the Cop-diagramof simplicial sets B(�#C)op is a free cell complex with basis equal to the set ofsimplices of the form �}}zzzzzzzz �� 1� ((QQQQQQQQQQQQQQQ�0 �1�0oo � � ��1oo ���n�1oo Draft: August 12, 1997



294 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITSThus, there is a natural one-to-one correspondence between the bases, and we cannow use Proposition 14.7.2 to show by induction on the skeleta of the domains thatthe set of maps (19.5.2) is naturally isomorphic to the set of maps (19.5.3).For part 2, we will show that for every object W in M there is a naturalisomorphism of setsM(W; holimC F�X) �M�W; homD(B(F #�);X)�;the Yoneda lemma will then imply that that isomorphism is induced by an isomor-phism holimCF�X � homD�B(F #�);X�.Example 19.2.3 implies that holimCF�X is naturally isomorphic to homC�B(C #�);X�,and so Proposition 19.2.8 implies that there are natural isomorphismsM(W; holimC F�X) � SSC�B(C #�);M(W;[F�X)�(19.5.4) M�W; homD(B(F #�);X)� � SSD�B(F #�);M(W;cX)�(19.5.5)(where cX is the natural simplicial frame onX). Proposition 14.6.5 implies that theD-diagram of simplicial sets B(F #�) is a free cell complex with basis equal to theset of simplices described in Diagram 14.6.7, and that the C-diagram of simplicialsets B(C #�) is a free cell complex with basis equal to the set of simplices of theform �0 �0 // !!DDDDDDDD �1 �1 //�� � � � �n�1 // �1�vvmmmmmmmmmmmmmmm�Thus, there is a natural one-to-one correspondence between the bases, and we cannow use Proposition 14.7.2 to show by induction on the dimension of the skeletaof the domains that the set of maps (19.5.4) is naturally isomorphic to the set ofmaps (19.5.5).Theorem 19.5.6. Let M be a framed model category, let C and D be smallcategories, and let F: C! D be a functor.1. If F is right co�nal (see De�nition 14.4.5), then for every D-diagramX : D!M in M such that X� is co�brant for every object � in D, the natural mapof homotopy colimits (see Proposition 19.1.8)hocolimC F�X ! hocolimD Xis a weak equivalence.2. If F is left co�nal (see De�nition 14.4.5), then for every D-diagramX : D!M in M such that X� is �brant for every object � in D, the natural mapof homotopy limits (see Proposition 19.1.14)holimD X ! holimC F�Xis a weak equivalence.Proof. We will prove part 1; the proof of part 2 is similar.Proposition 19.5.1 and Example 19.2.3 imply that our map of homotopy col-imits is isomorphic to the mapX 
D B(�#F)op !X 
D B(� #D)op:Draft: August 12, 1997



19.5. COFINALITY 295Proposition 14.6.5 and Corollary 14.6.8 imply that both of the Dop-diagrams ofsimplicial sets B(� #F)op and B(� #D)op are free cell complexes, and are thusco�brant objects in SSDop . Lemma 14.5.3 implies that B(� #D)op is contractiblefor every object � in D, and so F is right co�nal if and only if the map B(�#F)op !B(� #D)op is a weak equivalence of co�brant objects in SSDop . The result nowfollows from Proposition 19.2.10.We are indebted to W. G. Dwyer for the following proposition.Proposition 19.5.7. Let C be a small category, let � be an object in C, and letF�� be the free C-diagram of sets generated at � (see De�nition 14.1.2), regardedas a C-diagram of discrete simplicial sets.1. If K : Cop ! SS is a Cop-diagram of simplicial sets, then the natural mapK� � f1�g �K� � (F�� )� �K� ! F�� 
CK(see De�nition 19.2.2) is an isomorphism.2. If K : C! SS is a C-diagram of simplicial sets, then the natural maphomC(F�� ;K)!K (F�� )�� 1(1��(F�� )�)K���������!K�is an isomorphism.Proof. For part 1, we will show that for every simplicial set Z our naturalmap induces an isomorphism of the sets of mapsSS(F�� 
CK; Z) � SS(K�; Z);the result will then follow from the Yoneda lemma. Proposition 19.2.8 and Propo-sition 17.3.10 imply that there are natural isomorphisms of setsSS(F�� 
CK; Z) � SS(K 
C F�� ; Z) � SSC�F�� ; SS(K ; Z)�and Proposition 14.1.3 implies that this last set is naturally isomorphic to SS(K�; Z).For part 2, we will show that for every simplicial setW our natural map inducesan isomorphism of the sets of mapsSS�W; homC(F�� ;K)�! SS(W;K�);the result will then follow from the Yoneda lemma. Proposition 19.2.8 implies thatthere are natural isomorphisms of setsSS�W; homC(F �� ;K)� � SSC�F�� ; SS(W;K)� � SS(W;K�):Corollary 19.5.8. If C is a small category and � is an object of C, thenhocolimF�� (see De�nition 14.1.2) is naturally isomorphic to B(� #C)op, and holimF ��is naturally isomorphic to B(C #�).Proof. This follows from Proposition 19.5.7 and Example 19.2.3.Corollary 19.5.9. If C and D are small categories, F: C ! D is a functor,and � is an object in D, then there are natural isomorphismsF �� 
D B(� #F )op � B(� #F )ophomD�F�� ;B(F #�)� � B(F #�) Draft: August 12, 1997



296 19. HOMOTOPY COLIMITS AND HOMOTOPY LIMITS(where F�� is the D-diagram of De�nition 14.1.2, regarded as a diagram of discretesimplicial sets).Proof. This follows from Proposition 19.5.7.Proposition 19.5.10. Let C and D be small categories, and let F: C! D bea functor.1. If for every D-diagram X : D ! SS of co�brant simplicial sets the inducedmap of homotopy colimitshocolimC F�X ! hocolimD Xis a weak equivalence, then F is a right co�nal functor.2. If for every D-diagram X : D ! SS of �brant simplicial sets the inducedmap of homotopy limitsholimD X ! holimC F�Xis a weak equivalence, then F is a left co�nal functor.Proof. For part 1, if � is an object of D, we can let X = F�� (see Def-inition 14.1.2), and regard it as a diagram of discrete simplicial sets. Proposi-tion 19.5.1, Corollary 19.5.8, and Corollary 19.5.9 imply that B(� #F ) and B(� #D)are weakly equivalent. Since B(� #D)op is always contractible (see Lemma 14.5.3),Proposition 9.4.5 implies that F is right co�nal.For part 2, Proposition 19.5.1 and Proposition 19.1.11 imply that our naturalmap of homotopy limits is isomorphic to the mapMap�B(D #�);X�! Map�B(F #�);X�:The D-diagrams of simplicial sets B(F #�) and B(D #�) are always free cell com-plexes (see Proposition 14.6.5 and Corollary 14.6.8), and are thus co�brant D-diagrams (see Theorem 14.2.1). Since B(D #�) is a diagram of contractible simpli-cial sets (see Lemma 14.5.8), the map B(F #�)! B(D #�) is a weak equivalenceof D-diagrams if and only if the functor F is left co�nal. Since a D-diagram ofsimplicial sets is �brant exactly when it is a diagram of �brant simplicial sets (seeTheorem 14.2.1), Corollary 20.4.7 implies that we are trying to prove that a mapof co�brant diagrams is a weak equivalence if and only if it induces a weak equiva-lence of simplicial mapping spaces to an arbitrary �brant object. This follows fromCorollary 10.5.5, and so the proof is complete.Theorem 19.5.11. Let C and D be small categories, and let F: C ! D be afunctor.1. F is right co�nal (see De�nition 14.4.5) if and only if for every framed modelcategoryM and every D-diagramX : D!M inM of co�brant objects, thenatural map hocolimC F �X ! hocolimD X(see Proposition 19.1.8) is a weak equivalence.2. F is left co�nal if and only if for every framed model category M and everyD-diagramX : D!M in M of �brant objects, the natural mapholimD X ! holimC F�XDraft: August 12, 1997



