Equivariant K-theory and Fredholm operators

By Takao MATUMOTO

{Communicated by A. Hattori)

§0. Introduction

Let G be a compact Lie group and let LG, I*) be the complex Hilbert space
of square integrable (with respect to a G-invariant Haar measure) functions on G
with values in I, where I* is a separable complex Hilbert space (with a fixed
basis). Let §% be the space of Fredholm operators on LG, I*). The group G acts
on & in a natural way. The aim of this note is to prove the following theorem.
MaIN THEOREM. There 15 a canontcal isomorphism (of groups)

G-index: [X, &l¢ 5 K.(X),

for any compact G-space X. Here [-, 1 stands for the set of G-homotopy
classes of G-maps.

This theorem is a generalization to the equivariant case of the result due to
M. Ativah [2] and K. Janich [9). We shall get similar representations of KR (X)
and KQ:(X) in the last section.

The method of proof follows that of Atiyah in the absolute case. Let GI{(G)
be the general linear group on LG, 1%). The main step is to prove the G-con-
tractibility of GL(G) instead of its contractibility due to N. Kuiper [10]. Using
the Kuiper’s theorem, we shall prove first that GL(G) is weakly G-contractible,
that is, the H-stationary subgroup of GL(G) is weakly contractible for every
closed subgroup H of G.

To conclude the G-contractibility of GL(G) from its weakly G-contractibility,
we shall construct a slice covering whose G-nerve dominates GL{(r) and then ex-
tend a G-map of the G-nerve into GL{(G) over a cone of the G-nerve. This process
is similar to that which Kuiper used [loc. cit., §3]. The extension of a G-map
of the G-nerve is done by a technique of G. Bredon. In particular, when G is a
finite group, a G-nerve is itself a G-complex in the sense of Bredon {6]. When
G has a positive dimension, we shall need an inductive use of the lemma (3.4).
The proof of the lemma (3.4) depends on the concept of the relative G-CW complex
which is a generalization of G-complex. But the proof is easy when G is an
abelian group. In another paper {11} the author will state further details about
a G-CW complex.
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Another representation of the equivariant K-theory not by a space but by
an object analogous to BU- lim BU(n) is constructed by S. Araki in [1].

In preparing this note, there appeared a paper of G. Segal [15] which proved
the G-contractibility of GL(G) by another method. But our method using the
concept of G-CW complexes seems to have other applications, in particular in
the calculation of the K, -group of a G-manifold.

The author wishes to express his warmest thanks to Professor Akio Hattori

for his many valuable advices.

§1. Construction of the G-spaces and an exact sequence

In this section we shall construct an exact sequence in the theorem (1.2)
which makes clear that the G-contractibility of GL(G) includes the main theorem.
The notation, terminology and method follow those of Atiyah in [2] and the
proof is omitted.

The G-action on LG, ") is defined by

(ga)h)=alg'h), for ¢ € LG, 1%, g, h € &

and continuous with respect to the norm topology.

Let V,, V,, V. - - be the complete sequence of irreducible complex re-
presentations of G. Then by the theory of Peter-Weyl, L¥G) is isomorphic to the
Hilbert space 3®i(dimV,)V,, where 2@ stands for the direct sum in the cate-
gory of Hilbert spaces. Moreover L¥G, [?) is isomorphic with Z®7.(dim V) V. Q.
And similarly (dim V) V,®U® is isomorphic with V. &I* by the countability of the
basis of 12. Thereforc we get

LEMMA (1.1) LG, I*) is isomorphic with @7, V.QI* as Hilbert spaces with
G-actions. In particular L¥G,1?) is itself a separable complex Hilbert space.

Let A, § and %*:=GL be the Banach algebra of all bounded operators on
LG, 1%, its subalgebra of all Fredholm operators and its unit group = the general
linear group on LG, I*) respectively. The G-action on ¥ is defined by

Ta)=gT(g'a), for Te N, a € LXG, 1), g€ G

and compatible with the algebra structure and the norm topology of %. We often
denote WG) instead of N in order to make clear that the G-action on ¥ is induced
by that of L¥G,!%). Evidently § and GL are the G-subspaces of W(G) and the
notations F(G) and GL(G) are used for the same purpose as A(G).

Since the algebra structure of §(G) is compatible with the G-action, [X, F(G)]¢
has a natural semi-group structure for any G-space X. Likewise [X, GL(()l¢
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forms a group. And the equivariant inclusion GI{() -» §(G) induces a natural
semi-group homomorphism [X, GL(G}; - [ X, §(G)¢.
For a G-map T:X - H(G) with T(x)==T,, the class of

U KerT,(xeX)]—[u Coker T (x€ X))

will be expected to give an element of K (X). When X is a compact G-space,
we can justify the above and define a semi-group homomorphism, G-index:
X, 3G — Kt X).

