An overlooked coherence construction for dependent type theory

Peter LeFanu Lumsdaine (joint work with Michael Warren)

> Institute for Advanced Study Princeton, New Jersey

> > CT2013, Sydney

Background

- Dependent type theory: powerful, expressive, natural class of logical systems (e.g. homotopy type theory).
- Models of DTT: well-developed categorical theory, most aspects satisfactory.
- However: coherence issues still present obstructions, not fully understood.
- Existing theorems bridge the gap for specific type theories: Hofmann, van den Berg–Garner, ... But: general theorems lacking, esp. for intensional type theory.

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

Then there is an associated split comprehension category $(\mathbf{C}, \mathcal{T}_!)$, with $\mathcal{T} \simeq \mathcal{T}_!$ as fibrations over \mathbf{C} ; and if $(\mathbf{C}, \mathcal{T})$ has weakly stable Π -types (resp. Σ -types, Id-types, W-types, inductive types, higher inductive types, . . .), then $(\mathbf{C}, \mathcal{T}_!)$ may be equipped with strictly coherent Π -types (resp. Σ -types, Id-types, etc.)

Weakly stable satisfied in natural categorical settings; split
 + strictly coherent allows direct interpretation of syntax.

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

- Weakly stable satisfied in natural categorical settings; split
 + strictly coherent allows direct interpretation of syntax.
- Main hypothesis: the exponentiability.

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

- Weakly stable satisfied in natural categorical settings; split
 + strictly coherent allows direct interpretation of syntax.
- Main hypothesis: the exponentiability.
- Payoff: no restriction on type theory; result is uniform for all type-constructors (even for individual rules).

Definition (Jacobs)

A comprehension category $(\mathbf{C}, \mathcal{T})$ is a (Grothendieck) fibration $p: \mathcal{T} \to \mathbf{C}$, together with a functor $\chi: \mathcal{T} \to \mathbf{C}^{\rightarrow}$, such that $\operatorname{cod} \circ \chi = p$, and χ sends cartesian arrows to pullback squares.

 $(\mathbf{C}, \mathcal{T})$ is full if χ is full, and split (resp. cloven) if p is split (resp. cloven).

Idea: see objects of C as contexts Γ, objects of T(Γ) as types
 A in context Γ, and χ as providing context extension Γ.*A*.

Definition (Jacobs)

A comprehension category (\mathbf{C} , \mathcal{T}) is a (Grothendieck) fibration $p: \mathcal{T} \to \mathbf{C}$, together with a functor $\chi: \mathcal{T} \to \mathbf{C}^{\rightarrow}$, such that $\operatorname{cod} \circ \chi = p$, and χ sends cartesian arrows to pullback squares.

 $(\mathbf{C}, \mathcal{T})$ is full if χ is full, and split (resp. cloven) if p is split (resp. cloven).

- Idea: see objects of C as contexts Γ, objects of T(Γ) as types
 A in context Γ, and χ as providing context extension Γ.*A*.
- Comprehension categories abound in nature.

Definition (Jacobs)

A comprehension category $(\mathbf{C}, \mathcal{T})$ is a (Grothendieck) fibration $p: \mathcal{T} \to \mathbf{C}$, together with a functor $\chi: \mathcal{T} \to \mathbf{C}^{\rightarrow}$, such that $\operatorname{cod} \circ \chi = p$, and χ sends cartesian arrows to pullback squares. (\mathbf{C}, \mathcal{T}) is full if χ is full, and split (resp. cloven) if p is split (resp. cloven).

Idea: see objects of C as contexts Γ, objects of T(Γ) as types A in context Γ, and χ as providing context extension Γ.A.

- Comprehension categories abound in nature.
- Split comprehension categories model the structural core of DTT.

Definition (Jacobs)

A comprehension category $(\mathbf{C}, \mathcal{T})$ is a (Grothendieck) fibration $p: \mathcal{T} \to \mathbf{C}$, together with a functor $\chi: \mathcal{T} \to \mathbf{C}^{\rightarrow}$, such that $\operatorname{cod} \circ \chi = p$, and χ sends cartesian arrows to pullback squares. (\mathbf{C}, \mathcal{T}) is full if χ is full, and split (resp. cloven) if p is split (resp. cloven).

