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ABSTRACT. In this paper we will describe a point of view that has emerged
as a result of research on the homotopy groups of spheres in the last decade. This
philosophy is difficult to translate into theorems or even into precise conjectures, and
it is certainly not apparent in the formal literature on the subject. With the exception
of Theorem 10, we will not present any proofs or announcements of new results here.
Rather we will collect numerous old results and current ideas and arrange them into
what we hope is a suggestive picture.

1. General facts about homotopy groups

For the last 50 years one of the basic problems in algebraic topology has been the deter-
mination of the homotopy groups of spheres πn+k(Sn), i.e. the classification of continuous
maps

Sn+k → Sn

up to continuous deformation. The simplicity of the spaces involved lends intuitive appeal
to the problem, but experience has shown that it is as hard as any in mathematics. There
have been several major computational breakthroughs in the subject, namely the EHP
sequence (to be described in Section 7 below), and the spectral sequences of Serre, Adams
and Novikov. Each of these had lead to a large amount of new information but has also
increased our appreciation of the difficulty of the problem. Much of this material is dealt
with in greater depth and with numerous references in [R1].

We begin by recalling some of the basic facts about the problem. All of these groups
are abelian and finitely generated. The groups πn+k(Sn) are known to vanish when k < 0
and when n = 1 and k > 0. The group πn(Sn) is isomorphic to the integers Z. These were
all proved by Hurewicz around 1935. Their finite computability was established by E.H.
Brown in 1959.

The following finiteness result was proved by Serre.

Theorem 1. [S]. The groups πn+k(Sn) for k > 0 are all finite with the exception of
π4n−1(S2n), which is the direct sum of Z and a finite abelian group. Hence for n odd the
standard map

Sn → K(Z, n)
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2 Homotopy Groups of Spheres

induces an isomorphism in homotopy mod torsion, where K(Z, n) denotes the integer
Eilenberg-MacLane space.

Shortly after the groups were defined Freudenthal proved that πn+k(Sn) is independent
of n when n > k + 1. These groups are said to be stable and the value of πn+k(Sn) for
large n is called the stable k-stem and denoted by πS

k (S0) or simply πS
k .

The groups πn+k(Sn) with n ≤ k + 1 are called unstable. We have more machinery for
computing stable groups than unstable ones. One of the major themes in the subject has
been the attempt to bring the more advanced technology of stable homotopy to bear on
the problems of unstable homotopy theory. Two early examples of this are [A1] and [M1].

Even the stable groups are quite mysterious. The following table gives their values for
small k.

k πS
k k πS

k

0 Z 7 Z/(240)
1 Z/(2) 8

(
Z/(2)

)2

2 Z/(2) 9
(
Z/(2)

)3

3 Z/(24) 10 Z/(6)
4 0 11 Z/(504)
5 0 12 0
6 Z/(2) 13 Z/(3)

As the reader can see, these groups do not fall into any obvious pattern. However, there
is a certain overall structure which we shall describe presently.

These groups form a graded ring under smash product of maps between spheres in the
following way.

Given α ∈ πS
j and β ∈ πS

k , choose maps

f : Sm+j → Sm and

g : Sn+k → Sn

for m and n sufficiently large. Then the smash product f ∧ g represents the class αβ. It
can be shown that this product is commutative up to the usual sign.

There is also a product defined in terms of composition of maps. As long as everything is
in the stable range, the composition and smash products agree. However, the composition
product fails to commute (even up to sign) in general. For example, if

f : S3 → S2

is the Hopf map then one has
f · 4 = 2 · f

where “2” denotes the degree 2 map on S2 and “4” denotes the degree 2 map on S4.
This noncommutativity is very important in unstable homotopy theory.
In [N] Nishida proved that every positive dimensional element in this ring is nilpotent,

i.e. for each α ∈ πS
k with k > 0, there is an exponent m such that αm = 0. A vast

generalization of this nilpotence result conjectured in [R2] has been proved recently by
Devinatz, Hopkins and Smith and will be commented on below (see Theorem 6). Nishida’s
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Theorem indicates that the multiplicative structure of this ring is of very limited use. One
should not attempt to describe it in terms of generators and relations.

