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What is category theory? As everyone knows, it is the theory of general abstract 
nonsense. Unfortunately, most people believe that this statement was meant to 
mock category theory. In fact, it was uttered by Norman Steenrod, who took 
category theory very seriously early on, since it allowed him to solve quickly one 
of the problems he had been struggling with for some time, namely to find a proper 
axiomatic treatment of homology theory.  

Steenrod’s statement illustrates perfectly the difficulty one faces in answering 
the question ‘what is category theory?’. It would be nice if one could answer that 
question in the same way that one can answer the question ‘what is number 
theory?’ or ‘what is topology?’. In the latter cases, the answers come immediately: 
number theory is the study of properties of natural numbers; topology is the study 
of invariant properties of spaces under continuous transformations or deformations. 
Some reasonably concrete intuitions underlie these fields: everybody knows what 
the natural numbers are (although knowing what the relevant properties are, is 
another matter) and everyone has some informal idea of what a space is. But the 
case of category theory is different, as are all cases of algebraic structures, e.g. 
monoids, groups, rings, fields, algebras, etc. Algebra has not attracted the attention 
of philosophers of mathematics lately, at least not as much as numbers, sets or even 
the concept of space. This is in a way a shame since algebra has certainly become 
one of the key components of twentieth century mathematics. A decent philosophy 
of algebra is still awaiting a proper development and I believe that it would be in 
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this context that the foregoing question about category theory could find a 
reasonably satisfactory answer. 

One of the problems is that the objects dealt with have an ambiguous status. 
The easy answer  “category theory is the theory of categories” does not help much. 
For it does not say what category theory is, what categories are for and why they 
would be of any interest to mathematicians, logicians, computer scientists, 
philosophers, cognitive scientists, mathematical physicists and even theoretical 
biologists. An analogy with group theory or, better, the theory of Lie groups, is in 
order and should allow us to see more clearly the nature of the problem we are 
facing. It is extraordinarily easy to define groups but it is another matter to 
understand what groups are about or for that matter what Lie groups are about. 
What one has to grasp is their roles within mathematics and related disciplines. 
Groups and Lie groups are structures at the core of mathematics itself (with the 
bonus of occupying a central role in the applications of mathematics to other 
sciences, e.g. physics, chemistry and biology). Notice that I am talking of functions 
or roles in the plural, a typical situation for algebraic structures. I believe that the 
same is true of categories. Furthermore, when categories were introduced, only 
certain roles were foreseen by mathematicians at the time. In fact, categories were 
introduced with certain specific functions in mind. The concept had a certain form, 
given by the axioms of the original theory, precisely to capture these roles. Some 
creative mathematicians then saw that this form, perhaps slightly modified, could 
serve other original functions and these led to the modification and introduction of 
new forms associated with the theory. This interplay is still going on as I am 
writing this essay.  

My claim, thus, is that to understand what category theory is, and I believe 
that this claim could be made and should be made for any algebraic structure, one 
has to understand how a specific algebraic form is introduced for a specific usage 
in a given context and how this usage leads, via analogies, abstractions and 
generalizations, to the introduction of new contexts, new usages and new forms, 
the latter having sometimes an impact on our understanding of the original form. 
Thus, I believe that it is not possible to understand what category theory is without 
understanding what it allows us to do, and the latter, in turn, cannot be understood 
without understanding the form used, i.e. the definition of a category, in that 
specific context. It is important to understand that, as one of the elements changes, 
the others are forced to change accordingly. These changes might sometimes take 
longer than might be expected and in certain circumstances they depend on social 
or cognitive constraints. Thus, as the context changes, the form and the usage 
might change accordingly, although from one context to the next, it is easy to see 
how the various forms are connected (and usually this connection becomes a 
precise mathematical statement or theory). In other cases, it is the usage that 
changes, bringing with it a change in the context and the form.  

I will concentrate here on the first twenty-five years of the history of category 
theory, for I believe that it is during these years that the most important shifts 
occurred. I claim that during the first fifteen years approximately, categories, 
functors and natural transformations, together with the language associated with 
these notions, had heuristic roles. These roles were surely important and deserve to 
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be analyzed, understood and clarified, even from a philosophical point of view, but 
they do not cover what I take to be the most important roles of category theory. For 
it is precisely what happened historically: category theory really started only after 
the discovery and use of Abelian categories, on the one hand and adjoint functors, 
on the other hand. These discoveries were made approximately at the same time, 
namely in 1955 and 1956. It took another five to six years before the community 
could measure the extent of the changes these concepts brought about. It is 
approximately between 1963 and 1970 that category theory, as a genuine theory, 
arose and acquired a status that is still not clear to many mathematicians, logicians 
and philosophers. I will thus try to to make these changes as clear as possible by 
looking carefully at the work done by one of the main proponents of these changes, 
namely Bill Lawvere. Although progress since then has been steady and wide, the 
main philosophical features of the theory are, I believe, still the same. I should 
point out, however, that we might be on the verge of another important conceptual 
shift, this time coming from work done on what are called weak higher-
dimensional categories. Be that as it may, it is clear that even a new shift will only 
confirm the main point, namely that category theory is indeed general abstract 
nonsense and that it is precisely because of that that it is so important both 
mathematically and philosophically. 

1  Introducing categories: the context, the form  
and the usage 

The context 
Category theory made its official public appearance in 1945 in the paper entitled 
« General Theory of Natural Equivalences » written Samuel Eilenberg, a topologist 
then at the University of Michigan, and Saunders Mac Lane, an algebraist at 
Harvard. This paper, qualified by Mac Lane as being “off beat” and “far out” (Mac 
Lane 2002, 130) for that period, was written foremost with the goal of providing a 
totally general framework for a concept that was essential in their work but that 
also seemed to deserve a general and autonomous treatment: it is the concept of 
natural transformation. As Mac Lane has emphasized many times, functors were 
created to define natural transformations and categories to define functors. 

Natural transformations showed up in Eilenberg and Mac Lane very first 
collaboration in 1942. In the late nineteen thirties, algebraic topology was slowly 
but surely taking shape: although cohomology and homotopy groups as well as 
some homology theories had been defined a few years earlier, cohomology 
operations and crucial developments connecting these various notions were still to 
be made.  

Eilenberg was interested in understanding and computing various homology, 
cohomology and homotopy groups and Mac Lane was interested in understanding 
and computing group extensions. At first, these two topics seem to be unrelated. 
Group extensions belong to class field theory, a part of algebraic number theory. 
Homology, cohomology and homotopy groups are constructed from topological 
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spaces and are aimed at translating topological information into algebraic, i.e. 
computable, data. Their function is to lead to the classification of topological 
spaces under continuous deformations.  

While Mac Lane was visiting the University of Michigan to give a series of 
lectures on group extensions, Eilenberg observed the surprising fact that Mac 
Lane’s calculations on a specific case of a group extension yielded exactly the 
same result as Steenrod’s calculation of the homology of the solenoid, an important 
test case in topology. Eilenberg and Mac Lane’s long and extraordinarily fruitful 
collaboration – 14 years and about 26 papers – resulted from their attempt at 
getting at the bottom of this unexpected coincidence. As Mac Lane has recounted 
many times – see for instance Mac Lane 1976, 1989, 1996, 2002 –, the basic fact 
explaining this coincidence was what is now called the “universal coefficient 
theorem”, that is the existence of a very useful short exact sequence connecting the 
integral homology groups H n (X )  or ( , )nH X Z  of a space X  with the cohomology 
groups H n (X,G)  of the same space with coefficients in an abelian group G . The 
short exact sequence is now written as follows: 

 
1

10 Ext ( ( ), ) ( , ) Hom( ( ), ) 0n
n nH X G H X G H X G−→ → → →] . 

 
The fact that the group extension 1

1Ext ( ( ), )nH X G−] , whose precise definition is 
not necessary, shows up in the sequence, as the kernel of the homomorphism 
H n (X,G)→ Hom(Hn(X),G) , explains its topological use. But Eilenberg and Mac 
Lane had to investigate the behavior of the universal coefficient theorem with 
respect to continuous maps f : X → Y . This means that one has to consider 
diagrams like the following: 

 
1

1

1
1
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and prove that the vertical homomorphisms make the various squares commute for 
any continuous mapping f : X →Y . Thus, there are two issues here: 1. How do the 
vertical arrows behave when one considers a mapping f : X →Y , i.e. do they 
always exist? and 2. How do the horizontal mappings behave with respect to these 
vertical mappings, i.e. if they exist, do the squares commute? The first question 
leads to the notion of a functor and the second to the notion of natural 
transformation. Notice that it is the latter here that does the work Eilenberg and 
Mac Lane were interested in, but it had to do it with respect to the vertical 
mappings for it to be of any value. Thus, one has to define what a functor is first. 
This is what Eilenberg and Mac Lane did in 1942 in a short note for functors 
between groups and in which categories are not defined. In the same paper, they 
restrict themselves to natural isomorphisms between functors. They were however 
aware that these concepts were entirely general and could be applied to any 
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mathematical concept for which a notion of homomorphism was well defined. But 
for the general definition to be given, an axiomatic approach was required and this 
is where categories had to come in. Functors were thought of as pairs of functions 
and these functions had to have a domain and a codomain with completely general 
properties adequate for the general definition of functor to be written: the concept 
of category was tailored for that purpose. They announced in 1942 that they would 
present this general axiomatic approach in a subsequent paper which appeared in 
1945 under the name “General Theory of Natural Equivalences” and which, as 
reported by Mac Lane 2002, Eilenberg believed would be the only paper needed for 
category theory. 

The form 
The 1945 paper is interesting and revealing for what it contains and what it does 
not contain. Let us start with Eilenberg and Mac Lane’s definitions of category, 
functor and natural transformation, as they are given in the original paper (but with 
a different notation).  