- Idea: see objects of C as contexts Γ, objects of T(Γ) as types
 A in context Γ, and χ as providing context extension Γ.*A*.
- Comprehension categories abound in nature.
- Split comprehension categories model the structural core of DTT.
- (Alternatives: contextual categories; categories with attributes/families; type-categories; etc.)

Comprehension Categories: example

Example

Sets, with the codomain fibration $(\mathbf{Sets}^{\rightarrow})_X = \mathbf{Sets}/X$, is a comprehension category. (Call this just **Sets**.)

Comprehension Categories: example

Example

Sets, with the codomain fibration $(\mathbf{Sets}^{\rightarrow})_X = \mathbf{Sets}/X$, is a comprehension category. (Call this just **Sets**.)

Example

Fix some class of sets *V* (e.g. a Grothendieck universe; or all sets). Define split comprehension category $\mathbf{Sets}_V = (\mathbf{Sets}, \mathcal{T}_V)$ by:

- $\mathcal{T}(X) := [X, V];$
- re-indexing is precomposition;
- χ is disjoint union.

If *V* is the class of all sets, then $\mathbf{Sets}_V \simeq \mathbf{Sets}$.

Comprehension Categories: example

Example

Sets, with the codomain fibration $(\mathbf{Sets}^{\rightarrow})_X = \mathbf{Sets}/X$, is a comprehension category. (Call this just **Sets**.)

Example

Fix some class of sets *V* (e.g. a Grothendieck universe; or all sets). Define split comprehension category $\mathbf{Sets}_V = (\mathbf{Sets}, \mathcal{T}_V)$ by:

- $\mathcal{T}(X) := [X, V];$
- re-indexing is precomposition;
- χ is disjoint union.

If *V* is the class of all sets, then $\mathbf{Sets}_V \simeq \mathbf{Sets}$.

Moral: universes make things stricter, when available.

Definition

(**C**, \mathcal{T}) has (+)-types if for each $\Gamma \in \mathbf{C}$ and $A, B \in \mathcal{T}(\Gamma)$, there is an object $A + B \in \mathcal{T}(\Gamma)$, and maps ν_A, ν_B , such that ...

Definition

(**C**, \mathcal{T}) has (+)-types if for each $\Gamma \in \mathbf{C}$ and $A, B \in \mathcal{T}(\Gamma)$, there is an object $A + B \in \mathcal{T}(\Gamma)$, and maps ν_A, ν_B , such that ...

(**C**, \mathcal{T}) has (type-theoretic) Π -types if for each $\Gamma \in \mathbf{C}$, $A \in \mathcal{T}(\Gamma)$, and $B \in \mathcal{T}(\Gamma.B)$, there is an object $\Pi_A B \in \mathcal{T}(\Gamma)$, and maps λ , ap, such that ...

Definition

(**C**, \mathcal{T}) has (+)-types if for each $\Gamma \in \mathbf{C}$ and $A, B \in \mathcal{T}(\Gamma)$, there is an object $A + B \in \mathcal{T}(\Gamma)$, and maps ν_A, ν_B , such that ...

(**C**, \mathcal{T}) has (type-theoretic) Π -types if for each $\Gamma \in \mathbf{C}$, $A \in \mathcal{T}(\Gamma)$, and $B \in \mathcal{T}(\Gamma.B)$, there is an object $\Pi_A B \in \mathcal{T}(\Gamma)$, and maps λ , ap, such that ...

A split comp. cat. (\mathbf{C} , \mathcal{T}) has strictly coherent (+)-types (resp. II-types) if it is equipped with choices of the above data, commuting with the splitting (i.e. with substitution in the ambient context Γ).

Definition

(**C**, \mathcal{T}) has (+)-types if for each $\Gamma \in \mathbf{C}$ and $A, B \in \mathcal{T}(\Gamma)$, there is an object $A + B \in \mathcal{T}(\Gamma)$, and maps ν_A, ν_B , such that ...

(**C**, \mathcal{T}) has (type-theoretic) Π -types if for each $\Gamma \in \mathbf{C}$, $A \in \mathcal{T}(\Gamma)$, and $B \in \mathcal{T}(\Gamma.B)$, there is an object $\Pi_A B \in \mathcal{T}(\Gamma)$, and maps λ , ap, such that ...

A split comp. cat. (\mathbf{C} , \mathcal{T}) has strictly coherent (+)-types (resp. II-types) if it is equipped with choices of the above data, commuting with the splitting (i.e. with substitution in the ambient context Γ).

