
Higher Inductive Types:
The circle and friends, axiomatically

Peter Lumsdaine

Dalhousie University
Halifax, Nova Scotia

Foundational Methods in Computer Science
Kananaskis, June 2011

1 / 20



DTT

Dependent Type Theory (Martin-Löf, Calculus of
Constructions, etc.): highly expressive constructive theory,
potential foundation for maths.

Central concept: terms of types.

` N type Nat : Type
` 0 : N O : Nat

(M-L notation) (pseudo-Coq syntax)

Both can be dependent on (typed) variables:

n : Nat ` Rn type
Real Vec (n:Nat) : Type

2 / 20



DTT
Terms of dependent types:

n : N ` 0n : Rn

` 0 :
∏

n

Rn

poly zero (n:Nat) : Real Vec n
poly zero : forall (n:Nat), Real Vec n

Original intended interpretation: Sets. Types are sets; terms are
elements of sets.

Dependent type over X:

X Y // Sets or
Y =

∑
i∈X Yi

��
X

3 / 20



DTT

Logic within dependent type theory: Curry-Howard.

Euclid : forall (n:Nat), exists (p:Nat),
(p > n) /\ (isPrime p).

A predicate on X:Type is represented as a dependent type P :
X -> Type.

(In classical set model, P(x) will be 1 or 0, depending on
whether P holds at x.)

4 / 20



Homotopy Type Theory

Predicate representing equality/identity:

x, y : A ` IdA(x, y) type Id (x y:A) : Type

isPrime (n:Nat) : Type
:= ˜(Id n 1) /\

forall d:Nat, (d divides n) ->
(Id d 1) \/ (Id d n).

Has clear, elegant axioms, and excellent computational
behaviour. Can one prove it represents a proposition, i.e. any
two terms p q : Id x y are equal?

“Problem”. No! (Hofmann-Streicher groupoid model, 1995.)

Why is this a problem?

5 / 20



Homotopy Type Theory

Predicate representing equality/identity:

x, y : A ` IdA(x, y) type Id (x y:A) : Type

isPrime (n:Nat) : Type
:= ˜(Id n 1) /\

forall d:Nat, (d divides n) ->
(Id d 1) \/ (Id d n).

Has clear, elegant axioms, and excellent computational
behaviour. Can one prove it represents a proposition, i.e. any
two terms p q : Id x y are equal?

“Problem”. No! (Hofmann-Streicher groupoid model, 1995.)

Why is this a problem?

5 / 20



Homotopy Type Theory
Problem: a mismatch! Original conception: a theory of
something like sets. Formulation largely motivated by
computational behaviour, constructive philosophy. Types of the
theory end up not behaving like familiar classical sets.

One solution: add more axioms — “equality reflection”, etc.
Problem: destroys computational content, makes typechecking
undecidable, etc.

Alternative: see types as being something more like spaces —
topological spaces, (higher) groupoids, etc. Change our idea of
what this is a theory of.

Precise statements: models of the theory in Top, SSet, n-Gpd,
nice Quillen model categories. . . (Awodey, Warren, Garner, van
en Berg, etc.); conversely, higher categories, wfs’s, etc. from
theory (Garner, Gambino, van den Berg, PLL).

6 / 20



Homotopy Type Theory
Problem: a mismatch! Original conception: a theory of
something like sets. Formulation largely motivated by
computational behaviour, constructive philosophy. Types of the
theory end up not behaving like familiar classical sets.

One solution: add more axioms — “equality reflection”, etc.
Problem: destroys computational content, makes typechecking
undecidable, etc.

Alternative: see types as being something more like spaces —
topological spaces, (higher) groupoids, etc. Change our idea of
what this is a theory of.

Precise statements: models of the theory in Top, SSet, n-Gpd,
nice Quillen model categories. . . (Awodey, Warren, Garner, van
en Berg, etc.); conversely, higher categories, wfs’s, etc. from
theory (Garner, Gambino, van den Berg, PLL).

6 / 20



Homotopy Type Theory
Problem: a mismatch! Original conception: a theory of
something like sets. Formulation largely motivated by
computational behaviour, constructive philosophy. Types of the
theory end up not behaving like familiar classical sets.

One solution: add more axioms — “equality reflection”, etc.
Problem: destroys computational content, makes typechecking
undecidable, etc.

Alternative: see types as being something more like spaces —
topological spaces, (higher) groupoids, etc. Change our idea of
what this is a theory of.

Precise statements: models of the theory in Top, SSet, n-Gpd,
nice Quillen model categories. . . (Awodey, Warren, Garner, van
en Berg, etc.); conversely, higher categories, wfs’s, etc. from
theory (Garner, Gambino, van den Berg, PLL).

6 / 20



Homotopy Type Theory

Idea: workwith dependent type theory as a theory of homotopy
types.

Id x y not just proposition of “equality”, but space of paths
from x to y.
Notation: write x ˜˜> x’ for Id A x x’.

Dep. type Y : X -> Type — a fibration
Y

p
��

X

Term f : forall x:X, (Y x) — a section
Y

p
		

X

f

HH
.

7 / 20



Homotopy Type Theory

Programme (Voevodsky et al): develop homotopy theory
axiomatically within this logic.

So far, enough to start making definitions: contractibility, loop
spaces, equivalence. . .

But: how to start building interesting spaces? Circles, spheres,
. . . ?

8 / 20



Inductive types

Main standard type-construction principle: inductive types.

Inductive Nat : Type where
| zero : Nat
| suc : Nat -> Nat.

“Let Nat be the type freely generated by an element zero :
Nat and a map suc : Nat -> Nat.”

From this specification, Coq automatically generates induction
principle (aka recursor, eliminator) for Nat:

forall (P : Nat -> Type)
(d_zero : P zero)
(d_suc : forall (n:Nat), P n -> P (suc n)),

forall (n : Nat), P n.