2. Periodic families

A construction which has proved quite useful is the following. Suppose we have a finite
complex Y and a map

v : ΣdY → Y

such that all iterates of the form

vi = v · Σdv · · ·Σ(i−1)dv : ΣidY → Y

are essential. It is convenient for technical reasons to require that the complex Y and
the self-map v are both double suspensions. A map of this sort all of whose iterates are
essential (i.e. not homotopic to the constant map) is said to be periodic.

The set of homotopy classes of maps from ΣkY to a space X is an abelian group, which
we will denote by πk(X; Y ). (We reserve the right to change the index k when convenient.)
Given an element α ∈ πk(X;Y ) represented by a map

f : ΣkY → X

we can define viα ∈ πk+id(X; Y ) to be the class represented by the composite f · Σkvi.
This makes the graded group π∗(X;Y ) a module over the ring Z[v]. If the finite complex

Y is such that the identity map has order q in the group [Y, Y ] then π∗(X;Y ) is a module
over the ring Z/(q)[v]. In any case one can tensor with Z[v, v−1] and ask the following
question.

What is v−1π∗(X; Y )?
An element in π∗(X;Y ) has a nontrivial image in this group iff it is not annihilated by

any power of v. Such elements are said to be v-periodic. Elements which are annihilated
by some power of v are said to be v-torsion. In Section 5 we will introduce BP -theory
and explain how it provides us with some powerful methods for computing or at least
estimating this group. A more delicate question is that of the image of π∗(X;Y ) in it. An
answer to this question will lead to some useful information about π∗(X) itself.

A v-periodic family in π∗(X; Y ) is a set of elements of the form

{x, vx, v2x, · · · }

such that vix is nontrivial for all i > 0.
The finiteness theorem of Serre mentioned above can be regarded as a result of this

type. Let X = Sn, Y = S1 and let v be the degree p map for p a prime. Then we are
asking for the structure of p−1π∗(Sn). If we localize everything in sight at the prime p we
get rid of torsion prime to p, so the image of π∗(Sn) is its torsion free quotient. For n
odd Serre’s theorem says that the standard map from Sn to K(Z, n) induces a homotopy
equivalence modulo torsion, i.e. the map is a rational homotopy equivalence.

Notice that Nishida’s theorem tells us that if we take our finite complex Y to be a
sphere of any dimension then the degree p map is essentially the only possible choice
for the self map v. Any map coming from a positive stem would have to be nilpotent
and therefore would not be suitable. The result of Devinatz-Hopkins-Smith (see Theorem
6 below), which generalizes Nishida’s theorem tells us that the same is true whenever
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H∗(Y ) is torsion free. It turns out that using any such Y will give us essentially the same
information about π∗(X), namely its torsion free quotient.

3. The stable image of J as a periodic family

In view of the remarks in the previous paragraph we should consider a finite complex Y
with some torsion in its homology. Let M(p) denote a mod (p) Moore space. We do not
care about the dimension of its bottom cell, as long as it is not too small. We will use the
same notation for the mod (p) Moore spectrum with its bottom cell in dimension 0. This
is now our finite complex Y . The group π∗(X; Y ) is called the mod (p) homotopy of X.
The self map v is provided by the following result of Adams.

Lemma 2. [A2]. Let q be 2p− 2 if p is an odd prime and 8 if p = 2. Then there is a map

v : ΣqM(p)→M(p)

inducing an isomorphism in K-theory. Hence all iterates of this v are nontrivial.

The stable composite
Sq → ΣqM(p) v−→M(p)→ S1

is α1 (the first element of order p in πS
∗ ) for p odd and 8σ (where σ is the generator of πS

7 )
for p = 2. The first and third maps here are respectively the inclusion of the bottom cell
in M(p) and the pinch map from M(p) to its top cell.

If X is the sphere spectrum then π∗
(
X; M(p)

)
is the set of stable maps from M(p) to a

sphere. By S-duality this is isomorphic to πS
∗
(
M(p)

)
(up to reindexing) with v acting by

composition on the right instead of the left.
More generally for a finite spectrum Y we have a similar isomorphism

π∗(X; Y ) = π∗(X ∧DY )

where DY is the Spanier-Whitehead dual of Y , i.e. the complement of the finite complex
Y embedded in a suitable sphere. In most cases of interest (e.g. Y = M(p)), Y is self-dual,
i.e. DY is some suspension of Y .

