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1. A crash course on non-pertubative effects

For an introduction to non-perturbative effects, one can see [2] and references therein.

1.1 General aspects

Most series obtained through perturbative methods in quantum theory are asymptotic rather
than convergent. In fact, they typically have a zero radius of convergence. This involves even
very basic examples. Let us consider the quartic oscillator in QM, with Hamiltonian,

H =
p2

2
+
q2

2
+
g

4
q4. (1.1)

The ground state energy E0(g), as a function of g, can be calculated by using the Schrödinger
equation. Stationary perturbation theory gives an asymptotic series for E0(g) around g = 0,

E0(g) ∼
∑
n≥0

ang
n =

1
2

+
3
4

(g
4

)
− 21

8

(g
4

)2
+

333
16

(g
4

)3
+O(g4). (1.2)

Here, we set ~ = 1. It is known that the coefficients in this series, an, grow factorially,

an ∼
(

3
4

)n
n!, n� 1. (1.3)
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Of course, the ground state energy has a non-perturbative definition as a solution to the eigenvalue
problem

H|ψn〉 = En|ψn〉, n = 0, 1, · · · . (1.4)

Given an asymptotic series
ϕ(z) =

∑
n≥0

anz
n (1.5)

we say that a well-defined function f(z) provides a non-perturbative definition of ϕ(z) if f(z) has
ϕ(z) as its asymptotic series,

f(z) ∼ ϕ(z). (1.6)

Clearly, such definition is far from unique, since we can add to f(z) terms of the form e−A/z

without changing the asymptotic expansion. This is called a non-perturbative ambiguity.
In physics, very often, we have an observable f(z) depending on a certain parameter z, and

we only know its asymptotic expansion ϕ(z). At which extent can we reconstruct f(z) from
ϕ(z)? Clearly, the existence of a non-perturbative ambiguity indicates that this problem has
not a unique solution. However, before reconstructing f(z) we should wonder whether we can
extract concrete, numerical information from ϕ(z).

A first approach to this problem is to do optimal truncation, i.e. to find the partial sum

ϕN (z) =
N∑
n=0

anz
n (1.7)

which gives the best possible estimate of f(z). To do this, one has to find the N that truncates
the asymptotic expansion in an optimal way. This procedure is called optimal truncation.

Exercise 1.1. Show that, if
an ∼ A−nn!, n� 1. (1.8)

the value of N which gives the optimal truncation can be estimated to be

N∗ =
∣∣∣∣Az
∣∣∣∣ . (1.9)

As an application, consider the following integral

I(g) =
1√
2π

∫ +∞

−∞
dz e−z

2/2−gz4/4. (1.10)

Show that it has an asymptotic series given by

ϕ(g) =
∞∑
k=0

akg
k, ak = (−4)−k

(4k − 1)!!
k!

. (1.11)

Compare the exact value of I(g) with the value obtained by optimal truncation of the asymptotic
series, for, say g = 0.02.

As you can see, asymptotic series and optimal truncation are useful, but they don’t lead to
the correct answer. Typically, optimal truncation gives an exponentially small error, proportional
to

exp(−A/z). (1.12)
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This is the first incarnation of a non-perturbative effect. However, in order to have more precise
theory of non-perturbative effects it is useful to introduce the Borel resummation of the formal
power series.

The Borel transform of ϕ, which we will denote by ϕ̂(ζ), is defined as the series

ϕ̂(ζ) =
∞∑
n=0

an
n!
ζn. (1.13)

Notice that, due (1.8), the series ϕ̂(ζ) has a finite radius of convergence ρ = |A| and it defines an
analytic function in the circle |ζ| < |A|. Let us suppose that ϕ̂(ζ) has an analytic continuation
to a neighbourhood of the positive real axis, in such a way that the Laplace transform

s(ϕ)(z) =
∫ ∞

0
e−ζϕ̂(zζ) dζ = z−1

∫ ∞
0

e−ζ/zϕ̂(ζ) dζ, (1.14)

exists in some region of the complex z-plane. In this case, we say that the series ϕ(z) is Borel
summable and s(ϕ)(z) is called the Borel sum of ϕ(z). Notice that, by construction, s(ϕ)(z) has
an asymptotic expansion around z = 0 which coincides with the original series ϕ̂(ζ), since

s(ϕ)(z) = z−1
∑
n≥0

an
n!

∫ ∞
0

dζ e−ζ/zζn =
∑
n≥0

anz
n. (1.15)

This procedure makes it possible in principle to reconstruct a well-defined function s(ϕ)(z) from
the asymptotic series ϕ(z) (at least for some values of z). As we pointed out above, in some
cases the formal series ϕ(z) is the asymptotic expansion of a well-defined function f(z) (like in
the example of the quartic oscillator). It might then happen that the Borel resummation s(ϕ)(z)
agrees with the original function f(z), and in this favorable case, the Borel resummation recon-
structs the original non-pertubative answer. This happens for the quartic integral considered in
the exercise above, and in the quantum-mechanical quartic oscillator.

Exercise 1.2. Show that the Borel transform of the series (1.11) is given by

ϕ̂(ζ) =
2K(k)

π(1 + 4ζ)1/4
, k2 =

1
2
− 1

2
√

1 + 4ζ
. (1.16)

where K(k) is the elliptic integral of the first kind. Verify numerically that

s(ϕ)(g) = I(g) (1.17)

for some values of g.

In some cases, the Borel transform has poles on the positive real axis, and the Borel transform
defined above does not exist, strictly speaking. One can then deform the contour of integration
and consider contours C± that avoid the singularities and branch cuts by following paths slightly
above or below the positive real axis, as in Fig. 1. One defines then the lateral Borel resummations,

s±(ϕ)(z) = z−1

∫
C±

dζ e−ζ/zϕ̂(ζ). (1.18)

In this case one gets a complex number, whose imaginary piece is also O(exp(−A/z)).
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C+

C−C−

Figure 1: The paths C± avoiding the singularities of the Borel transform from above (respectively, below).

We can ask now the following question: in cases in which the (lateral) Borel resummation
of the perturbative series does not reproduce the right answer, what should we do? Clearly,
something else should be added to the perturbative series! In some simple cases, the additional
contributions have the form of formal power series,

ϕ`(z) = zb`e−`A/z
∑
n≥0

an,`z
n, ` = 1, 2, · · · , (1.19)

which can be obtained by doing perturbation theory around non-trivial saddle points of the (Eu-
clidean) path integral, like for example instantons. The series ϕ`(z) encodes the non-perturbative
effects due to `-instantons.

Example 1.3. A typical example is the double-well potential in QM, with Hamiltonian

H =
p2

2
+W (x), W (q) =

g

2

(
q2 − 1

4g

)2

, g > 0. (1.20)

In perturbation theory one finds two degenerate ground states, located around the minima

q± = ± 1
2
√
g
. (1.21)

The ground state energy obtained in stationary perturbation theory is a formal power series of
the form

ϕ0(g) =
1
2
− g − 9

2
g2 − 89

2
g3 − · · · (1.22)

This series is obtained by doing a path integral around the constant trajectory q = q±. However,
one can consider a saddle-point of the Euclidean path integral, given by a path going from q− to
q+ (or viceversa),

qt0± (t) = ± 1
2
√
g

tanh
(
t− t0

2

)
. (1.23)

This gives a non-perturbative contribution to the ground state energy of the form

ϕ1(g) = −
(

2
g

)1/2 e−1/6g

√
2π

(1 +O(g)) . (1.24)
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One should then consider a trans-series of the form

Φ(z) = ϕ0(z) +
∞∑
`=1

C`ϕ`(z). (1.25)

This series, after appropriate (lateral) Borel resummations and a choice of the constant C, gives
sometimes the exact quantity we are looking for, i.e.

f(z) = s(Φ)(z) = s(ϕ)(z) +
∞∑
`=1

C`s(ϕ`)(z). (1.26)

1.2 Non-perturbative aspects of string theory

String theory is characterized by two coupling constants: the string length `s and the string
coupling constant gst. The first one governs the theory at fixed genus, in an expansion around
the point-particle limit. The second one governs the interactions in spacetime, obtained by
joining/splitting of strings. Correspondingly, there are two types of exponentially small, non-
perturbative effects in string theory. Worldsheet instantons are of the form

exp
(
−Aws/`

2
s

)
(1.27)

and they can be obtained in many cases as standard instantons in a non-linear, two-dimensional
sigma model

x : Σ→ X (1.28)

describing strings with a fixed genus propagating in a target X. In these cases, Aws is just the
area of the embedded string, measured by the metric of the target manifold X. Note that, if
the target X has a typical length scale L, the dimensionless parameter controlling the expansion
around the particle limit is

L

`s
. (1.29)

When
L

`s
� 1, (1.30)

the point-particle approximation (i.e. supergravity) is appropriate.
Spacetime instanton effects are typically of the form

exp (−Ast/gst) . (1.31)

It was pointed out by Polchinski in [3] that, in type II superstring theory, such effects can be due
to D-branes.

Remark 1.4. Traditionally, exponentially small, non-perturbative effects are associated to ad-
ditional (topological) sectors or non-trivial saddle points of the theory. In the cases mentioned
above, worldsheet instantons are associated to topologically non-trivial sectors in the non-linear
sigma model, while spacetime instantons are associated to the inclusion of extended objects in
the theory. However, non-perturbative effects are not necessarily associated to saddle-points.
In other words, we do not always have a semiclassical intuition for these effects. This is what
happens for example with renormalons in QFT.
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In these lectures we will focus on a particular quantity, namely the total partition function
of a superstring/M-theory in an AdS background. Its logarithm (also known as total free energy)
has a genus expansion of the form

F (λ, gst) =
∑
g≥0

Fg(λ)g2g−2
st , (1.32)

where λ is a function of L/`s, and L is the AdS radius. In this case, the functions Fg(λ) have a
finite radius of convergence (common to all of them). This happens in other situations, like for
example in type II strings on Calabi–Yau compactifications, and it is due to the fact that the
expansion in L/`s has very peculiar features due to non-renormalization theorems: the purely
perturbative sector is not a series, but a polynomial in `s/L, and the expansion around each
non-trivial topological sector or worldsheet instanton gets also truncated.