 The strictly coherent structure is exactly what's required to model syntactic (+)-types, Π-types, etc.

Definition

(**C**, \mathcal{T}) has (+)-types if for each $\Gamma \in \mathbf{C}$ and $A, B \in \mathcal{T}(\Gamma)$, there is an object $A + B \in \mathcal{T}(\Gamma)$, and maps ν_A, ν_B , such that ...

(**C**, \mathcal{T}) has (type-theoretic) Π -types if for each $\Gamma \in \mathbf{C}$, $A \in \mathcal{T}(\Gamma)$, and $B \in \mathcal{T}(\Gamma.B)$, there is an object $\Pi_A B \in \mathcal{T}(\Gamma)$, and maps λ , ap, such that ...

A split comp. cat. (\mathbf{C} , \mathcal{T}) has strictly coherent (+)-types (resp. II-types) if it is equipped with choices of the above data, commuting with the splitting (i.e. with substitution in the ambient context Γ).

- The strictly coherent structure is exactly what's required to model syntactic (+)-types, Π-types, etc.
- Sets has (+)-types and Π-types. For V suitably closed,
 Sets_V has strictly coherent (+)-types and Π-types.

Coherence problem

Splitness and strict coherence of logical structure are **not categorical**: involve equality on objects.

Most intended models are categorical in nature; don't naturally satisfy these.

Coherence problem

Splitness and strict coherence of logical structure are **not categorical**: involve equality on objects.

Most intended models are categorical in nature; don't naturally satisfy these.

Problem (Coherence problem for type theory)

Given a comp. cat. with some weak logical structure, when can one construct a related (equivalent?) split one, with strict logical structure?

Expect some kind of stability condition to be needed on the logical structure.

Coherence for fibrations

First: splitness of the fibration.

Coherence for fibrations

First: splitness of the fibration.

Proposition (Giraud, Grothendieck)

For any **C**, there is a triple adjunction

and for any $T \in Fib(\mathbb{C})$, both T_* and $T_!$ are equivalent to T as (non-split) fibrations over \mathbb{C} .

Coherence for fibrations

First: splitness of the fibration.

Proposition (Giraud, Grothendieck)

For any **C**, there is a triple adjunction

and for any $T \in Fib(\mathbb{C})$, both T_* and $T_!$ are equivalent to T as (non-split) fibrations over \mathbb{C} .

Right adjoint \mathcal{T}_* : "choose re-indexings in advance". Left adjoint $\mathcal{T}_!$: "put off re-indexing until later".

Proposition (Hofmann, 1995)

Suppose $(\mathbf{C}, \mathcal{T})$ is a comprehension category with identity types, satisfying the reflection rule (of extensional type theory).

Then $(\mathbf{C}, \mathcal{T}_*)$ is again a comprehension category; and if $(\mathbf{C}, \mathcal{T})$ has Π -types (resp. Σ -types, W-types, etc.) commuting up to isomorphism with reindexing, then $(\mathbf{C}, \mathcal{T}_*)$ has strictly coherent Π -types (Σ -types. etc.).

Proposition (Hofmann, 1995)

Suppose $(\mathbf{C}, \mathcal{T})$ is a comprehension category with identity types, satisfying the reflection rule (of extensional type theory).

Then $(\mathbf{C}, \mathcal{T}_*)$ is again a comprehension category; and if $(\mathbf{C}, \mathcal{T})$ has Π -types (resp. Σ -types, W-types, etc.) commuting up to isomorphism with reindexing, then $(\mathbf{C}, \mathcal{T}_*)$ has strictly coherent Π -types (Σ -types. etc.).

Generally: if a type-constructor is forced by its definition to be unique up to canonical isomorphism, or if a term-constructor is forced to be unique, then the constructor will lift to $(\mathbf{C}, \mathcal{T}_*)$. Extensional type theory is happy.

Proposition (Hofmann, 1995)

Suppose $(\mathbf{C}, \mathcal{T})$ is a comprehension category with identity types, satisfying the reflection rule (of extensional type theory).

Then $(\mathbf{C}, \mathcal{T}_*)$ is again a comprehension category; and if $(\mathbf{C}, \mathcal{T})$ has Π -types (resp. Σ -types, W-types, etc.) commuting up to isomorphism with reindexing, then $(\mathbf{C}, \mathcal{T}_*)$ has strictly coherent Π -types (Σ -types. etc.).