For p = 2 the v-torsion free quotient of

π∗
(
S0; M(p)

)

was first determined in [M3]. The following odd primary analog was proved by Miller.

Theorem 3. [Mi]. For an odd prime p, πS∗
(
M(p)

)
mod v-torsion is generated by two

elements represented by the stable composites

Sq −→ ΣqM(p) v−→ M(p) and

Sq−1 α1−→ S0 −→ M(p).

The result for p = 2 is considerably more complicated. There are ten generators instead
of two and the group is a module over Z/(4)[v] instead of Z/(2)[v]. The details need not
concern us here.

What does this tell us about the stable homotopy groups of spheres? There is a long
exact sequence relating ordinary and mod (p) stable homotopy groups. In it the mod
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(p) groups in Miller’s theorem correspond to the p-component of the image of the stable
J-homomorphism, which we will now describe.

There is a homomorphism

J : πk

(
SO(n)

)→ πn+k(Sn)

defined originally by Hopf and Whitehead. Here SO(n) denotes the group of n×n orthog-
onal matrices with determinant one.

Letting n go to ∞ gives a homomorphism

J : πk(SO)→ πS
k (S0)

where SO denotes the stable orthogonal group. Its homotopy groups were determined by
Bott, who showed that

πk(SO) = Z if k ≡ 3 mod (4),

= Z/(2) if k ≡ 0 or 1 mod (8) and

= 0 otherwise.

Adams showed in [A2] that J is monomorphic on the 2-torsion and that its image on
each free summand is a cyclic group whose order is a certain arithmetic function of the
dimension k. (Actually his work left an ambiguous factor of two which depended on the
Adams conjecture.) In particular, the order of this cyclic group is divisible by an odd
prime p iff k ≡ −1 mod (2p− 2).

4. Some unstable results

An unstable analog of Theorem 3 would describe the v-torsion free quotient of π∗
(
Sn;M(p)

)
.

Such a result for n odd and p = 2 was obtained in [M2]. For technical reasons it was neces-
sary to replace M(2) by the complex Y = M(2)∧CP 2 in order to get the cleanest possible
description of the actual groups, but this should be regarded as a minor detail.

Recall that Serre’s theorem gave a map to an infinite loop space, namely K(Z, n), which
induced an isomorphism modulo p-torsion. Ideally one would like to have a similar map
to an infinite loop space inducing an isomorphism in mod (p) homotopy modulo v-torsion,
where v is as in Adams’ lemma above. The best we can do is the following.

Theorem 4. [M2]. Let n = 2m + 1 and p = 2. There is a map

f : Ω2m+1
0 S2m+1 → Ω∞RP 2m ∧ J

inducing an isomorphism in π∗
(

;M(2)
)

modulo v-torsion. Here the source is the degree
0 component of the indicated

loop space and the target is the 0th space in the Ω-spectrum RP 2m ∧ J where RP 2m is
2m-dimensional real projective space and J is a certain spectrum which will be described
below.

This result is useful because the homotopy groups of the target can be computed ex-
plicitly. For example the mod (2) homotopy of J is v-torsion free. This fact strengthens
the analogy with Serre’s theorem, which gave a map from S2m+1 to an infinite loop space
with torsion free homotopy.
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The theorem does not assert that the map induces a surjection in homotopy or in mod
(2) homotopy, but that the mod (2) kernel is precisely the v-torsion subgroup and that
the cokernel is all v-torsion. In [M2] the cokernel is described up to an ambiguity related
to the Kervaire invariant problem.

It is quite likely that there is an analogous result for every odd prime with RP 2m

replaced by the 2m(p− 1)-skeleton of BΣp, the classifying space for the symmetric group
on p letters.

Conjecture 5. The map f in the theorem above induces an isomorphism in K-theory.

The K-theory of the target has been computed by Miller and Snaith, but we do not
know how to compute the K-theory of the source.

Now we will describe the spectrum J . It is so named because its homotopy is nearly
identical to the image of the J-homomorphism. There is a different version of this spectrum
for each prime p. We will use the same notation for each. We will describe the odd primary
version first.