19.5. COFINALITY 297(see Proposition 19.1.14) is a weak equivalence.Proof. This follows from Theorem 19.5.6 and Proposition 19.5.10.Corollary 19.5.12. Let M be a framed model category and let C be a smallcategory.1. If � is an initial object of C and X : C!M is a C-diagram of �brant objectsin M, then the natural map holimX !X� is a weak equivalence.2. If � is a terminal object of C and X : C ! M is a C-diagram of co�brantobjects inM, then the natural mapX� ! hocolimX is a weak equivalence.Proof. This follows from Theorem 19.5.6.As a corollary, we obtain Quillen's \Theorem A" (see [49, Page 93]).Theorem 19.5.13 (Quillen). If C and D are small categories and F : C ! Dis a right co�nal functor, then F induces a weak equivalence of classifying spacesBC �= BD.Proof. This follows from Theorem 19.5.11, Proposition 19.1.6, and Proposi-tion 9.4.5.Proposition 19.5.14. Let M be a framed model category. If the object Xis a retract of the co�brant object Y (with inclusion i : X ! Y and retractionr : Y ! X), then X is weakly equivalent to the homotopy colimit of the diagramY ir�! Y ir�! Y ir�! � � �Proof. We have an !-sequence (where ! is the �rst in�nite ordinal)X i�! Y r�!X i�! Y r�! X i�! Y � � �which has the two subdiagramsX 1X��! X 1X��! X 1X��! � � �and Y ir�! Y ir�! Y ir�! � � �Both of the subdiagrams are right co�nal, because all of the undercategories havean initial object (see Proposition 9.4.4). Thus, Theorem 19.5.11 implies that thehomotopy colimits of the three diagrams are all weakly equivalent. Since X is aretract of a co�brant object, it is co�brant, and so the second diagram is a Reedyco�brant diagram. Thus, the homotopy colimit of this diagram is weakly equivalentto its colimit (Fill in a reference!!), which is isomorphic to X.
Draft: August 12, 1997
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CHAPTER 20Leftovers on homotopy colimits and homotopylimits20.1. Frames on diagramsDefinition 20.1.1. Let M be a model category, let C be a small category, andlet X : C!M be a C-diagram in M.1. A cosimplicial frame on X is a diagramfX : C!M� of cosimplicial objectsinM together with a map of diagrams i : fX ! cX to the diagramof constantcosimplicial objects such that, for every object � in C, the map i� : fX� !cX� is a cosimplicial frame on X� (see De�nition 17.1.20).2. A simplicial frame on X is a diagram cX : C ! M�op of simplicial ob-jects in M together with a map of diagrams j : sX ! cX from the diagramof constant simplicial objects such that, for every object � in C, the mapj� : sZ� !cX� is a simplicial frame on X�.Example 20.1.2. IfM is a framed model category (see De�nition 17.1.33), C isa small category, and X : C!M is a C-diagram in M, then there is a cosimplicialframe fX : C ! M on X and a simplicial frame cX : C ! M on X where fX� andcX� are de�ned by the frame on M for every object � in C.Definition 20.1.3. LetM be a model category, let C be a Reedy category, andlet : C!M be a C-diagram in M.1. A Reedy cosimplicial frame on X is a cosimplicial frame fX : C ! M� onX (see De�nition 20.1.1) such that if X is a Reedy co�brant diagram inM(see De�nition 16.3.2), then fX is a Reedy co�brant diagram in M�.2. A Reedy simplicial frame on X is a simplicial frame cX : C ! M�op on Xsuch that if X is a Reedy �brant diagram in M, then cX is a Reedy �brantdiagram in M�op .Proposition 20.1.4. Let M be a simplicial model category and let C be aReedy category. If X : C!M is a C-diagram in M, then1. the cosimplicial frame on X de�ned by the standard frame on M (see De�-nition 17.1.26) is a Reedy cosimplicial frame on X , and2. the simplicial frame on X de�ned by the standard frame on M is a Reedysimplicial frame on X.Proof. We will prove part 1; the proof of part 2 is dual.Let X be Reedy co�brant, and let fX : C ! M� be the cosimplicial frame onX de�ned by the standard frame on M. For every object � in C, let LM� X !X�denote the latching map of X in M, and let LM�� fX !fX denote the latching mapof fX in M�. For every object � in C, LM� X ! X� is a co�bration in M, and we299 Draft: August 12, 1997



300 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSmust show that LM�� fX ! fX� is a co�bration in M�. Thus, Proposition 17.3.7implies that we must show that, for every n � 0, the relative latching mapfX� 
 @�[n]q(LM�� eX)
@�[n] (LM�� fX) 
�[n]!fX� 
�[n](20.1.5)(see Proposition 17.3.7) is a co�bration in M. Since the latching object LM�� fX isde�ned as a colimit (see De�nition 16.2.17), Proposition 17.3.10 and Lemma 10.2.3imply that the map (??) is isomorphic to the mapX� 
 @�[n]q(LM� X)
@�[n] (LM� X)
�[n]!X� 
�[n]:Since LM� X ! X� is a co�bration in the simplicial model category M, Proposi-tion 10.1.8 implies that this is a co�bration.Proposition 20.1.6. IfM is a model category and C is a Reedy category, then1. there is a functorial Reedy cosimplicial frame on every C-diagram inM, and2. there is a functorial Reedy simplicial frame on every C-diagram in M.Proof. Fill this in!! It follows from the equivalence of the two Reedymodel category structures on C��-diagrams in M.Proposition 20.1.7. Let M be a model category and let C be a Reedy cat-egory. If B : C ! M is a C-diagram in M that is Reedy co�brant and X is asimplicial resolution in M, then the diagramM(B;X) (which on an object � in Cis M(B�;X)) is a Reedy �brant Cop-diagram of simplicial sets.Proof. If � is an object in C and L�B is the latching object of B at � (seeDe�nition 16.2.17), then Proposition 16.2.15 implies thatM(L�B;X) =M� colim((�!C #�)�1�)B;X�� lim((�!C #�)�1�)opM(B;X)� lim((�# �Cop)�1�)M(B;X)� M�M(B;X)and so M(L�B;X) is naturally isomorphic to the matching object at � of theCop-diagram of simplicial sets M(B;X). Since the latching map L�B ! B�is a co�bration, Corollary 17.4.2 implies that the matching map M(B�;X) !M�M(B;X) is a �bration, and so M(B;X) is a Reedy �brant diagram.20.2. Realizations and total spaces20.2.1. The realization of a simplicial object.Definition 20.2.2. We need to rephrase this to use a Reedy frame onthe diagram category, but �rst we've got to type up the de�nition ofReedy frame!! IfM is a framed model category and X : �op !M is a simplicialobject in M, the realization ��X�� of X is the coequalizer of the mapsa(� : [n]![k])2�fXn 
�[k] � // // a[n]2Ob(�)fXn 
�[n]Draft: August 12, 1997



20.2. REALIZATIONS AND TOTAL SPACES 301wherefXn is the cosimplicial frame onXn, the map � on the summand � : [n]! [k]is the composition of the map�� 
 1�[k] : fXn 
�[k]!fXk 
�[k](where �� : fXn !fXk) with the natural injection into the coproduct, and the map on the summand � : [n]! [k] is the composition of the map1 eXn 
 �� : fXn 
�[k]!fXn 
�[n](where �� : �[k]! �[n]) with the natural injection into the coproduct.Remark 20.2.3. Since each standard simplex �[n] is a contractible simplicialset, the map from each �[n] to a point is a weak equivalence. Thus, the cosimpli-cial standard simplex is a diagram of simplicial sets weakly equivalent to a point.We will show in Corollary 16.4.10 that the cosimplicial standard simplex is also aco�brant diagram in the Reedy model category structure on cosimplicial spaces.This will imply that the cosimplicial standard simplex is a Reedy co�brant ap-proximation to the constant diagram at a point (see De�nition 9.1.1), as is thediagram of opposites of undercategories B(� #�)op (see Corollary 16.4.4), whichwill imply that that realization of a simplicial space that is co�brant in each degreeis naturally weakly equivalent to the homotopy colimit of the simplicial space (seeTheorem 20.11.6). This is all rearranged enough so that we can just proveall this right now!!20.2.4. The total space of a cosimplicial space. The principal referencefor cosimplicial spaces and their total spaces is [15, Chapter X].Definition 20.2.5. Rewrite this to use a Reedy frame!! IfM is a framedmodel category andX : �!M is a cosimplicial object inM (see De�nition 16.1.7),the total object TotX of the cosimplicial object X is the equalizer of the mapsY[n]2Ob(�)(cXn)�[n] � // // Y(� : [n]![k])2�(cXk)�[n]where cXn is the natural simplicial frame on Xn, the projection of the map � onthe factor � : [n] ! [k] is the composition of a projection from the product withthe map �(1�[n])� : (cXn)�[n] ! (cXk)�[n]and the projection of the map  on the factor � : [n]! [k] is the composition of aprojection from the product with the map(1 bXk)�� : (cXk)�[k] ! (cXk)�[n](where �� : �[n]! �[k]).Example 20.2.6. If M is a framed model category, X : �!M is a cosimpli-cial object inM, and � is the cosimplicial standard simplex (see De�nition 16.1.9),then homC(�;cX) is the total space of X (see De�nition 20.2.5).Draft: August 12, 1997



