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Background

» Dependent type theory: powerful, expressive, natural class
of logical systems (e.g. homotopy type theory).

» Models of DTT: well-developed categorical theory, most
aspects satisfactory.

» However: coherence issues still present obstructions, not
fully understood.

» Existing theorems bridge the gap for specific type theories:
Hofmann, van den Berg—Garner, ... But: general theorems
lacking, esp. for intensional type theory.
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Present result

Theorem (Lumsdaine, Warren)

Let (C,T') be a comprehension category, such that C has finite
products and display maps are exonentiable in C.

Then there is an associated split comprehension category (C,T), with
T =~ T as fibrations over C; and if (C,T") has weakly stable II-types
(resp. X-types, 1d-types, W-types, inductive types, higher inductive
types, .. .), then (C,Ty) may be equipped with strictly coherent
II-types (resp. X-types, Id-types, etc.)
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Present result

Theorem (Lumsdaine, Warren)

Let (C,T') be a comprehension category, such that C has finite
products and display maps are exonentiable in C.

Then there is an associated split comprehension category (C,T), with
T =~ T as fibrations over C; and if (C,T") has weakly stable II-types
(resp. X-types, 1d-types, W-types, inductive types, higher inductive
types, .. .), then (C,Ty) may be equipped with strictly coherent
II-types (resp. X-types, Id-types, etc.)

» Weakly stable satisfied in natural categorical settings; split
+ strictly coherent allows direct interpretation of syntax.

» Main hypothesis: the exponentiability.

» Payoff: no restriction on type theory; result is uniform for
all type-constructors (even for individual rules).



Comprehension Categories

Definition (Jacobs)

A comprehension category (C, T) is a (Grothendieck) fibration
p: T — C, together with a functor x: 7 — C7, such that
codox = p, and x sends cartesian arrows to pullback squares.

(C,T) is full if x is full, and split (resp. cloven) if p is split (resp.
cloven).

» Idea: see objects of C as contexts I', objects of 7 (I") as types
Ain context I', and x as providing context extension I'.A.
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Comprehension Categories

Definition (Jacobs)

A comprehension category (C, T) is a (Grothendieck) fibration
p: T — C, together with a functor x: 7 — C, such that
codox = p, and x sends cartesian arrows to pullback squares.

(C,T) is full if x is full, and split (resp. cloven) if p is split (resp.
cloven).

» Idea: see objects of C as contexts I', objects of 7 (I") as types
Ain context I', and x as providing context extension I'.A.

» Comprehension categories abound in nature.

» Split comprehension categories model the structural core
of DTT.

> (Alternatives: contextual categories; categories with
attributes/families; type-categories; etc.)



Comprehension Categories: example

Example

Sets, with the codomain fibration (Sets ™ )x = Sets/X, is a
comprehension category. (Call this just Sets.)
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Comprehension Categories: example

Example

Sets, with the codomain fibration (Sets™)x = Sets/X, is a
comprehension category. (Call this just Sets.)

Example

Fix some class of sets V' (e.g. a Grothendieck universe; or all
sets). Define split comprehension category Setsy = (Sets, Ty/)
by:

» T(X) =[X,V];

» re-indexing is precomposition;

» ¥ is disjoint union.

If V is the class of all sets, then Setsy ~ Sets.

Moral: universes make things stricter, when available.



Logical structure
Definition

(C,T) has (+)-types if foreach " € Cand A, B € T(I'), there is
an object A + B € T(I'), and maps v4, v, such that ...

6/19



Logical structure
Definition
(C,T) has (+)-types if foreach " € Cand A, B € T(I'), there is
an object A + B € T(I'), and maps v4, v, such that ...

(C, T) has (type-theoretic) II-types if foreachT' € C, A € T(I),
and B € T (I'.B), there is an object II4B € 7(I'), and maps A, ap,
such that ...



Logical structure
Definition

(C,T) has (+)-types if foreach " € Cand A, B € T(I'), there is
an object A + B € T(I'), and maps v4, v, such that ...

(C, T) has (type-theoretic) II-types if foreachT' € C, A € T(I),
and B € T (I'.B), there is an object II4B € 7 (I'), and maps A, ap,
such that ...

A split comp. cat. (C, T) has strictly coherent (+)-types (resp.
II-types) if it is equipped with choices of the above data,
commuting with the splitting (i.e. with substitution in the
ambient context I).



