The Physics of Glueballs

Vincent Mathieu

Université de Mons, Belgique

Zakopane, February 2009

Outline

(1) Introduction
(2) Lattice QCD
(3) $\mathrm{ADS} / \mathrm{QCD}$
(9) QCD Spectral Sum Rules
(5) Gluon mass
(6) Two-gluon glueballs $C=+$
(7) Three-gluon glueballs $C=-$
(8) Helicity formalism for transverse gluons
(3) Conclusion
(10) References

References

V. Mathieu, N. Kochelev, V. Vento
"The Physics of Glueballs"
invited review for Int. J. Mod. Phys. E
arXiv:0810.4453 [hep-ph]
青
V. Mathieu, F. Buisseret and C. Semay "Gluons in Glueballs: Spin or Helicity ? "
Phys. Rev. D 77, 114022 (2008), [arXiv:0802.0088 [hep-ph]]
嗇 V. Mathieu, C. Semay and B. Silvestre-Brac
"Semirelativistic Potential Model for Three-gluon Glueballs."
Phys. Rev. D77 094009 (2008), [arXiv:0803.0815 [hep-ph]]
N. Boulanger, F. Buisseret,V. Mathieu, C. Semay
"Constituent Gluon Interpretation of Glueballs and Gluelumps."
Eur. Phys. J. A38 317 (2008) [arXiv:0806.3174 [hep-ph]]

Introduction - QCD

$\mathrm{QCD}=$ gauge theory with the color group $\mathcal{S U}(3)$

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{4} \operatorname{Tr} G_{\mu \nu} G^{\nu \mu}+\sum \bar{q}\left(\gamma^{\mu} D_{\mu}-m\right) q \\
G_{\mu \nu} & =\partial_{\mu} A_{\mu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right]
\end{aligned}
$$

Quark $=$ fundamental representation 3
Gluon $=$ Adjoint representation 8
Observable particles $=$ color singlet $\mathbf{1}$

Mesons:

$$
\begin{aligned}
\mathbf{3} \otimes \overline{\mathbf{3}} & =\mathbf{1} \oplus \mathbf{8} \\
\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} & =\mathbf{1} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1 0} \\
\mathbf{8} \otimes \mathbf{8} & =(\mathbf{1} \oplus \mathbf{8} \oplus \mathbf{2 7}) \oplus(\mathbf{8} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}}) \\
\mathbf{8} \otimes \cdots \otimes \mathbf{8} & =\mathbf{1} \oplus \mathbf{8} \oplus \ldots
\end{aligned}
$$

Colored gluons \rightarrow color singlet with only gluons

Introduction - Glueballs

Prediction of the QCD
Production in gluon rich processes (OZI forbidden,...)
Closely linked to the Pomeron:

$$
J=0.25 M^{2}+1.08
$$

Mixing between glueball 0^{++}and light mesons

$$
\begin{array}{llll}
\text { Candidates: } & f_{0}(1370) & f_{0}(1500) & f_{0}(1710)
\end{array}
$$

One scalar glueball between those states [Klempt, Phys. Rep. 454].

Physical States

Pure states: $|g g\rangle,|n \bar{n}\rangle,|s \bar{s}\rangle$

$$
|G\rangle=|g g\rangle+\frac{\langle n \bar{n} \mid g g\rangle}{M_{g g}-M_{n \bar{n}}}|n \bar{n}\rangle+\frac{\langle s \bar{s} \mid g g\rangle}{M_{g g}-M_{s \bar{s}}}|s \bar{s}\rangle
$$

Analysis of

$$
\text { Production: } \quad J / \psi \rightarrow \gamma f_{0}, \omega f_{0}, \phi f_{0} \quad \text { Decay: } \quad f_{0} \rightarrow \pi \pi, K \bar{K}, \eta \eta
$$

Two mixing schemes

Cheng et al [PRD74, 094005 (2006)]

$$
M_{n \bar{n}}<M_{s \bar{s}}<M_{g g}
$$

Lattice QCD

Investigation of the glueball spectrum (pure gluonic operators) on a lattice by Morningstar and Peardon
[Phys. Rev. D60, 034509 (1999)]
Identification of 15 glueballs below 4 GeV

$$
\begin{aligned}
M\left(0^{++}\right) & =1.730 \pm 0.130 \mathrm{GeV} \\
M\left(0^{-+}\right) & =2.590 \pm 0.170 \mathrm{GeV} \\
M\left(2^{++}\right) & =2.400 \pm 0.145 \mathrm{GeV}
\end{aligned}
$$

Quenched approximation (gluodynamics)
\rightarrow mixing with quarks is neglected

Lattice studies with $n_{f}=2$ exist. The lightest scalar would be sensitive to the inclusion of sea quarks but no definitive conclusion.