302 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSRemark 20.2.7. IfM is a category of spaces, then the space (Xn)�[n] takes adi�erent form in each of the categories in which we work (see De�nition 1.1.11):(Xn)�[n] =8>>><>>>:map����[n]��;Xn� if Spc(�) = Topmap�����[n]��+;Xn� if Spc(�) = Top�Map(�[n];Xn) if Spc(�) = SSMap�(�[n]+;Xn) if Spc(�) = SS�Thus, in each case the homotopy limit is constructed by �rst taking the codegree-wise mapping space of the cosimplicial space ����� (or �����+, or �, or �+) and thecosimplicial space X, and then taking a subspace of the product of these mappingspaces. The total space is actually an example of a space of maps between diagrams(see Example 20.4.3).Remark 20.2.8. Since each standard simplex �[n] is a contractible space, themap from each �[n] to a point is a weak equivalence. Thus, the cosimplicial stan-dard simplex is a diagram of spaces weakly equivalent to a point. We will showin Corollary 16.4.10 that the cosimplicial standard simplex is also a co�brant dia-gram in the Reedy model category structure on cosimplicial spaces. This will implythat the cosimplicial standard simplex is a Reedy co�brant approximation to theconstant diagram at a point (see De�nition 9.1.1), as is the diagram of overcate-gories B(� #�) (see Corollary 16.4.4), which will imply that that total space ofa Reedy �brant cosimplicial space is weakly equivalent to its homotopy limit (seeTheorem 20.11.5). 20.3. Leftovers on coends and ends20.3.1. Coends.Proposition 20.3.2. If C is a small category, X : C ! Spc(�) a diagram ofspaces,K : Cop ! SS a diagram of simplicial sets, and F : Spc(�) ! Spc(�) a functorthat is a left adjoint, then there is a natural isomorphism (or homeomorphism)F�Z �X� 
K�� � Z �(FX�)
K�:Proof. The coend R �X� 
K� is the coequalizer of the diagrama(� : �!�0)2CX� 
K�0 � a�2Ob(C)X� 
K�As a functor ofX , this is a composition of functors that commute with left adjoints,and so it commutes with left adjoints.Corollary 20.3.3. If C is a small category, X : C ! Spc a diagram of un-pointed spaces, A an unpointed space, Y : C! Spc� a diagram of pointed spaces,and B a pointed space, then there are natural isomorphisms (or homeomorphisms)A� hocolimX � hocolim(A �X)B ^ hocolimY � hocolim(B ^ Y )A+ ^ hocolimY � hocolim(A+ ^ Y )B ^ (hocolimX)+ � hocolim(B ^X+):Draft: August 12, 1997



20.3. LEFTOVERS ON COENDS AND ENDS 303Remark 20.3.4. The assertion that B ^ (�)+ : Spc ! Spc� commutes withtaking the homotopy colimit is really an assertion about the homotopy colimit intwo di�erent categories: the pointed homotopy colimit in Spc� and the unpointedhomotopy colimit in Spc. More speci�cally, for any pointed space B and diagramof unpointed spaces X : C! Spc, we have an isomorphism (or homeomorphism)B ^ (hocolimX)+ � hocolim�(B ^ Y +)in Spc� where (in this remark) hocolimX means the homotopy colimit in thecategory of unpointed spaces and hocolim�(B ^ Y +) means the homotopy colimitin the category of pointed spaces. Similar remarks apply to the assertion aboutA+ ^ � : Spc� ! Spc.Proof of Corollary 20.3.3. This follows from Proposition 20.3.2, a deletedexample, the standard adjunctionsTop(A �W;Z) � Top�W;Top(A;Z)�Top�(B ^ U; V ) � Top��U;Top�(B; V )�and the analogous formulas for simplicial sets.Corollary 20.3.5. IfX is a simplicial unpointed space, A an unpointed space,Y a simplicial pointed space, and B a pointed space, then there are natural iso-morphisms (or homeomorphisms)A � ��X�� � ��A�X��B ^ ��Y �� � ��B ^Y ��A+ ^ ��Y �� � ��A+ ^ Y ��B ^ ��X��+ � ��B ^X+��:Proof. This is similar to the proof of Corollary 20.3.3, using a deleted exam-ple. Proposition 20.3.6. If C is a small category andX : C! SS(�) is a diagram ofsimplicial sets, then there is a natural homeomorphism ��hocolimX�� � hocolim��X��.Proof. Since the geometric realization functor is a left adjoint and ��X� 
K��� � ��X��� 
 K�, this is similar to the proof of Proposition 20.3.2, using adeleted example.Proposition 20.3.7. If X : �op ! SS(�) is a simplicial simplicial set (i.e., asimplicial object in the category of simplicial sets), then there is a natural homeo-morphism from the geometric realization of the simplicial set ��X�� to the realizationof the simplicial topological space ��X��.Proof. This is similar to the proof of Proposition 20.3.6.Proposition 20.3.8. If X is the diagram of spaces C  A ! B and themap A ! B is a co�bration, then the natural map hocolimX ! colimX (seeExample 19.2.6) is a weak equivalence.Proof. If Spc(�) = Top(�) (in which every space is �brant) we can use thehomotopy extension property of A ! B to de�ne a map colimX ! hocolimXthat is a homotopy inverse to the natural map hocolimX ! colimX, and so theseDraft: August 12, 1997



304 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSmaps are homotopy equivalences. If Spc(�) = SS(�) then Proposition 20.3.6 impliesthat the geometric realization of the natural map is a homotopy equivalence, andso the natural map is a weak equivalence.20.3.9. Ends.Proposition 20.3.10. If C is a small category, X : C ! Spc(�) a diagram ofspaces, K : C! SS a diagram of simplicial sets, and F : Spc(�) ! Spc(�) a functorthat is a right adjoint, then there is a natural isomorphism (or homeomorphism)F�Z�XK�� � � Z�(FX�)K� :Proof. This is similar to the proof of Proposition 20.3.2.Corollary 20.3.11. If C is a small category, X : C ! Spc(�) a diagram ofspaces, and A 2 Ob(Spc(�)) is a space, then there is a natural isomorphism (orhomeomorphism) (holimX)A � holim�XA�(see De�nition 1.1.6) (where XA : C ! Spc(�) is the diagram in which �XA�� =(X�)A for all � 2 Ob(C)).Proof. This is similar to the proof of Corollary 20.3.3.Corollary 20.3.12. IfX : �! Spc(�) is a cosimplicial space andA 2 Ob(Spc(�))is a space, then there is a natural isomorphism (or homeomorphism)(TotX)A � Tot�XA�(see De�nition 1.1.6) (where XA is the cosimplicial space in which �XA�n =(Xn)A).Proof. This is similar to the proof of Corollary 20.3.11.Proposition 20.3.13. If C is a small category and X : C ! Top(�) is a dia-gram of topological spaces, then there is a natural isomorphism Sing holimX �holimSingX .Proof. Since the total singular complex functor is a right adjoint and Sing�XK�� � �(SingX�)K� , this is similar to the proof of Proposition 20.3.10, using a deleted ex-ample..Proposition 20.3.14. IfX : �! Top(�) is a simplicial topological space, thenthere is a natural isomorphism SingTotX � TotSingX.Proof. This is similar to the proof of Proposition 20.3.13, using a deletedexample.Proposition 20.3.15. If X is the diagram of spaces C ! B  A and the mapA! B is a �bration, then the natural map limX ! holimX is a weak equivalence.Proof. This is similar to the proof of Proposition 20.3.8.Draft: August 12, 1997