In contrast, the genus expansion turns out to be a divergent expansion. This is a generic
property of the genus expansion in string theories [4, 1], namely, for a fixed λ (inside the radius
of convergence of Fg(λ)), the Fg(λ) grow like

Fg(λ) ∼ (2g)!(Ast(λ))−2g, (1.33)

where Ast(λ) is a spacetime instanton action. This behavior raises similar issues to what we have
explained above. Is there a well-defined quantity from which the Fg(λ) arise as coefficients in
an asymptotic expansion? The issue gets complicated by the fact that this is a two-parameter
model, in contrast to the one-parameter problems appearing in for example quantum mechanics
and field theory.

There is however a two-parameter problem in gauge theory which has exactly the same
qualitative properties than string theory: namely, gauge theories in the 1/N expansion. The two
parameters are the gauge coupling gs = g2 and the ’t Hooft parameter

λ = gsN. (1.34)

The total free energy of the gauge theory has a 1/N expansion which has exactly the same
structure as (1.32) (where gs plays the rôle of gst). In some special cases (like for example for
superconformal field theories and Chern–Simons theory) the functions Fg(λ), obtained by resum-
ming diagrams of genus g in the double-line expansion, have a finite radius of convergence, while
the sequence of free energies diverges factorially like (1.33). The corresponding non-perturbative
effect in the 1/N expansion is called a large N instanton. In some cases (but not always), these
effects can be obtained by considering the standard instantons of the gauge theory, and incorpo-
rating quantum planar corrections. In those cases, if we denote by A the action of an instanton
in the gauge theory one has that

A(λ)→ A (1.35)

as λ → 0. This parallelism of structures suggests that, when the string theory has a large N
dual, spacetime instanton effects due to D-branes can be identified with non-perturbative effects
appearing in the large N expansion.

1.3 Non-perturbative effects in M-theory

It was noted in [40] that, in M-theory, worldsheet instantons and D-brane instantons can be
unified in terms of membrane instantons. To understand this, let us recall that in M-theory
there is one single coupling, the Planck length `p. When compactified on an eleven-dimensional
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circle of radius R11, one obtains type IIA superstring theory, with couplings `s and gst. The
dictionary is

`p = g
1/3
st `s, R11 = gst`s. (1.36)

M-theory contains extended three-dimensional objects, called M2-branes or membranes. When
compactified on an eleven dimensional circle, these membranes lead to fundamental strings if their
world-volume wraps the compact, eleventh dimension (and therefore appear as two-dimensional
objects in ten dimensions). They lead to D2 branes when they do not wrap the compact dimen-
sion.

In M-theory, we should incorporate sectors with membranes, which should be regarded as
“instanton” sectors. A membrane wrapped around a three-cycle S leads to an exponentially
small effect of the form

exp
(
−vol(S)

`3p

)
. (1.37)

If the cycle S wraps the eleven dimensional circle, we have (schematically) that

vol(S) = R11vol(Σ), (1.38)

where Σ is a cycle in ten dimensions. Then,

exp
(
−vol(S)

`3p

)
= exp

(
−vol(Σ)

`2s

)
, (1.39)

which is precisely the weight of a worldsheet instanton. If S leads to a three-dimensional cycle
M in ten dimensions, we have

exp
(
−vol(S)

`3p

)
= exp

[
−
(
vol(M)/`3s

)
gst

]
, (1.40)

which is the expected weight for a spacetime instanton (more precisely, for a D2-brane instanton).

2. Non-perturbative effects in ABJM theory

2.1 A short review of ABJM theory

ABJM theory and its generalization, also called ABJ theory, were proposed in [9, 10] to
describe N M2 branes on C4/Zk. They are particular examples of supersymmetric Chern–
Simons–matter theories and their basic ingredient is a pair of vector multiplets with gauge groups
U(N1), U(N2), described by two supersymmetric Chern–Simons theories with opposite levels k,
−k. In addition, we have four matter supermultiplets Φi, i = 1, · · · , 4, in the bifundamental
representation of the gauge group U(N1) × U(N2). This theory can be represented as a quiver
with two nodes, which stand for the two supersymmetric Chern–Simons theories, and four edges
between the nodes representing the matter supermultiplets (see Fig. 2). In addition, there is a
superpotential involving the matter fields, which after integrating out the auxiliary fields in the
Chern–Simons–matter system, reads (on R3)

W =
4π
k

Tr
(

Φ1Φ†2Φ3Φ†4 − Φ1Φ†4Φ3Φ†2
)
. (2.1)

In this expression we have used the standard superspace notation for N = 1 supermultiplets.
When the two gauge groups have identical rank, i.e. N1 = N2 = N , the theory is called
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ABJM theory. The generalization in which N1 6= N2 is called ABJ theory. More details on the
construction of these theories can be found in [12, 13]. In most of this review we will focus on
ABJM theory, which has two parameters: N , the common rank of the gauge group, and k, the
Chern–Simons level. Note that, in this theory, all the fields are in the adjoint representation of
U(N) or in the bifundamental representation of U(N) × U(N). Therefore, they have two color
indices and one can use the standard ’t Hooft rules [14] to perform a 1/N expansion. Since k
plays the rôle of the inverse gauge coupling 1/g2, the natural ’t Hooft parameter is given by

λ =
N

k
. (2.2)

One of the most important aspects of ABJM

U(N2)

Φi=1,··· ,4

U(N1)

Figure 2: The quiver for ABJ(M) theory. The
two nodes represent the U(N1,2) Chern–Simons
theories (with opposite levels) and the arrows
between the nodes represent the four matter
multiplets in the bifundamental representation.

theory is that, at large N , it describes a nontrivial
background of M theory, as it was already postu-
lated in [15]. In the large distance limit in which
M-theory can be described by supergravity, this is
nothing but the Freund–Rubin background

X11 = AdS4 × S7/Zk. (2.3)

If we represent S7 inside C4 as

4∑
i=1

|zi|2 = 1, (2.4)

the action of Zk in (2.3) is simply given by

zi → e
2πi
k zi. (2.5)

The metric on AdS4 × S7 depends on a single parameter, the radius L, and by using metrics on
AdS4 and S7 of unit radius, we have

ds2 = L2

(
1
4

ds2
AdS4

+ ds2
S7

)
. (2.6)

As it is well-known, the Freund–Rubin background also involves a non-zero flux for the four-form
field strength G of 11d SUGRA, see for example [16] for an early review of eleven-dimensional
supergravity on this background.

The AdS/CFT correspondence between ABJM theory and M-theory in the above Freund–
Rubin background comes with a dictionary between the gauge theory parameters and the M-
theory parameters. The parameter k in the gauge theory has a purely geometric interpretations
and it is the same k appearing in the modding out by Zk in (2.3) and (2.5). The parameter
N corresponds to the number of M2 branes, which lead to the non-zero flux of G, and also
determines the radius of the background. One finds,(

L

`p

)6

= 32π2kN, (2.7)

where `p is the eleven-dimensional Planck constant. It should be emphasized that the above
relation is in principle only valid in the large N limit, and it has been argued that it is corrected
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due to a shift in the M2 charge [17, 18]. According to this argument, the physical charge
determining the radius is not N , but rather

Q = N − 1
24

(
k − 1

k

)
. (2.8)

The geometric, M-theory description in terms of the background (2.3) emerges when

N →∞, k fixed. (2.9)

The corresponding regime in the dual gauge theory will be called the M-theory regime. In this
regime, one looks for asymptotic expansions of the observables at large N but k fixed. This is
the so-called M-theory expansion of the gauge theory.

It has been known for a while that the above Freund–Rubin background of M-theory can be
used to find a background of type IIA superstring theory of the form

X10 = AdS4 × CP3. (2.10)

This is due to the existence of the Hopf fibration,

S1 → S7

↓
CP3

(2.11)

and the circle of this fibration can be used to perform a non-trivial reduction from M-theory to
type IIA theory [19]. In order to have a perturbative regime for the type IIA superstring, we
need the circle to be small, and this is achieved when k is large. Indeed, by using the standard
dictionary relating M-theory and type IIA theory, we find that the string coupling constant gst

is given by

g−2
st =

1
k2

(
L

`s

)2

, (2.12)

where `s is the string length. On the other hand, we also have from this dictionary that

λ =
1

32π2

(
L

`s

)4

, (2.13)

where λ is the ’t Hooft parameter (2.2). We conclude that the perturbative regime of the type
IIA superstring corresponds to the ’t Hooft 1/N expansion, in which

N →∞, λ =
N

k
fixed, (2.14)

i.e. the genus expansion in the ’t Hooft regime of the gauge theory corresponds to the pertur-
bative genus expansion of the superstring. In addition, the regime of strong ’t Hooft coupling
corresponds to the point-particle limit of the superstring, in which α′ corrections are suppressed.

A very important aspect of ABJM theory is that there are two different regimes to consider:
the M-theory regime (2.9), and the standard ’t Hooft regime (2.14). The existence of a well-
defined M-theory limit is somewhat surprising from the gauge theory point of view. This limit
is more like a thermodynamic limit of the theory, in which the number of degrees of freedom
goes to infinity but the coupling constant remains fixed. General aspects of this limit have been
discussed in [20].
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One of the consequences of the AdS/CFT correspondence is that the partition function of
the Euclidean ABJM theory on S3 should be equal to the partition function of the Euclidean
version of M-theory/string theory on the dual AdS backgrounds [21], i.e.