THEOREM (1.2) For any compact G-space X the following canonical sequence
(of semi-groups) is exact:

(X, GL(G) — [X, F(G)]g -» KAX) 0.

Here the second arrow is the G-index homomorphism.

We prove this theorem by the almost same argument as in the absolute
case, using the lemma (1.1) and the existence theorem of the trivial G-vector
bundle including a given G-vector bundle [4, p.2-6]. Especially in proving the
surjectivity [2, p.162], we need to take a projection =,:L¥G,I?) » E, instead of
7,: V— E, and to use the fact that LYG, DRLYG, I9)=LXG, PRQI)=LXG, 1*).

REMARK. Using the ideal of compact operators, we can prove that the semi-
group [X, H(G)); is a group. Therefore the above sequence is an exact sequence
of groups.

If we assume that GL(G) is G-contractible, then we get [X, GL(G)];=0 in
the above exact sequence of groups and therefore we get the main theorem
which we have stated in the introduction, that is, the G-index homomorphism:
[X, §(G); — Kg(X) is a group isomorphism.

We have outlined the proof of the G-contractibility of GL(G) in the intro-
duction and we shall carry out the detailed proof in the following three sections.

§2. Weakly G-contractibility of GL(G)

In this section we shall prove the lemma (2.3) using the separability condi-
tion of I and the lemma (2.4} by the use of the Kuiper's theorem. The weakly
G-contractibility of GL{G) (Theorem (2.2)) is easily deduced from these two lemmas,

We begin with the definition of the weakly G-contractibility.

DEFINITION (2.1) A G-space X with a base point z, is said to be weakly G-
contractible if for every closed subgroup H of G, X¥ is arcwise connected and
its m-dimensional homotopy group =,(X#, z,) vanishes for every nizl. Here X#
stands for the H-pointwise fixed subspace of X.
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Remarx. If X is G-contractible, then the equivariant contracting function
still works when it is restricted on X ¥, and hence X is weakly G-contractible.

THEOREM (2.2) GL(G) with an identity operator as ¢ base point is weakly
G-contractible.

Let H be a closed subgroup of ¢. Then H is also a compact Lie group and
we shall get

LEMMA (2.3) LG, %) 1s isomorphic with LM H, 1*) as Hilbert spaces with H-
actions where the H-uction on LG, 7} 18 the restriction of its G-action. Hence
each pair of WG) and UHH, F(G) and F(H), GIG) and GL(H) is a pair of
H-homeomorphic spaces.

Proor oF THE LEMMA. Let W, W, W, --- be the complete sequence of
irreducible complex represcntations of H. Then if an irreducible G-representa-
tion space V. is considered to be an H-representation space, V, is decomposed into
i@ 7. ; W; where a;;’s are non-negative integers and the sum is finite. Suppose
that W; is a given irreducible representation of H. Since W, is contained in the
restriction of an irreducible representation of G because of Frobenius reciprocity
(For example see [5, p.172].), at least one of the «;;'s is non-zero. Let us recall
that I* has a countable basis. Then I®i.o(a;;W,R0% is isomorphic with the
countable direct sum of the H-representation spaces each of which is isomorphic
with W,. Hence we get

2@ (o ; W QI = W,R1% .
Using this formula and the lemma (1.1) and commuting the order of the sum,
we can calculate as follows:

LAG, By~ @0, V. Q2 S®i, (X DFeo 0 WHRQE = @50 D@50 (a,; W,R8)
25 D0 2P0 (o ; W QP =3 @7, W, QE=LHH, I?) . g.e.d.

Since GL{G) and GL{H ) are H-homeomorphic by this lemma the H-stationary
subspaces GL(G)¥ and GL(H)" are homeomorphic. Then writing G instead of H
again, we have reduced the proof of the theorem (2.2) to the next lemma.

Lemma (2.4) GL(G)Y is contractible for every compact Lie group G.

Kuiper proved the contractibility of GL{l*) and then the contractibility of
U(l) (-~the group of all unitary operators on [*) [10]. Here we shall use the
latter result to avoid the divergence difficulty of the norms.

Let U(G) be the group of all unitary operators on LG, ¥ and P(G) be the
space of all bounded, strictly positive definite, hermitian operators on L¥G, I2).
(By definition 7'€ U(G) means || Tal~=lla] for any a € LG, I*), and T € P(G) means
T*:-T and there exist positive numbers ¢ and & such that ¢<(Ta, a)<é for any
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o€ LYG, I*) with llel=1.) Then U(G) and P(G) are G-invariant subspaces of GL(G)
and GL(G) has a semi-direct decomposition U(G) X P(G), that is, for any T€GL(G)
there exists a unique pair (u, b} with v € U(G), he P(G) and T+ uh. (For example
see [7, p.935].) Moreover if Te€GIL(G)¢, then wh~T=T?=u’h" and hence u~ u’
and h—h?. Therefore GL(G)’ also has a semi-direct decomposition U(G)¢ < P(G)¥.