20.4. MAPPING SPACES 30520.3.16. Adjointness.Proposition 20.3.17. If C is a small category, X : C! Spc(�) a C-diagram ofspaces, K : Cop ! SS a Cop-diagram of simplicial sets, and Y 2 Spc(�) a space,then there are natural isomorphisms (or homeomorphisms)Map�Z �X� 
K�; Y � � Z�Map�K�;Map(X�; Y )�Map�Z �X� 
K�; Y � � Z�Map(X�; YK�)Y (R �X�
K�) � Z��Y X��K� :Proof. We will establish the �rst isomorphism; the others are similar.A deleted de�nition describes R �X�
K� as a quotient of`�2Ob(C)X�
K�.For each � 2 Ob(C), we have a natural isomorphismMap�X� 
K�; Y � � Map�K�;Map(X�; Y )�(see De�nition 1.1.11) and so we have natural isomorphismsMap� a�2Ob(C)X� 
K�; Y � � Y�2Ob(C)Map�X� 
K�; Y �� Y�2Ob(C)Map�K�;Map(X�; Y )�:(20.3.18)The relations imposed on `�2Ob(C)X� 
 K� in the de�nition of R �X� 
 K�are exactly the relations that must be respected by an element of the right handside of (20.3.18) for it to be an element of R�Map�K�;Map(X�; Y )�, and so theproposition follows.Corollary 20.3.19. If C is a small category, X : C ! Spc(�) a C-diagram ofspaces and Y 2 Spc(�) a space, then YX is a Cop-diagram of spaces, Map(X; Y )is a Cop-diagram of simplicial sets, and there are natural isomorphisms (or homeo-morphisms) Y hocolimCX � holimCop (YX)Map(hocolimC X ; Y ) � holimCop Map(X ; Y ):Proof. This follows from Proposition 20.3.17, Corollary 14.5.11, Example ??and Example ??. 20.4. Mapping spaces20.4.1. The internal mapping space. If C is a small category and X andY are C-diagrams of unpointed or pointed topological spaces, then Y X will be the(unpointed or pointed) topological space of maps of diagramsX ! Y , topologizedas a subspace of the product Q�2Ob(C)Y X�� . IfX and Y are diagrams of simplicialsets, then Y X will be the (unpointed or pointed) simplicial set with n-simplices thesimplicial mapsX
�[n]! Y (see De�nition 14.3.1). All of these mapping spacescan be described concisely as ends (see De�nition ??) of functors constructed fromthe internal mapping space functors of De�nition 1.1.6. Draft: August 12, 1997



306 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSDefinition 20.4.2. Let C be a small category.� If X ;Y : C! Top, then Y X is the unpointed topological spaceY X = Z� Y X�� = Z�map(X�;Y �):� If X ;Y : C! Top�, then Y X is the pointed topological spaceY X = Z�Y X�� = Z�map�(X�;Y �):� If X ;Y : C! SS, then Y X is the unpointed simplicial setY X = Z�Y X�� = Z�Map(X�;Y �):� If X ;Y : C! SS�, then Y X is the pointed simplicial setY X = Z� Y X�� = Z�Map�(X�;Y �):Example 20.4.3. If X is a cosimplicial space (see De�nition 16.1.7), then thetotal space (see De�nition 20.2.5) of X isTotX = X�(see De�nition ??).Example 20.4.4. More generally, if C is a small category, X : C! Spc(�) is aC-diagram of spaces and P : C! SS is a C-diagram of simplicial sets, then the end(see De�nition ??) of (X�)P� isZ�(X�)P � = XP(see De�nition ??).Lemma 20.4.5. If C is a small category and X;Y : C! Top are diagrams, thenthere is a natural isomorphism of simplicial setsSing�Y X� � Map(X ;Y )(see De�nition 14.3.2 and De�nition 20.4.2).Proof. This is similar to the proof of Proposition 20.3.10. The space Y X isthe end R� Y X�� , i.e., the limit of the diagramY�2Ob(C)Y X�� � Y(� : �!�0)2CY X��0(see De�nition ??). Since the total singular complex functor is a right adjoint, itcommutes with all limits, and so the result follows from the natural isomorphismSing�Y X��0 � � Map(X�;Y �0) (see Proposition 1.1.7).Proposition 20.4.6. If C is a small category and X;Y : C ! Spc(�) are C-diagrams of spaces, then the internal mapping spaces Y X of De�nition 20.4.2 arerelated to the simplicial mapping spaces Map(X;Y ) of De�nition 14.3.2 as follows:� If Spc(�) = Top, then the simplicial set Map(X;Y ) is the total singularcomplex of Y X .Draft: August 12, 1997



20.4. MAPPING SPACES 307� If Spc(�) = Top�, the simplicial set Map(X;Y ) is the total singular complexof the unpointed space obtained from Y X by forgetting the basepoint.� If Spc(�) = SS, then Map(X ;Y ) equals Y X.� If Spc(�) = SS�, then Map(X ;Y ) is obtained from Y X by forgetting thebasepoint.Proof. This follows from Proposition 1.1.7 and Lemma 20.4.5.Corollary 20.4.7. If C is a small category, W ;X;Y ;Z : C ! Spc(�) are C-diagrams of spaces, and g :W !X and h : Y ! Z are maps of C-diagrams, thenh� : Y X ! ZX is a weak equivalence (of topological spaces (if Spc(�) = Top(�)) orof simplicial sets (if Spc(�) = SS(�))) if and only if h� : Map(X;Y )!Map(X ;Z) isa weak equivalence of simplicial sets, and g� : Y X ! Y W is a weak equivalence (oftopological spaces or simplicial sets) if and only if g� : Map(X;Y )!Map(W ;Y )is a weak equivalence of simplicial sets.Proof. Since a map of pointed spaces is a weak equivalence if and only if it isa weak equivalence of unpointed spaces after forgetting the basepoint, and a mapof topological spaces is a weak equivalence if and only if its total singular complexis a weak equivalence of simplicial sets, this follows from Proposition 20.4.6.Proposition 20.4.8. If C is a small category, X : C ! Spc(�) a C-diagram ofspaces, Y : Cop ! Spc(�) a Cop-diagram of spaces, and Z 2 Ob(Spc(�)) a space,then �ZY �X � Z(R �X�
Y �)Proof. This is similar to the proof of Proposition 20.3.17.Corollary 20.4.9. If Y : �op ! Spc(�) is a simplicial space and Z 2 Ob(Spc(�))is a space, then ZY is a cosimplicial space, and there is a natural homeomorphism(if Spc(�) = Top(�)) or isomorphism (if Spc(�) = SS(�))Tot �ZY � � ZjY j:Proof. This follows from Proposition 20.4.8, Example 20.4.3, and Exam-ple ??.Proposition 20.4.10. If C is a small category, X ;Y : C ! Spc(�) C-diagramsof spaces, and Z 2 Ob(Spc(�)) a space, then there is a natural isomorphism (ifSpc(�) = SS(�)) or homeomorphism (if Spc(�) = Top(�))Y X
Z � �Y X�Z � �Y Z�X :Corollary 20.4.11. If C is a small category, X : C ! Spc(�) a C-diagramof spaces and W 2 Ob(Spc(�)) a space, then there is a natural isomorphism (ifSpc(�) = SS(�)) or homeomorphism (if Spc(�) = Top(�))(holimX)W � holim�XW �:Corollary 20.4.12. If X : � ! Spc(�) is a cosimplicial space and W 2Ob(Spc(�)) is a space, then there is a natural isomorphism (if Spc(�) = SS(�))or homeomorphism (if Spc(�) = Top(�))(TotX)W � Tot�XW �: Draft: August 12, 1997