Z(S3) = Z(X), (2.15)

where X is the eleven-dimensional background (2.3) or the ten-dimensional background (2.10),
appropriate for the M-theory regime or the ’t Hooft regime, respectively. In the M-theory limit
we can use the supergravity approximation to compute the M-theory partition function, which
is just given by the classical action of eleven-dimensional supergravity evaluated on-shell, i.e. on
the metric of (2.3). This requires a regularization of IR divergences but eventually leads to a
finite result, which gives a prediction for the behavior of the partition function of ABJM theory
at large N and fixed k (see [13] for a review of these isssues). If we define the free energy of the
theory as the logarithm of the partition function,

F (N, k) = logZ(N, k), (2.16)

one finds, from the supergravity approximation to M-theory [22],

F (N, k) ≈ −π
√

2
3

k1/2N3/2, N � 1. (2.17)

The N3/2 behavior of the free energy is a famous prediction of AdS/CFT [23] for the large N
behavior of a theory of M2 branes. The AdS/CFT prediction (2.15) can be also studied in the
’t Hooft regime. In this case, at large N and strong ’t Hooft coupling, the superstring partition
function is given by the genus zero free partition function at small curvature, i.e. by the type
IIA supergravity result. One obtains a prediction for the planar free energy of ABJM theory at
strong ’t Hooft coupling, of the form

− lim
N→∞

1
N2

F (N,λ) ≈ π
√

2
3
√
λ
, λ� 1. (2.18)

Interestingly, both predictions are equivalent, in the sense that one can obtain (2.18) from (2.17)
by setting k = N/λ, and viceversa. This is not completely obvious from the point of view of
the gauge theory, since it could happen that higher genus corrections in the ’t Hooft expansion
contribute to the M-theory limit. That this is not the case has been conjectured in [20] to be
a general fact and it has been called “planar dominance.” It seems to be a general property of
Chern–Simons–matter theories with both an M-theory expansion and a ’t Hooft expansion. Note
as well that, as explained in detail in [13], the behavior of the planar free energy at weak ’t Hooft
coupling is very different from the prediction (2.18). Therefore, the planar free energy should be
a non-trivial interpolating function between the weakly coupled regime and the strongly coupled
regime.

Note that, in principle, the AdS/CFT correspondence provides a non-perturbative definition
of superstring theory, in the sense mentioned above. Namely, the free energy of ABJM theory on
the sphere, F (N, k), is a well-defined quantity, for any integer N and any integer k. In addition,
it has an asymptotic expansion in the ’t Hooft regime (2.14), of the form

F (N, k) =
∑
g≥0

Fg(λ)g2g−2
s , (2.19)
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where
gs =

2πi
k
. (2.20)

This expansion is of course equivalent to a 1/N expansion, since gs = 2πiλ/N , and the ’t Hooft
parameter is kept fixed. The coefficients Fg(λ) appearing in this expansion are, according to
the AdS/CFT conjecture, type IIA superstring free energies at genus g on the AdS background
(2.10).

In order to analyze in detail the implications of the large N duality between ABJM theory
and M-theory on the AdS background (2.3), it is extremely useful to be able to perform reliable
computations on the gauge theory side. The techniques of localization pioneered in [5] have led
to a wonderful result for the partition function of ABJM theory on the three-sphere S3, due to
[6]. This result expresses this partition function, which a priori is given by a complicated path
integral, in terms of a matrix model (i.e. a path integral in zero dimensions). We will refer to it
as the ABJM matrix model, and it takes the following form,

Z(N, k)

=
1
N !2

∫
dNµ

(2π)N
dNν

(2π)N

∏
i<j

[
2 sinh

(
µi−µj

2

)]2 [
2 sinh

(
νi−νj

2

)]2

∏
i,j

[
2 cosh

(
µi−νj

2

)]2 exp

[
ik
4π

N∑
i=1

(µ2
i − ν2

i )

]
.

(2.21)
In the remaining of this review, we will analyze this matrix model in detail. We will study
it in different regimes and we will try to extract lessons and consequences for the AdS/CFT
correspondence.

Remark 2.1. A purist might object that defining non-perturbative string theory through a
gauge theory, as we do in AdS/CFT, does not really solve the problem, since one still has to
define the gauge theory observables non-perturbatively (the purist might agree however that this
is a more tractable problem). The matrix model representation solves this problem, at least for
some observables, since the partition function Z(N, k) is now manifestly well-defined for integer
N and integer k (in fact, any real k).

2.2 The ’t Hooft expansion

2.2.1 The planar limit

The free energy of ABJM theory on the three-sphere has a 1/N or ’t Hooft expansion of the form
(2.19). The supergravity result (2.18) already gives a prediction for the behavior of the planar
free energy for large λ. In order to test this prediction, it would be useful to have an explicit
expression for F0(λ), and eventually for the full series of genus g free energies Fg(λ). This is
in principle a formidable problem, involving the resummation of double-line diagrams with a
fixed genus in the perturbative expansion of the total free energy. However, since the partition
function is given by the matrix integral (2.21), we can try to obtain the 1/N expansion directly
in the matrix model. The large N expansion of matrix models has been extensively studied since
the seminal work of Brézin, Itzykson, Parisi and Zuber [24], and there are by now many different
techniques to solve this problem. The first step in this calculation is of course to obtain the
planar free energy F0(λ), which is the dominant term at large N .

A detailed review of the calculation of the planar free energy of the ABJM matrix model
can be found in [13], and we won’t repeat it here. We will just summarize the most important
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aspects of the solution. As usual, at large N , the eigenvalues of the matrix model “condense”
around cuts in the complex plane. This means that the equilibrium values of the eigenvalues µi,
νi, i = 1, · · · , N , fall into two arcs in the complex plane as N becomes large. The equilibrium
conditions for the eigenvalues µi, νi can be found immediately from the integrand of the matrix
integral:

ik
2π
µi =−

N∑
j 6=i

coth
µi − µj

2
+

N∑
j=1

tanh
µi − νj

2
,

ik
2π
νi =

N∑
j 6=i

coth
νi − νj

2
−

N∑
j=1

tanh
νi − µj

2
.

(2.22)

In standard matrix models, it is useful to think about the equilibrium values of the eigenvalues
as the result of a competition between a confining one-body potential and a repulsive two-body
potential. Here we can not do that, since the one-body potential is imaginary. One way to go
around this is to use analytic continuation: we rotate k to an imaginary value, and then at the
end of the calculation we rotate it back. This is the procedure followed originally in [8]. We
consider then the saddle-point equations

µi =
t1
N1

N1∑
j 6=i

coth
µi − µj

2
+

t2
N2

N2∑
j=1

tanh
µi − νj

2
,

νi =
t2
N2

N2∑
j 6=i

coth
νi − νj

2
+

t1
N1

N1∑
j=1

tanh
νi − µj

2
.

(2.23)

where
ti = gsNi, i = 1, 2. (2.24)

The planar free energy obtained from these equations will be a function only of t1 and t2, and
to recover the planar free energy of the original ABJM matrix model we have to set

t1 = −t2 =
2πi
k
N. (2.25)

The equations (2.23), for real gs, are equivalent to the original ones (2.22) after rotating k to the
imaginary axis, and then performing an analytic continuation N2 → −N2. At large Ni, and for
real gs, ti, the eigenvalues µi, i = 1, · · · , N1 and νj , j = 1, · · ·N2, condense around two cuts in
the real axis, C1,2 (respectively.) Due to the symmetries of the problem, these cuts are symmetric
around the origin. We will denote by [−A,A], [−B,B], respectively.

It turns our that the equations (2.23) are the saddle-point equations for the so-called lens
space matrix model studied in [25, 26, 27], whose planar solution is well-known. Let us denote
by ρ1(µ), ρ2(ν) the large N densities of eigenvalues on the cuts C1, C2, respectively, normalized
as ∫

C1
ρ1(µ)dµ =

∫
C2
ρ2(ν)dν = 1. (2.26)

One finds that these densities are given by

ρ1(X)dX = − 1
4πit1

dX
X

(ω0(X + iε)− ω0(X − iε)) , X ∈ C1,

ρ2(Y )dY =
1

4πit2
dY
Y

(ω0(Y + iε)− ω0(Y − iε)) , Y ∈ C2,

(2.27)
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where the function ω0(X), known as the planar resolvent, turns out to have the explicit expression
[26, 27]

ω0(Z) = log
(

e−t

2

[
f(Z)−

√
f2(Z)− 4e2tZ2

])
. (2.28)

Notice that eω0 has a square root branch cut involving the function

σ(Z) = f2(Z)− 4e2tZ2 = (Z − a) (Z − 1/a) (Z + b) (Z + 1/b) (2.29)

where a±1, -b±1 are the endpoints of the cuts in the Z = ez plane (i.e. A = log a, B = log b).
They are determined, in terms of the parameters t1, t2 by the normalization conditions for the
densities (2.26). We will state the final results in ABJM theory. A detailed derivation can be
found in the original papers [7, 8] and in the review [13].