$\mathrm{ADS} / \mathrm{QCD}$

AdS/CFT correspondance:
Correspondance between conformal theories and string theories in AdS spacetime QCD not conformal \rightarrow breaking conformal invariance somehow

Introduction of a black hole in AdS to break conformal invariance
Parameter adjusted on 2^{++}
Same hierarchy but some states are missing (spin $3, \ldots$)

[R. C. Brower et al., Nucl. Phys. B587, 249 (2000)]

QCD Spectral Sum Rules

Gluonic currents: $\quad J_{S}(x)=\alpha_{s} G_{\mu \nu}^{a}(x) G_{\mu \nu}^{a}(x) \quad J_{P}(x)=\alpha_{s} G_{\mu \nu}^{a}(x) \widetilde{G}_{\mu \nu}^{a}(x)$

$$
\Pi\left(Q^{2}\right)=i \int d^{4} x e^{i q \cdot x}\langle 0| T J_{G}(x) J_{G}(0)|0\rangle=\frac{1}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} \Pi(s)}{s+Q^{2}} d s
$$

Theoretical side (OPE):

$$
J_{G}(x) J_{G}(0)=C_{(a)+(b)+(e)} \mathbf{1}+C_{(c)} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+C_{(d)} f_{a b c} G_{\alpha \beta}^{a} G_{\beta \gamma}^{b} G_{\gamma \alpha}^{b}+\cdots
$$

(a)

(b)

(c)

(d)

(e)

Confinement parameterized with condensates $\langle 0| \alpha_{s} G_{\mu \nu}^{a} G_{a}^{\mu \nu}|0\rangle, \ldots$
Phenomenological side:

$$
\operatorname{Im} \Pi(s)=\sum_{i} \pi f_{G_{i}}^{2} m_{G_{i}}^{4} \delta\left(s-m_{G_{i}}^{2}\right)+\pi \theta\left(s-s_{0}\right) \operatorname{Im} \Pi(s)^{\mathrm{Cont}}
$$

Sum Rules \rightarrow Constituent models

Sum rules calculation by Forkel [Phys. Rev. D71, 054008 (2005)]

$$
\begin{equation*}
M\left(0^{++}\right)=1.25 \pm 0.20 \mathrm{GeV} \quad M\left(0^{-+}\right)=2.20 \pm 0.20 \mathrm{GeV} \tag{1}
\end{equation*}
$$

Two gluons in interaction

(a)

(b)

(c)

(d)

(e)

Two gluons $\rightarrow C=+$ Three gluons $\rightarrow C=-$

Works on constituent models by Bicudo, Llanes-Estrada, Szczepaniak, Simonov,...

Gluon Mass

Gluons massless in the Lagrangian
Non-perturbative effects \rightarrow dynamical

mass

Cornwall [PRD26 1453 (1982)]

$$
m^{2}\left(q^{2}\right)=m_{0}^{2}\left[\frac{\ln \left(\frac{q^{2}+\rho m_{0}^{2}}{\Lambda^{2}}\right)}{\ln \left(\frac{\rho m_{0}^{2}}{\Lambda^{2}}\right)}\right]^{\gamma}
$$

Gluons \sim heavy quarks

Gluonium models for the low-lying glueballs with Spinless Salpeter Hamiltonian

$$
H_{g g}=2 \sqrt{\boldsymbol{p}^{2}+m^{2}}+V(r)
$$

bare mass $m=0$ and effective mass $\mu=\langle\Psi| \sqrt{\boldsymbol{p}^{2}}|\Psi\rangle$ state dependent (Simonov 1994) Gluons spin-1 particles with the usual rules of spin coupling

Two-gluon glueballs $C=+$

Brau and Semay [Phys. Rev. D70, 014017 (2004)]

Two-gluon glueballs $\rightarrow C=+$ and $P=(-1)^{L}$
$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$ with $S=0,1,2$.