A category C  is an aggregate of abstract elements X , called the objects of 
the category, and abstract elements f , called mappings of the category. Certain 
pairs of mappings f ,g  of C  determine uniquely a product mapping gf , satisfying 
the axioms C1, C2, C3 below. Corresponding to each object X  of C , there is a 
unique mapping, denoted by 1X  satisfying the axioms C4 and C5. The axioms are: 
C1. The triple product h(gf )  is defined if and only if (hg) f  is defined. When either 
is defined, the associative law 

 
h(gf ) = (hg) f  

 
holds. This triple product will be written as hgf . 
C2. The triple product hgf  is defined whenever both products hg  and gf  are 
defined. 
A mapping 1  of C  will be called an identity of C  if and only if the existence of 
any product 1 f  and g1  implies that 1 f = f  and g1 = g . 
C3. For each mapping f  of C  there is at least one identity 1r  such that f1r  is 
defined, and at least one identity 1l  such that 1l g  is defined. 
C4. The mapping 1X  corresponding to each object X  is an identity. 
C5. For each identity 1  of C  there is a unique object X  of C  such that 1X = 1. 

The last two axioms “assert that the rule X → 1X  provides a one-to-one 
correspondence between the set of all objects of the category and the set of all its 
identities. It is thus clear that the objects play a secondary role, and could be 
entirely omitted from the definition of a category. However, the manipulation of 
the applications would be slightly less convenient were this done.” (Eilenberg & 
Mac Lane, 1945, 238) Thus, from a theoretical point of view, a category is 
determined by its mappings, but from a practical point of view, it is convenient to 
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distinguish the objects from the mappings. Eilenberg and Mac Lane then state as a 
lemma that each mapping has a unique domain (source) and a unique codomain 
(target or range) and write f : X → Y . 

Eilenberg and Mac Lane defined a category in a purely algebraic fashion, as 
an abstract structure satisfying certain identities. In particular, it is immediate that 
if a category C  has a unique object, then it is the same as a monoid, another 
algebraic structure. Thus, the concept of monoid is subsumed under the concept of 
category.  

Eilenberg and Mac Lane then proceed to define equivalences in a category, 
nowadays called isomorphisms, thus: a mapping f  is an isomorphism if it has an 
inverse, i.e. if there is a mapping g  such that gf  and fg  are defined and are 
identities. Two objects X1  and X2  are said to be isomorphic if there is an 
isomorphism between them. 

Eilenberg and Mac Lane gave four basic examples of categories: the category 
 Sof sets with functions between them, the category X  of topological spaces with 
continuous functions, the category  G of topological groups with continuous 
homomorphisms and the category  B  of Banach spaces with linear transformations 
with norm at most 1. This is a surprisingly short list of examples. They give more 
examples by defining the notion of a subcategory in the obvious fashion. Thus, 
they point out that given a category C , the subcategory composed of the same 
objects as C  but with isomorphisms as mappings is a category, nowadays called a 
groupoid. However, they do not make an explicit connection to the latter concept. 
The category of finite sets is also mentioned as well as other subcategories of the 
category of sets, e.g. for a fixed cardinal k , there is a category of all sets of power 
less than k  together with all the mappings. Another way to form subcategories is 
by choosing different mappings. Thus, by restricting the mappings between sets to 
be onto or injective, one obtains different subcategories of sets. Similarly, if one 
restricts the continuous maps to open maps between topological spaces, then one 
obtains a different subcategory of topological spaces. In §11 of their paper, 
Eilenberg and Mac Lane observe that any group G  can be thought of as a category: 
it has only one object and its mappings are the elements of the group. They also 
point out in §20 that any preorder P  can be viewed as a category. But these two 
last examples are not given immediately after the definition of a category, although 
they show that the concepts of group and preorder are also subsumed under the 
concept of category and that morphisms need not be structure-preserving functions. 
Whether there is any conceptual gain by considering a group G  or a preorder P  as 
a category is a different matter. While it clearly indicates that the concept of 
category is extremely general and that it unifies various fundamental mathematical 
notions — a feature that might certainly attract the attention of a philosopher — it 
does not by itself show that the concept is fruitful or lead to any new interesting 
mathematics which would be a generalization of group theory or the theory of 
ordered sets.  
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Eilenberg and Mac Lane defined functors in two arguments, noting that the 
generalization to n arguments is immediate. We will restrict ourselves to functors 
in one argument, for they are simpler and just as important. Here is their definition. 

A functor F  between categories C  and D  is a pair of functions, an object-
function which associates to each object X  of C  and object Z = F(X)  in D  and a 
mapping function which associates to each mapping f  of C  a mapping h = F( f ) , 
such that  

1. F(1X ) = 1F ( X )
; 

2. F(gf ) = F(g)F( f ). 
Such a functor is said to be covariant. Whenever a functor satisfies the equality 

2o. F(gf ) = F( f )F(g). 
instead of 2, it is said to be contravariant. 

Examples of functors given by Eilenberg and Mac Lane include: the two 
power set functors  ℘

+ :S→S  and :−℘ →S S  which differ only on maps, the 
first one being covariant and the second contravariant, the Cartesian product X ×Y  
of two topological spaces, the direct product G × H  of two groups, the Cartesian 
product of two Banach spaces, given a space Y  and a locally compact Hausdorff 
space X , the function space functor Y X , similarly given a topological abelian 
group H  and a locally compact regular topological group G , there is a functor 
Hom(G,H ) , contravariant in the first variable and covariant in the second, yielding 
a topological abelian group, similarly for Banach spaces and finally the tensor 
product G H⊗  of two abelian groups. 

Functors with the same domain category and the same codomain category can 
be connected to one another systematically or “naturally”. This is precisely what 
the notion of natural transformation captures. Here is Eilenberg and Mac Lane’s 
definition, restricted to functors , :F G →C D  in one argument. 

A natural transformation : F Gτ →  between functors , :F G →C D  is a 
function which associates to each object X  of C  a mapping : ( ) ( )X F X G Xτ →  of 
D  such that for any mapping :f X Y→ , the following diagram commutes 

( ) ( )

  ( ) ( )
  

  ( ) ( )

X

Y

F f G f

F X G X

F Y G Y

τ

τ

⎯⎯→
↓ ↓

⎯⎯→

 

that is, ( ) ( )X YG f F fτ = τ . 
If each 

Xτ  is an isomorphism, then τ  is said to be a natural isomorphism 
(Eilenberg and Mac Lane said natural equivalence, whence the title of their paper).  

Given functors and natural transformations, it is possible to define categories 
of functors: its objects are functors :F →C D  and its mappings are natural 
transformations : F Gτ → . Eilenberg and Mac Lane find categories of functors 
“useful chiefly in simplifying the statements and proofs of various facts about 
functors” (Eilenberg & Mac Lane, 1945, 250) and not in themselves. Functor 
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categories will become a major tool in subsequent developments and will force a 
change of perspective. 

Eilenberg and Mac Lane give numerous examples of natural isomorphisms. 
We won’t give all the examples here. Suffice it to mention two noteworthy cases: 

 
Hom( , ) Hom( ,Hom( , ))X Y Z X Y Z× �  

 
where Z  is any topological space and X  and Y  are locally compact Hausdorff 
spaces and  

 
Hom( , ) Hom( ,Hom( , ))G H K G H K⊗ �  

 
where G , H  and K  are groups. Eilenberg and Mac Lane knew this example since 
their 1942 paper. With hindsight, one could wonder, as Mac Lane himself did many 
times after, why they did not hit upon the notion of adjoint functors from these 
cases. But, when one looks carefully at the other examples, including those used in 
their previous collaboration, and there are many, it is not surprising at all. The 
focus of attention here is on the notion of natural isomorphism and how it unifies 
various mathematical situations and results, not the notion of functor and their 
properties nor the notion of categories with their properties. 

Eilenberg and Mac Lane defined two other important notions in their original 
paper: the dual oC  of a category C  in §13 and limits and colimits for directed sets 
in §21 and §22. As we will see, dual categories do play an important conceptual 
role in category theory and categorical logic. Given a category C , the dual 
category oC  has as its objects those of C ; the mappings of  of oC  are in one-to-one 
correspondence of fR  with the mappings of C . If :f X Y→  is in C , then 

:of Y X→  is in oC . The composition law is defined by the equation ( )o o of g gf= , 
whenever gf  is defined in C . Notice that mappings in oC  are not mappings in the 
set theoretical sense, i.e. they are not functions. Thus oC  is not a category of 
structured sets with structure preserving mappings. 

Before we move on, let us now quickly underline what one does not find in 
Eilenberg and Mac Lane’s paper. First, although the notion of a subcategory is 
clearly defined in the paper, properties of the inclusion functor, or for that matter, 
properties of functors in general, are not identified, e.g. the properties of being 
faithful, full, essentially surjective and reflexive are nowhere to be found.  

Although Eilenberg and Mac Lane did define the notion of isomorphism of 
categories, they did not define the notion of equivalence of categories. The 
distinction between the two concepts might seem to be formally subtle, but it is 
crucial in certain applications of category theory that Eilenberg and Mac Lane 
could not foresee. The notion of isomorphism between categories is just the same 
as the notion of isomorphism between objects in a category: two categories C and 
D  are said to be isomorphic if there is an isomorphism between them, that is if 
there are functors :F →C D  and :G →D C  such that 1GF = C

 and 1FG = D
,where 
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 1C  and  1D  denote the obvious identity functors. Two categories C and D  are said 
to be equivalent if there is an equivalence between them, that is if there are 
functors :F →C D  and :G →D C  and natural isomorphisms : 1GFτ →� C

 and 

: 1FGρ →� D
. Thus, in the case of an equivalence, composing the functors F  and G  

does not yield the identity functors, but there are systematic translations, namely 
natural isomorphisms, of the compositions to the identity functors. From the point 
of view of category theory, the notion of equivalence of categories is fundamental. 

Although Eilenberg and Mac Lane introduced functor categories, they did not 
mention the possibility of considering a category of categories nor did they notice 
that natural transformations compose in two different ways. Of course, they did not 
need these concepts and therefore did not have to consider them at all. 

The function 
One has to keep in mind that categories are truly secondary for Eilenberg and Mac 
Lane. They do not constitute the focus of the paper. Eilenberg and Mac Lane 
explicitly recognize this fact in §6 where they discuss foundational issues related to 
categories, e.g. the category of all sets is not a set, thus not a legitimate entity from 
the standard set theoretical point of view.  