In the ABJM case we have to consider the special case or “slice” given in (2.25), therefore
t = 0. One can parametrize the endpoints of the cut in terms of a single parameter κ, as

a+
1
a

= 2 + iκ, b+
1
b

= 2− iκ. (2.30)

The ’t Hooft coupling λ turns out to be a non-trivial function of κ, determined by the normal-
ization of the density. In order for λ to be real and well-defined, κ has to be real as well, and
one finds the equation [7]

λ(κ) =
κ

8π 3F2

(
1
2
,
1
2
,
1
2

; 1,
3
2

;−κ
2

16

)
. (2.31)

Notice that the endpoints of the cuts are in general complex, i.e. the cuts C1, C2 are arcs in the
complex plane. This is a consequence of the analytic continuation and it has been verified in
numerical simulations of the original saddle-point equations (2.22) [11]. Using similar techniques
(see again [13]), one finds a very explicit expression for the derivative of the planar free energy,

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣−κ2

16

)
+
π2iκ

2 3F2

(
1
2
,
1
2
,
1
2

; 1,
3
2

;−κ
2

16

)
. (2.32)

This is written in terms of the auxiliary variable κ, but by using the explicit map (2.31), one
can re-express it in terms of the ’t Hooft coupling, and one finds the following expansion around
λ = 0,

∂λF0(λ) = −8π2λ

(
log
(
πλ

2

)
− 1
)

+
16π4λ3

9
+O

(
λ5
)
. (2.33)

It is easy to see that this reproduces the perturbative, weak coupling expansion of the matrix
integral. This also fixes the integration constant, and one can write

F0(λ) =
∫ λ

0
dλ′ ∂λ′F0(λ′). (2.34)

To study the strong ’t Hooft coupling behavior, we notice from (2.31) that large λ� 1 requires
κ� 1. More concretely, we find the following expansion at large κ:

λ(κ) =
log2(κ)

2π2
+

1
24

+O
(

1
κ2

)
, κ� 1. (2.35)
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This suggests to define the shifted coupling

λ̂ = λ− 1
24
. (2.36)

Notice from (2.8) that this shift is precisely the one needed in order for λ̂ to be identified with
Q/k, at leading order in the string coupling constant. The relationship (2.35) is immediately
inverted to

κ ≈ eπ
√

2λ̂, λ� 1. (2.37)

To compute the planar free energy, we have to analytically continue the r.h.s. of (2.32) to κ =∞,
and we obtain

∂λF0(λ) = 2π2 log κ+
4π2

κ2 4F3

(
1, 1,

3
2
,
3
2

; 2, 2, 2;−16
κ2

)
. (2.38)

After integrating w.r.t. λ, we find,

F0(λ̂) =
4π3
√

2
3

λ̂3/2 +
ζ(3)

2
+
∑
`≥1

e−2π`
√

2λ̂f`

(
1

π
√

2λ̂

)
, (2.39)

where f`(x) is a polynomial in x of degree 2` − 3 (for ` ≥ 2). If we multiply by g−2
s , we find

that the leading term in (2.39) agrees precisely with the prediction from the AdS dual in (2.18).
The series of exponentially small corrections in (2.39) were interpreted in [8] as coming from
worldsheet instantons of type IIA theory wrapping the CP1 cycle in CP3. This is a novel type of
correction in AdS4 dualities which is not present in the large N dual to N = 4 super Yang–Mills
theory, see [30] for a preliminary investigation of these effects.

An important aspect of the above planar solution is the following. As we explained above,
in finding this solution it is useful to take into account the relationship to the lens space matrix
model of [25, 26] discovered in [7]. On the other hand, this matrix model computes, in the
1/N expansion, the partition function of topological string theory on a non-compact Calabi–Yau
(CY) known as local P1 × P1, and in particular its planar free energy is given by the genus zero
free energy or prepotential of this topological string theory. Local P1 × P1 has two complexified
Kähler parameters T1,2. It turns out that the ABJM slice in which N1 = N2 corresponds to the
“diagonal” geometry in which T1 = T2. The relationship of ABJM theory to this topological
string theory has been extremely useful in deriving exact answers for many of these quantities,
and we will find it again in the sections to follow. For example, the constant term involving ζ(3)
in (2.39) is well-known in topological string theory and it gives the constant map contribution
to the genus zero free energy. The series of worldsheet instantons appearing in (2.39) is related
to the worldsheet instantons of genus zero in topological string theory, but with one subtlety:
the genus zero free energy in (2.39) is the one appropriate to the so-called “orbifold frame”
studied in [26], and then it is analytically continued to large λ, which in topological string theory
corresponds to the so-called large radius regime. This is not a natural procedure to follow from
the point of view of topological strings on local P1 × P1, where quantities in the orbifold frame
are typically expanded around the orbifold point.

2.2.2 Higher genus corrections

The analysis of the previous subsection gives us the leading term in the 1/N expansion, but
it is of course an important and interesting problem to compute the higher genus free energies
with g ≥ 1. This involves computing subleading 1/N corrections to the free energy of the
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ABJM matrix model. The computation of such corrections in Hermitian matrix models has a
long history, and a general algorithm solving the problem was developed in [31]. However, this
algorithm is difficult to implement in practice. In some examples, one can use a more efficient
method, developed in the context of topological string theory, which is known as the direct
integration of the holomorphic anomaly equations. This method was introduced in [32], and
applied to the ABJM matrix model in [8]. The Fg(λ) obtained by this method are written in
terms of modular forms and they can be obtained recursively, although there is no known closed
form expression or generating functional for them. A detailed analysis for the very first g shows
that they have the following structure, in terms of the auxiliary variable κ [29]1:

Fg = cg + fg

(
1

log κ

)
+O

(
1
κ2

)
, g ≥ 2, (2.40)

where

cg = − 4g−1|B2gB2g−2|
g(2g − 2)(2g − 2)!

(2.41)

involves the Bernoulli numbers B2g, and

fg(x) =
g∑
j=0

c
(g)
j x2g−3+j (2.42)

is a polynomial. Physically, the equation (2.40) tells us that the higher genus free energy has a
constant contribution, a polynomial contribution in inverse powers of λ1/2, going like

Fg(λ)− cg ≈ λ
3
2
−g, λ� 1, g ≥ 2, (2.43)

and an infinite series of corrections due to worldsheet instantons of genus g. The quantities
appearing here have a natural interpretation in the context of topological string theory, since the
Fg(λ) are simply the orbifold higher genus free energies of local P1×P1. The constants (2.41) are
the well-known constant map contributions to the higher genus free energies, and the worldhseet
instantons of type IIA superstring theory appearing in Fg(λ) come from the worldsheet instantons
of the topological string.

The ’t Hooft expansion (2.19) gives an asymptotic series for the free energy, at fixed ’t
Hooft parameter. General arguments (see [1] for an early statement and [2] for a recent review)
suggest that this series diverges factorially. The divergence of the series is controlled by a large
N instanton, which is proportional to the exponentially suppressed factor,

exp(−Ast(λ)/gs). (2.44)

An explicit expression for the instanton action Ast(λ) was conjectured in [29]. When λ is real
and sufficiently large, it is given by

Ast(λ) =
iκ
4π
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣− κ2

16

)
− πκ

2 3F2

(
1
2
,
1
2
,
1
2

; 1,
3
2

;−κ
2

16

)
− π2, (2.45)

and it is essentially proportional to the derivative of the free energy (2.32). The function Ast(λ)
is complex, and at strong coupling it behaves like,

−iAst(λ) = 2π2
√

2λ+ π2i +O
(

e−2π
√

2λ
)
, λ� 1. (2.46)

1The constant contribution cg was not originally included in [8, 29], but this omission was corrected in [28].
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Since the genus g amplitudes are real, the complex instanton governing the large order behavior
of the 1/N expansion must appear together with its complex conjugate, and it leads to an
oscillatory asymptotics. If we write

Ast(λ) = |Ast(λ)| eiθ(λ). (2.47)

we have the behavior,

Fg(λ)− cg ∼ (2g)! |Ast(λ)|−2g cos (2gθ(λ) + δ(λ)) , g � 1, (2.48)

where δ(λ) is a function of the ’t Hooft coupling, which in simple cases is determined by the one-
loop corrections around the instanton. The oscillatory asymptotics in (2.48) suggests that the ’t
Hooft expansion is Borel summable. This was tested in [39] by detailed numerical calculations.
However, the Borel resummation of the expansion does not reproduce the correct values of the
free energy at finite N and k. The contribution of the complex instanton, which is of order
(2.44), should be added in an appropriate way to the Borel-resummed ’t Hooft expansion in
order to reconstruct the exact answer for the free energy. In practice, this means that one should
consider “trans-series” incorporating these exponentially small effects (see for example [2, 38] for
an introduction to trans-series.)

However, the resummation of the perturbative free energies in (2.107) in terms of an Airy
function suggests another approach to the problem. Conceptually, the resummation of the genus
expansion type IIA superstring theory should be achieved when we go to M-theory. The non-
perturbative effects appearing in (2.44) should also appear naturally in an M-theory approach:
by using (2.46), we see that they have the form, for λ� 1,

exp
(
−
√

2πk1/2N1/2
)
, (2.49)

and by using the AdS/CFT dictionary, we see that the instanton action depends on the length
scales as (

L

`p

)3

. (2.50)

This is the expected dependence for the action of a membrane instanton in M-theory, which
corresponds to a D2-brane in type IIA theory. In [29], it was shown that a D2 brane wrapping
the RP3 cycle inside CP3 would lead to the correct strong coupling limit of the action (2.46).
Therefore, by going to M-theory, we could in principle incorporate not only the worldsheet
instantons which were not taken into account in (2.107), but also the non-perturbative effects
due to membrane instantons. In fact, it is well-known that in M-theory membrane and worldsheet
instantons appear on equal footing [40].

2.3 The M-theory expansion

The M-theory expansion is an expansion when N is large and k is fixed, corresponding to the
regime (2.9). The original study of the ABJM matrix model (2.21) in [7, 8] was done in the ’t
Hooft regime (2.14). It is now time to see if we can understand the matrix model directly in
the M-theory regime and solve the problems raised at the end of the previous section: can we
resum the genus expansion in some way? Can we incorporate the non-perturbative effects due
to membrane instantons?

The first direct study of the M-theory regime of the matrix model (2.21) was performed
in [11]. However, including further corrections seems difficult to do in the approach of [11].
This motivates another approach which was started in [42] and has proved to be very useful in
understanding the corrections to the strict large N limit.
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2.3.1 The Fermi gas approach

There is a long tradition relating matrix integrals to fermionic theories. One reason for this is
that the Vandermonde determinant

∆(µ) =
∏
i<j

(µi − µj) (2.51)

appearing in these integrals can be regarded, roughly speaking, as the Slater determinant for a
theory of N one-dimensional fermions with positions µi. For example, the fact that this factor
vanishes whenever two particles are at the same point can be regarded as a manifestation of
Pauli’s exclusion particle.

The rewriting of the ABJM matrix integral in terms of fermionic quantities can be regarded
as a variant of this idea. It should be remarked however that the Fermi gas approach that
we will explain in this section is not a universal technique which can be applied to any matrix
integral with a Vandermonde-like interaction. It rather requires a specific type of eigenvalue
interaction, which turns out to be typical of many matrix integrals appearing in the localization
of Chern–Simons–matter theories.