Generally: if a type-constructor is forced by its definition to be unique up to canonical isomorphism, or if a term-constructor is forced to be unique, then the constructor will lift to $(\mathbf{C}, \mathcal{T}_*)$. Extensional type theory is happy.

This kills the homotopy theory!

Proposition (Hofmann, 1995)

Suppose $(\mathbf{C}, \mathcal{T})$ is a comprehension category with identity types, satisfying the reflection rule (of extensional type theory).

Then $(\mathbf{C}, \mathcal{T}_*)$ is again a comprehension category; and if $(\mathbf{C}, \mathcal{T})$ has Π -types (resp. Σ -types, W-types, etc.) commuting up to isomorphism with reindexing, then $(\mathbf{C}, \mathcal{T}_*)$ has strictly coherent Π -types (Σ -types. etc.).

Generally: if a type-constructor is forced by its definition to be unique up to canonical isomorphism, or if a term-constructor is forced to be unique, then the constructor will lift to $(\mathbf{C}, \mathcal{T}_*)$. Extensional type theory is happy.

This kills the homotopy theory!

An object *A* of $\mathcal{T}_!$ over $\Gamma \in \mathbf{C}$ consists of objects $V_A \in \mathbf{C}$, $E_A \in \mathcal{T}(V_A)$, and a map $\lceil A \rceil : \Gamma \to V_A$.

Reindexing: pre-composition with $\lceil A \rceil$.

Intuition

- *A* is a stand-in for $\ulcorner A \urcorner^* E_A \in \mathcal{T}(\Gamma)$;
- (V_A, E_A) as local universe or space of names;
- $\lceil A \rceil$ as delayed substitution.

Comprehension structure

If $(\mathbf{C}, \mathcal{T})$ is a comprehension category, define comprehension on $(\mathbf{C}, \mathcal{T}_{!})$ by re-indexing followed by comprehension in $(\mathbf{C}, \mathcal{T})$:

 $\Gamma.A := \Gamma.(\ulcorner A \urcorner^* E_A)$

So: $(\mathbf{C}, \mathcal{T}_{!})$ a split comprehension category, equivalent to \mathcal{T} . What about logical structure?

Example

Suppose **C** has (+)-types. Given $A, B \in \mathcal{T}_!(\Gamma)$, how to form A + B?

Example

Answer: change the universe. Re-index to $V_A \times V_B$; take sum there.

Idea: $V_A \times V_B$ parametrises "sums of a type from V_A and a type from V_B ".

More precisely: $V_A \times V_B$ represents the data for "(+)-formation with types from V_A and V_B ".

Commutes with re-indexing, since there's no interaction with Γ .

Example

More difficult example: Π -types.

Data for Π -type formation: a type $A \in \mathcal{T}_!(\Gamma)$, and a further dependent type $B \in T_!(\Gamma.A)$.

What universe do we reindex to?

What represents data like $(\ulcornerA\urcorner, \ulcornerB\urcorner)$, i.e. "II-formation data with types from V_A , V_B "?

Example

Write $V_A \ltimes V_B$ for exponential in \mathbb{C}/V_A of $V_A \times V_B$ by $V_A.E_A$. In internal language: $V_A \times V_B := [a : V_A, b : V_B^{E_A(a)}]$. This represents "II-formation data with types from V_A, V_B ",

Example

Now can define the Π -type $\Pi_A B$ in $\mathcal{T}_!(\Gamma)$:

Example

Now can define the Π -type $\Pi_A B$ in $\mathcal{T}_!(\Gamma)$:

• take $V_{\Pi_A B}$ to be $V_A \ltimes V_B$;

Example

Now can define the Π -type $\Pi_A B$ in $\mathcal{T}_!(\Gamma)$:

- take $V_{\Pi_A B}$ to be $V_A \ltimes V_B$;
- take E_{Π_AB} to be the Π-type from *T* of the universal family over V_{Π_AB}, i.e. Π<sub>π^{*}₁E_Aα^{*}E_B;
 </sub>

Example

Now can define the Π -type $\Pi_A B$ in $\mathcal{T}_!(\Gamma)$:

- take $V_{\Pi_A B}$ to be $V_A \ltimes V_B$;
- take E_{Π_AB} to be the Π-type from *T* of the universal family over V_{Π_AB}, i.e. Π<sub>π^{*}₁E_Aα^{*}E_B;
 </sub>
- ► take $\sqcap AB \urcorner$ to be the map $\Gamma \to V_A \ltimes V_B$ induced by $(\ulcorner A \urcorner, \ulcorner B \urcorner)$.

