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Background

I Dependent type theory: powerful, expressive, natural class
of logical systems (e.g. homotopy type theory).

I Models of DTT: well-developed categorical theory, most
aspects satisfactory.

I However: coherence issues still present obstructions, not
fully understood.

I Existing theorems bridge the gap for specific type theories:
Hofmann, van den Berg–Garner, . . . But: general theorems
lacking, esp. for intensional type theory.
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Present result

Theorem (Lumsdaine, Warren)

Let (C, T ) be a comprehension category, such that C has finite
products and display maps are exonentiable in C.

Then there is an associated split comprehension category (C, T!), with
T ' T! as fibrations over C; and if (C, T ) has weakly stable Π-types
(resp. Σ-types, Id-types, W-types, inductive types, higher inductive
types, . . .), then (C, T!) may be equipped with strictly coherent
Π-types (resp. Σ-types, Id-types, etc.)

I Weakly stable satisfied in natural categorical settings; split
+ strictly coherent allows direct interpretation of syntax.

I Main hypothesis: the exponentiability.
I Payoff: no restriction on type theory; result is uniform for

all type-constructors (even for individual rules).
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Comprehension Categories

Definition (Jacobs)

A comprehension category (C, T ) is a (Grothendieck) fibration
p : T → C, together with a functor χ : T → C→, such that
cod ◦χ = p, and χ sends cartesian arrows to pullback squares.

(C, T ) is full if χ is full, and split (resp. cloven) if p is split (resp.
cloven).

I Idea: see objects of C as contexts Γ, objects of T (Γ) as types
A in context Γ, and χ as providing context extension Γ.A.

I Comprehension categories abound in nature.
I Split comprehension categories model the structural core

of DTT.
I (Alternatives: contextual categories; categories with

attributes/families; type-categories; etc.)
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Comprehension Categories: example

Example

Sets, with the codomain fibration (Sets→)X = Sets/X, is a
comprehension category. (Call this just Sets.)

Example

Fix some class of sets V (e.g. a Grothendieck universe; or all
sets). Define split comprehension category SetsV = (Sets, TV)
by:

I T (X) := [X,V];
I re-indexing is precomposition;
I χ is disjoint union.

If V is the class of all sets, then SetsV ' Sets.

Moral: universes make things stricter, when available.
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Logical structure
Definition
(C, T ) has (+)-types if for each Γ ∈ C and A,B ∈ T (Γ), there is
an object A + B ∈ T (Γ), and maps νA, νB, such that . . .

(C, T ) has (type-theoretic) Π-types if for each Γ ∈ C, A ∈ T (Γ),
and B ∈ T (Γ.B), there is an object ΠAB ∈ T (Γ), and maps λ, ap,
such that . . .

A split comp. cat. (C, T ) has strictly coherent (+)-types (resp.
Π-types) if it is equipped with choices of the above data,
commuting with the splitting (i.e. with substitution in the
ambient context Γ).

I The strictly coherent structure is exactly what’s required to
model syntactic (+)-types, Π-types, etc.

I Sets has (+)-types and Π-types. For V suitably closed,
SetsV has strictly coherent (+)-types and Π-types.
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Coherence problem

Splitness and strict coherence of logical structure are not
categorical: involve equality on objects.

Most intended models are categorical in nature; don’t naturally
satisfy these.

Problem (Coherence problem for type theory)

Given a comp. cat. with some weak logical structure, when can one
construct a related (equivalent?) split one, with strict logical
structure?

Expect some kind of stability condition to be needed on the
logical structure.
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Coherence for fibrations
First: splitness of the fibration.

Proposition (Giraud, Grothendieck)

For any C, there is a triple adjunction

Fib(C) Fibspl(C)

(−)!

(−)∗

(−)∗

⊥

⊥

and for any T ∈ Fib(C), both T∗ and T! are equivalent to T as
(non-split) fibrations over C.

Right adjoint T∗: “choose re-indexings in advance”.

Left adjoint T!: “put off re-indexing until later”.
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Coherence using right adjoint

Proposition (Hofmann, 1995)

Suppose (C, T ) is a comprehension category with identity types,
satisfying the reflection rule (of extensional type theory).

Then (C, T∗) is again a comprehension category; and if (C, T ) has
Π-types (resp. Σ-types, W-types, etc.) commuting up to isomorphism
with reindexing, then (C, T∗) has strictly coherent Π-types (Σ-types.
etc.).

Generally: if a type-constructor is forced by its definition to be
unique up to canonical isomorphism, or if a term-constructor is
forced to be unique, then the constructor will lift to (C, T∗).
Extensional type theory is happy.

This kills the homotopy theory!
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Coherence using left adjoint?

An object A of T! over Γ ∈ C consists of objects VA ∈ C,
EA ∈ T (VA), and a map pAq : Γ→ VA.

Γ VA

EA

pAq

Reindexing: pre-composition with pAq.

Intuition

I A is a stand-in for pAq∗EA ∈ T (Γ);
I (VA,EA) as local universe or space of names;
I pAq as delayed substitution.