The starting point for the Fermi gas approach is the observation that the interaction term
in the matrix integral (2.21) can be rewritten by using the Cauchy identity,∏

i<j

[
2 sinh

(
µi−µj

2

)] [
2 sinh

(
νi−νj

2

)]
∏
i,j 2 cosh

(
µi−νj

2

) = detij
1

2 cosh
(
µi−νj

2

)
=
∑
σ∈SN

(−1)ε(σ)
∏
i

1

2 cosh
(
µi−νσ(i)

2

) . (2.52)

In this equation, SN is the permutation group of N elements, and ε(σ) is the signature of the
permutation σ. After some manipulations spelled out in detail in [43] one obtains [43, 42]

Z(N, k) =
1
N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

(2πk)N
1∏

i 2 cosh
(
xi
2

)
2 cosh

(
xi−xσ(i)

2k

) . (2.53)

This expression can be immediately identified [44] as the canonical partition function of a one-
dimensional ideal Fermi gas of N particles and with canonical density matrix

ρ(x1, x2) =
1

2πk
1(

2 cosh x1
2

)1/2 1(
2 cosh x2

2

)1/2 1
2 cosh

(
x1−x2

2k

) . (2.54)

Notice that, by using the Cauchy identity again, with µi = νi, we can rewrite (2.53) as a matrix
integral involving one single set of N eigenvalues,

Z(N, k) =
1
N !

∫ N∏
i=1

dxi
4πk

1
2 cosh xi

2

∏
i<j

(
tanh

(
xi − xj

2k

))2

. (2.55)

The canonical density matrix (2.54) is related to the Hamiltonian operator Ĥ in the usual way,

ρ(x1, x2) = 〈x1|ρ̂|x2〉, ρ̂ = e−Ĥ , (2.56)
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where the inverse temperature β = 1 is fixed. We will come back to the construction of the
Hamiltonian shortly.

Since ideal quantum gases are better studied in the grand canonical ensemble, the above
representation suggests to look at the grand canonical partition function, defined by

Ξ(µ, k) = 1 +
∑
N≥1

Z(N, k)eNµ. (2.57)

Here, µ is the chemical potential. The grand canonical potential is

J (µ, k) = log Ξ(µ, k). (2.58)

A standard argument (presented for example in [44]) tells us that

J (µ, k) = −
∑
`≥1

(−κ)`

`
Z`, (2.59)

where
κ = eµ (2.60)

is the fugacity, and

Z` = Trρ̂` =
∫

dx1 · · · dx` ρ(x1, x2)ρ(x2, x3) · · · ρ(x`−1, x`)ρ(x`, x1). (2.61)

As is well-known, the canonical and the grand-canonical formulations are equivalent, and the
canonical partition function is recovered from the grand canonical one by integration,

Z(N, k) =
∮

dκ
2πi

Ξ(µ, k)
κN+1

. (2.62)

Since we are dealing with an ideal gas, all the physics is in principle encoded in the spectrum of
the Hamiltonian Ĥ. This spectrum is defined by,

ρ̂|ϕn〉 = e−En |ϕn〉, n = 0, 1, . . . , (2.63)

or equivalently by the integral equation associated to the kernel (2.54),∫
ρ(x, x′)ϕn(x′)dx′ = e−Enϕn(x), n = 0, 1, . . . . (2.64)

It can be verified that this spectrum is indeed discrete and the energies are real. This is because,
as it can be easily checked, (2.54) defines a positive, Hilbert–Schmidt operator on L2(R), and
the above properties of the spectrum follow from standard results in the theory of such operators
(see, for example, [45]). The thermodynamics is completely determined by the spectrum: the
grand canonical partition function is given by the Fredholm determinant associated to the integral
operator (2.54),

Ξ(µ, k) = det (1 + κρ̂) =
∏
n≥0

(
1 + κe−En

)
. (2.65)

In terms of the density of eigenvalues

ρ(E) =
∑
n≥0

δ(E − En), (2.66)
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we also have the standard formula

J (µ, k) =
∫ ∞

0
dE ρ(E) log

(
1 + κe−E

)
. (2.67)

What can we learn from the ABJM partition function in the Fermi gas formalism? The first
thing we can do is to derive the strict large N limit of the free energy, including the correct
coefficient. To do this, we have to be more precise about the Hamiltonian of the theory, which
is defined implicitly by (2.56) and (2.54). Let us first write the density matrix (2.54) as

ρ̂ = e−
1
2
U(x̂)e−T (p̂)e−

1
2
U(x̂). (2.68)

In this equation, x̂, p̂ are canonically conjugate operators,

[x̂, p̂] = i~, (2.69)

and
~ = 2πk. (2.70)

Note that ~ is the inverse coupling constant of the gauge theory/string theory, therefore semi-
classical or WKB expansions in the Fermi gas correspond to strong coupling expansions in gauge
theory/string theory. Finally, the potential U(x) in (2.68) is given by

U(x) = log
(

2 cosh
x

2

)
, (2.71)

and the kinetic term T (p) is given by the same function,

T (p) = log
(

2 cosh
p

2

)
. (2.72)

Exercise 2.2. Show that, for the operator (2.68), we have

〈x′|ρ̂|x〉 =
1

2πk
1(

2 cosh x1
2

)1/2 1(
2 cosh x2

2

)1/2 1
2 cosh

(
x1−x2

2k

) . (2.73)

The resulting Hamiltonian is not standard. First of all, the kinetic term leads to an operator
involving an infinite number of derivatives (by expanding it around p = 0), and it should be
regarded as a difference operator, as we will see later. Second, the ordering of the operators in
(2.68) shows that the Hamiltonian we are dealing with is not the sum of the kinetic term plus the
potential, but it includes ~ corrections due to non-trivial commutators. This is for example what
happens when one considers quantum theories on the lattice: the standard Hamiltonian is only
recovered in the continuum limit, which sets the commutators to zero. All these complications
can be treated appropriately, and we will address some of them in this expository article, but let
us first try to understand what happens when N is large.

The potential in (2.71) is a confining one, and at large x it behaves linearly,

U(x) ∼ |x|
2
, |x| → ∞. (2.74)
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Figure 3: The Fermi surface (2.76) for ABJM theory in the q = x-p plane, for E = 4 (left) and E = 100
(right). When the energy is large, the Fermi surface approaches the polygon (2.77).

When the number of particles in the gas, N , is large, the typical energies are large, and we are in
the semiclassical regime. In that case, we can ignore the quantum corrections to the Hamiltonian
and take its classical limit

Hcl(x, p) = U(x) + T (p). (2.75)

Standard semiclassical considerations indicate that the number of particles N is given by the
area of the Fermi surface, defined by

Hcl(x, p) = E, (2.76)

divided by 2π~, the volume of an elementary cell. However, for large E, we can replace U(x) and
T (p) by their leading behaviors at large argument, so that the Fermi surface is well approximated
by the polygon,

|x|
2

+
|p|
2

= E. (2.77)

This can be seen in Fig. 3, where we show the Fermi surface computed from (2.76) for two values
of the energies, a moderate one and a large one. For the large one, the Fermi surface is very well
approximated by the polygon of (2.77). The area of this polygon is 8E2. Therefore, by using the
relation between the grand potential and the average number of particles,

∂J (µ, k)
∂µ

= 〈N(µ, k)〉 ≈ 8µ2

2π~
, (2.78)

we obtain immediately

J (µ, k) ≈ 2µ3

3π2k
. (2.79)

To compute the free energy, we note that, at large N , the contour integral (2.62) can be computed
by a saddle–point approximation, which leads to the standard Legendre transform,

F (N, k) ≈ J (µ∗, k)− µ∗N, (2.80)

where µ∗ is the function of N and k defined by (2.78), i.e.

µ∗ ≈
√

2
2
πk1/2N1/2. (2.81)
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In this way, we immediately recover the result (2.17) from (2.80). In particular, the scaling 3/2 is
a simple consequence from the analysis: it is the expected scaling for a Fermi gas in one dimension
with a linearly confining potential and an ultra-relativistic dispersion relation T (p) ∝ |p| at large
p. This is arguably the simplest derivation of the result (2.17), as it uses only elementary notions
in Statistical Mechanics. Note that in this derivation we have considered the M-theory regime
in which N is large and k is fixed, and we have focused on the strict large N limit considered
in [11] and reviewed in the last section. The main questions is now: can we use the Fermi gas
formulation to obtain explicit results for the corrections to the ABJM partition function? In the
next sections we will address this question.

2.3.2 The WKB expansion of the Fermi gas

In the Fermi gas approach, the physics of the partition function is encoded in a quantum ideal
gas. Although the gas is non-interacting, its one-particle Hamiltonian is complicated, and the
energy levels En in (2.63) are not known in closed form. What can we do in this situation?
As we have seen in (2.70), the parameter k corresponds to the Planck constant of the quantum
Fermi gas. Therefore, we can try a systematic development around k = 0, i.e. a semiclassical
WKB approximation. Such an approach should give a way of computing corrections to (2.79)
and (2.17). Of course, we are not a priori interested in the physics at small k, but rather at
finite k, and in particular at integer k, which corresponds to the non-perturbative definition of
the theory. However, the expansion at small k gives interesting clues about the problem and it
can be treated systematically.