Example

Now can define the Π -type $\Pi_A B$ in $\mathcal{T}_!(\Gamma)$:

- take $V_{\Pi_A B}$ to be $V_A \ltimes V_B$;
- take E_{Π_AB} to be the Π-type from *T* of the universal family over V_{Π_AB}, i.e. Π<sub>π^{*}₁E_Aα^{*}E_B;
 </sub>
- ► take $\sqcap AB \urcorner$ to be the map $\Gamma \to V_A \ltimes V_B$ induced by $(\ulcorner A \urcorner, \ulcorner B \urcorner)$.

Again, commutes strictly with re-indexing, since the Π -type taken in \mathcal{T} depended only on the universes $(V_A, E_A), (V_B, E_B)$. No interaction with Γ .

Also need to construct in $T_!$ the term-constructors going along with these type-constructors. For each piece of structure, use the same approach as above:

Also need to construct in $T_!$ the term-constructors going along with these type-constructors. For each piece of structure, use the same approach as above:

1. construct a new universe, representing the input data of the operation, e.g. representing "(+)-elimination data, over a sum of types from V_A and V_B , into a target type from V_C ";

Also need to construct in $T_!$ the term-constructors going along with these type-constructors. For each piece of structure, use the same approach as above:

- 1. construct a new universe, representing the input data of the operation, e.g. representing "(+)-elimination data, over a sum of types from V_A and V_B , into a target type from V_C ";
- 2. use the assumed structure in $(\mathbf{C}, \mathcal{T})$, over this universe, taking e.g. "the universal (+)-elimination with types from V_A, V_B, V_C ";

Also need to construct in $T_!$ the term-constructors going along with these type-constructors. For each piece of structure, use the same approach as above:

- 1. construct a new universe, representing the input data of the operation, e.g. representing "(+)-elimination data, over a sum of types from V_A and V_B , into a target type from V_C ";
- 2. use the assumed structure in $(\mathbf{C}, \mathcal{T})$, over this universe, taking e.g. "the universal (+)-elimination with types from V_A, V_B, V_C ";
- take the new "name" map from Γ to be the map corresponding to the original supplied data over Γ, induced by the universal property of the new universe.

Also need to construct in $T_!$ the term-constructors going along with these type-constructors. For each piece of structure, use the same approach as above:

- 1. construct a new universe, representing the input data of the operation, e.g. representing "(+)-elimination data, over a sum of types from V_A and V_B , into a target type from V_C ";
- 2. use the assumed structure in $(\mathbf{C}, \mathcal{T})$, over this universe, taking e.g. "the universal (+)-elimination with types from V_A, V_B, V_C ";
- take the new "name" map from Γ to be the map corresponding to the original supplied data over Γ, induced by the universal property of the new universe.

However: when we use e.g. the (+)-elimination of **C**, we have re-indexed from $V_A \times V_B$ to the new universe.

So: need some kind of stability/Beck-Chevalley condition for (+)-types of ${\bf C}.$

Beck-Chevalley conditions

Traditional Beck-Chevalley condition for e.g. coproducts:

"The canonical map $f^*A + f^*B \rightarrow f^*(A + B)$ is an isomorphism".

Beck-Chevalley conditions

Traditional Beck-Chevalley condition for e.g. coproducts:

"The canonical map $f^*A + f^*B \rightarrow f^*(A + B)$ is an isomorphism".

Alternative rephrasing:

" $f^*(A + B)$, with $f^*\nu_1$, $f^*\nu_2$, is a coproduct for f^*A and f^*B ".

Beck-Chevalley conditions

Traditional Beck-Chevalley condition for e.g. coproducts:

"The canonical map $f^*A + f^*B \rightarrow f^*(A + B)$ is an isomorphism".

Alternative rephrasing:

" $f^*(A + B)$, with $f^*\nu_1$, $f^*\nu_2$, is a coproduct for f^*A and f^*B ".

Equivalent for coproducts, since those are unique up to canonical isomorphism, by their universal property.

For constructions with weaker universal properties: second phrasing is what we need.