It should be observed first that the whole concept of a category is 
essentially an auxiliary one; our basic concepts are essentially those of a 
functor and of a natural transformation (…). The idea of a category is 
required only by the precept that every function should have a definite 
class as domain and a definite class as range, for the categories are 
provided as the domains and ranges of functors. Thus one could drop the 
category concept altogether and adopt an even more intuitive standpoint, 
in which a functor such as “Hom” is not defined over the category of 
“all” groups, but for each particular pair of groups which may be given. 
The standpoint would suffice for the applications, inasmuch as none of 
our developments will involve elaborate constructions on the categories 
themselves. (Eilenberg & Mac Lane, 1945, 247) 

Of course, Eilenberg and Mac Lane could not foresee that elaborate 
constructions on categories themselves would become essential. It took 
approximately ten to fifteen years to see this clearly. Thus, it can be said that the 
major function of the concept of category in Eilenberg and Mac Lane’s original 
paper is to provide a conceptual clarification: the concept of category is required to 
state and understand the concepts of natural transformation and natural 
isomorphism in full generality.  

However, it seems that Eilenberg and Mac Lane envisioned a more ambitious 
role. Indeed, in the introduction of their paper, Eilenberg and Mac Lane hint at a 
different, more foundational role, that category theory could play in mathematics. 
They claim that category theory can be seen as a generalization of Klein’s Erlangen 
Program. Here is how they stated it. 
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The theory also emphasizes that, whenever new abstract objects are 
constructed in a specified way out of given ones, it is advisable to regard 
the construction of the corresponding induced mappings on these new 
objects as an integral part of their definition. The pursuit of this program 
entails a simultaneous consideration of objects and their mappings (in 
our terminology, this means the consideration not of individual objects 
but of categories). This emphasis on the specification of the type of 
mappings employed gives more insight into the degree of invariance of 
the various concepts involved. For instance, we show in Chapter III, §16, 
that the concept of the commutator subgroup of a group is in a sense a 
more invariant one than that of the center, which in its turn is more 
invariant than the concept of the automorphism group of a group, even 
though in the classical sense all three concepts are invariant. 

The invariant character of a mathematical discipline can be formulated in 
these terms. Thus, in group theory all the basic constructions can be 
regarded as the definitions of co- or contravariant manner under induced 
homomorphisms. More precisely, group theory studies functors defined 
on well specified categories of groups, with values in another such 
category. 

This may be regarded as a continuation of the Klein Erlanger Programm, 
in the sense that a geometrical space with its group of transformations is 
generalized to a category with its algebra of mappings. (Eilenberg & Mac 
Lane, 1945, 236-237) 

The first part is unproblematic: mappings are just as important as objects. 
That much was clear from the development of algebraic topology. They are now 
suggesting that it is a general phenomenon that should be observed in any 
mathematical field. As such, it can be taken as a heuristic principle. What is rather 
obscure is the claim that category theory is a generalization of Klein’s program. 
What Eilenberg and Mac Lane had in mind is revealed in Chapter III of their paper, 
a chapter entitled Functors and Groups, more precisely in §16 where they present 
examples of subfunctors. The latter notion relies on the set theoretical notion of 
subset as follows. 

Let 1 2, :T T →C D  be two parallel functors. The functor T1  is said to be a 
subfunctor of T2  provided T1(X ) ⊂ T2 (X )  for all objects X ∈C and T1( f )⊂ T2 ( f )  for 
all f : X → Y  in C . Eilenberg and Mac Lane then observe: “many characteristics 
subgroups of a group may be written as subfunctors of the identity functor.” 
(Eilenberg & Mac Lane, 1945, 263-264) By letting C  and D  be the category G  of 
groups, one can consider the subfunctors T  of the identity functors :I →G G . If 
each ( )T G  is a normal subgroup of G , then one can form the quotient group I T . 
A specific case of this construction includes the commutator subgroup C(G) , a 
normal subgroup of G  and the quotient group I C  is the abelianization of G . The 
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center Z(G)  of the group G  does not determine a subfunctor of the identity 
functor, simply because it is not a functorial construction on the category of 
groups. However, if one considers instead the category of groups with surjective 
homomorphisms between them, then it is a functor and the quotient I Z  can be 
formed. Finally, the automorphism group A(G)  of a group G  is a functor only if 
one restricts its domain of application to the groupoid of the category  G . Thus, in 
this way, “various types of subgroups of G  may be classified in terms of the 
degree of invariance of the “subfunctors” of the identity which they generate,” 
(Eilenberg & Mac Lane, 1945, 264) As Eilenberg and Mac Lane remark, this 
classification is intrinsically categorical, since one looks at functors on the whole 
category  G  and not at an individual group and its subgroups.  

However, it is hard to see how this approach can be generalized to an 
arbitrary or abstract category since it relies on the notion of subset. Of course, a 
purely categorical version of that notion can and was eventually given, as far as we 
know for the first time by Grothendieck in 1957, but Eilenberg and Mac Lane’s 
original plan turned out to be a dead end. The notion of subfunctor was to be 
replaced by the more general notion of subobject and a different notion (and its 
equivalent formulations) was to play a central role in the characterization of 
mathematical constructions and their invariant character. 

Although Eilenberg and Mac Lane’s suggestion of a connection between 
category theory and Klein’s program remained without direct progeny in the 
literature, we do believe that the claim can still be made, although in slightly 
different way1. The main points that need to be underlined at this stage are the 
following2: 

1. In the same way that Klein’s approach to elementary geometry allows an 
intrinsic and natural classification of various geometrical systems, e.g. 
Euclidean geometry, affine geometry, projective geometry, line geometry, 
etc., category theory leads to an intrinsic and natural classification of 
various mathematical structures; thus in the same way that Klein’s 
approach provides a unified treatment of geometry, category theory 
provides a unified framework for mathematical domains; 

2. In the same way that a geometry is characterized by its invariant 
properties under a group of transformations, a mathematical domain can 
be characterized by its invariant properties, when the latter are understood 
in the proper fashion; 

3. Whereas Klein’s program showed clearly that the analysis of the invariant 
properties of a structure is revealing, category theory extends this analysis 
by including various covariant properties between mathematical concepts. 

                                                                 
1 I asked Mac Lane in 1993 whether he still believed that one could make a connection between category 

theory and Klein’s Erlangen Program and he immediately replied in the affirmative. 
2 The analogy is developed in detail in my forthcoming book From a Geometrical Point of View : the 

categorical perspective on mathematics and its foundations. 
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The whole of algebraic topology can be thought in these terms. In other 
words, invariance is a special case of covariance.  

Notice that in each of these three cases, categories acquire a new function. 
Whereas the concept was introduced as a mean to an end and first and foremost so 
that one could understand in its full generality the concept of natural 
transformation, in the end, Eilenberg and Mac Lane hinted at some other roles it 
could play in the realm of mathematical concepts. They certainly did not foresee 
that it would quickly come to occupy center stage in various areas.  

2  Finding new usages with the same forms in known 
and new contexts 
It quickly appeared, and Eilenberg and Mac Lane suggested some of these elements 
explicitly themselves, that categories could be used usefully in the context of 
algebraic topology, more specifically by providing the framework needed to 
clarify: 1. What homology and cohomology theories are; 2. How various homology 
theories are related to one another, in particular whether two homology theories are 
in fact the same; 3. How homology and cohomology theories are related in general; 
4. What homotopy theory is and how it is related to homology and cohomology 
theories. Bits and pieces of these problems were already known, but it seemed clear 
that within the framework of category theory, these questions could be stated 
precisely and could receive precise mathematical answers. In the context of 
algebraic topology, new usages of the concepts of categories, functors and natural 
transformations were possible and these usages could be transferred to define and 
develop a new context, namely homological algebra. 

We will concentrate on two monographs and one paper which crystallized 
these two movements: Eilenberg and Steenrod’s book Foundations of Algebraic 
Topology, published in 1952, Cartan and Eilenberg’s book Homological Algebra, 
published in 1956 and Grothendieck’s Tohoku’s paper Sur quelques points 
d’algèbre homologique, published in 1957. Our presentation and remarks will be 
rather brief, even though each one of these works deserves a careful analysis.  

Eilenberg and Steenrod presented axioms for homology theories as early as 
1945. These notes, which circulated widely but which did not contain any proof, 
were turned into their extremely influential book published in 1952. Eilenberg and 
Steenrod used essentially the concepts of categories, functors and natural 
transformations in their work. Their definitions are taken directly from Eilenberg 
and Mac Lane. Thus, the form of the concepts of category, functor and natural 
transformation remains the same. 

The language of categories allows them to sharply separate the topological 
aspects from the algebraic aspects of the problems of algebraic topology. A 
homology theory is analyzed as a functor from a category of topological spaces to a 
category of algebraic structures, for instance the category of Abelian groups, 
satisfying certain conditions stipulated by a list of axioms. A cohomology theory is 
also seen as a functor between the same categories but with the arrows in the 
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axioms reversed. Thus, the transcription of algebraic topology within the context of 
categories modifies the form of some of its fundamental concepts. Eilenberg and 
Steenrod were well aware that “homology theory and cohomology theory are dual 
to one another”. (Eilenberg & Steenrod, 1952, xiii) However, they immediately 
add: “the duality between the two theories has only a semiformal status.” 
(Eilenberg & Steenrod, 1952, xiii) Turning this semiformal duality into a fully 
formal duality will bring with it a change in the form and the functions of category 
theory itself.  

Furthermore, the use of diagrams and diagram chasing method are also 
crucial. Eilenberg and Steenrod underlined the importance of this original feature 
of their approach explicitly in the preface of their book. 