There are two ways of working out the WKB expansion: we can work directly at the level
of the grand potential, or we can work at the level of the energy spectrum. Let us first consider
the problem at the level of the grand potential. It turns out that, in order to perform a system-
atic semiclassical expansion, the most useful approach is Wigner’s phase space formulation of
Quantum Mechanics (in fact, this formulation was originally introduced by Wigner in order to
understand the semiclassical expansion of thermodynamic quantities.) A detailed application of
this formalism to the ABJM Fermi gas can be found in [42, 46]. The main idea of the method is
to map quantum-mechanical operators to functions in classical phase space through the Wigner
transform. Under this map, the product of operators famously becomes the ? or Moyal product
(see for example [47] for a review, and [48] for an elegant summary with applications). This ap-
proach is particularly useful in view of the nature of our Hamiltonian Ĥ, which includes quantum
corrections. The Wigner transform of Ĥ has the structure

HW(x, p) = Hcl(x, p) +
∑
n≥1

~2nH
(n)
W (x, p), (2.82)

where Hcl(x, p) is the classical Hamiltonian introduced in (2.75). Proceeding in this way, we
obtain a systematic ~ expansion of all the quantities of the theory. The WKB expansion of the
grand potential reads,

JWKB(µ, k) =
∑
n≥0

Jn(µ)k2n−1. (2.83)

Note that this is principle an approximation to the full function J (µ, k), since it does not take into
account non-perturbative effects in ~. The functions Jn(µ) in this expansion can be in principle
computed in closed form, although their calculation becomes more and more cumbersome as n
grows. The leading term n = 0 is however relatively easy to compute [42]. We first notice that
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the traces (2.61) have a simple semiclassical limit,

Z` ≈
∫

dxdp
2π~

e−`Hcl(x,p), k → 0, (2.84)

which is just the classical average, with an appropriate measure which includes the volume of
the elementary quantum cell 2π~. By using the integral∫ ∞

−∞

dξ(
2 cosh ξ

2

)` =
Γ2(`/2)

Γ(`)
, (2.85)

we find

kZ` ≈
1

2π
Γ4(`/2)
Γ2(`)

, k → 0, (2.86)

and

J0(µ) = −
∞∑
`=1

(−κ)`

4π2

Γ4(`/2)
`Γ2(`)

. (2.87)

This expression is convenient when κ is small, i.e. for µ→ −∞. To make contact with the large
N limit, we need to consider the limit of large, positive chemical potential, µ → +∞. This can
be done by using a Mellin–Barnes integral, and one finds

J0(µ) =
2µ3

3π2
+
µ

3
+

2ζ(3)
π2

+ JM2
0 (µ), (2.88)

where

JM2
0 (µ) =

∞∑
`=1

(
a0,`µ

2 + b0,`µ+ c0,`

)
e−2`µ. (2.89)

The leading, cubic term in µ in (2.88) is the one we found in (2.79). The subleading term in µ
gives a correction of order N1/2 to the leading behavior (2.17). The function JM2

0 (µ) involves an
infinite series of exponentially small corrections in µ. Note that, although this result for J0(µ) is
semiclassical in k, it goes beyond the leading result at large N in (2.17). This is because it takes
into account the exact classical Fermi surface (2.76), rather than its polygonal approximation
(2.77). Therefore, we see that, already at this level, the Fermi gas approach makes it possible to
go beyond the strict large N limit.

Exercise 2.3. Consider the expression (2.87) for the semiclassical grand potential, and write it
as a Mellin–Barnes integral,

J0(κ) = − 1
4π2

∫
I

ds
2πi

Γ(−s)Γ(s/2)4

Γ(s)
κs, (2.90)

where the contour I runs parallel to the imaginary axis, see Fig. 4. It can be deformed so that
the integral encloses the poles of Γ(−s) at s = n, n = 1, · · · (in the clockwise direction). The
residues at these poles give back the infinite series in (2.87). We can however deform the contour
in the opposite direction, so that it encloses the poles at poles at

s = −2m, m = 0, 1, 2, · · · (2.91)
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Figure 4: The contour I in the complex s plane. By closing the contour to the right, we encircle the
poles at s = n, n ∈ Z>0. By closing the contour to the left, we encircle the poles at s = −2n, n ∈ Z≥0.

Show that

J0(κ) = − 1
4π2

∞∑
n=0

Ress=−2n

[
Γ(−s)Γ(s/2)4

Γ(s)
κs
]
. (2.92)

Show that the pole at s = 0 gives

2
3π2

µ3 +
1
3
µ+

2ζ(3)
π2

, (2.93)

which is precisely the leading part of (2.88) as µ → ∞. Compute the contribution of the other
poles and show that one finds a series of the form (2.89).

It is possible to go beyond the leading order of the WKB expansion of the grand potential
and compute the corrections appearing in (2.83). The function J1(µ) was also derived in [42]
and its large µ expansion has the following form,

J1(µ) =
µ

24
− 1

12
+O

(
µ2e−2µ

)
. (2.94)

Moreover, the following non-renormalization theorem can be proved [42]: for n ≥ 2, the n-th
order correction to the WKB expansion is given by a constant An (independent of µ), plus a
function which is exponentially suppressed as µ→∞, i.e.

Jn(µ) = An +O
(
µ2e−2µ

)
, n ≥ 2. (2.95)

The exponentially small terms appearing in the functions Jn(µ) with n ≥ 1 have the same
structure as for n = 0. We then conclude that, in the WKB approximation, i.e. as a power series
in k around k = 0, the grand potential has the structure

JWKB(µ, k) = J (p)(µ) + JM2(µ, k). (2.96)

The “perturbative” piece J (p)(µ) is given by

J (p)(µ) =
C(k)

3
µ3 +B(k)µ+A(k), (2.97)

In this equation, C(k) is given by

C(k) =
2
π2k

, (2.98)
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Figure 5: The contour C in the complex plane of the chemical potential.

as obtained already in (2.79). The coefficient B(k) is given by

B(k) =
1
3k

+
k

24
, (2.99)

where the first term comes from (2.88) and the second term comes from the WKB correction
(2.94). Finally, the function A(k) in (2.102) has a power series expansion in k, around k = 0, of
the form

A(k) =
∑
n≥0

Ank
2n−1, (2.100)

where
A0 =

2ζ(3)
π2

, A1 = − 1
12
, (2.101)

as one finds from (2.88) and (2.94). An exact expression for this function was proposed in [28]
and it was slightly simplified in [33] to the form,

A(k) =
2ζ(3)
π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

dx
x

ekx − 1
log(1− e−2x). (2.102)

The second term in the r.h.s. of (2.96) has the structure,

JM2(µ) =
∞∑
`=1

(
a`(k)µ2 + b`(k)µ+ c`(k)

)
e−2`µ, (2.103)

where the coefficients have the WKB expansion,

a`(k) =
∑
n≥0

an,`k
2n−1. (2.104)

Similar expansions hold for b`(k), c`(k).
We can now plug the result (2.96) in (2.62). In the µ-plane, this is an integral from −πi to

πi:

Z(N, k) =
1

2πi

∫ πi

−πi

dµ
2πi

eJ (µ,k)−Nµ. (2.105)
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If we neglect exponentially small corrections, we can deform the contour [−πi, πi] to the contour
C shown in Fig. 5. Therefore, we find that, up to these corrections,

Z(N, k) ≈ 1
2πi

∫
C

exp
(
J (p)(µ)− µN

)
dµ

=
1

2πi

∫
C

exp
[
C(k)

3
µ3 + (B(k)−N)µ+A(k)

]
dµ.

(2.106)

The above integral can be expressed in terms of the Airy function,

Z(N, k) ≈ eA(k)C−1/3(k)Ai
[
C−1/3(k) (N −B(k))

]
. (2.107)

This expression for the partition function was first obtained in [34], by resumming the results of
[8, 29]. It can now be expanded at large N and fixed k (i.e., in the M-theory regime). Let us
introduce the parameter

ζ = 32π2k (N −B(k)) , (2.108)

Then, we find for the free energy

F (N, k) ≈ − 1
384π2k

ζ3/2 +
1
6

log
[
π3k3

ζ3/2

]
+A(k) +

∞∑
n=1

dn+1π
2nknζ−3n/2, (2.109)

where the coefficients dn are just rational numbers,

d2 = −80
3
, d3 = 5120, d4 = −18104320

9
, d5 = 1184890880, · · · (2.110)

The expression (2.107) is very interesting. First of all, it is a result valid at all orders in the
1/N expansion and fixed k. It gives an M-theory resummation of the polynomial part of the
genus g free energies in (2.40). Moreover, if we assume that the parameter ζ gives the right
“renormalized” dictionary between the gauge theory data and the geometry, i.e., if(

L

`p

)6

= ζ, (2.111)

then (2.109) is the expected expansion for a free energy in a theory of quantum gravity in eleven
dimensions. Indeed, an `-loop term for a vacuum diagram in gravity in d dimensions goes like
(see for example [35, 36]) (

`p
L

)(d−2)(`−1)

, (2.112)

which for d = 11 agrees with the expansion parameter ζ−3/2 appearing in (2.109). The log term
in (2.109) should correspond to a one-loop correction in supergravity, and this was checked by a
direct computation in [37], providing in this way a test of the AdS/CFT correspondence beyond
the planar limit (in type IIA, this correction comes from the genus one free energy).

We see that the Fermi gas approach leads to a powerful all-orders result in the M-theory
regime. In this approach, such a result just requires computing the grand potential at next-
to-leading order in the WKB expansion. Although this is a one-loop result, it is exact in k if
we neglect exponentially small corrections in µ. Therefore, a one-loop calculation in the grand-
canonical ensemble leads to an all-orders result in the canonical ensemble.
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Of particular interest are the exponentially small terms in µ in (2.103). What is their
meaning? By taking into account that, at large N , µ is given in (2.81), one finds that these
corrections to JWKB(µ, k) lead to corrections in Z(N, k) precisely of the form (2.49). We recall
that these were found originally in the matrix model as non-perturbative effects in the ’t Hooft
expansion. We conclude that the exponentially small corrections in µ in (2.89), which in the Fermi
gas approach appear already in the semi-classical approximation, correspond to non-perturbative
corrections to the genus expansion, and should be identified as membrane instanton contributions.
One important question is whether we can determine the coefficients appearing in (2.103) as exact
functions of k. It turns out that this can be done, as first noted in [50] (and [49]), by relating
the spectral problem of the Fermi gas to the quantization of the mirror curve of local P1 × P1

performed in [52]. The outcome of this analysis is that the coefficients in (2.103) are completely
determined by the refined topological string on local P1×P1. This gives then the exact membrane
instanton contributions, as functions of k. For example, one finds [56]:

a1(k) = − 4
π2k

cos
(
πk

2

)
,

b1(k) =
2
π

cos2

(
πk

2

)
csc
(
πk

2

)
,

c1(k) =
[
− 2

3k
+

5k
12

+
k

2
csc2

(
πk

2

)
+

1
π

cot
(
πk

2

)]
cos
(
πk

2

)
,

(2.113)

and so on. Note that the coefficients b1(k) and c1(k) have poles at finite k. The meaning of these
poles will be discussed shortly.