Let bu be the spectrum for connective complex K-theory. This spectrum can be built
out of the various connected covers of BU , the classifying space for stable complex vector
bundles. J is the fiber of a certain map from bu(p) (the localization of bu at the prime p)
to Σqbu(p). This map induces an isomorphism in homotopy in dimensions not divisible by
2p−2. The homotopy of J in positive dimensions is isomorphic to the p-component of the
image of the stable J-homomorphism.

For p = 2 the definition of J is slightly different. It is the fiber of a map from bo(2) to
Σ4bsp(2). Here bo and bsp are the spectra obtained from the (8k − 1)-connected covers of
the spaces BO and BSp, the classifying spaces for stable real and symplectic vector bundles
respectively. Bott periodicity tells us that Ω4BSp = Z ×BO and Ω4BO = Z ×BSp.

The homotopy of J in positive dimensions is not isomorphic to the image of J . The
latter maps monomorphically to the former, leaving a cokernel of Z/(2) in dimensions
congruent to 0 and 1 mod (8). These groups correspond to the homotopy elements µ8k

and µ8k+1 constructed in [A2].
For each prime p the stable map

S0(p)→ J

induces an isomorphism in K-theory, a surjection in homotopy and an isomorphisn in
v−1π∗

(
; M(p)

)
.

5. Enter BP -theory
Recall that our basic setup is the following. We have a finite complex Y and a map v to
Y from some suspension of Y such that all iterates of v are nontrivial. Then we try to
compute v−1π∗(X; Y ) for our favorite space X.

We have seen three examples of reslts of this sort, namely Theorems 1, 3 and 4. In
Theorems 1 and 4, X = S2n+1. In the former case Y = S1 and v is the map of degree p.
In Theorems 3 and 4, Y is a mod (p) Moore space or spectrum and the self-map v is that
provided by Lemma 2.

Before proceeding to the main theorem in each case one must prove that all of the
iterates of v are nontrivial. In the case of the degree p map in Theorem 1 this can be
done with ordinary integer homology. Since H1(S1) = Z, we know that the map of degree
pi (the ith iterate of v) is nonzero for all i. In other words all iterates of the maps are
essential because the map induces an isomorphism in rational homology.
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The self-maps of Lemma 2 (used in Theorems 3 and 4) have nontrivial iterates because
they induce isomorphisms in K-theory. K-theory could also be used to show that all
iterates of the degree p map are nontrivial. Ordinary homology would not suffice to prove
that the maps of Lemma 2 are nontrivial.

BP -theory, like K-theory, is a generalized homology theory strong enough to show that
these two self-maps are periodic, i.e. that all of their iterates are essential. We will explain
how it applies in these two cases.

There is a different version of BP -theory for each prime p. (If one wants to work globally
one can use MU -theory, which is the same thing as complex cobordism.) For any space
X, BP∗(X), the reduced BP -homology of X, is a graded module over the coefficient ring

BP∗ = Z(p)[v1, v2, · · · ]

where the dimension of vi is 2pi− 2 and Z(p) denotes the integers localized at the prime p.
The degree p map on Sn induces multiplication by p in

BP∗(Sn) = ΣnBP∗.

For the self-maps in Lemma 2 we have BP∗
(
M(p)

)
= BP∗/(p) and v induces multipli-

cation by v1 for p odd and by v4
1 for p = 2. In the latter case there is no self map of M(2)

inducing multiplication by simply v1. The 4-cell complex Y = M(2) ∧ CP 2 used in [M2]
was chosen precisely becaue it does admit such a self-map.

Since the Adams self-maps of Lemma 2 induce multiplication by v1 or some power of
it, the homotopy elements derived from Theorems 3 and 4 are said to be v1-periodic.

What other sorts of finite complexes with periodic self-maps might we have?
Several conjectures conerning this question were made in [R2] and a lot of progress has

been made on them in the past three years. The most striking result, proved very recently
by Devinatz, Hopkins and J. Smith, says that BP -theory is strong enough to detect any
such self-map.

Nilpotence Theorem 6. [DHS]. Let Y be a p-local finite complex and let

v : ΣdY → Y

be a map inducing the trivial homomorphism is BP -homology. Then some iterate of v is
null homotopic.