9 / 20



Higher Inductive Types

Extend this principle: allow constructors to produce paths.

Inductive Circle : Type where
| base : Circle
| loop : base ˜˜> base.

“Let Circle be the type freely generated by an element base
: Circle and a path loop : base ˜˜> base.”

Can’t actually type this definition into Coq (yet). What should
its induction principle be?

10 / 20



Circle

Type of non-dependent eliminator is clear:

forall (X : Type)
(d_base : X)
(d_loop : d_base ˜˜> d_base),

Circle -> X

Not powerful enough to do much with. Need to be able to
eliminate into dependent type. How about:

forall (P : Circle -> Type)
(d_base : P base)
(d_loop : d_base ˜˜> d_base),

forall (x:Circle), P x.

11 / 20



Circle

Type of non-dependent eliminator is clear:

forall (X : Type)
(d_base : X)
(d_loop : d_base ˜˜> d_base),

Circle -> X

Not powerful enough to do much with. Need to be able to
eliminate into dependent type. How about:

forall (P : Circle -> Type)
(d_base : P base)
(d_loop : d_base ˜˜> d_base),

forall (x:Circle), P x.

11 / 20



Interval

Digression: axiomatise the interval, as warmup.

Inductive Interval : Type where
| src : Interval
| tgt : Interval
| seg : src ˜˜> tgt.

Induction principle?

Given fibration P : Interval -> Type, how to produce
section?

Need points d src:(P src), d tgt:(P tgt), and a path
d seg between them.

Problem: d src ˜˜> d tgt doesn’t typecheck — d src,
d tgt have different types. How to get type for d seg?

12 / 20



Interval

Digression: axiomatise the interval, as warmup.

Inductive Interval : Type where
| src : Interval
| tgt : Interval
| seg : src ˜˜> tgt.

Induction principle?

Given fibration P : Interval -> Type, how to produce
section?

Need points d src:(P src), d tgt:(P tgt), and a path
d seg between them.

Problem: d src ˜˜> d tgt doesn’t typecheck — d src,
d tgt have different types. How to get type for d seg?

12 / 20



Interval

Answer: transport between fibers of a fibration, derivable in the
type theory:

transport {X : Type} {P : X -> Type}
{x y : X} (u : x ˜˜> y) (a : P x)
: P y

So, induction principle for interval:

forall (P : Interval -> Type)
(d_src : P src) (d_tgt : P tgt)
(d_seg : (transport seg d_src) ˜˜> d_tgt),

forall (x:Interval), P x.

13 / 20



Circle

In induction principle, the case for a constructor of path type
should lie over that path.

Correct induction principle for the circle:

forall (P : Circle -> Type)
(d_base : P base)
(d_loop : (transport loop d_base) ˜˜> d_base),

forall (x:Circle), P x.

14 / 20



Circle

15 / 20



Consequences

What can we prove with these?

I Interval is contractible.

I Interval implies functional extensionality.
I Circle is contractible iff all path types are trivial (i.e. in a

Sets-like model).
I “π1(S1) ∼= Z.” Assuming Univalence (“equality between

types is homotopy equivalence”), loop space of Circle is
homotopy-equivalent to Int.

16 / 20



Consequences

What can we prove with these?

I Interval is contractible.
I Interval implies functional extensionality.

I Circle is contractible iff all path types are trivial (i.e. in a
Sets-like model).

I “π1(S1) ∼= Z.” Assuming Univalence (“equality between
types is homotopy equivalence”), loop space of Circle is
homotopy-equivalent to Int.

16 / 20



Consequences

What can we prove with these?

I Interval is contractible.
I Interval implies functional extensionality.
I Circle is contractible iff all path types are trivial (i.e. in a

Sets-like model).

I “π1(S1) ∼= Z.” Assuming Univalence (“equality between
types is homotopy equivalence”), loop space of Circle is
homotopy-equivalent to Int.

16 / 20



Consequences

What can we prove with these?

I Interval is contractible.
I Interval implies functional extensionality.
I Circle is contractible iff all path types are trivial (i.e. in a

Sets-like model).
I “π1(S1) ∼= Z.” Assuming Univalence (“equality between

types is homotopy equivalence”), loop space of Circle is
homotopy-equivalent to Int.

16 / 20



Models

Can interpret Circle (and the other HIT’s below) in:
I Set: trivially, 0-truncated.
I Gpd: 1-truncated; but with a good enough univalent

universe that the above theorem applies.
I str-n-Gpd, for n ≤ ω.

Hopefully also Sets∆
op

, Top?

17 / 20



More Higher Inductive Types

I Familiar spaces with good cell complex structures: higher
spheres, tori, Klein bottle, . . .

I Maps between these: universal covers, Hopf fibration, . . .
I Mapping cylinders. From these, wfs’s as for a Quillen

model structure.
I Truncations, homotopy groups: tr−1 = π−1, tr0 = π0, tr1,
π1, . . .

18 / 20



Tuncations

By using proper recursion (like suc for Nat), can construct
truncations as higher inductive types:

Inductive isInhab (X:Type) : Type where
| incl : X -> isInhab X
| contr : forall (y y’ : isInhab X),

y ˜˜> y’.

Gives the support of a type, aka −1-truncation tr−1 = π−1,
homotopy-proposition reflection, bracket types (Awodey, Bauer).

Gives an alternate “homotopy-proposition” interpretation of
logic in the DTT, besides Curry-Howard. So may even have
classical logic existing inside a completely constructive type
theory!

19 / 20



Intrigued?

References, related reading, Coq files, and much more at:
http://homotopytypetheory.org

20 / 20

http://homotopytypetheory.org