Successful axiomatizations in the past have led invariably to new 
techniques of proof and a corresponding new language. The present 
system is no exception. The reader will observe the presence of 
numerous diagrams in the text. Each diagram is a network or linear graph 
in which each vertex represents a group, and each oriented edge 
represents a homomorphism connecting the groups at its two ends. […] 

The diagrams incorporate a large amount of information. Their use 
provides extensive savings in space and in mental effort. In the case of 
many theorems, the setting up of the correct diagram is the major part of 
the proof. (Eilenberg & Steenrod, 1952, xi) 

Eilenberg and Steenrod emphasized the usefulness of diagrams as a notational 
method and in organizing ideas involved in proofs. Students who were about to 
learn algebraic topology from their book would not only learn the basic concepts of 
category theory, they would also learn the language of diagrams and diagram 
chasing. For many mathematicians, these two aspects of the book constituted a 
fundamental change in mathematical practice.  

Eilenberg and Steenrod’s book effected a revolution in mathematical 
notation. Perhaps not since Descartes’ La géométrie has a book 
influenced how we write Mathematics. One knew they were looking at 
mathematics before 1600 because of the geometric diagrams with 
vertices and sides labeled by alphabetic letters. La géométrie in 1637 
gave us nearly modern forms of equations, especially the notation of the 
exponent, i.e. a 3 . The diagrams of Eilenberg-Steenrod not only made 
algebraic topology intelligible, but eventually swept out to other parts of 
mathematics, providing an efficient way to express complex, functorial 
relationships and giving us powerful methods of proofs by means of 
diagram chasing. (Becker & Gottlieb, 1999, 733) 

Although the reference to Descartes’ La géométrie might seem surprising, 
Eilenberg and Steenrod opened the door to it themselves. Indeed, again in the 
preface of their book, they draw a parallel between homology theory and analytic 
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geometry: whereas in the latter case, problems of geometry are solved by being 
translated into algebraic problems, in homology theory, problems of topology are 
solved by being translated into algebraic problems. In the same way that Descartes 
showed how the translation between geometry and algebra had to be effected, 
Eilenberg and Steenrod’s book is a precise and rigorous codification of the 
translation between topology and algebra. But in the case of Eilenberg and 
Steenrod, there seems to be something more. The language of categories and the 
use of diagrams made algebraic topology “intelligible”. This is an extraordinarily 
strong claim! The algebraic topologist J.P. May makes a similar claim, talking 
about category theory in general. 

A great deal of modern mathematics, by no means just algebraic 
topology, would quite literally be unthinkable without the language of 
categories, functors, and natural transformations introduced by Eilenberg 
and Mac Lane in their 1945 paper. It was perhaps inevitable that some 
such language would have appeared eventually. It was certainly not 
inevitable that such an early systematization would have proven so 
remarkably durable and appropriate; it is hard to imagine that this 
language will ever be supplanted. (May, 1999, 666) 

To say that a field would “quite literally be unthinkable” is, once again, an 
extraordinarily strong claim to make and so is the claim that “it is hard to imagine 
that this language will ever be supplanted”. When Eilenberg and Steenrod 
published their book on the foundations of algebraic topology, surely 
mathematicians of this era understood what they were doing or, at the very least, 
understood algebraic topology in some sense. What does category theory do to 
make these fields intelligible and thinkable? We should immediately notice that the 
use of diagrams and the method of diagram chasing are not essentially linked to 
categories as such. In their book, Eilenberg and Steenrod use extensively diagrams 
and the method of diagram chasing before they introduce categories, functors, etc. 
Indeed, diagrams and the method of diagram chasing are heavily used in the first 
three chapters of their book and categories and functors are introduced in the fourth 
chapter only. But, as Eilenberg and Steenrod pointed out, the point of view of 
categories dominated the development of the entire book. (Eilenberg & Steenrod, 
1952, xii) Once diagrams and the method of diagram chasing are used, it is clearly 
natural to think of them as being in categories and to look for functors and natural 
transformations. Thus, as for Eilenberg and Mac Lane, categories in Eilenberg and 
Steenrod come in some sense after the fact, as a useful mean to codify a 
mathematical situation. I submit that Eilenberg, Mac Lane, Steenrod and their 
contemporaries who started to use categories in the late forties and early fifties did 
not think of it as a revolution but merely as a useful language or framework. Once 
it had been introduced, it seemed trivial and thus, extremely handy. Furthermore, it 
is true that algebraic topology was suddenly standing on clear and solid 
foundations. It was finally possible to say clearly what homology theory was about, 
e.g. it is about certain functors, and it was possible to compare systematically 
various homology theories with the help of natural transformations. For instance, 
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one of the key results of Eilenberg and Steenrod is the proof that over the category 
of triangulable spaces, simplicial homology and singular homology are isomorphic. 
This is now a precise and provable mathematical claim. The categorical framework 
makes it indeed easy to organize all the data involved in that theorem and its proof.  

Notice the shift: whereas for Eilenberg and Mac Lane, categories and functors 
are defined and used, they are prosthetics to the notion of natural transformation. In 
the context of algebraic topology, certain important mathematical constructions, 
namely homology theories, become functors. This is an important ontological shift 
that brings with it a certain ontological weight to categories themselves. Although 
that weight makes them appear on the scene of mathematical objects, categories are 
still not used as such, i.e. there are still no elaborate constructions on categories 
that completely justify their presence. In other words, there is still no category 
theory.  

I believe that the following quote captures perfectly the way people might 
have envisioned categories in the fifties. Although the authors are here talking 
about a specific principle and a concept that was not available in the forties and 
most of the fifties, it is easy to generalize the claim to categories, functors, natural 
transformations, diagrams and diagram chasing. 

Instead of being a collection of theorems, Eckmann-Hilton duality is a 
principle for discovering interesting concepts, theorems, and questions. It 
is based on the dual category, that is, on the duality between the target 
and source of a morphism; and also on the duality between functors and 
their adjoints. 

In fact it is a method wherein interesting definitions or theorems are 
given a description in terms of a diagram of maps, or in terms of 
functors. Then there is a dual way to express the diagram, or perhaps 
several different dual ways. These lead to new definitions or conjectures. 
Some, not all, of these definitions turn out to be very fruitful and some of 
the conjectures turn out to be important theorems. (Becker & Gottlieb, 
1999, 726) (Italics ours) 

Once Eilenberg and Mac Lane had introduced the basic concepts of 
categories, functors and natural transformations, and Eilenberg and Steenrod had 
shown how to translate known problems of algebraic topology into problems about 
functors, natural transformations, diagrams and diagram chasing, it was possible to 
try to do the same with similar or analogous mathematical problems and fields. A 
new heuristic becomes available and this heuristic seems, at first sight, fruitful and 
insightful: it provides a new way of looking at mathematical problems and 
situations and it clearly leads to interesting and fruitful definitions, theorems, 
insights and even, the creation of a new mathematical discipline.   

Homological algebra emerged in the nineteen forties when mathematicians 
observed that they could used homological and cohomological methods to study 
algebraic systems. Thus tools that were developed to classify and understand 
topological spaces and their morphisms were transferable to various algebraic 
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systems and their morphisms, e.g. Lie groups. In the early fifties, Cartan and 
Eilenberg wrote a book that was about to have the same import on the field the 
same impact on homological algebra, even the name comes from that book, that 
Eilenberg and Steenrod’s book had on algebraic topology.  

Cartan and Eilenberg began collaborating during the 1950/51 Séminaire 
Cartan, rewriting the foundations of all the ad hoc algebraic homology 
and cohomology theories that had arisen in the previous decade. Coining 
the term Homological Algebra for this newly unified subject, and using it 
for the title of the 1956 textbook, they revolutionized the subject. 
(Weibel, 1999, 812) 

Nothing less than a third revolution in ten years for Eilenberg… The term 
‘revolution’ in this case is not, however, entirely convincing, since there was no 
discipline to go back to or to overthrow. It is not so much that Cartan and 
Eilenberg transformed radically the field of homological algebra, they more or less 
launched it. From the point of view of the history of category theory, what is 
striking in that book is that categories, functors and natural transformations are not 
even defined! It is assumed right from the start that homology and cohomology 
theories are functors. Thus, once again, the form of the concept does not change 
and categories are not used as such, i.e. there is no construction on categories. 
However, two elements in their work will contribute directly to what deserves to be 
called the birth of category theory. 

We have already indicated that Eilenberg and Steenrod had observed that the 
duality between homology and cohomology was semiformal. Was it possible to 
make it purely formal? Using categories, Mac Lane tried to make it so in 1948 and, 
more successfully, in 1950. In the latter important paper, not only does Mac Lane 
come very close to the notion of Abelian category, but he also uses the categorical 
language to define mathematical concepts, e.g. products, coproducts, etc. It is the 
first place where universal mappings are defined by categorical tools. 
Unfortunately, Mac Lane’s paper did not reach its audience and did not have an 
impact on the categorical audience. Mac Lane’s paper was theoretically interesting, 
but did not yield any new and striking mathematical results.  

It was clear to Cartan and Eilenberg that homological algebra could be 
developed in a more general setting, that is that one could characterize by 
categorical means the type of categories required to define and develop the 
homology and cohomology theories. This was done by Buschbaum in his Ph.D. 
thesis in 1955 and published as an appendix in Cartan and Eilenberg’s book. A 
second motivation came from algebraic geometry. Both Cartan and Eilenberg knew 
that cohomology theory for sheaves of Abelian groups on a topological space ought 
to fall under their general framework, but they simply could not solve a technical 
problem involved in the construction of the theory. The problem had to do with the 
construction of injective resolutions for sheaves and it seemed to be 
insurmountable. Grothendieck solved the problem not by giving an explicit 
construction, but rather by finding the appropriate categorical framework for 
homological algebra in general and providing a categorical property from which 
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the construction required could be performed. Grothendieck’s work was therefore 
astonishing not only because it showed how to subsume the cohomology theory of 
sheaves within homological algebra, a remarkable result in itself, but also in the 
way he used categories to obtain this result. Not only categories could be used to 
organize systematically given fields like algebraic topology or homological 
algebra, it could be genuinely used to prove important mathematical results. Thus, 
in Grothendieck’s hand, categories take a new form, find new roles and give rise to 
a new context.  