Note that Nishida’s theorem is a special case of this, since it is easy to show that any
self-map of a sphere in a positive stem induces the trivial map in BP -homology.

It is known that for any finite complex Y, BP∗(Y ) is finitely presented as a BP∗-module.
From this it follows easily that any periodic endomorphism of BP∗(Y ) has an iterate which
is an idempotent composed with multiplication by some element v in BP∗. For the sake
of simplicity, assume that this idempotent is the identity. Then the internal properties
of BP -theory tell us essentially that this v must be a power of one of the polynomial
generators vn.

Moreover n is uniquely determined by the module BP∗(Y ) in the following way. It is
the smallest n such that v−1

n BP∗(Y ) is nonzero, i.e. such that BP∗(Y ) contains elements
not annihilated by any power of vn. It is known [JY] that if v−1

n BP∗(Y ) is nonzero then so
is v−1

m BP∗(Y ) for all m > n. In this case we say that the finite complex Y has type n. Until
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1983 it was not even known that such finite complexes exist for all n [Mit]. A conjecture
in [R2] that remains open says that every finite complex admits a periodic self-map.

Y = M(p) has type 1. If Y has type n then we can denote v−1π∗(X; Y ) by v−1
n π∗(X;Y )

and refer to the v-periodic and v-torsion elements as vn-periodic and vn-torsion elements
respectively. We conjecture that the information v−1π∗(X; Y ) gives about X depends only
on n. More precisely,

Conjecture 7.. Let Y and Y ′ be two p-local finite complexes of type n and let f be a map
from X1 to X2. Then the following are equivalent:

(i) f induces an isomorphism in v−1
n π∗( ; Y ),

(ii) f induces an isomorphism in v−1
n π∗( ; Y ′), and

(iii) f induces an isomorphism in v−1
n BP∗( ).

6. The chromatic filtration

Now we will describe a way to codify all the information given by the groups v−1
n π∗(X;Y )

for all n in the stable case, i.e. when X and Y are spectra.
We first need to introduce Bousfield localization [B]. Let E∗ be a generalized homology

theory. A spectrum Y is E-local if for every E-acyclic spectrum X (i.e. a spectrum
satisfying E∗(X) = 0), [X,Y ] = 0, i.e. there are no essential maps from X to Y .

An E-localization of a spectrum W is a map to an E-local spectrum W ′ which is an
E∗-equivalence, i.e. a map inducing an isomorphism in E-homology. It is easy to show
that if such a localization exists it is unique. If both E and W are connective then the
E-localization of W is simply an arithmetic localization or completion.

However, if either of them fail to be connective then the existence of the localization
is far from obvious and its properties are hard to predict. For example, the K-theoretic
localization of the sphere has nontrivial homotopy groups in arbitrarily large negative
dimensions and its π−2 is Q/Z. The localization of its (−1)-connected cover at an odd
prime is the spectrum J discussed earlier. More details can be found in [R2].

In [B] Bousfield proved that such localizations always exist. Let LnX denote the local-
ization of X with respect to v−1

n BP . L0X is the rational localization of X; by convention
v0 = p. L1X is the localization with respect to p-local K-theory. A v−1

n BP -local spectrum
is also v−1

n+1BP so there are natural maps

L0X ← L1X ← · · ·

We say that X is harmonic if this inverse system converges to X. In [R2] it is shown that
all p-local finite spectra are harmonic.

If Y is a finite complex of type n then one of the conjectures of [R2] implies that

v−1
n π∗(X;Y ) = π∗(LnX; Y ).

In other words LnX captures all the vn-periodic information about X.
The inverse system above leads to a decreasing filtration of π∗(X), defined by setting

Fnπ∗(X) equal to the kernel of the homomorphism induced by the localization map from
X to LnX, i.e. to the vn-torsion. This is the chromatic filtration of π∗(X). An algebraic
analog of it, the chromatic spectral sequence, is studied extensively in [MRW] and in
Chapter 5 of [R1].
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Let MnX denote the fiber of the map from LnX to Ln−1X. Its homotopy is all vn−1-
torsion and all vn-periodic. We know [R3] how to compute BP∗(MnX). Its Adams-
Novikov spectral sequence is conjectured but unfortunately still not known to converge
to π∗(MnX). It E2-term is closely rrelated to the continuous mod (p) cohomology of a
certain pro-p-group with interesting arithmetic properties.