10 / 19



Comprehension structure
If (C, T ) is a comprehension category, define comprehension on
(C, T!) by re-indexing followed by comprehension in (C, T ):

Γ.A := Γ.(pAq∗EA)

So: (C, T!) a split comprehension category, equivalent to T .

What about logical structure?

Example

Suppose C has (+)-types. Given A,B ∈ T!(Γ), how to form
A + B?

Γ
VA

EA

VB

EB

pAq

pBq
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Manipulating universes
Example

Answer: change the universe. Re-index to VA × VB; take sum
there.

Γ VA × VB

π∗1EA

π∗2EB

π∗1EA + π∗2EB

VA

EA

VB

EB

(pAq, pBq)
π1

π2

Idea: VA ×VB parametrises “sums of a type from VA and a type
from VB”.

More precisely: VA × VB represents the data for “(+)-formation
with types from VA and VB”.

Commutes with re-indexing, since there’s no interaction with Γ.
12 / 19



Manipulating universes, 2
Example

More difficult example: Π-types.

Data for Π-type formation: a type A ∈ T!(Γ), and a further
dependent type B ∈ T!(Γ.A).

Γ VA

EAΓ.(pAq∗EA) VB

EB

pAq

χA

pBq

What universe do we reindex to?

What represents data like (pAq, pBq), i.e. “Π-formation data
with types from VA, VB”?

13 / 19



Manipulating universes, 2

Example

Write VA n VB for exponential in C/VA of VA × VB by VA.EA.

In internal language: VA × VB := [a : VA, b : VEA(a)
B ].

This represents “Π-formation data with types from VA, VB”,
and carries universal such data (π1, α):

VA n VB VA

EA(VA n VB)(π∗1EA) VB

EB

π1

χA

α

14 / 19



Manipulating universes, 2

Example

Now can define the Π-type ΠAB in T!(Γ):

I take VΠAB to be VA n VB;
I take EΠAB to be the Π-type from T of the universal family

over VΠAB, i.e. Ππ∗
1 EAα

∗EB;
I take pΠABq to be the map Γ→ VA n VB induced by

(pAq, pBq).

Again, commutes strictly with re-indexing, since the Π-type
taken in T depended only on the universes (VA,EA), (VB,EB).
No interaction with Γ.
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Manipulating universes, 3
Also need to construct in T! the term-constructors going along
with these type-constructors. For each piece of structure, use
the same approach as above:

1. construct a new universe, representing the input data of
the operation, e.g. representing “(+)-elimination data, over
a sum of types from VA and VB, into a target type from
VC”;

2. use the assumed structure in (C, T ), over this universe,
taking e.g. “the universal (+)-elimination with types from
VA, VB, VC”;

3. take the new “name” map from Γ to be the map
corresponding to the original supplied data over Γ,
induced by the universal property of the new universe.

However: when we use e.g. the (+)-elimination of C, we have
re-indexed from VA × VB to the new universe.

So: need some kind of stability/Beck-Chevalley condition for
(+)-types of C.
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Beck-Chevalley conditions

Traditional Beck-Chevalley condition for e.g. coproducts:

“The canonical map f ∗A + f ∗B→ f ∗(A + B) is an isomorphism”.

Alternative rephrasing:

“f ∗(A + B), with f ∗ν1, f ∗ν2, is a coproduct for f ∗A and f ∗B”.

Equivalent for coproducts, since those are unique up to
canonical isomorphism, by their universal property.

For constructions with weaker universal properties: second
phrasing is what we need.
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Weakly stable constructors

Definition
(C, T ) has weakly stable (+)-types if for every A,B ∈ T (Γ),
there are A + B, ν1, ν2, such that for each f : Γ′ → Γ, the
re-indexings f ∗(A + B), f ∗ν1, f ∗ν2 form a (+)-type for f ∗A, f ∗B.

Similarly, define weakly stable Π-types, Id-types, etc.: a weakly
stable widget for some input data is a widget, all of whose
re-indexings are again widgets for the re-indexed data.

I Pure existence condition: no chosen structure involved.
I Independent of choice of re-indexings in T .
I Categorically natural: no equality on objects involved.
I Implied by most (all?) other Beck-Chevalley-type

conditions; holds in most (all?) reasonable examples.
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Coherence using left adjoint
Theorem (Lumsdaine, Warren)

Let (C, T ) be a comprehension category, such that C has finite
products and display maps are exonentiable in C.

Then (C, T!) is a split comprehension category, with T ' T! as
fibrations over C; and if (C, T ) has weakly stable Π-types (resp.
Σ-types, Id-types, W-types, inductive types, higher inductive types,
. . .), then (C, T!) may be equipped with strictly coherent Π-types
(resp. Σ-types, Id-types, etc.)

I Hypotheses all categorically natural.
I Uniform in all type constructors; indeed, in all standard

rules individually.
I Applies to most natural models of intensional type theory

(exception: Top).
I Only strong hypothesis: the exponentiability.
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