308 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSLemma 20.4.13. If C is a small category, S : C ! Set a C-diagram of sets,Y : C ! Spc(�) a C-diagram of spaces, and X 2 Ob(Spc(�)) a space, then there isa natural isomorphism (or homeomorphism, if Spc(�) = Top(�))Y (X
S) � �Y X�S(see De�nition 1.1.11).Proposition 20.4.14. If C is a small category, Y : C ! Spc(�) a C-diagramof spaces, X 2 Ob(Spc(�)) a space and � an object of C, then there is a naturalisomorphism (or homeomorphism, if Spc(�) = Top(�))Y (X
F�� ) � (Y �)X(see De�nition 14.1.2).Proof. We will discuss the case Spc(�) = Top�; the other cases are similar.We have natural homeomorphismsY (X
F �� ) � map�(X 
 F �� ;Y )� map��(F�� )+;map�(X;Y )�� map���+;map�(X;Y �)�� map�(X 
 �;Y �)� map�(X;Y �)� (Y �)X(see Lemma 20.4.13) where �+ denotes the space with one point plus an adjoinedbasepoint.Theorem 20.4.15. If C is a small category, Y : C ! Spc(�) a C-diagram ofspaces and X : Cdisc ! Spc(�) a discrete diagram of spaces, then there is a naturalisomorphism (or homeomorphism, if Spc(�) = Top(�)) of mapping spacesY FX � (UY )X(where U is the forgetful functor U : SpcC(�) ! Spc(Cdisc)(�) ).Proof. This follows from Proposition 20.4.14.20.5. Topological spaces and simplicial setsWe proved in Proposition 20.3.6 that the geometric realization functor com-mutes with the homotopy colimit functor up to a natural homeomorphism, andin Proposition 20.3.13 that the total singular complex functor commutes with thehomotopy limit functor up to a natural isomorphism. In this section, we show that,for a diagram of co�brant topological spaces, the total singular complex functorcommutes with the homotopy colimit functor up to a natural weak equivalenceand that, for a diagram of �brant simplicial sets, the geometric realization functorcommutes with the homotopy limit functor up to a natural weak equivalence.Proposition 20.5.1. If C is a small category and X : C ! Top(�) is a di-agram of co�brant topological spaces, then there is a natural weak equivalencehocolimSingX ! SinghocolimX .Draft: August 12, 1997



20.6. MAPPING SPACES AND HOMOTOPY INVARIANCE 309Proof. The natural map of diagrams ��SingX�� ! X induces a naturalweak equivalence hocolim��SingX�� ! hocolimX (see Theorem 20.6.11). Prop-osition 20.3.6 implies that this is isomorphic to a natural weak equivalence��hocolimSingX�� ! hocolimX, which corresponds (under the standard adjunc-tion) to a natural weak equivalence hocolimSingX ! Sing hocolimX .Proposition 20.5.2. If C is a small category and X : C ! SS(�) is a diagramof �brant simplicial sets, then there is a natural weak equivalence ��holimX�� !holim��X��.Proof. This is similar to the proof of Proposition 20.5.1.20.6. Mapping spaces and homotopy invarianceProposition 20.6.1. Let C be a small category, and let A;B;X;Y : C !Spc(�) be diagrams. If i : A ! B is a co�bration and p : X ! Y is a �bration,then the map XB !XA �Y A Y Bis a �bration in Spc(�) that is also a trivial �bration if either i or p is a weakequivalence.Proof. Since both the total singular complex functor and the functor thatforgets the basepoint of a pointed space commute with limits, this follows fromTheorem 14.2.1 and Proposition 20.4.6.Corollary 20.6.2. If C is a small category, i : A! B a co�bration in SpcC(�),and X a diagram of �brant spaces, then the map XB ! XA is a �bration inSpc(�) that is a trivial �bration if i is a weak equivalence.Proof. This follows from Proposition 20.6.1.Corollary 20.6.3. If C is a small category, p : X ! Y a �bration in SpcC(�),and A a co�brant diagram in SpcC(�), then the map XA ! Y A is a �bration inSpc(�) that is a trivial �bration if p is a weak equivalence.Proof. This follows from Proposition 20.6.1.Corollary 20.6.4. If C is a small category and p : X ! Y is a �bration inSpcC(�), then the map holimX ! holimY is a �bration in Spc(�) that is a trivial�bration if p is a weak equivalence.Proof. This follows fromCorollary 20.6.3, something deleted, Corollary 14.6.8,Lemma 14.6.10, and Proposition 14.6.11.Corollary 20.6.5. If C is a small category and X : C ! Spc(�) is a diagramof �brant spaces, then holimX is a �brant space.Proof. This follows from Corollary 20.6.4.Proposition 20.6.6. Let C be a small category, i : A ! B a map in SpcC(�)and K : Cop ! SS a free cell complex (see De�nition 14.1.28). If i� : A� ! B�Draft: August 12, 1997



310 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSis a co�bration (resp., trivial co�bration) in Spc(�) for every � 2 Ob(C), then theinduced map of coends Z �A� 
K� ! Z �B� 
K�(see De�nition ?? and De�nition ??) is a co�bration (resp., trivial co�bration) inSpc(�).Proof. Proposition 10.3.5 implies that it is su�cient to show that if p : X ! Yis a trivial �bration (resp., �bration) in Spc(�), then the map of simplicial setsMap�Z �B� 
K�; X�!Map�Z �A� 
K�; X��Map(R �A�
K�;Y ) Map�Z �B� 
K�; Y �is a trivial �bration. Proposition 20.3.17 and De�nition 14.3.2 imply that this isisomorphic to the mapMap�K;Map(B; X)�!Map�K;Map(A; X)� �Map(K ;Map(A;Y )) Map�K;Map(B; Y )�(where, e.g., Map(B; X) is the Cop-diagram of simplicial sets in which�Map(B; X)�� = Map(B�; X) for all � 2 Ob(C)), and this is isomorphic to themap Map�K;Map(B; X)�!Map�K;Map(A; X)�Map(A;Y ) Map(B; Y )�:Since X ! Y is a trivial �bration (resp., �bration) and A� ! B� is a co�bration(resp.. trivial co�bration) for every object � of C, the mapMap(B�; X)!Map(A�; X) �Map(A�;Y ) Map(B�; Y )is a trivial �bration for every object � of C. Since K is a free cell complex, itis a co�brant object of SSCop , and so the result follows from the simplicial modelcategory structure in SSCop.Theorem 20.6.7. If C is a small category and g : X ! Y is a map in SpcC(�)such that g� : X� ! Y � is a co�bration (resp., trivial co�bration) in Spc(�) forevery � 2 Ob(C), then the induced map hocolimg : hocolimX ! hocolimY is aco�bration (resp., trivial co�bration) in Spc(�).Proof. This follows fromProposition 20.6.6, Example ??, and Corollary 14.6.8.Corollary 20.6.8. If C is a small category and B : C ! Spc(�) is a diagramsuch that B� is a co�brant space for every � 2 Ob(C), then hocolimB is a co�brantspace.Proof. This follows from Theorem 20.6.7.Theorem 20.6.9. If C is a small category and g : X ! Y is a map of C-diagrams of spaces such that g� : X� ! Y � is a trivial �bration for every � 2Ob(C), then g induces a trivial �bration g� : holimX �= holimY (see De�ni-tion 19.1.10).Draft: August 12, 1997