$$
H^{0}=2 \sqrt{\boldsymbol{p}^{2}}+\frac{9}{4} \sigma r-3 \frac{\alpha_{s}}{r}
$$

Cornell potential does not lift the degeneracy between states with different S
Corrections of order $\mathcal{O}\left(1 / \mu^{2}\right)$, with

$$
\mu=\langle\Psi| \sqrt{\boldsymbol{p}^{2}}|\Psi\rangle
$$

Structures coming from the OGE

$$
\begin{aligned}
V_{\text {oge }}= & \lambda\left[\left(\frac{1}{4}+\frac{1}{3} \boldsymbol{S}^{2}\right) U(r)-\frac{\pi}{\mu^{2}} \delta(\boldsymbol{r})\left(\frac{5}{2} \boldsymbol{S}^{2}-4\right)\right. \\
& \left.\frac{3}{2 \mu^{2}} \frac{U^{\prime}(r)}{r} \boldsymbol{L} \cdot \boldsymbol{S}-\frac{1}{6 \mu^{2}}\left(\frac{U^{\prime}(r)}{r}-U^{\prime \prime}(r)\right) T\right]
\end{aligned}
$$

with $\lambda=-3 \alpha_{S}$ and $U(r)=\exp (-\mu r) / r$.

Two-gluon glueballs $C=+$

Smearing of the attractive $\delta^{3}(\boldsymbol{r})$ by a gluon size

$$
\rho(\boldsymbol{r}, \gamma)=\exp (-r / \gamma) / r
$$

Replacement of potentials by convolutions with the size function

$$
V(\boldsymbol{r}) \rightarrow \widetilde{V}(\boldsymbol{r}, \gamma)=\int V\left(\boldsymbol{r}+\boldsymbol{r}^{*}\right) \rho\left(\boldsymbol{r}^{*}, \gamma\right) d \boldsymbol{r}^{*}
$$

$J^{P C}$	(L, S)		
0^{++}	$(0,0)$	$(2,2)$	$(0,0)^{*}$
0^{-+}	$(1,1)$	$(1,1)^{*}$	
2^{++}	$(0,2)$	$(2,0)$	$(2,2)$
2^{-+}	$(1,1)$	$(1,1)^{*}$	
3^{++}	$(2,2)$		
4^{++}	$(2,2)$		
1^{++}	$(2,2)$		
1^{-+}	$(1,1)$	$(1,1)^{*}$	

Parameters

$$
\sigma=0.21 \mathrm{GeV}^{2} \quad \alpha_{s}=0.50 \quad \gamma=0.5 \mathrm{GeV}^{-1}
$$

Good agreement with lattice QCD Gluons $=\operatorname{spin} 1 \rightarrow$ spurious $J=1$ states and indetermination of states For instance, 0^{++}can be $(L, S)=(0,0)$ or $(2,2)$

Three-gluon glueballs $C=-$

The Model

Extension of the model to three-gluon systems

$$
H=\sum_{i=1}^{3} \sqrt{\boldsymbol{p}_{i}^{2}}+\frac{9}{4} \sigma \sum_{i=1}^{3}\left|\boldsymbol{r}_{i}-\boldsymbol{R}_{\mathrm{cm}}\right|+V_{\mathrm{OGE}}
$$

Same parameters ($\sigma, \alpha_{S}, \gamma$) as for two-gluon glueballs

$$
\begin{aligned}
V_{\mathrm{OGE}}= & -\frac{3}{2} \alpha_{S} \sum_{i<j=1}^{3}\left[\left(\frac{1}{4}+\frac{1}{3} \boldsymbol{S}_{i j}^{2}\right) U\left(r_{i j}\right)-\frac{\pi}{\mu^{2}} \delta\left(\boldsymbol{r}_{i j}\right)\left(\beta+\frac{5}{6} \boldsymbol{S}_{i j}^{2}\right)\right] \\
& -\frac{9 \alpha_{S}}{4 \mu^{2}} \sum_{i<j=1}^{3} \boldsymbol{L}_{i j} \cdot \boldsymbol{S}_{i j} \frac{1}{r_{i j}} \frac{d}{d r_{i j}} U\left(r_{i j}\right) \quad \text { with } U(r)=\frac{e^{-\mu r}}{r}
\end{aligned}
$$