This connection was discovered over a decade ago by Morava [Mo]. Again we refer the
reader to [MRW] or [R1] for more details. It means that this E2-term is in some sense
finitely computable, which is certainly not the case for most E2-terms associated with
finite complexes. For n = 1 and X = S0 this computation is done in complete detail in
[MRW] and in Chapter 5 of [R1].

Admittedly there are infinitely many values of n required for a complete understanding
of the homotopy groups of spheres, but each of these finite calculations yields an infinite
amount of information.

With Theorem 4 and related stable results we have a complete picture of the v1-periodic
homotopy groups (both stable and unstable) of spheres, at least for p = 2.

We only have partial results for the v2-periodic picture, which is considerably more
complicated. There is no known v2-periodic analog of either the J-homomorphism or the
spectrum J .

It is also clear that things are simpler for larger primes. For p > 3 let V (1) denote the
cofiber of the Adams self-map of Lemma 2. It is the simplest complex of type 2. The
conjectures of [R2] imply that

v−1
2 π∗

(
S0; V (1)

)

has precisely 12 generators. The image of π∗
(
S0;V (1)

)
in this group is still unknown.

7. The EHP sequence

The EHP sequence is the fundamental tool for understanding unstable homotopy groups
of spheres. A more thorough exposition can be found in the last section of Chapter 1 of
[R1]. For simplicity we limit our remarks to the prime 2. Most of what is said below has
an analog at any odd prime, but the statements are more complicated.

There are fibrations
Sn E−→ΩSn+1 H−→ΩS2n+1

for all positive n. The map E stands for suspension (Einhängung) and H for Hopf invariant.
The associated long exact sequence of homotopy groups is the EHP sequence.

Collectively (for all n) these long exact sequences constitute an exact couple which
leads to what is called the EHP spectral sequence. Many classical results about unstable
homotopy groups can be translated into statements about this spectral sequence. Such
results include the Freudenthal Suspension Theorem (see Section 1 above) and the Adams
Vector Field Theorem of [A1]. Theorem 4 has implications concerning certain patterns in
the EHP spectral sequence, specifically the behavior of elements whose Hopf invariant lies
in the image of J (hence the title of [M2]).

The following result of Snaith, enhanced by an observation of Kuhn, relates unstable
groups appearing in the EHP spectral sequence to stable groups.

Theorem 8. [Sn] [K]. There are maps

f : Ωn+1Sn+1 → QRPn
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(where QX denotes Ω∞Σ∞X) such that the following diagram commutes up to homotopy.

ΩnSn f−→ QRPn−1

y
y

Ωn+1Sn+1 f−→ QRPn

y
y

Ωn+1S2n+1 −→ QSn

The vertical maps on the left are ΩnE and ΩnH while the ones on the right are the
images under the functor Q on the evident cofiber sequence.

Using this result one can easily produce a map from the EHP spectral sequence to the
Atiyah-Hirzebruch spectral sequence for the stable homotopy of RP∞, in which all groups
in sight are stable.

There are versions of the EHP spectral sequence converging to the stable homotopy
groups of spheres and to the unstable homotopy groups of any given sphere. The E1-
term also consists of unstable homotopy groups, so it lends itself very well to inductive
calculation. The input at each stem consists of the output from lower stems. In principle
all one needs to start the inductive process is knowledge of the homotopy groups of S1,
which are easily determined.

The entire EHP apparatus can be adapted to the computation of π∗(Sn; Y ). The
following result shows that each element in a vn-periodic family (with a finite number of
exceptions for any given family) has a vn-periodic Hopf invariant, and that all but finitely
many elements in each such family originate on the same sphere. More precisely we have

Theorem 9. Let Y be a finite complex of type n with a self-map v inducing multiplication
by some power of vn in its BP -homology. If

x ∈ π∗(Sm; Y )

is v-periodic, then there is a k ≤ m such that some v-multiple of x is the iterated suspension
of

x′ ∈ π∗(Sk; Y )

and the Hopf invariant
H(x′) ∈ π∗(S2k−1; Y )

is v-periodic. Hence all higher v-multiples of x are born on Sk.