20.7. POINTED AND UNPOINTED HOMOTOPY COLIMITS 311Proof. This follows from Corollary 20.6.4.Theorem 20.6.10. If C is a small category and g : X ! Y is a map of C-diagrams of spaces such that g� : X� ! Y � is a weak equivalence of �brant spacesfor every � 2 Ob(C), then g induces a weak equivalence g� : holimX �= holimY(see De�nition 19.1.10).Proof. This follows from Corollary 20.6.4 and Corollary 8.5.2.Theorem 20.6.11. If C is a small category and g : X ! Y is a map of C-diagrams of spaces such that g� : X� ! Y � is a weak equivalence of co�brantspaces for every � 2 Ob(C), then g induces a weak equivalence hocolimX !hocolimY .Proof. It is su�cient to show that if W is a �brant space, then the inducedmap Map(hocolimY ;W )! Map(hocolimX;W ) is a weak equivalence (see Prop-osition 10.5.1). This follows from Corollary 20.3.19 and Theorem 20.6.10.20.7. Pointed and unpointed homotopy colimitsGiven a small category C and a C-diagram of pointed spaces X , we can takethe homotopy limit of the diagram in the category of pointed spaces, or we canforget the basepoints of the spaces in the diagram and take the homotopy limit inthe category of unpointed spaces, and these two homotopy limits will be isomorphic(or homeomorphic) after we forget the basepoint of the pointed homotopy limit (seeRemark 19.1.13). On the other hand, the homotopy colimit ofX will generally havedi�erent homotopy types when taken in the categories of pointed and unpointedspaces (see Proposition 20.7.4). In this section, we describe the di�erence betweenthe pointed and unpointed homotopy colimit.Notation 20.7.1. In this section, if X is a diagram of pointed spaces, thenhocolim�X will denote the homotopy colimit formed in the category of pointedspaces, and hocolimX will denote the homotopy colimit formed in the category ofunpointed spaces after forgetting the basepoints of the spaces in the diagram.Definition 20.7.2. A pointed space X is well pointed if the inclusion of thebasepoint into the space is a co�bration in the model category Spc�. Since the onepoint space is the initial object in Spc�, a pointed space X is well pointed if andonly if it is a co�brant space.Proposition 20.7.3. If Spc� = SS�, then every pointed space is well pointed.Proof. Every inclusion of simplicial sets is a co�bration.The following proposition is due to E. Dror Farjoun ([22]).Proposition 20.7.4. Let C be a small category and let X be a C-diagram ofpointed spaces.� If Spc� = SS�, then there is a natural co�bration BCop ! hocolimX, anda natural isomorphism (hocolimX)=(BCop) � hocolim�X� If Spc� = Top�, then there is a natural inclusion ��BCop��! hocolimX whichis a co�bration if X is a diagram of well pointed spaces, and a naturalhomeomorphism (hocolimX)=���BCop��� � hocolim�X Draft: August 12, 1997



312 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITS(see Notation 20.7.1) where BCop is the classifying space of the category Cop (seeDe�nition 9.4.1).Proof. This follows from the de�nition of the homotopy colimit (see De�ni-tion 19.1.2), Remark ??, Proposition 19.1.6, and Theorem 20.6.7.Corollary 20.7.5. If C is a small category and X : C! Spc� is a diagram ofwell pointed spaces such that, for every object � in C, the space X� is contractible,then hocolim�X is contractible (see Notation 20.7.1).Proof. We will prove this in the case Spc� = Top�; the case Spc� = SS� issimilar.Proposition 20.7.4, Proposition 19.1.6 and Theorem 20.6.11 imply that the map��BCop��! hocolimX is a trivial co�bration. Since the quotient space (hocolimX)=���BCop���is naturally homeomorphic to the pushout of the diagram �  ��BCop��! hocolimX ,this implies that the map � ! hocolim�X (see Notation 20.7.1) is a trivial co�bra-tion.Proposition 20.7.6. If the classifying space of the small category C is con-tractible, then, for any C-diagram of well pointed spaces X, the natural map (seeProposition 20.7.4) hocolimX ! hocolim�X is a weak equivalence (see Nota-tion 20.7.1).Proof. We will prove this in the case Spc(�) = Top(�); the case Spc(�) = SS(�)is similar.The quotient space (hocolimX)=���BCop��� is naturally homeomorphic to thepushout of the diagram �  ��BCop�� ! hocolimX . Since Spc is a proper modelcategory (see Theorem 11.1.16), the result now follows from Proposition 20.7.4.Example 20.7.7. If C is the category �  � ! � then the homotopy colimitof a C-diagram of well pointed spaces has the same weak homotopy type whetherformed in the category of pointed spaces or in the category of unpointed spaces.Example 20.7.8. If C is the category � ! � ! � ! � � � , then the homotopycolimit of a C-diagram of well pointed spaces has the same weak homotopy typewhether formed in the category of pointed spaces or in the category of unpointedspaces.Example 20.7.9. The homotopy colimit of a diagram indexed by a discretegroup does not, in general, have the same weak homotopy type when formed inthe category of pointed spaces as it does when formed in the category of unpointedspaces.20.8. The signi�cance of overcategories and undercategoriesTheorem 20.8.1. If C is a small category, X : C ! Spc(�) a C-diagram of�brant spaces, and P : C ! SS a co�brant approximation (see De�nition 9.1.1) tothe constant C-diagram at a point, then R�(X�)P� (see De�nition ??) is naturallyweakly equivalent to holimX .Proof. If we choose a �brant co�brant approximationQ (see De�nition 9.1.1and Proposition 9.1.2) to the constant C-diagram at a point, then there are weakequivalences P ! Q B(C #�)Draft: August 12, 1997



20.8. THE SIGNIFICANCE OF OVERCATEGORIES AND UNDERCATEGORIES 313(see Proposition 9.1.6). These somewhat arbitrary (see Remark 20.8.3) weak equiv-alences induce natural transformationsZ�(X�)P �  Z�(X�)Q� ! Z�(X�)B(C#�) = holimXwhich, for a diagram X of �brant spaces, are weak equivalences (see somethingdeleted, if Spc(�) = Top(�) then Proposition 14.6.11, if Spc(�) = Spc� thenLemma 14.6.10, Corollary 20.4.7, Theorem 14.2.1 and Corollary 10.2.2), and sothe proof is complete.Corollary 20.8.2. If C is a small category, X : C ! Spc(�) a C-diagram of�brant spaces and P : C ! SS a co�brant approximation (see De�nition 9.1.1) tothe constant C-diagram at a point, then holimX is naturally weakly equivalent toXP (see De�nition 1.1.11).Proof. This follows from Theorem 20.8.1 and Example 20.4.4.Remark 20.8.3. The natural weak equivalences constructed in the proof ofTheorem 20.8.1 depended on the arbitrary choice of a �brant co�brant approxima-tion to the constant diagram at a point and then the arbitrary choice of two weakequivalences. The purpose of this remark is to point out the essential equivalenceof the various natural chains of weak equivalences resulting from these choices.Each of the choices of a weak equivalence connecting a co�brant approximationto the �brant co�brant approximation was actually unique up to simplicial homo-topy (see Proposition 9.1.6), and so the weak equivalences of ends that it inducedwas also unique up to simplicial homotopy (see Example 20.4.4, Corollary 20.4.7and Proposition 10.4.22).If we were to make a di�erent choice of �brant co�brant approximation, thenthe two choices would be connected by a unique simplicial homotopy class of sim-plicial homotopy equivalences (see Corollary 9.1.7). Furthermore, the compositionof any map in this simplicial homotopy class of simplicial homotopy equivalencesconnecting two �brant co�brant approximations with the chosen weak equivalencefrom either of our co�brant approximations to the �brant co�brant approximationis a map that is simpliciallyhomotopic to the weak equivalence we chose to the other�brant co�brant approximation. Thus, the natural isomorphism in the homotopycategory that is induced by our natural chain of weak equivalences is unique.In addition, if we used a longer \zig-zag" of weak equivalences of co�brantapproximations, then similar arguments would imply that the isomorphism in thehomotopy category that we obtained would still be independent of our chosen \zig-zag" of weak equivalences. Thus, if we use these methods to construct isomorphisms(in the homotopy category) between di�erent ends of functors constructed as abovefrom co�brant approximations to the constant C-diagram at a point, then anychain of isomorphisms that we construct would equal any other such chain, i.e.,these methods construct a unique isomorphism in the homotopy category betweenany two such functors.Theorem 20.8.4. If C is a small category, X : C ! Spc(�) a C-diagram ofco�brant spaces, and P : Cop ! SS a co�brant approximation to the constantCop-diagram at a point, then R �X� 
 P� (see De�nition ??) is naturally weaklyequivalent to hocolimX . Draft: August 12, 1997