2.3.3 A conjecture for the exact grand potential

So far we have obtained two differences pieces of information on the matrix model of ABJM
theory: on the one hand, the full ’t Hooft expansion of the partition function, and on the other
hand, the full WKB expansion of the grand potential. Can we put these two pieces of information
together? It turns out that the ’t Hooft expansion can be incorporated in the grand potential, but
this requires a subtle handling of the relationship between the canonical and the grand-canonical
ensemble. In the standard thermodynamic relationship, the canonical partition function is given
by the integral (2.105). As we have seen in the derivation of (2.106), it is very convenient to
extend the integration contour to infinity, along the Airy contour C shown in Fig. 5. However, this
cannot be done without changing the value of the integral: As already noted in [42], if we extend
the contour in (2.105) to infinity, we will change the partition function by non-perturbative terms
of order

∼ e−µ/k. (2.114)

If we want to understand the structure of non-perturbative effects in the ABJM partition function,
we have to handle this issue with care. A clever way of proceeding was found in [56]. Following
[56], we will introduce an auxiliary object, which we will call the modified grand potential, and
we will denote it by J(µ, k). The modified grand potential is defined by the equality

Z(N, k) =
∫
C

dµ
2πi

eJ(µ,k)−Nµ, (2.115)
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where C is the Airy contour shown in Fig. 5. As it was noticed in [56], if we know J(µ, k), we
can recover the conventional grand potential J (µ, k) by the relation

eJ (µ,k) =
∑
n∈Z

eJ(µ+2πin,k). (2.116)

Indeed, if we plug this in (2.105), we can use the sum over n to extend the integration region
from [−πi, πi] to the full imaginary axis. If we then deform the contour to C, we obtain (2.115).
Note that the difference between J(µ, k) and J (µ, k) involves non-perturbative terms of the
form (2.114), and it is not seen in a perturbative calculation around k = 0. Therefore the WKB
calculation of the full grand potential still gives the perturbative expansion of the modified grand
potential, and we have

J(µ, k) = JWKB(µ, k) +O
(

e−µ/k
)
. (2.117)

Let us now try to understand how to incorporate the information of the ’t Hooft expansion
in the grand potential. It is much better to use the modified grand potential, due to the fact
that the relationship (2.115) involves an integration going to infinity. Let us denote the ’t Hooft
contribution to the modified grand potential by J ’t Hooft(µ, k). Since (2.115) is essentially a
Laplace transform, we can easily relate J ’t Hooft(µ, k) to the ’t Hooft expansion of the standard
free energy: we simple calculate this Laplace transform by a saddle point calculation as k →∞.
In this way we find the expansion,

J ’t Hooft(µ, k) =
∞∑
g=0

k2−2gJg

(µ
k

)
, (2.118)

which contains exactly the same information than the ’t Hooft expansion of the canonical par-
tition function. As usual in the saddle-point expansion, the leading terms, which are the genus
zero pieces J0 and −F0/(4π2), are related by a Legendre transform: we first solve for the ’t Hooft
parameter λ, in terms of µ/k, through the equation

µ

k
=

1
4π2

dF0

dλ
, (2.119)

and then we have,

J0

(µ
k

)
= − 1

4π2

(
F0(λ)− λdF0

dλ

)
. (2.120)

Similarly, the genus one grand potential J1 is related to the genus one free energy F1 through
the equation

J1

(µ
k

)
= F1

(µ
k

)
+

1
2

log
(

2πk2∂2
µJ0

(µ
k

))
, (2.121)

which takes into account the one-loop correction to the saddle-point. Since the integration
contour in (2.115) goes to infinity, doing the saddle-point expansion with Gaussian integrals is
fully justified and no error terms of the form (2.114) are introduced in this way. This is clearly one
of the advantages of using the modified grand potential, instead of the standard grand potential.

We should recall now that the genus g free energies Fg are given by the topological string free
energies of local P1×P1, in the so-called orbifold frame. It turns out that the Laplace transform
which takes us to the grand potential has an interpretation in topological string theory: as shown
in [42] by using the general theory of [57], it is the transformation that takes us from the orbifold
frame to the so-called large radius frame. Therefore, we can interpret J ’t Hooft(µ, k) as the total
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free energy of the topological string on local P1 × P1 at large radius. This free energy has a
polynomial piece, which reproduces precisely the perturbative piece (2.97), and then an infinite
series of corrections of the form,

e−4µ/k. (2.122)

These corrections, after the inverse Legendre transform, give back the worldsheet instanton
corrections that we found in the ’t Hooft expansion of the free energy. Notice however that, from
the point of view of the Fermi gas approach, these are non-perturbative in ~, and correspond to
instanton-type corrections in the spectral problem (2.63) [42, 49].

The large radius free energy of local P1 × P1 is a well studied quantity (in fact, it has been
much more studied than the orbifold free energies). In particular, there is a surprising result of
Gopakumar and Vafa [58], valid for any CY manifold, which makes it possible to resum the genus
expansion in (2.118). In our case, this means that we can resum the genus expansion, order by
order in exp(−4µ/k) [56]. The result can be written as,

J
′tHooft(µ, k) =

C(k)
3

µ3 +B(k)µ+A(k) + JWS(µ, k), (2.123)

where
JWS(µ, k) =

∑
m≥1

(−1)mdm(k)e−
4mµ
k , (2.124)

and the coefficients dm(k) are given by

dm(k) =
∑
g≥0

∑
m=wd

ndg

(
2 sin

2πw
k

)2g−2

. (2.125)

In this equation, we sum over the positive integers w, d satisfying the constraint wd = m. The
quantities ndg are integer numbers called Gopakumar–Vafa (GV) invariants. One should note that,
for any given d, the ngd are different from zero only for a finite number of g, therefore (2.125)
is well-defined as a formal power series in exp(−4µ/k). The GV invariants can be computed
by various techniques, and in the case of non-compact CY manifolds, there are algorithms to
determine them for all possible values of d and g (like for example the theory of the topological
vertex [59].) It is important to note that it is only when we use the modified grand potential that
we obtain the results (2.123), (2.124) for the ’t Hooft expansion. If we use the standard grand
potential, there are additional contributions coming from the “images” of the modified grand
potential in the sum (2.116). Note also that the resummation of (2.118) leads to a resummation
of the genus g free energies Fg(λ), i.e. the terms of the same order in the expansion parameters

exp
(
−2π

√
λ̂
)
,

1√
λ

(2.126)

can be resummed to all genera.
We have now the most important pieces of the total grand potential, JWS(µ, k) and JM2(µ, k).

Note that, if our expansion parameter is 1/k, as in the ’t Hooft expansion, JWS(µ, k) is a
resummation of a perturbative series, while JM2(µ, k) contains non-perturbative information.
Conversely, if our expansion parameter is k, JM2(µ, k) is the resummation of a perturbative
expansion, while JWS(µ, k) is non-perturbative. One would be tempted to conclude that the
total, modified grand potential is given by

J (p)(µ, k) + JWS(µ, k) + JM2(µ, k). (2.127)
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However, it can be seen that this is not the case: there is a “mixing” of the contributions, which
was found experimentally in [60]. In order to take into account this mixing, one introduces an
“effective” chemical potential µeff through the equation,

µeff = µ+
1

C(k)

∑
`≥1

a`(k)e−2`mu. (2.128)

Note that, from the point of view of the ’t Hooft expansion, the corrections appearing here
are again non-perturbative. Then, the final proposal for the modified grand potential, putting
together all the pieces from [7, 8, 42, 55, 56, 60, 50], is the following:

J(µ, k) = J (p)(µ, k) + JWS(µeff , k) + JM2(µ, k). (2.129)

Thus, the argument in the worldsheet instanton piece has to be corrected by using the effective
chemical potential. When the function (2.129) is expanded at large µ, one finds exponentially
small corrections in µ of the form,

exp
{
−
(

4n
k

+ 2`
)
µ

}
. (2.130)

In [55] these mixed terms were interpreted as bound states of worldsheet instantons and mem-
brane instantons in the M-theory dual. The appearance of the “effective” chemical potential is
relatively easy to understand from the point of view of instanton calculus: as it was pointed out
in [49], a quantum-mechanical instanton calculation in the Fermi gas would involve a “corrected”
instanton action, given essentially by the A-quantum period. This is precisely what one has in
(2.128).

One of the most important properties of the proposal (2.129) is the following. It is easy
to see, by looking at the explicit expressions (2.124) and (2.125), that JWS(µ, k) is singular for
any rational k. This is a puzzling result, since it implies that the genus resummation of the free
energies Fg is also singular for infinitely many values of k, including the integer values for which
the theory is in principle well-defined non-perturbatively. It is however clear that this divergence
is an artifact of the genus expansion, since the original matrix integral (2.21), as well as its Fermi
gas form (2.55), are perfectly well-defined for any real value of k. What is going on?

It was first proposed in [56] that the divergences in the resummation of the genus expansion
of JWS(µ, k) should be cured by other terms in the modified grand potential, in such a way that
the total result is finite. It turns out that JM2(µ, k) is also singular, as we have seen in (2.113).
It turns out that its singularities cancel those of JWS(µ, k) in such a way that the total J(µ, k) is
finite. This remarkable property of J(µ, k) was called in [55] the HMO cancellation mechanism.
Originally, this mechanism was used as a way to understand the structure of JM2(µ, k) at finite
k. In [50] it was shown that this cancellation is a consequence of the structure of the the modified
grand potential, and it can be proved by using the underlying geometric structure of JM2(µ, k)
and JWS(µ, k).