Both Grothendieck and Buschbaum presented a definition of categories that is 
formally different from the one found in Èilenberg and Mac Lane. Whereas 
Eilenberg and Mac Lane’s original definition was entirely abstract, Buschbaum and 
Grothendieck both chose to define categories as sets. The reason for this seems to 
be that they wanted to add more structure to a category and the language of Hom-
sets provided an easy and simple solution to add this structure directly and at the 
right place. Here is, in a slightly modified presentation, Grothendieck’s definition 
(our translation). 
A category C  is given by: 

1. A non-empty class of objects; 

2. For any objects X  and Y  of C , there is a set Hom(X,Y ) , the  set of 
morphisms from X  to Y ; 

3. For any objects X , Y  and Z , there is an operation, called 
composition, Hom( , ) Hom( , ) Hom( , )X Y Y Z X Z× → ( , )f g g f6 D ; 

These data satisfy the following axioms: 
1.  Composition is associative: ( ) ( )h g f h g f=D D D D ; 
2. For each Hom(X, X) , there is a morphism 1 :X X X→  such that 1Xf f=D  and 

1Y f f=D  for any :f X Y→ . 
Grothendieck then immediately defines the dual category opC  of a category 

C : the objects of opC  are the same as those of C  and the set Hom( , )opX Y  is 
Hom(Y , X) .  

These definitions are certainly not profoundly different from those given by 
Eilenberg and Mac Lane. But the difference is not accidental either. The choice of 
Hom-sets to define categories allows a simple and direct definition of a new 
notion, the starting point of the whole work, the notion of an additive category. A 
category C  is said to be additive by Grothendieck when it satisfies the following 
three conditions: 

1. For every couple X,Y( ) of objects of C , the set Hom(X,Y )  is an Abelian 
group such that composition of morphisms is bilinear; 

2. C  has binary products; 

3. C  has a zero object. 
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Grothendieck then observes that the dual opC  of an additive category C  is 
also additive, an important property given that one of the targets is to account for 
the duality mentioned above between homology and cohomology theories.  

A category can now have a structure: first its Hom-sets have an Abelian 
group structure, second, certain constructions are possible, namely products, and 
third, it has a specific object. That structure, in turn, supports various definitions, 
constructions, theorems, etc. Notice that the definition rests upon concepts that are 
defined using the language of categories: products, coproducts, zero objects, etc. 
These notions are all defined explicitly by Grothendieck in the first section of his 
paper. Grothendieck also introduced the concepts of monomorphism, epimorphism, 
subobject and quotient object. Again, these are used to define a structure in a 
category. Although this structure is put in place so that certain functors with 
specific properties can be defined, by the same token, categories start playing a real 
role in mathematics. Categories no longer merely encode data about objects and 
their morphisms so that a functor can have a domain and a codomain, their 
structure is relevant to a problem at hand. 

Grothendieck also introduces the notion of equivalence of categories and 
states clearly that it is different from the notion of isomorphism of categories. But 
the real surprise at this point is that, in fact, Grothendieck defines an adjunction 
between functors and immediately restricts himself to the specific case of an 
equivalence of categories. Thus, Grothendieck just missed the fundamental concept 
of adjoint functors. A careful analysis of this interesting conceptual slip would lead 
us too far from our main objective. (But see Krömer 2004.)  

Grothendieck defines the notion of an Abelian category as an additive 
category C  satisfying two additional properties:  
AB 1) Every morphism has a kernel and a cokernel; 
AB 2) Let u be a morphism of C . Then the canonical morphism : Coim Im u u u→  
is an isomorphism. 

The details of this definition are not essential here. Although it might not be 
obvious from the definition itself, again this definition is self-dual: the dual of an 
Abelian category is Abelian. Four more axioms and their dual, named AB 3, AB 4, 
AB 5 and AB 6, are then given and used. We will present AB 3 and AB5. 
AB 3) any family ( )i i IX ∈

 of objects of C  has a direct sum 
ii I

X
∈
⊕ ; 

AB 5) the axiom AB 3) is satisfied and if ( )i i IX ∈
 is an increasing filtered family of 

subobjects of X  and Y  any subobject of X , then 
 

( ) ( ).i i
i i

X Y X Y=∑ ∑∩ ∩  

The actual content of these axioms need not be analyzed in details here. They 
stipulate, in the first case, the existence of a specific categorical construction 
characterized by a universal morphism and what is called in the second case an 
exactness condition. They both introduce in an essential fashion infinite operations 
in the constructions. In the mind of Grothendieck, they serve essentially one 
purpose: “the foregoing axioms will be useful for the study of injective and 
projective limits which we will need to give flexible existence conditions for the 
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“injective” and “projective” objects.” (Grothendieck, 1957, 129-130, our 
translation.) As we have mentioned, it is by stipulating these properties, properties 
that can be found in certain Abelian categories, that Grothendieck circumvents the 
difficulties blocking the application of homological algebra to a cohomology of 
sheaves. Furthermore, Grothendieck immediately generalizes the presentation by 
considering diagram categories, a special case of functor categories. The 
constructions of direct and inverse limits are seen as special cases of universal 
morphisms in diagram categories, when diagrams are restricted to preorders or 
filtered sets. Thus, Grothendieck does not give the general construction of limits 
and colimits in categories, presumably because he does not need them and does not 
see the necessity of exploring the purely theoretical development of these concepts. 
Finally, Grothendieck shows in theorem 1.10.1 that any Abelian category 
satisfying AB 5) and having a generator, another categorical property, has enough 
injectives. After proving this last fundamental result, Grothendieck remarks that 
“in many cases, the existence of a monomorphism from X  to an injective object 
can be seen directly in a more simple manner. Theorem 1.10.1 has the advantage of 
being applicable to different cases. Furthermore, the conditions of the theorem are 
stable when moving to certain diagram categories where the existence of enough 
injectives is not always clear to the naked eye.” (Grothendieck, 1957, 137, our 
translation.) This is certainly an understatement, for it is precisely what 
Grothendieck uses to solve the problem of injective resolutions.  

Another striking feature of Grothendieck’s paper, in contrast with Eilenberg 
and Mac Lane, is the presence and importance of functor categories. They are 
central to the whole project, categories of presheaves are defined as functor 
categories and so are many others, and there is no doubt that the notion of 
equivalence of categories is justified by their presence: there are numerous 
examples of functor categories that are equivalent but not isomorphic. But 
Eilenberg and Mac Lane, as we have indicated, had no use of functor categories. 
Whereas Eilenberg and Mac Lane, Eilenberg and Steenrod and Cartan and 
Eilenberg presented certain constructions and concepts as specific functors, 
Grothendieck considers the functor category itself and its properties. For instance, 
if the category C  is additive, then the functor category DC  is also additive: thus 
everything that is proved from the axioms of the notion of additive category is true 
of every functor category DC  whenever C  is additive. In a nutshell, by the time 
Grothendieck published his paper in 1957, constructions on categories had become 
a fundamental part of the landscape.  

With the appearance of the notions of additive and Abelian categories, a 
significant change had occurred in the mathematical landscape, a change that we 
believe to be more important than the introduction of diagrams and the method of 
diagram chasing, even though it could not have been without the introduction of 
the latter. Grothendieck had shown that a large part of homological algebra could 
be developed in the context of Abelian categories, that is in the context of a type of 
category. There was, for the first time, a clear example of a type of category, not 
defined by its objects and its morphisms like the category of sets or the category of 
topological spaces or the category of Abelian groups, but by the categorical 
properties it satisfied, which unified by the categorical properties they satisfied 
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various parts of mathematics and was used to define, construct and prove important 
theorems. The search for other types of categories, of what will be called abstract 
categories, started to make sense. In other words, the development of category 
theory could be conceived as a legitimate and reasonable enterprise, although its 
mathematical benefits might seem remote at this stage. Grothendieck and his 
school continued to play an important role in the development of categorical 
concepts and their use in the context of algebraic geometry in the sixties, an 
endeavor which culminated in the proof of the Weil conjectures in the early 
seventies by Pierre Deligne, one of Grothendieck’s students.  

But, and this has to be emphasized, Grothendieck’s paper and the use of 
categories in algebraic geometry, does not constitute as such a piece of category 
theory. It uses category theory in an essential manner but it does not present 
additive, Abelian categories, etc. as being intrinsically valuable. I claim that the 
second fundamental paper on category theory and which really paved the way to 
the development of category theory is Daniel Kan’s paper Adjoint Functors 
published in 1958. Kan wrote the paper on adjoint functors because he wanted 
mathematicians of his time to be able to read the companion paper published 
immediately after, namely the paper entitled Functors involving c.s.s. Complexes. 
It is undeniable that the paper on adjoint functors is truly theoretical: it presents 
the notion of adjoint functors, unit and counit of adjunctions and systematically 
examines how the notion of adjointness is related to the other important notions of 
category theory, for instance limits and colimits. The paper also introduces what 
are now called ‘Kan extensions’. 

Although Kan assumes explicitly the notion of a category as it is given in 
Eilenberg and Mac Lane, he gives the definition of adjoint functors in terms of 
hom-sets as follows: let F

G
⎯⎯→←⎯⎯C D  be two contravariant functors and let 

: Hom( ( ), ) Hom( , ( ))F X Y X G Y⎯⎯→∼ϕ  be a natural isomorphism. Then F  is called 
the left adjoint of G  under ϕ  and G  the right adjoint of F  under ϕ  and the 
situation is denoted by F G . In the same paper, Kan gives, for the first time 
totally general definitions of limits and colimits and proves that their existence in a 
category is equivalent to the existence of certain adjoints to elementary functors. 
The paper ends with the notion of what are now called Kan extensions and results 
needed for the applications Kan has in mind in combinatorial homotopy theory.  