314 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSProof. Since hocolimX = R �X� 
 B(�#C)op (see Example ??), we mustshow that this is weakly equivalent to R �X� 
 P�. The proof of this fact issimilar to the proof of Theorem 20.8.1, using Proposition 19.2.10. The discussionin Remark 20.8.3 applies to this natural weak equivalence as well.20.9. Colimits, homotopy colimits, and total derived functorsProposition 20.9.1. If C is a small category and X : C ! Spc(�) is a co�-brant C-diagram of spaces, then the natural map hocolimX ! colimX is a weakequivalence.Proof. It is su�cient to show that if W 2 Spc(�) is a �brant space, thenMap(colimX;W )!Map(hocolimX ;W ) is a weak equivalence (see Proposition 10.5.1).Since the natural map hocolimX ! colimX is isomorphic to the mapZ �X� 
 B(� #C)op ! Z �X� 
 P�where P : Cop ! SS is the constant diagram at a point (see Example ?? andExample ??), it is su�cient to show that the mapZ�Map(X�;WP�)! Z�Map(X�;WB(�#C)op)is a weak equivalence (see Proposition 20.3.17). This last map is exactly the mapMap(X ;WP )!Map(X;WB(�#C)op)(see De�nition 14.3.2). Since X is a co�brant C-diagram and WP ! WB(�#C)opis a weak equivalence of �brant C-diagrams, the proposition follows from Corol-lary 10.2.2 and Theorem 14.2.1.Theorem 20.9.2. If C is a small category, X : C ! Spc(�) a C-diagram ofco�brant spaces and i : fX ! X a co�brant approximation to X (i.e., fX is aco�brant C-diagram and i� : fX� !X� is a weak equivalence for every � 2 Ob(C)),then colimfX is weakly equivalent to hocolimX .Proof. This follows from Theorem 20.6.11 and Proposition 20.9.1.Corollary 20.9.3. If C is a small category, X;Y : C ! Spc(�) co�brant C-diagrams of spaces and g : X ! Y a map of diagrams such that for every � 2 Ob(C)the map g� : X� ! Y � is a weak equivalence, then g� : colimX ! colimY is aweak equivalence.Proof. Since a co�brant C-diagram of spaces is also an C-diagram of co�brantspaces, this follows from Theorem 20.9.2 and Theorem 20.6.11.Remark 20.9.4. Corollary 20.9.3 implies that the total left derived functorL colim: Ho�SpcC(�)�! Ho�Spc(�)�(see [46, Chapter I, Section 4, De�nition 2]) of the functor colim: SpcC(�) ! Spc(�)exists (see [46, Chapter I, Section 4, Proposition 1]) and that if X is a co�brant C-diagram, then L colimX is weakly equivalent to colimX . (Note that although thereis a natural functor Ho�SpcC(�)�! �Ho Spc(�)�C it is not, in general, an equivalence.)Thus, if X is a diagram of co�brant spaces, then hocolimX represents L colimX .Draft: August 12, 1997



20.9. COLIMITS, HOMOTOPY COLIMITS, AND TOTAL DERIVED FUNCTORS 315For a discussion of homotopy pushouts and homotopy pullbacks from this point ofview, see [31].Proposition 20.9.5. If C is a small category andX : C! Spc(�) is a C-diagramof co�brant spaces, then we de�ne a new C-diagram of spaces Xc as follows: Forevery � 2 Ob(C), we have the functor i� : (C #�)! C that takes (� ! �) 2 (C #�)to �, and so we have the induced diagram i��X on (C #�) de�ned on objects by(i��X)(�!�) = X (i�(�!�)) = X�We let Xc� = hocolim(C#�) i��X.1. Xc is a co�brant C-diagram.2. The map Xc !X that for each � 2 Ob(C) is the natural mapXc� = hocolim(C#�) i��X ! (i��X)1� �X�is a weak equivalence of C-diagrams.3. There is a natural isomorphism colimCXc � hocolimCX.In particular, Xc !X is a co�brant approximation to X .Example 20.9.6. If the discrete group G is considered to be a category withone object and X is a G-space, then the construction of Proposition 20.9.5 is knownclassically as the Borel construction.Definition 20.9.7. A category C is right �ltering if C is non-empty and1. If � and � are objects of C, then there exists an object  of C and morphisms�!  and � ! .2. If f; g : � ! � are morphisms of C, then there exists a morphism h : � ! such that hf = hg.Proposition 20.9.8. If C is a small category that is right �ltering (see De�ni-tion 20.9.7) and X : C! SS(�) is an C-diagram of simplicial sets, then the naturalmap (see Example 19.2.6) hocolimX ! colimX is a weak equivalence.Proof. If f : X !X is a co�brant approximation toX (see De�nition 9.1.1),then we have the commutative diagramhocolimX �p //hocolim f �� colimXcolim f��hocolimX p // colimXSince f� : X� ! X� is a weak equivalence of co�brant spaces for all � 2 Ob(C),Theorem 20.6.11 implies that hocolimf is a weak equivalence. Since C is right�ltering, �n colimX � colim�nX for every C-diagram X , and so colimf is also aweak equivalence. Proposition 20.9.1 implies that �p is a weak equivalence, and sop is a weak equivalence and the proof is complete.Proposition 20.9.9. If � is an ordinal andX0 ! X1 ! X2 ! � � � ! X� ! � � � (� < �)is a �-sequence (see De�nition 12.2.1) of relative cell complexes, then the naturalmap hocolim�<�X� ! colim�<�X� is a weak equivalence. Draft: August 12, 1997



316 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSProof. This is identical to the proof of Theorem 20.9.8, since for a �-sequenceof relative cell complexes X , we have �n colimX � colim�nX.Proposition 20.9.10. If � is an ordinal and� � � ! X� ! � � � ! X1 ! X0 (� < �)is a tower of �brant spaces such that each X�+1 ! X� is a weak equivalence, thenthe map holim�<�X� ! X0 is a weak equivalence.Proof. If we dualize the construction of Proposition 20.9.5 and construct anew tower � � � ! Y� ! � � � ! Y1 ! Y0 (� < �)in which Y� = holim�<�X�, then for each � the natural map X� ! Y� is aweak equivalence and lim�<� Y� � holim�<�X� . The tower Y� is now a tower oftrivial �brations, and so its inverse limit is weakly equivalent to each space in thetower. 20.10. The category of simplices of a simplicial setExample 20.10.1. If p : E ! B is a map of simplicial sets, we will decomposeE into a (�B)-diagram of simplicial sets ~p. If � is an n-simplex of B, then thecharacteristic map of � is the unique map �� : �[n] ! B that takes the non-degenerate n-simplex of �[n] to �, and we let ~p(�) be the pullback of the diagramEp���[n] �� // BIf � : Bn ! Bk is a simplicial operator, then � corresponds to a map �[k]! �[n],and so we get a map ~p(�; �) : ~p��(�)� ! ~p(�). For each simplex � in B there isan obvious map ~p(�) ! E, and these induce an isomorphism of simplicial setscolim�2Ob(�B) ~p(�) � E. We will show in Corollary 20.11.12 that the natural maphocolim�2Ob(�B) ~p(�)! colim�2Ob(�B) ~p(�) � E is a weak equivalence.Proposition 20.10.2. Let X be a simplicial set, and let �X be the categoryof simplices of X (see De�nition 16.1.11).1. If Y : �opX ! Spc(�) is a diagram, then hocolimY (see De�nition 19.1.2)is naturally isomorphic to the homotopy colimit of the simplicial space Z(see De�nition 16.1.5) for which Zn = `�2Xn Y � .2. If Y : �X ! Spc(�) is a diagram, then holimY (see De�nition 19.1.10) isnaturally isomorphic to the homotopy limit of the cosimplicial space Z (seeDe�nition 16.1.7) for which Zn = Q�2Xn Y �.Proof. We will prove part 1; the proof of part 2 is similar.De�nition 19.1.2 describes hocolimY as the coequalizer of the diagrama(�!�0)2�opX Y � 
 B��0 # (�opX)�op � a�2Ob(�opX)Y � 
 B�� # (�opX)�op:Draft: August 12, 1997