The HMO cancellation mechanism is conceptually important for a deeper understanding of
the non-perturbative structure of M-theory. In the M-theory expansion, we have to resum the
worldsheet instanton contributions to the free energy at fixed k and large N , which is precisely
what the Gopakumar–Vafa representation (2.124) does for us. However, when one does that,
the resulting expression is singular and displays an infinite number of poles. We obtain a finite
result only when the contribution of membrane instantons has been added. This shows very
clearly that a theory based solely on fundamental strings is fundamentally incomplete, and that
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additional extended objects are needed in M-theory. Of course, this has been clear since the
advent of M-theory, but the above calculation shows that the contribution of membranes is not
just a correction to the contribution of fundamental strings; it is crucial to remove the poles and
to make the amplitude well-defined. Conversely, a theory based only on membrane instantons
will be also incomplete and will require fundamental strings in order to make sense.

The result (2.129) is the current proposal for the grand potential of the ABJM matrix model.
It is a remarkable exact result. From the point of view of gauge theory, it encodes the full 1/N
expansion, at all genera, as well as non-perturbative corrections at large N (due presumably
to some form of large N instanton). From the point of view of M-theory, it incorporates both
membrane instantons and worldsheet instantons. One interesting application of (2.129) is the
determination of the exact spectrum for the spectral problem (2.63) [61]. This solves, to a large
extent, the problem of determining the exact properties of the ABJM Fermi gas.

The result (2.129) is relatively complicated, since it involves an enormous amount of infor-
mation, including the all-genus Gopakumar–Vafa invariants of local P1 × P1, and the quantum
periods of this manifold to all orders. However, there are certain cases in which (2.129) can be
simplified, as first noted in [64]. These are precisely the cases in which k = 1 or k = 2 and ABJM
theory has enhanced N = 8 supersymmetry. In these cases, one can write an explicit generating
functional for the partition functions Z(N, k).

3. Generalizations

3.1 The Fermi gas approach to Chern–Simons–matter theories

Let us briefly mention some generalizations of the Fermi gas approach. The N = 3 models where
it can be applied more successfully are the necklace quiver gauge theories constructed in [65, 66].
These theories are given by a Chern–Simons quiver with gauge groups and levels,

U(N)k1 × U(N)k2 × · · ·U(N)kr . (3.1)

Each node is labelled with the letter a = 1, · · · , r. There are bifundamental chiral superfields
Aaa+1, Baa−1 connecting adjacent nodes, and in addition there can be Nfa matter superfields
(Qa, Q̃a) in each node, in the fundamental representation. We will write

ka = nak, (3.2)

and we will assume that
r∑

a=1

na = 0. (3.3)

The matrix model computing the S3 partition function of such a necklace quiver gauge theory is
given by

Z (N,na, Nfa , k) =
1

(N !)r

∫ ∏
a,i

dλa,i
2π

exp
[

inak
4π λ

2
a,i

]
(

2 cosh λa,i
2

)Nfa r∏
a=1

∏
i<j

[
2 sinh

(
λa,i−λa,j

2

)]2

∏
i,j 2 cosh

(
λa,i−λa+1,j

2

) . (3.4)

To construct the corresponding Fermi gas, we define a kernel corresponding to a pair of connected
nodes (a, b) by,

Kab(x′, x) =
1

2πk

exp
{

inbx
2

4πk

}
2 cosh

(
x′−x

2k

) [2 cosh
x

2k

]−Nfb
, (3.5)
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where we set x = λ/k. If we use the Cauchy identity (2.52), it is easy to see that we can write
the grand canonical partition function for this theory in the form (2.65), where now [67]

ρ̂ = K̂r1K̂12 · · · K̂r−1,r (3.6)

is the product of the kernels (3.5) around the quiver. Therefore, we still have a Fermi gas, albeit
the Hamiltonian is quite complicated, and we can apply the same techniques that were used for
ABJM theory in the previous section. For example, it is possible to analyze it in detail in the
thermodynamic limit [42]. One can show that, at large µ, the grand potential of the theory is
still of the form

J (µ, k) ≈ Cµ3

3
+Bµ, µ� 1. (3.7)

The coefficient C for a general quiver is also determined, as in ABJM theory, by the volume of
the Fermi surface at large energy. This limit is a polygon and one finds,

π2C = vol

(x, y) :
r∑
j=1

∣∣∣∣∣y −
(
j−1∑
i=1

ki

)
x

∣∣∣∣∣+

 r∑
j=1

Nfj

 |x| < 1

 , (3.8)

which can be computed in closed form [68]. The B coefficient can be computed in a case by case
basis, although no general formula is known for all N = 3 quivers (a general formula is however
known for a class of special quivers which preserve N = 4 supersymmetry, see [69].)

The result (3.7) has two important consequences. First, the free energy at large N has the
behavior

F (N) ≈ −2
3
C−1/2N3/2. (3.9)

It can be seen [42], by using the results of [68], that this agrees with the prediction from the
M-theory dual (this was also verified in [11, 68]). Second, by using the same techniques as in
ABJM theory, we conclude that

Z(N) ≈ C−1/3(k)Ai
[
C−1/3 (N −B)

]
, (3.10)

i.e. the leading Airy behavior of the M-theory expansion of the partition function is a universal
feature of N = 3 Chern–Simons–matter theories. Fermi gas formulation also exist for N = 3
theories with other gauge groups [41], and we have again the Airy behavior (3.10). This is
arguably one of the most important results obtained from the Fermi gas approach, and it has
been conjectured in [42] that any Chern–Simons–matter theory which displays the N3/2 behavior
in its strict large N limit will have the leading, perturbative behavior (3.10) for its perturbative
1/N expansion. The subleading, universal logarithmic prediction for Z(N) implied by (3.10) is
also tested by the calculation of [37], and it has been argued that the full Airy function can be
obtained from a localization computation in AdS supergravity [70].

Of course, one of the most important advantages of the Fermi gas approach is that it makes
it possible to calculate non-perturbative corrections to the ’t Hooft expansion. However, for
theories other than ABJM theory, this has been in general difficult. An exception is again ABJ
theory. The Fermi gas formulation of this theory requires some work, but it has been achieved in
the papers [71, 72] (an alternative approach was proposed in [73]). A conjectural formula for the
modified grand potential of this theory has been finally proposed in [73, 74]. It has exactly the
same properties that we found in ABJM theory: poles appear in the resummation of the genus
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expansion, and they are cancelled by non-perturbative contributions (presumably coming from
membrane instantons), just as in the HMO mechanism of [56].

For other theories which admit a Fermi gas description, the computation of non-perturbative
contributions at the level of detail that was done in ABJ(M) theory remains largely an open
problem. However, all the existing results indicate that generically the ’t Hooft expansion of
these theories is radically insufficient: not only there are non-perturbative corrections to it, but
in addition the resummation of the genus expansion has poles which have to be cured by these
non-perturbative effects through a generalization of the HMO mechanism. This pattern has been
observed in other models [33, 69].

3.2 Topological strings

One of the key ingredients for the exact determination of the grand potential of ABJM theory has
been the relationship to topological string theory. Conversely, one might hope that the structures
emerging in the context of Chern–Simons–matter theories are relevant for a better understanding
of topological strings. In particular, as already pointed out in [75], the results of [42] suggest a
Fermi gas approach to topological string theory on toric CY manifolds which has been pursued
in [50, 49, 76]. When the CY X is given by the anti-canonical bundle

O(−KS)→ S (3.11)

over a del Pezzo surface S, a detailed proposal has been presented in [63] and further developed
in [77, 78]. The proposal of [63] gives a non-perturbative definition of (closed) topological string
theory on X in terms of the operator ρ̂S obtained by quantizing its mirror curve. The resulting
picture is structurally very similar to the theory of the ABJM partition function reviewed in this
article. The operator ρ̂S plays the rôle of the canonical density matrix of the Fermi gas (2.54).
For example, in the case of local P2, the relevant operator is

ρ̂P2 =
(

ex̂ + ep̂ + e−x̂−p̂
)−1

, (3.12)

where x̂, p̂ are canonically conjugate Heisenberg operators, as in (2.69). In contrast to what
happens in ABJM theory, the kernel of this operator is not elementary. However, it can be
calculated explicitly in terms of Faddeev’s quantum dilogarithm [77].

We can now consider a Fermi gas of N particles whose canonical density matrix is given by
ρP2 . Its canonical partition function Z(N, ~) has a matrix model representation of the form

ZS(N, ~) =
1
N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

∏
i

ρS(xi, xσ(i)) =
1
N !

∫
dNx det (ρS(xi, xj)) . (3.13)

The 1/N expansion of this matrix model, in the ’t Hooft limit

N →∞, N

~
= λ = fixed, (3.14)

gives the all-genus topological string free energies,

logZ(N, ~) =
∑
g≥0

FSg (λ)~2−2g, (3.15)

where λ parametrizes the moduli space of the local del Pezzo. Therefore, the genus expansion
of the topological string on X is realized as the asymptotic expansion of a well-defined quantity,
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ZS(N, ~). In addition, there are non-perturbative corrections to this expansion which are cap-
tured by the refined topological string free energy of the CY manifold, in the NS limit. In the
case of local P2, the matrix model takes the form,

ZP2(N, ~) =
1
N !

∫
RN

dNu
(2π)N

N∏
i=1

e−VP2 (ui,~)

∏
i<j 4 sinh

(
ui−uj

2

)2

∏
i,j 2 cosh

(
ui−uj

2 + iπ
6

) , (3.16)

where

VP2(u, ~) =
~u
2π

+ log

[
Φb

(
bu
2π + ib

3

)
Φb

(
bu
2π − ib

3

)] . (3.17)

In this equation, Φb(x) is Faddeev’s quantum dilogarithm (where we use the conventions of
[77, 78]) and b is related to ~ by

b2 =
3~
2π
. (3.18)

The function VP2(u, ~) appearing here is relatively complicated. However, it is completely deter-
mined by the operator (3.12). It has an asymptotic expansion at large ~ which can be used to
compute the asymptotic expansion of the matrix integral (3.16) in the ’t Hooft regime (2.14), as
explained in [78]. In fact, this matrix integral is structurally very similar to the generalizations
of the O(2) matrix model considered in [79], and might be exactly solvable in the planar limit.
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