In contrast with Grothendieck’s 1957 paper, Kan does not obtain striking new 
results, he does not solve an outstanding problem in homotopy theory or in 
homological algebra or in homology theory. In his paper Functors involving c.s.s. 
Complexes, he presents a unified framework for various notions of complexes, 
singular, simplicial, Kan complexes, etc., and obtains new, more conceptual, proofs 
of known results, e.g. the Hurewicz homomorphism. It is a thoroughly conceptual 
paper in which it is shown that various notions, which were taken to be different, 
follow a general pattern, the latter being revealed by the presence of adjoint 
functors in various contexts. To the contemporary reader, the beauty of these 
papers is absolutely undeniable. Three missing elements are nonetheless worth 
mentioning. First, Kan does not define the notion of equivalence of categories as a 
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special case of an adjoint situation nor does he consider the case of reflective 
subcategory, a special case that Peter Freyd was investigating in his undergraduate 
honor’s thesis at about the same time. Second, the class of examples of adjoint 
functors mentioned by Kan is surprisingly limited. Kan’s paper does not convey 
the idea that adjoint functors pervade mathematics although it is clear from his 
paper that it is a central concept of category theory. Third, Kan is totally oblivious 
to foundational issues even though all the constructions introduced involve large 
categories. 

Adjoint functors introduce a basic, fundamental form in category theory. 
Adjoint functors are not, strictly speaking, inverses to one another. Strict inverses 
are isomorphisms of categories. But they are inverses in some sense and this is 
what makes them so important. It is tempting and certainly appealing to say that 
adjoint functors are conceptual inverses to one another. Notice immediately that a 
functor can have both a right and a left adjoint, up to (unique) isomorphisms, and 
thus it can have two conceptual inverses. Kan’s definition does not exhibit clearly 
this feature of adjoint functors. An alternative definition, which does not rely on 
hom-sets, reveals it clearly. Two functors F

G
⎯⎯→←⎯⎯C D  form an adjunction, F G , 

whenever there are two natural transformations : XI GF→η  and : YFG I→ε  such 
that the two following diagrams commute: 

 

1
G

G

G

G GFG

G

⎯⎯→
↓2

η

ε    1
F

F

F

F FGF

F

⎯⎯→
↓2

η

ε . 

Thus, although the composites FG  and GF  are not equal to the appropriate 
identity functors, a systematic and natural connection to the identity functors 
exists. As the diagrams show, the identity is “lifted” to the functors themselves, for 
we do have that 1G G G= Dε η  and 1F F F= Dε η . Notice that when : XI GF→η  and 

: YFG I→ε  are natural isomorphisms, we have an equivalence of categories. The 
best way to see how adjoint functors are conceptual inverses is by looking at 
specific examples in the literature. See Mac Lane 1998, chap. IV, Adamek et. Al. 
1990, chap. V, Borceux 1994, chap. 3, Taylor 1999, chap. VII. 

Before the advent of adjoint functors, all applications of category theory were 
unidirectional: functors were going in one direction, e.g. from a category of 
topological spaces or of algebraic structures into a category of algebraic structures. 
Grothendieck had pointed out that the notion of equivalence of categories was 
central and more important than the notion of isomorphism of categories, but, as 
we have already mentioned, he just missed the notion of adjoint functors and their 
significance. It took some time to realize how pervasive adjoint functors are and, in 
particular, to see that there were numerous mathematically significant examples at 
hand: the various reflective subcategories, free structures of various kinds, 
dualities, e.g. Stone, Pontryagin, etc., compactification results, Galois theory, the 
theory of covering spaces, etc. With hindsight, the latter cases are so compelling 
that Mac Lane himself was almost ready to claim that, had it not been of the 
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Second World War, Stone or someone else interested in dualities would have 
probably discovered adjoint functors very quickly. (See Mac Lane 1970.) 

Be that as it may, the introduction of adjoint functors as the central concept of 
category theory is crucial in two complementary respects: 1. It changes drastically 
the impact and the role of category theory in mathematics; 2. It makes it clear that 
categories, functors and natural transformations are more than a purely heuristic 
framework. Indeed, whereas categories were introduced in order to have a 
complete and systematic conceptual framework underlying the definition of the 
concept of natural transformation, once the notion of adjoint functors is seen as 
being central, functors, categories and their properties acquire autonomy. 
Categorical properties can be stated in a completely uniform manner within the 
language of category theory itself. Furthermore, these properties not only describe 
the basic mathematical constructions used in various fields, in some cases they are 
pivotal, conceptual mathematical results. Finally, if Grothendieck had shown how 
to use categories and their properties to solve important mathematical problems, he 
did not free entirely categories from set theoretical constraints, e.g. in the 
definition of arbitrary limits and colimits, a step taken by Kan when he showed that 
the latter could be described by the existence of adjoints to given functors. (This is 
not to say that questions of size do not matter, but simply that they could in 
principle be treated internally so to speak, i.e. relative to a base category.) A 
network of categories and functors could be considered as one whole; its basic 
constitutive features, its skeleton, were revealed by adjoint functors going back and 
forth between categories. In other words, a category of categories is not merely a 
category, it is not merely a collection of categories and functors, it has an intrinsic 
frame, an ‘organic’ unity, principles of cohesion based on adjoint functors. The 
first mathematician who emphasized and used these facts was Bill Lawvere who, in 
1963, in his Ph.D. thesis, suggested that a category of categories could be a taken 
as foundation for mathematics, suggested to defined sets in categories and not 
categories as sets, used in an essential manner adjoint functors to present and prove 
his results, thus putting adjoints at the center of his work and apply these tools in 
directions that were entirely original, in particular in the direction of logic and the 
foundations of mathematics. Lawvere pursued this work during the sixties and in 
1969, in collaboration with Miles Tierney, they discovered the notion of 
elementary topos which has played a key role in categorical logic and categorical 
foundations of mathematics ever since. He thus introduced new forms, new 
contexts and new roles for all the notions available at that time. 

3  Lawvere 
I will not look at the details of Lawvere’s thesis: the notions of algebraic category, 
algebraic functors, functorial semantics and algebraic structure. The notions as well 
as the results presented in the thesis were quickly absorbed by the community of 
category theorists and led to extensions, refinements and similar results for other 
types of categories. (For a presentation of Lawvere’s work in a contemporary 
setting, see Pedicchio & Rovatti 2004.) Instead of looking at the chronological 
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development of Lawvere’s ideas and papers, I will concentrate on the three aspects 
that constitute the spine of my approach: new contexts, new forms and new 
functions introduced by Lawvere. 

It could be argued that one of Lawvere’s main objectives was to find and 
develop the proper context to define and develop functional analysis and more 
generally rational or continuum mechanics.  

What was the impetus which demanded the simplification and 
generalization of Grothendieck’s concept of topos, if indeed the 
applications to logic and set theory were not decisive? Tierney had 
wanted sheaf theory to be axiomatized for efficient use in algebraic 
topology. My own motivation came from my earlier study of physics. 
The foundation of the continuum physics of general materials, in the 
spirit of Truesdell, Noll, and others, involves powerful and clear physical 
ideas which unfortunately have been submerged under a mathematical 
apparatus including not only Cauchy sequences and countably additive 
measures, but also ad hoc choices of charts for manifolds and of inverse 
limits of Sobolev Hilbert spaces, to get at the simple nuclear spaces of 
intensively and extensively variable quantities. But as Fichera lamented, 
all this apparatus gives often a very uncertain fit to the phenomena. This 
apparatus may well be helpful in the solution of certain problems, but can 
the problems themselves and the needed axioms be stated in a direct and 
clear manner? And might this not lead to a simpler, equally rigorous 
account? (Lawvere 2000, 726) 

Although Lawvere is here talking about the notion of elementary topos, to 
which we will turn shortly, a fundamental leitmotiv is clearly showing up in this 
passage: the “mathematical apparatus” responsible for this “uncertain fit to the 
phenomena” derives from a certain usage of sets and their operations. It is not that 
sets themselves are the culprit, but rather a certain method based on a conception of 
sets, that is as essentially made up of faceless, abstract points. Such a belief is not 
entirely unusual among mathematicians as the following quote illustrates perfectly: 

The vogue for point-theoretical analysis situs seems to be due, in large 
part, to the predominating influence of analysis on mathematics in 
general. Nowadays we tend, almost automatically, to identify physical 
space with the space of three variables and to interpret physical 
continuity in the classical function theoretical manner. But the space of 
three real variables is not the only possible model of physical space, nor 
is it a satisfactory model for dealing with certain types of problems. 
Whenever we attack a topological problem by analytic methods it almost 
invariably happens that to the intrinsic difficulties of the problem, which 
we can hardly hope to avoid, there are added certain extraneous 
difficulties in no way connected with the problem itself, but apparently 
associated with the particular type of machinery used in dealing with it. 
(Alexander, 1932, quoted by James, 2001, 811.)  
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There is no doubt in my mind that Lawvere would whole-heartedly agree with 
this claim. It is also clear that the type of machinery referred to here by Alexander 
is (point-)set theoretical. It is to avoid part of this machinery and to replace it by 
algebraic machinery that Lawvere wanted to develop mathematics within a 
category of categories and place sets within that universe. It has to be emphasized 
immediately that the idea of developing mathematics within a category of 
categories remains even to this day a theoretical possibility, although as we will 
indicate recent work in higher-dimensional categories are opening up new avenues, 
and that Lawvere’s axiomatization of the category of sets in 1964 did not generate 
a flurry of research and developments. However, from an historical point of view, 
both papers constitute a radical break, not to say a revolution, with the standards of 
the time. It is important to note that a category of categories, a category of sets and 
the notion of elementary topos all constitute at the same time new forms and new 
contexts. Lawvere suggested that these new forms be taken as foundational 
frameworks, thus having a role that is not radically new. What is new is to propose 
that a categorical framework could play this role. In Grothendieck’s mind, a topos 
is a tool whose main purpose is to allow for the definition and applications of 
cohomology theories in algebraic geometry. Although this remains to some extent 
true for Lawvere, a topos still has a crucial role to play in algebraic geometry, 
elementary toposes have a function that was certainly not foreseen by 
Grothendieck: to provide a proper foundation for mathematics, or at least parts of 
mathematics, e.g. functional analysis or continuum mechanics. Here is, for 
instance, what Lawvere says in his paper on the category of categories as a 
foundation for mathematics: 

Having presented the axioms for the basic theory of the category of 
categories, we now ask what can be done with them. Besides the 
possibility of developing analysis which was previously alluded to, one 
can also define easily the full metacategories of ordered sets, groups, or 
algebraic theories and study these to a considerable extent. … . The 
general theories of triplable categories, of fibered categories, and of 
closed categories (when the latter is phrased so as not to refer to the 
category of sets) can all be developed quite nicely within the basic 
theory, as can many other things. (Lawvere 1966, 12) 

Thus, the role of category theory becomes metamathematical. Once again, it 
is supposedly preferable to a purely set theoretical context because a categorical 
framework is assumed to reflect more faithfully the nature of mathematical 
knowledge. 