We find the eigenvalue of this operator thanks to a Gaussian basis

Three-gluon glueballs $C=-$

The Results

Gluons with spin $\rightarrow \boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$
Good results for 1^{--}and 3^{--}but higher $2^{--} \leftarrow$ symmetry
Disagreement with lattice QCD for $P C=+-$
This model cannot explain the splitting $\sim 2 \mathrm{GeV}$ between 1^{+-}and 0^{+-}
$0^{+-}, 1^{+-}, 2^{+-}, 3^{+-}$are $L=1$ and

$$
\begin{array}{rll}
d_{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} & {\left[(\mathbf{8 8})_{\mathbf{8}_{s}} \mathbf{8}\right]^{\mathbf{1}}} & C=- \\
f_{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} & {\left[(\mathbf{8 8})_{\mathbf{8}_{a}} \mathbf{8}\right]^{\mathbf{1}}} & C=+
\end{array}
$$

S	$S_{\text {int }}$	Symmetry	$J^{P C}$
0	0	1 A	0^{-+}
1	$0,1,2$	$1 \mathrm{~S}, 2 \mathrm{MS}$	1^{--}
2	1,2	2 MS	2^{--}
3	2	1 S	3^{--}

$J^{P C}$	(L, S)	$J^{P C}$	(L, S)
1^{--}	$(0,1)$	0^{+-}	$(1,1)$
2^{--}	$(0,2)$	1^{+-}	$(1,1)$
3^{--}	$(0,3)$	2^{+-}	$(1,1)$
0^{-+}	$(1,1)$	3^{+-}	$(1,2)$

Solution: Implementation of the helicity formalism for three transverse gluons.

Helicity Formalism for two-gluon glueballs

Yang's theorem: $\rho \nrightarrow \gamma \gamma$
$\gamma \gamma \sim g g \rightarrow J \neq 1$
$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$ cannot hold for relativistic system. \boldsymbol{J} is the only relevant quantum number.
Solution: Helicity formalism for transverse gluons with helicity $s_{i}=1$. Only two projection, $\lambda_{i}= \pm 1$.

Formalism to handle with massless particles [Jacob and Wick (1959)] State $J^{P C}$ in term of usual (L, S) states (with $\Lambda=\lambda_{1}-\lambda_{2}$):

$$
\left.\left|J, M ; \lambda_{1}, \lambda_{2}\right\rangle=\left.\sum_{L, S}\left[\frac{2 L+1}{2 J+1}\right]^{1 / 2}\langle L 0 S \Lambda \mid J \Lambda\rangle\left\langle s_{1} \lambda_{1} s_{2}-\lambda_{2} \mid S \Lambda\right\rangle\right|^{2 S+1} L_{J}\right\rangle
$$

Not eigenstates of the parity and of the permutation operator.

$$
\begin{aligned}
\mathrm{P}\left|J, M ; \lambda_{1}, \lambda_{2}\right\rangle & =\eta_{1} \eta_{2}(-1)^{J}\left|J, M ;-\lambda_{1},-\lambda_{2}\right\rangle \\
P_{12}\left|J, M ; \lambda_{1}, \lambda_{2}\right\rangle & =(-1)^{J-2 s_{i}}\left|J, M ; \lambda_{2}, \lambda_{1}\right\rangle
\end{aligned}
$$

Helicity Formalism for two-gluon glueballs

Construction of states symmetric (bosons) and with a good parity \rightarrow selection rules.

$$
\begin{array}{rll}
\left|S_{+} ;(2 k)^{+}\right\rangle & \Rightarrow & 0^{++}, 2^{++}, 4^{++}, \ldots \\
\left|S_{-} ;(2 k)^{-}\right\rangle & \Rightarrow & 0^{-+}, 2^{-+}, 4^{-+}, \ldots \\
\left|D_{+} ;(2 k+2)^{+}\right\rangle & \Rightarrow & 2^{++}, 4^{++}, \ldots \\
\left|D_{-} ;(2 k+3)^{+}\right\rangle & \Rightarrow & 3^{++}, 5^{++}, \ldots
\end{array}
$$