20.11. HOMOTOPY INVARIANCE 317We have the natural isomorphismsa(�!�0)2�opX Y � 
 B��0 # (�opX)�op � an�0k�0 a�2Xn� : Xn!Xk Y � 
 B�[k]#�op�op� an�0k�0 a� : Xn!Xk� a�2Xn Y ��
 B�[k]#�op�op� an�0k�0 a�op([n];[k])Zn 
 B�[k]#�op�opand the natural isomorphismsa�2Ob(�opX)Y � 
 B�� # (�opX)�op � an�0� a�2Xn Y ��
 B�� # (�opX)�op� an�0Zn 
 B�[n]#�op�opand so hocolimY is naturally isomorphic to the coequalizer of the diagraman�0k�0 a�op([n];[k])Zn 
 B�[k]#�op�op � a[n]2Ob(�op)Zn 
 B�[n]#�op�opwhich is exactly the de�nition of hocolimZ.20.11. Homotopy invarianceTheorem 20.11.1. If g : X ! Y is a map of Reedy �brant cosimplicial spacessuch that gn : Xn ! Y n is a weak equivalence for all n � 0, then g induces a weakequivalence g� : TotX ! TotY (see De�nition 20.2.5).Proof. This follows from Theorem 16.3.3, Corollary 16.4.10, Corollary 10.2.2,and Corollary 1.1.9.Theorem 20.11.2. If C is a Reedy category and g : X ! Y is a weak equiva-lence of Reedy �brant diagrams in SpcC(�), then the induced map g� : holimX !holimY is a weak equivalence.Proof. This follows from Theorem 20.6.10 and Proposition 16.4.1.Theorem 20.11.3. If C is a Reedy category and g : X ! Y is a weak equiva-lence of Reedy co�brant diagrams in SpcC(�), then the induced map g� : hocolimX !hocolimY is a weak equivalence.Proof. This is similar to the proof of Theorem 20.6.11, using Theorem 20.11.2and Lemma 16.4.5.Corollary 20.11.4. If C is a Reedy category and f : X ! Y is a weak equiv-alence of Reedy co�brant diagrams, then the induced map f� : colimX ! colimYis a weak equivalence.Proof. This follows from Theorem 20.11.10 and Theorem 20.11.3.Theorem 20.11.5. The total space of a Reedy �brant cosimplicial space isnaturally weakly equivalent to its homotopy limit. Draft: August 12, 1997



318 20. LEFTOVERS ON HOMOTOPY COLIMITS AND HOMOTOPY LIMITSProof. This follows from Corollary 16.4.10 and Theorem 20.11.13.Theorem 20.11.6. The realization of a Reedy co�brant simplicial space is nat-urally weakly equivalent to its homotopy colimit.Proof. This follows from Corollary 16.4.10 and Theorem 20.11.14.Corollary 20.11.7. The diagonal of a bisimplicial set (i.e., a simplicial objectin SS(�)) is naturally weakly equivalent to its homotopy colimit.Proof. This follows fromTheorem 20.11.6, Corollary 16.4.7, and Theorem 16.5.4.Theorem 20.11.8. If g : X ! Y is a map of Reedy co�brant simplicial spacessuch that gn : Xn ! Y n is a weak equivalence for all n � 0, then the induced mapof realizations g� : ��X��! ��Y �� is a weak equivalence.Proof. It is su�cient to show that if W is a �brant space, then the inducedmap Map���Y ��;W �!Map���X��;W � is a weak equivalence (see Proposition 10.5.1).This follows from Corollary 20.4.9 and Theorem 20.11.1.Corollary 20.11.9. If Spc(�) = SS(�) and g : X ! Y is a map of simplicialspaces such that gn : Xn ! Y n is a weak equivalence for all n � 0, then the inducedmap of realizations g� : ��X��! ��Y �� is a weak equivalence.Proof. This follows from Theorem 20.11.8 and Corollary 16.4.7.Theorem 20.11.10. If C is a Reedy category and X : C ! Spc(�) is a Reedyco�brant diagram of spaces, then the natural map hocolimX ! colimX is a weakequivalence.Proof. If W is a space and P : Cop ! SS is the constant diagram at a point,then the matching maps (see De�nition 16.2.17) of the C-diagram WP are eitherthe identity map or the constant map to a point. Thus, if W is a �brant space,then WP is a Reedy �brant C-diagram. Corollary 16.4.4 and Lemma 16.4.5 implythat if W is a �brant space, then the C-diagram WB(�#C)op is also Reedy �brant.The theorem now follows as in the proof of Proposition 20.9.1.Proposition 20.11.11. If p : E ! B is a map of simplicial sets, then the (�B)-diagram of simplicial sets constructed in Example 20.10.1 is Reedy co�brant.Proof. The latching map at the n-simplex � is the inclusion of the part of~p(�) above @�[n] into ~p(�).The following corollary is a theorem of J. F. Jardine ([37, Lemma 2.7]).Corollary 20.11.12. If p : E ! B is a map of simplicial sets and ~p : �B ! SSis the diagram constructed in Example 20.10.1, then the natural map hocolim ~p!E is a weak equivalence.Proof. This follows from Theorem 20.11.10 and Proposition 20.11.11.Theorem 20.11.13. If C is a Reedy category, X : C ! Spc(�) a Reedy �brantC-diagram of spaces, and P : C ! Spc(�) a Reedy co�brant approximation (seeDe�nition 9.1.1) to the constant C-diagram at a point, then R�(X�)P � (see De�-nition ??) is naturally weakly equivalent to holimX.Draft: August 12, 1997



20.13. TOPOLOGICAL SPACES AND SIMPLICIAL SETS 319Proof. This is similar to the proof of Theorem 20.8.1.Theorem 20.11.14. If C is a Reedy category,X : C! Spc(�) a Reedy co�brantC-diagram of spaces, and P : Cop ! Spc(�) a Reedy co�brant approximation (seeDe�nition 9.1.1) to the constant Cop-diagram at a point, then R �X� 
 P � (seeDe�nition ??) is naturally weakly equivalent to hocolimX .Proof. This is similar to the proof of Theorem 20.8.4.20.12. Realizations and homotopy colimitsProposition 20.12.1. If X is a simplicial set, �X is the category of simplicesof X (see De�nition 16.1.11), and P : (�opX)! SS is the diagram in which P � isa single point for all � 2 Ob(�opX), then hocolimP is naturally weakly equivalentto X.Proof. Proposition 20.10.2 implies that hocolimP is naturally isomorphic tohocolimZ where Z : �op ! SS is the bisimplicial set (i.e., simplicial simplicial set)such that Zn = a�2Xn P � = a�2Xn � = Xn(where we view the set Xn as a constant (i.e., discrete) simplicial set). Since thediagonal of Z is naturally isomorphic to the original simplicial set X, the theoremfollows from Corollary 20.11.7.Theorem 20.12.2. If X is a simplicial set and �X is the category of simplicesof X (see De�nition 16.1.11), then B(�X) is naturally weakly equivalent to X.Proof. Proposition 19.1.6 implies that if P : (�opX) ! SS is the diagramin which P � is a single point for all � 2 Ob(�opX), then B(�X) is naturallyisomorphic to hocolimP . Proposition 20.12.1 implies that this homotopy colimitis naturally weakly equivalent to X, and so the proof is complete.20.13. Topological spaces and simplicial setsWe proved in Proposition 20.3.7 that the geometric realization functor com-mutes with the realization functor up to a natural homeomorphism, and in Prop-osition 20.3.14 that the total singular complex functor commutes with the totalspace functor up to a natural isomorphism. In this section, we show that, fora Reedy co�brant simplicial topological space, the total singular complex functorcommutes with the realization functor up to a natural weak equivalence, and that,for a cosimplicial simplicial set, the geometric realization functor commutes withthe total space functor up to a natural weak equivalence.Proposition 20.13.1. If X : �op ! Top(�) is a Reedy co�brant simplicialtopological space, then there is a natural weak equivalence from the simplicialset that is the realization of the simplicial simplicial set SingX to Sing��X��.Proof. This is similar to the proof of Proposition 20.5.1.Proposition 20.13.2. If X : � ! SS(�) is a cosimplicial simplicial set, thenthere is a natural weak equivalence ��TotX��! Tot��X��.Proof. This is similar to the proof of Proposition 20.5.1. Draft: August 12, 1997
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