In the mathematical development of recent decades one sees clearly the 
rise of the conviction that the relevant properties of mathematical objects 
are those which can be stated in terms of their abstract structure rather 
than in terms of the elements which the objects were thought to be made 
of. The question thus naturally arises whether one can give a foundation 
for mathematics which expresses wholeheartedly this conviction 
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concerning what mathematics is about, and in particular in which classes 
and membership in classes do not play any role. (Lawvere 1966a, 1) 

To those familiar with set theory, the claim that a categorical foundation 
would capture more adequately the abstract nature of mathematical objects is 
startling, for set theory is usually seen as exhibiting clearly the abstract nature of 
mathematical objects as well as their structures, particularly in the context of 
model theory. But Lawvere has a different sense of ‘abstract structure’ in mind, a 
sense which is the direct continuation of Eilenberg and Mac Lane’s claim 
according to which category theory is a generalization of Klein’s program3.  

We adjoin eight first-order axioms to the usual first-order theory of an 
abstract Eilenberg-Mac Lane category to obtain an elementary theory 
with the following properties: (a) There is essentially only one category 
which satisfies these eight axioms together with the additional 
(nonelementary) axiom of completeness, namely, the category S  of sets 
and mappings. Thus our theory distinguishes S  structurally from other 
complete categories, such as those of topological spaces, groups, rings, 
partially ordered sets, etc. (b) The theory provides a foundation for 
number theory, analysis, and much of algebra and topology even though 
no relation ∈ with the traditional properties can be defined. Thus we 
seem to have partially demonstrated that even in foundations, not 
Substance but invariant Form is the carrier of the relevant mathematical 
information. (Lawvere 1964, 1506) [our emphasis] 

Lawvere’s goal is here, from the point of view of the foundations of 
mathematics, traditional: to give a first-order axiomatic description of a conceptual 
system up to “isomorphism”. But here the notion of “isomorphism” is the notion of 
equivalence of categories: his goal is to add axioms to those of Eilenberg and Mac 
Lane in such a way that any two categories satisfying them are equivalent, in the 
categorical sense of that expression. This result, he claims, shows that we thus have 
a description of the Form of the universe of sets, the latter Form being to a large 
extent independent from specific details of the underlying Substance. This 
independence from the substance amounts to a claim of invariance under relevant 
transformations. In fact, this notion of invariance already underlies Lawvere’s 
thesis: it is in a sense its main goal. Indeed, Lawvere claims that “essentially, 
algebraic theories are an invariant notion of which the usual formalism with the 
operations and equations may be regarded as “presentation”.” (Lawvere, 1963a, ii, 
our emphasis.) For algebraic theories, e.g. group theory, Lawvere constructs a 
category which can be thought of as the invariant presentation of the theory and for 
that very reason ought to be taken as the theory of an algebraic type. The goal is 

                                                                 
3 This is explained in more details in my forthcoming book From a Geometrical Point of View : the 

categorical perspective on mathematics and its foundations. 
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the same for the category of sets and, to some extent, for the situation is clearly 
different, for the category of categories. 

Some years ago I began an introductory course on Set Theory by 
attempting to explain the invariant content of the category of sets, for 
which I had formulated an axiomatic description. (Lawvere, 1994, 5) 
[our emphasis] 

In the same way that it could be argued that the group of transformations of 
an elementary geometry characterizes its invariant content in a very precise sense, 
Lawvere claims that the invariant content of a conceptual system can be 
characterized by categorical means.  

Lawvere progressively came to realize that the role of adjoint functors was 
crucial in this enterprise, for they play a role similar to that of a group of 
transformations in the case of an elementary geometry. 

As posets often need to be deepened to categories to accurately reflect 
the content of thought, so should inverses, in the sense of group theory, 
often be replaced by adjoints. Adjoints retain the virtue of being uniquely 
determined reversal attempts, and very often exist when inverses do not. 
(Lawvere, 1994, 47) [our emphasis] 

In the mid-sixties, Lawvere’s project went through a fundamental shift whose 
explicit formulation appeared in 1969 in the paper entitled Adjointness in 
Foundations. Whereas the original plan was to give axioms for the category of 
categories and an invariant characterization of the category of sets, thus staying 
close to the traditional way of doing foundational research, in the mid-sixties, it 
became clear to Lawvere that some categories can be characterized entirely by 
adjoint functors and that these categories have a foundational status: they 
correspond in a precise sense to logical systems. Indeed, Lawvere had understood 
how propositional connectives could be described as adjoints between posets and 
that even quantifiers are, in fact, adjoints to an elementary operation, namely 
substitution. (This was officially presented in 1966b.) This is a key aspect of the 
whole situation that has unfortunately not been emphasized properly. Here is how 
Lawvere himself presented his views on the matter:  

This paper will have as one of its aims the giving of evidence for the 
universality of the concept of adjointness, which was first isolated and 
named in the conceptual sphere of category theory, but which also seems 
to pervade logic. Specifically, we describe in section III the notion of 
Cartesian closed category, which appears to be the appropriate abstract 
structure for making explicit the known analogy between the theory of 
functionality and propositional logic which is sometimes exploited in 
proof theory. The structure of a Cartesian closed category is entirely 
given by adjointness, as is the structure of a “hyperdoctrine”, which 
includes quantification as well. Precisely analogous “quantifiers” occur 



What is Category Theory? 247 

G.Sica (ed.) What is Category Theory? 
©2006 Polimetrica International Scientific Publisher Monza/Italy 

in realms of mathematics normally considered far removed from the 
province of logic or proof theory. As we point out, recursion (at least on 
the natural numbers) is also characterized entirely by an appropriate 
adjoint; thus it is possible to give a theory, roughly proof theory of 
intuitionistic higher-order number theory, in which all important axioms 
(logical or mathematical) express instances of the notion of adjointness. 
(Lawvere, 1969, 282) 

What Lawvere is not saying here is that these adjoints arise as adjoints to 
what ought to be considered elementary functors. As we have said, the goal here is 
not to give an axiomatization of the category of categories or the category of sets, 
even when the definite description is interpreted in categorical terms, but it is more 
general and abstract: it is to present strictly in terms of adjoints certain types of 
categories that are foundationally significant. It in this light that the well-known 
following statement about foundations found in the 1969 paper has to be 
understood: 

Foundations will mean here the study of what is universal in 
mathematics. Thus Foundations in this sense cannot be identified with 
any “starting-point” or “justification” for mathematics, though partial 
results in these directions may be among its fruits. But among the other 
fruits of Foundations so defined would presumably be guide-lines for 
passing from one branch of mathematics to another and for gauging to 
some extent which directions of research are likely to be relevant. 
(Lawvere, 1969, 281) 

Adjoints are everywhere. As we have already indicated, important 
mathematical results and constructions can be described in terms of adjoint 
functors: compactness results, free structures of a certain kind and their variants, 
e.g. universal enveloping algebra or abelianization of a group, Galois theory, the 
adjointness between loop-space construction and the suspension construction in 
homotopy theory, etc. But these specific adjunctions, which illustrate the diversity 
and the extent of the phenomenon, are not what Lawvere was after. Lawvere had 
identified what deserve to be called structural adjunctions that happen, and this is 
the truly remarkable fact, to be equivalent in a very specific sense to logical 
concepts and systems. The categories thus described have a different status than the 
categories previously considered. 

More recently, the search for universals has also taken a conceptual turn 
in the form of Category Theory, which began with viewing as a new 
mathematical object the totality of all morphisms of the mathematical 
objects of a given species A, and then recognizing that these new 
mathematical objects all belong to a common non-trivial species C which 
is independent of A. (Lawvere, 1969, 281) 
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What Lawvere is now after are these non-trivial species C that are 
independent of previously given mathematical objects of species A. The 
independence is here guaranteed by the fact that the non-trivial species C are 
defined entirely in terms of adjoints. At this stage, category theory is presented as 
being fully autonomous, at least at the conceptual level.  

It should be emphasized that his work on the category of categories and the 
category of sets prepared Lawvere remarkably well for this qualitative shift, for, in 
the first case, he had to consider categories in a purely abstract fashion, something 
which no one had done systematically before, and, in the second case, he tried to 
substitute infinite operations by elementary adjunctions in the context of sets. This 
can be seen directly by looking at his papers on the category of categories and on 
the elementary theory of the category of sets respectively. 

In the paper on the category of categories, Lawvere introduces four abstract 
finite categories: the first one has one object and one morphism and is denoted by 
 1 ; the second one has two objects and one non-trivial morphism and is denoted by 
 2 ; the third one has three objects and three non-trivial morphisms and is denoted 
by  3 ; and the last one has four objects and six non-trivial morphisms and is 
denoted by  4 . These categories are abstract in the sense that the objects and the 
morphisms, apart from the trivial identity morphisms, have no identity other than 
being part of the category. They have to be considered as being abstract data. This 
abstract character is illustrated by the following pictorial representations: 

•
1   

•⎯⎯→•
2   

•

•⎯⎯→•
/ 2

3

  •

⎯⎯→•• ↑

•

/ 2

3 /

4

. 

These categories are used to represent objects, morphisms, composition of 
morphisms and associativity of morphisms respectively. More specifically, a 
functor F⎯⎯→C1  picks an object of C , a functor G⎯⎯→C2  picks a morphism of 
C , etc. Of course, these categories are related by obvious functors. Thus, these 
simple abstract categories, these basic forms, are used to represent the basic 
properties of categories themselves. We should also point out that these geometric 
patterns are obviously related to simplicial sets and that this connection is 
underlying contemporary research in higher-dimensional categories. See, for 
instance, Leinster 2002 on Street’s approach.  