Definition

(**C**, \mathcal{T}) has weakly stable (+)-types if for every $A, B \in \mathcal{T}(\Gamma)$, there are A + B, ν_1, ν_2 , such that for each $f \colon \Gamma' \to \Gamma$, the re-indexings $f^*(A + B), f^*\nu_1, f^*\nu_2$ form a (+)-type for f^*A, f^*B .

Definition

(**C**, \mathcal{T}) has weakly stable (+)-types if for every $A, B \in \mathcal{T}(\Gamma)$, there are A + B, ν_1, ν_2 , such that for each $f \colon \Gamma' \to \Gamma$, the re-indexings $f^*(A + B), f^*\nu_1, f^*\nu_2$ form a (+)-type for f^*A, f^*B .

Similarly, define weakly stable II-types, Id-types, etc.: a weakly stable widget for some input data is a widget, all of whose re-indexings are again widgets for the re-indexed data.

• Pure existence condition: no chosen structure involved.

Definition

(**C**, \mathcal{T}) has weakly stable (+)-types if for every $A, B \in \mathcal{T}(\Gamma)$, there are A + B, ν_1, ν_2 , such that for each $f \colon \Gamma' \to \Gamma$, the re-indexings $f^*(A + B), f^*\nu_1, f^*\nu_2$ form a (+)-type for f^*A, f^*B .

- Pure existence condition: no chosen structure involved.
- ► Independent of choice of re-indexings in *T*.

Definition

(**C**, \mathcal{T}) has weakly stable (+)-types if for every $A, B \in \mathcal{T}(\Gamma)$, there are A + B, ν_1, ν_2 , such that for each $f \colon \Gamma' \to \Gamma$, the re-indexings $f^*(A + B), f^*\nu_1, f^*\nu_2$ form a (+)-type for f^*A, f^*B .

- Pure existence condition: no chosen structure involved.
- Independent of choice of re-indexings in \mathcal{T} .
- Categorically natural: no equality on objects involved.

Definition

(**C**, \mathcal{T}) has weakly stable (+)-types if for every $A, B \in \mathcal{T}(\Gamma)$, there are A + B, ν_1, ν_2 , such that for each $f \colon \Gamma' \to \Gamma$, the re-indexings $f^*(A + B), f^*\nu_1, f^*\nu_2$ form a (+)-type for f^*A, f^*B .

- Pure existence condition: no chosen structure involved.
- Independent of choice of re-indexings in \mathcal{T} .
- Categorically natural: no equality on objects involved.
- Implied by most (all?) other Beck-Chevalley-type conditions; holds in most (all?) reasonable examples.

Definition

(**C**, \mathcal{T}) has weakly stable (+)-types if for every $A, B \in \mathcal{T}(\Gamma)$, there are A + B, ν_1, ν_2 , such that for each $f \colon \Gamma' \to \Gamma$, the re-indexings $f^*(A + B), f^*\nu_1, f^*\nu_2$ form a (+)-type for f^*A, f^*B .

- Pure existence condition: no chosen structure involved.
- Independent of choice of re-indexings in \mathcal{T} .
- Categorically natural: no equality on objects involved.
- Implied by most (all?) other Beck-Chevalley-type conditions; holds in most (all?) reasonable examples.

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

Then $(\mathbf{C}, \mathcal{T}_{!})$ is a split comprehension category, with $\mathcal{T} \simeq \mathcal{T}_{!}$ as fibrations over \mathbf{C} ; and if $(\mathbf{C}, \mathcal{T})$ has weakly stable Π -types (resp. Σ -types, Id-types, W-types, inductive types, higher inductive types, ...), then $(\mathbf{C}, \mathcal{T}_{!})$ may be equipped with strictly coherent Π -types (resp. Σ -types, Id-types, etc.)

Hypotheses all categorically natural.

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

- Hypotheses all categorically natural.
- Uniform in all type constructors; indeed, in all standard rules individually.

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

- Hypotheses all categorically natural.
- Uniform in all type constructors; indeed, in all standard rules individually.
- Applies to most natural models of intensional type theory (exception: **Top**).

Theorem (Lumsdaine, Warren)

Let $(\mathbf{C}, \mathcal{T})$ *be a comprehension category, such that* \mathbf{C} *has finite products and display maps are exonentiable in* \mathbf{C} *.*

- Hypotheses all categorically natural.
- Uniform in all type constructors; indeed, in all standard rules individually.
- Applies to most natural models of intensional type theory (exception: **Top**).
- Only strong hypothesis: the exponentiability.