Proof. Suppose H(x′) is not v-periodic. Then by definition some power of v annihilates
it. Thus the corresponding v-multiple of x′ desuspends further since the Hopf invariant
is the obstruction to desuspension. This process must stop after a finite number of steps
because we cannot desuspend below the 1-sphere. Thus some v-multiple of x desuspends
to an element with a v-periodic Hopf invariant as claimed, and all higher v-multiples of x
are born on Sk.

Very early work with the EHP sequence showed that the p-torsion subgroups of the
homotopy of each finite sphere has a bounded exponent. The best possible result of
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this sort for odd primes was proved by Cohen-Moore-Neisendorfer [CMN]. Experimental
evidence suggests that there should be similar bounds on the vn-torsion in suitable groups
for finite spheres.

8. James periodicity and the root invariant

Theorem 8 shows a connection between the EHP sequence and the homotopy groups of
stunted projective spaces. For m ≤ n let RPn

m denote RPn/RPm−1, i.e. the stunted
projective space with bottom cell in dimension m and top cell in dimension n. There is an
equivalence

ΣKRPn
m → RPn+K

m+K

if K is a sufficiently large (depending on n − m) power of 2. This leads to a certain
regularity in the EHP sequence called James periodicity. It is not related to the vn-
periodicity discussed elsewhere in this paper.

It is possible to define spectra RPn
m and RP∞m (denoted simply by RPm) for arbitrary

(e.g. negative) integers m. There are maps

RPm ← RPm−1 ← · · ·

obtained by pinching out the bottom cell in each case.

Theorem 10. Lin [L]. The homotopy inverse limit of the RPm (denoted by RP−∞) is
homotopy equivalent to the 2-adic completion of S−1 in such a way that the composite map

S−1 → RP−∞ → RP−1

is homotopic to the inclusion of the bottom cell.

Theorem 11. Kahn-Priddy [KP]. The inclusion of the bottom cell in RP−1 induces the
trivial homomorphism in all homotopy groups except π−1, in which the image is Z/(2).

Theorem 10 means that the Atiyah-Hirzebruch spectral sequence for the stable homo-
topy of RP−∞ must converge to that of S−1. This has certain implications for the EHP
sequence. In particular it allows us to define a mutation of the Hopf invariant which we
call the root invariant.

Suppose α ∈ πS
n is represented by a map

Sn−1 → S−1.

If n is positive or n = 0 and α is divisible by two then the composite

Sn−1 → S−1 → RP−1

is null homotopic by Theorem 11.
On the other hand Theorem 10 guarantees that for some m the composite

Sn−1 → S−1 → RP−m

is essential.
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Taking the smallest such m we get a factorization

Sn−1 → S−m → RP−m

defined modulo a certain indeterminacy.
The resulting coset in

πn−1(S−m) = πm+n−1(S0)

is the root invariant R(α). Notice that we started in the n-stem and ended up in the
(n + m− 1)-stem, where the number m depends on α as well as on n. It is known that in
general m ≥ 2n + 1. Many root invariants have been calculated. For example we have

dim R(2i) = 2i− 1 if i ≡ 0 or 1 mod (4)

= 2i− 2 if i ≡ 2 mod (4)

= 2i− 3 if i ≡ 3 mod (4)

and R(2i) contains the element of order two in the image of J if i ≡ 0 or 3 mod (4). It
is conjectured that R(θj) contains θj+1 if both exist, where θj is the Kervaire invariant
element.

The definition of the root invariant can be adapted to homotopy with coefficients in
Y . Experimental evidence suggests that the root invariant of a vn-periodic element is
vn+1-periodic. More precisely we have

Conjecture 12. If Y is of type n and has a vn-periodic self-map v

α ∈ π∗(S−1; Y )

is v-periodic then the coset R(α) consists entirely of vn-torsion elements. Let

w : ΣdY → Y

be a power of v which annihilates every element in R(α) and let Z be its cofiber. Thus Z
has type n+1 and each element in R(α) extends to a map from Z to a suitable sphere. At
least one of these maps is vn+1-periodic.
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