The other key element is the operation of exponentiation CD  which can be 
described as an adjoint. In the proper context, this operation contributes to the 
reduction of higher-order infinitary operations to finitary algebraic operations. 
With these data, Lawvere introduced the notion, a new abstract form, of a Cartesian 
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closed category. A Cartesian closed category C  is a category with the following 
three adjunctions: 

1. The unique functor ⎯⎯→C 1  has a right adjoint; this amounts to the claim 
that C  has a terminal object; 

2. The diagonal functor :Δ ⎯⎯→ ×C C C , which to every object X  of C  
assigns the pair X, X  and acts on morphisms in the obvious fashion, 
has a right adjoint; this amounts to the claim that C  has binary 
products, e.g. for each pair X,Y , there is an object X ×Y  of C  
together with morphisms :Xp X Y X× →  and :Yp X Y Y× → , called 
the projections, satisfying the following universal property: for each 
object Z  and every morphisms fZ X⎯⎯→  and gZ Y⎯⎯→ , there is a 
unique morphism hZ X Y⎯⎯→ ×  such that the following diagram  

X Yp p

f gh

Z

X X Y Y
↓

←⎯⎯ × ⎯⎯→
0 2  

commutes. 

3. Let X  be a fixed object of C . Then, each functor ( )X × −⎯⎯⎯→C C  has a right 
adjoint; the right adjoint is the exponentiation functor ( )X−⎯⎯⎯→C C . It 
can also be characterized by a universal property that we will not 
state here. 

One striking feature of these adjoints is that they do not relate a category of 
structures to another, different, category of structures. The functors are here 
between a category C  and categories of the form DC , where the category D  is 
usually entirely abstract and finite. For instance, in condition ii. above, the 
diagonal functor can be described as a functor :Δ ⎯⎯→C C 2 , where the category  2  
denotes the abstract category with two objects and no other morphisms than the 
identity morphisms. These three simple axioms are surprisingly powerful. Many 
important properties follow directly from them. For instance, it is easy to show that 
a Cartesian closed category has all finite products and various exponential laws are 
obtained directly from the adjoint situation. In other words, a Cartesian closed 
category can be characterized as having all finite products and all its objects are 
exponentiable.  

Using the notion of a Cartesian closed category, Lawvere then introduced the 
notion of an hyperdoctrine, also characterized by the existence of certain adjoints, 
although in this case, there is an important underlying structure, nowadays seen as 
being a fibration. (See for instance Jacobs 1999.) The notion of an elementary 
topos came quickly afterwards and can be defined by following the same general 
principle. Indeed, a topos E  is a Cartesian closed category with all finite limits and 
a subobject classifier. As we have just seen being Cartesian closed is characterized 
by the existence of certain adjoints and so is the notion of having finite limits (in 



250 Jean-Pierre Marquis  

G.Sica (ed.) What is Category Theory? 
©2006 Polimetrica International Scientific Publisher Monza/Italy 

fact, one only needs to add the existence of equalizers, and this amounts to the 
existence of a right adjoint to an appropriately defined diagonal functor (see Mac 
Lane, 1998, p. 88.)). The existence of a subobject classifier is also equivalent to the 
existence of an adjoint situation.  

In 1970, it became clear to every category theorist that category theory 
contained all the resources to define new mathematical forms, e.g. abelian 
categories, Quillen’s model categories, Barr’s regular and exact categories, 
Lawvere-Tierney’s elementary toposes, which in turn provided new contexts to do 
mathematics entirely within these contexts and to solve problems in various fields. 
Furthermore, these new forms could be directly linked to well-known forms, in 
particular logical systems. Indeed, following Lawvere, various mathematicians 
including Mitchell, Bénabou, Reyes, Makkai and especially Joyal, showed how 
certain categories — regular, coherent, Heyting, Boolean, geometric —, were 
equivalent in a precise technical sense to logical systems and how various theorems 
of logic could be translated into theorems about categories and vice-versa, 
theorems about categories could be translated into theorems about logical systems, 
e.g. completeness results. (See, for instance, Makkai & Reyes 1977 or Johnstone 
2002, vol. 2, chap. D.) This correspondence is still being explored and exploited, 
especially in theoretical computer science. (See for instance Scott 2000.) 

4  What is category theory? 
Let us first recapitulate the different functions that category theory has played in 
the history that I have sketched. There are, first, the heuristic roles:  

1. To provide a conceptually consistent framework, i.e. give a general 
definition of the notion of natural transformation; 

2. To provide a language to state precisely what certain mathematical 
theories are, e.g. homology and cohomology theories, homological 
algebra, etc.; 

3. To provide a language useful in the statement of certain theorems and 
their proofs; 

4. To provide a language that suggests new definitions and new proofs, e.g. 
dualities in algebraic topology; 

5. To provide a language that unifies various mathematical notions and 
theories. 

To many mathematicians, even today, this is what category theory is all 
about. It is, in a nutshell, a useful tool to organize, present and develop certain 
areas of mathematics that are usually considered as being already given in a 
different setting. The main point here is that these applications do not use 
constructions on and in categories, they do not use categorical concepts, that is 
concepts defined directly in terms of categories, functors, natural transformations 
and their properties. They do not use category theory. The main concepts, 
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categories, functors and natural transformations, and the language, arrows, 
commutative diagrams, are seen as useful prosthetics to the mind. But they are 
believed to be just that: extraordinarily useful for us, visual creatures that we are. 
At the end of the day, it is believed that the mathematics done with these aids do 
not depend essentially on categories, functors, etc. This position is sometimes 
pushed even further when it is claimed that categories themselves depend 
essentially on other, simpler, concepts. This dependence is not without reminding 
me of the debate in philosophy of mind on the dependence of the mind on the body, 
of the spirit on the material, or, to put it in a metaphorical language that brings us 
closer to our problem, of the form on the substance, although the dependence 
relation is sometimes presented as being a relation of cognitive dependence — to 
understand the notion X, one has to understand the notion Y — or logical 
dependence — to define the notion X, one has to define the notion Y — , the two 
relations being sometimes identified. The key here is of course the notion of 
abstraction as a cognitive/logical process and whether once a notion has been 
abstracted and that an entirely autonomous context has been provided for it, it can 
be considered in and for itself. I believe that this process of abstraction started in 
the early nineteen forties with Eilenberg and Mac Lane, but that it is only in the 
nineteen sixties and seventies that an autonomous context for the notions involved 
emerged, first by considering constructions of categories, second by defining 
mathematical concepts and doing parts of mathematics directly in categories, third 
by using categorical means to introduce structures in categories, or equivalently 
structured categories, fourth by seeing that these structures could be presented and 
understood by purely categorical means, in particular adjoint functors, fifth by 
establishing connections between fundamental categorical structures and logical 
frameworks. This process of abstraction is still going on with the developments of 
(weak) higher-dimensional categories and their applications. 

Once category theory was developed and used, in particular when the central 
theoretical role played by adjoint functors was understood, a fascinating process of 
reversal of perspective, a gestalt switch, took place: what was seen as a useful tool 
in organizing and guiding mathematical thought became a theoretical framework 
that revealed the basic or fundamental principles underlying mathematical 
concepts, theories and theorems. Thus, Stone duality theorem is indeed more 
perspicuously presented in the context of categories and functors — it is organized 
neatly and the basic consequences of the result are transparent — but once it is 
seen as a special case of a very general adjoint situation, a theoretical 
understanding of the phenomenon becomes available. Category theory is not 
applied to Stone’s theorem, it is the latter that becomes a specific instance of a 
general, universal conceptual situation.  

Although it might in the end be more obscure than what I have said so far, I 
dare at this stage put forward a slogan that, I believe, sums up the core of what I 
have been presenting: category theory is the architectonic of mathematics. 
Category theory is, indeed, as in the philosophical sense of the expression 
“architectonic”, the systematization of mathematical knowledge. Mathematical 
knowledge is systematic. Mathematics is a conceptual system. That much is 
indubitable. Of course, the set theoretical modeling of mathematical knowledge is 



252 Jean-Pierre Marquis  

G.Sica (ed.) What is Category Theory? 
©2006 Polimetrica International Scientific Publisher Monza/Italy 

also systematic. However, I believe that the standard set theoretical foundations for 
mathematics do not reflect this fact in the same way that category theory does and 
the differences are crucial. What category theory reveals is how the fundamental 
constructions of mathematics, even the logical operations underlying mathematical 
thinking, are related to one another systematically, how they arise from one another 
according to simple and general basic principles. It is not that set theory does not 
reveal general principles of construction, the fact is, these principles are simply 
subsumed under the more general and abstract principles of category theory. 
Furthermore, category theory provides an intrinsic classification of mathematical 
concepts as well as the means to see how the various mathematical categories, no 
pun intended, are related to one another.  

One should also keep in mind the original meaning of the expression 
“architectonic”: pertaining to constructions. It is, of course, conceptual 
constructions that are at issue. Indeed, category theory is about various 
fundamental and general conceptual constructions to which or rather within which 
other, more specific, mathematical concepts can find their place. Category theory 
provides an overall conceptual frame for mathematics. This frame, it must be said, 
has no “starting point” or “basement”. One should imagine that we are building a 
space station, not a skyscraper or any other similar building that has to stand on 
solid grounds. Building in space must be done according to general principles, 
according to general laws of physics and engineering, but the construction does not 
have to have a definite orientation, an up and a down, a foundation in a geocentric 
sense of that expression. Perhaps category theory is forcing us to make a 
conceptual Copernican revolution.  

I will go even one step further: category theory is the architectonic of 
concepts or of conceptual systems in general. (And, yes, I guess one could say that 
it is the architectonic of Reason… and it is extraordinarily tempting to go back to 
Kant. I will leave this task to others since I do not believe that it would be 
illuminating. I don’t think using Kant here would be of any use, even though it 
could be fun, for category theory and its properties are more clear, at least to me, 
that Kant can be). The claim is simply that category theory can illuminate fields 
other than pure mathematics and that it will play in these fields a role similar to the 
one it now plays in pure mathematics. 
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