Logical structure
Definition

(C,7T) has (+)-types if foreachI' € Cand A, B € T(I'), there is
an object A + B € T(I'), and maps v4, v, such that ...

(C, T) has (type-theoretic) II-types if foreachT' € C, A € T(I),
and B € T (I'.B), there is an object II4B € 7 (I'), and maps A, ap,
such that ...

A split comp. cat. (C, T) has strictly coherent (+)-types (resp.
II-types) if it is equipped with choices of the above data,
commuting with the splitting (i.e. with substitution in the
ambient context I).

» The strictly coherent structure is exactly what’s required to
model syntactic (+)-types, II-types, etc.



Logical structure
Definition

(C,7T) has (+)-types if foreachI' € Cand A, B € T(I'), there is
an object A + B € T(I'), and maps v4, v, such that ...

(C, T) has (type-theoretic) II-types if foreachT' € C, A € T(I),
and B € T (I'.B), there is an object II4B € 7 (I'), and maps A, ap,
such that ...

A split comp. cat. (C, T) has strictly coherent (+)-types (resp.
II-types) if it is equipped with choices of the above data,
commuting with the splitting (i.e. with substitution in the
ambient context I').

» The strictly coherent structure is exactly what’s required to
model syntactic (+)-types, II-types, etc.

» Sets has (+)-types and II-types. For V suitably closed,
Setsy has strictly coherent (+)-types and II-types.



Coherence problem

Splitness and strict coherence of logical structure are not
categorical: involve equality on objects.

Most intended models are categorical in nature; don’t naturally
satisfy these.
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Coherence problem

Splitness and strict coherence of logical structure are not
categorical: involve equality on objects.

Most intended models are categorical in nature; don’t naturally
satisfy these.

Problem (Coherence problem for type theory)

Given a comp. cat. with some weak logical structure, when can one
construct a related (equivalent?) split one, with strict logical
structure?

Expect some kind of stability condition to be needed on the
logical structure.
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Coherence for fibrations
First: splitness of the fibration.
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Coherence for fibrations
First: splitness of the fibration.

Proposition (Giraud, Grothendieck)

For any C, there is a triple adjunction

and for any T € Fib(C), both T, and Ty are equivalent to T as
(non-split) fibrations over C.

Right adjoint 7: “choose re-indexings in advance”.

Left adjoint 7;: “put off re-indexing until later”.
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Coherence using right adjoint

Proposition (Hofmann, 1995)

Suppose (C,T) is a comprehension category with identity types,
satisfying the reflection rule (of extensional type theory).

Then (C, Ts) is again a comprehension category; and if (C,T') has
II-types (resp. X-types, W-types, etc.) commuting up to isomorphism
with reindexing, then (C, T) has strictly coherent I1-types (X-types.
etc.).
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Coherence using left adjoint?

An object A of Ty over I' € C consists of objects V4 € C,
EaeT(Va),andamap A7 : ' = V4.

r

Reindexing: pre-composition with "A™.
Intuition

» Aisastand-in for "TA™E, € T(I);
» (Va,E4) as local universe or space of names;

» "A™ as delayed substitution.
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Comprehension structure
If (C,T) is a comprehension category, define comprehension on
(C, Ti) by re-indexing followed by comprehension in (C, 7):

I'A:=T.("TATE,)
So: (C,T)) a split comprehension category, equivalent to 7.
What about logical structure?

Example

Suppose C has (+)-types. Given A, B € 7i(T"), how to form
A+ B?
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Manipulating universes

Example
Answer: change the universe. Re-index to V4 x Vp; take sum
there. - .
T1EA A
> mEa+mEs |
\ = , I
‘> Ep 7 — Ep
(TAY,7BY) R
I Vax Vg |

2 |
 > VB
Idea: V4 x Vp parametrises “sums of a type from V4 and a type

from Vg”.

More precisely: V4 x Vp represents the data for “(+4)-formation
with types from V4 and Vp”.

Commutes with re-indexing, since there’s no interaction with I'.
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Manipulating universes, 2
Example

More difficult example: II-types.

Data for II-type formation: a type A € 7/(I'), and a further
dependent type B € Ti(I".A).

Ep

[.("TA™E4) — Ea VB
d
r—2 . v,

What universe do we reindex to?