States expressed in term of the usual basis (useful to compute matrix elements!). Low-lying states:

$$
\begin{aligned}
\left|S_{+} ; 0^{+}\right\rangle & =\sqrt{\frac{2}{3}}\left|{ }^{1} S_{0}\right\rangle+\sqrt{\frac{1}{3}}\left|{ }^{5} D_{0}\right\rangle, \\
\left|S_{-} ; 0^{-}\right\rangle & =\left|{ }^{3} P_{0}\right\rangle, \\
\left|D_{+} ; 2^{+}\right\rangle & =\sqrt{\frac{2}{5}}\left|{ }^{5} S_{2}\right\rangle+\sqrt{\frac{4}{7}}\left|{ }^{5} D_{2}\right\rangle+\sqrt{\frac{1}{7}}\left|{ }^{5} G_{2}\right\rangle, \\
\left|D_{-} ; 3^{+}\right\rangle & =\sqrt{\frac{5}{7}}\left|{ }^{5} D_{3}\right\rangle+\sqrt{\frac{2}{7}}\left|{ }^{5} G_{3}\right\rangle, \\
\left|S_{-} ; 2^{-}\right\rangle & \left.=\sqrt{\frac{2}{5}}\left|{ }^{3} P_{2}\right\rangle+\left.\sqrt{\frac{3}{5}}\right|^{3} F_{3}\right\rangle .
\end{aligned}
$$

Application

Same hierarchy as the lattice QCD Application with a simple Cornell potential

$$
H^{0}=2 \sqrt{\boldsymbol{p}^{2}}+\frac{9}{4} \sigma r-3 \frac{\alpha_{s}}{r}
$$

Parameters:

$$
\sigma=0.185 \mathrm{GeV}^{2} \quad \alpha_{s}=0.45
$$

Addition of an instanton induced interaction to split the degeneracy between the 0^{++} and 0^{-+}

$$
\Delta H_{I}=-P \mathcal{I} \delta_{J, 0} \quad \text { with } \mathcal{I}=450 \mathrm{MeV}
$$

Instanton attractive in the scalar channel and repulsive in the pseudoscalar and equal in magnitude
Very good agreement without spin-dependent potential
Extension for three-body systems ?

Three-gluon glueballs with transverse gluons

$\mathcal{S U}(2) \times \mathcal{S U}(3)$ decomposition for two gluons \rightarrow to the lowest J :

$$
\square^{a} \otimes \square^{b}=\square \square^{(a b)} \oplus \bullet^{(a b)} \oplus \square^{[a b]}
$$

Lowest J allowed for 3 gluons with helicity:

$$
\square^{a} \otimes \square^{b} \otimes \square^{c}=\square \square \square^{(a b c)} \oplus \square^{(a b c)} \oplus \cdots \oplus \bullet \bullet(a b c]
$$

Low-lying states are $J=1$ and $J=3$ with symmetric colour function and $J=0$ with an antisymmetric colour function

Low-lying states are the $1^{ \pm-}, 3^{ \pm-}$and the $0^{ \pm+}$
$J=0^{P-}$ are not allowed for three-gluon glueballs $\rightarrow 0^{+-}$four transverse gluons

The result should be confirmed by a detailed analysis of the three-body helicity formalism These developments are under construction

Conclusion

Model with spin- 1 gluons reproduces the pure gauge spectrum but spin-dependent potentials should be added and the spectrum is plagued with unwanted states
Three-gluon glueballs with massive gluon cannot reproduce the lattice data
With two transverse gluons, a simple linear+Coulomb potential reproduce the lattice QCD results.
Implementation of the helicity formalism for three transverse gluons should solve the hierarchy problem

References

V．Mathieu，N．Kochelev，V．Vento
＂The Physics of Glueballs＂
invited review for Int．J．Mod．Phys．E
arXiv：0810．4453［hep－ph］
青
V．Mathieu，F．Buisseret and C．Semay ＂Gluons in Glueballs：Spin or Helicity ？＂
Phys．Rev．D 77， 114022 （2008），［arXiv：0802．0088［hep－ph］］
嗇 V．Mathieu，C．Semay and B．Silvestre－Brac
＂Semirelativistic Potential Model for Three－gluon Glueballs．＂
Phys．Rev．D77 094009 （2008），［arXiv：0803．0815［hep－ph］］
圊 N．Boulanger，F．Buisseret，V．Mathieu，C．Semay
＂Constituent Gluon Interpretation of Glueballs and Gluelumps．＂
Eur．Phys．J．A38 317 （2008）［arXiv：0806．3174［hep－ph］］