What represents data like ("TA™,"B™), i.e. “II-formation data
with types from V4, Vp”?



Manipulating universes, 2

Example

Write V4 x Vg for exponential in C/V 4 of V4 x Vg by V4.E4.

In internal language: V4 x Vp:=[a: Vg4, b: Vg*‘(“)].

This represents “II-formation data with types from V4, Vp”,
and carries universal such data (71, a):

Ep
o i
(Va x Vp)(m{Ea) — Eq Vg
XAl 3
VA X VB n VA
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Manipulating universes, 2

Example

Now can define the II-type I, B in 7(T'):
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> take VHAB to be VA X VB;
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Manipulating universes, 2

Example
Now can define the II-type I, B in 7(T'):

> take Vi, p tobe V4 x Vp;

» take Eyp,p to be the II-type from 7 of the universal family
over Vi3, i.e. Hﬂl*EAa*EB;

» take "II4B " to be the map I' = V4 x Vg induced by
([_A—I’ I_B_I).

Again, commutes strictly with re-indexing, since the II-type
taken in 7 depended only on the universes (V4,E4), (Vp, Ep).
No interaction with I'.



Manipulating universes, 3

Also need to construct in 7 the term-constructors going along
with these type-constructors. For each piece of structure, use
the same approach as above:
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Manipulating universes, 3
Also need to construct in 7 the term-constructors going along
with these type-constructors. For each piece of structure, use
the same approach as above:

1. construct a new universe, representing the input data of
the operation, e.g. representing “(+)-elimination data, over
a sum of types from V4 and Vp, into a target type from
Ve”;

2. use the assumed structure in (C, 7)), over this universe,
taking e.g. “the universal (+)-elimination with types from
Va, Ve, Vc”;

3. take the new “name” map from I' to be the map
corresponding to the original supplied data over I,
induced by the universal property of the new universe.

However: when we use e.g. the (4)-elimination of C, we have
re-indexed from V4 x Vj to the new universe.

So: need some kind of stability /Beck-Chevalley condition for
(+)-types of C.
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Beck-Chevalley conditions

Traditional Beck-Chevalley condition for e.g. coproducts:

“The canonical map f*A + f*B — f*(A + B) is an isomorphism”.
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Beck-Chevalley conditions

Traditional Beck-Chevalley condition for e.g. coproducts:

7

“The canonical map f*A + f*B — f*(A + B) is an isomorphism”.
Alternative rephrasing:
“f*(A+ B), with f*v1, f*1», is a coproduct for f*A and f*B”.

Equivalent for coproducts, since those are unique up to
canonical isomorphism, by their universal property.

For constructions with weaker universal properties: second
phrasing is what we need.

17 /19



Weakly stable constructors

Definition
(C, T) has weakly stable (+)-types if for every A,B € T(T'),

there are A + B, 11, 1, such that for each f: I” — T, the
re-indexings f*(A + B), f*v1, f*v» form a (+)-type for f*A, f*B.

Similarly, define weakly stable II-types, Id-types, etc.: a weakly
stable widget for some input data is a widget, all of whose
re-indexings are again widgets for the re-indexed data.
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Coherence using left adjoint
Theorem (Lumsdaine, Warren)

Let (C,T') be a comprehension category, such that C has finite
products and display maps are exonentiable in C.

Then (C,Th) is a split comprehension category, with T ~ 7Ty as
fibrations over C; and if (C,T') has weakly stable II-types (resp.
Y-types, 1d-types, W-types, inductive types, higher inductive types,
...), then (C,Ty) may be equipped with strictly coherent II-types
(resp. X-types, Id-types, etc.)
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Coherence using left adjoint
Theorem (Lumsdaine, Warren)

Let (C,T') be a comprehension category, such that C has finite
products and display maps are exonentiable in C.

Then (C,Th) is a split comprehension category, with T ~ 7Ty as
fibrations over C; and if (C,T') has weakly stable II-types (resp.
Y-types, 1d-types, W-types, inductive types, higher inductive types,
...), then (C,Ty) may be equipped with strictly coherent II-types
(resp. X-types, Id-types, etc.)

» Hypotheses all categorically natural.

» Uniform in all type constructors; indeed, in all standard
rules individually.

» Applies to most natural models of intensional type theory
(exception: Top).
» Only strong hypothesis: the exponentiability.
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