Define for ke P(G)¢ and 0=t=1, fh)=Q—th+t. Then filh) e P(G)® (0st=D)
and filh)==h, fi(k)=1. Hence f, is a contracting function of P(G)°.

On the other hand we shall get

LEMMA (2.5) U(G)¢ is contractible for every compact Lie group G.

ProoF. In virtue of the lemma (1.1) we shall identify LXG,*) with 2X®i..
V. &P, Then Te€AG) has a matrix-like representation T=(T;;) with T;;: V1
-V, Q. Moreover if T€eWG)°, that is, T is G-equivariant, then T;; itself has
an (infinite) matrix representation (with respect to a basis of 1?) with coefficients
in Hom¢(V;, V), where Homg(+, -) stands for the module of G-equivariant linear
homomorphisms. Then Schur’s lemma says T,;==0 (i+J) and T,; is contained in
the Banach algebra of all bounded operators on I* (in general the separable Hilbert
space with coefficients in Homg(V,, V). Hence if T=(T;)e€ U(G)¢, then Ti;=0
(33j) and T, is contained in the group of all unitary operators on I’

Conversely let T=(T;;) with T;;=0 (i#J7) and T,,€U(*, then Te€ UGy,
Therefore U(G)¢ coincides with the subspace II5,U(l?) of A(G), where the i-th
U(1?) corresponds to the group of G-equivariant unitary operators on V. Q12 The
subspace IT7,U(1?) turns out to be a (bounded) metric space with the metric
WT)—(THl= sup |T;—TIl, in particular, its topology coincides with its product
topology. Hence as a direct product of the contractible spaces, U(G)¢ is contract-
ible. q.e.d.

This concludes the proof of the lemma (2.4) and hence the theorem of this
section.

§3. G-contractibility of GL(G)

In this section we shall first define the G-nerve induced: by a locally finite
refined slice covering. Next we shall construct a locally ?ﬁnite refined slice
covering of GL(G) and a dominating map of the induced G-nerve explicitly.
Lastly assuming the lemma (3.4) we shall construct a G-contracting function of
GL(G). The proof of the lemma (8.4) is given in §4.

3. A. G-nerve induced by a locally finite refined slice covering

We first recall the definition of a slice. Let X be a G-space.
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DEFINITION (3.1) [13]. A subspace S of X which contains a point 2 is said
to be a slice at x if:

(1) GS is open,

(2) S is closed in GS,

{3) H,S=:§,

(4) if g is not contained in H, then ¢S is disjoint from S.

Here GS stands for the G-orbit of S and H. stands for the isotropy subgroup
at .

Let ©--{S,:a€ A} be a family of slices where S, is a slice at x, such that
there is another slice S at x, with GS,>@S,. Then GS,=GS, where S, stands
for the closure of S, in 87, (hence in X). Moreover, if {GS,; @€ A} covers X and
the closed covering {GS,; a€ A} is locally finite, then {S.: @€ A} is called to be a
locally finite refined slice covering of X.

Let b, be the point H,. in the coset space G/H,, where H, is the isotropy
subgroup at z.. The join of the Gb,’s (¢ € A) is defined to be the set

{(tfadues; G.€GIH,, 05,51, t,40 for only finite a’s, X {,=1}
and is denoted by |Al. If we call a join of (n--1) homogenous spaces G/H,;, (0=
i<n) a G-n-simplex with G-homogeneous spaces as G-vertexes, then [A] is the
union of all the G-simplexes with Gb,’s as G-vertexes. The topology of |A] is
defined by the weak topology with respect to these G-simplexes.

We shall use the convention 3 ¢,0.b. (t.7:0) instead of (£.§.) where J.=g.Ha..
And we mean by gobao o -+ @ gxb.; the subspace {3, £,9b,; 0=¢,21, 3 t,=1} of
|Al, which is called a cell.

DEFINITION (3.2) Let ©:={(S, a slice at z,; «€ A} be a locally finite refined
slice covering of a G-space X. A pair (IN|, N) of an underlying G-space and a
collection of cells which are defined as follows is called to be the G-nerve induced
by &. Define

N®:-{gb,C|Al; geG}
A”if{gobao s giba AL g0§u0 ﬂgxs;nxi{ﬁ}

N*={gebag >+ © 0o " 1AL 5 0080 -+ N giSout6}

and N =2 UgoNE,
Then the union of all the cells in N forms a G-invariant closed subspace of |Al,
which is defined to be the underlying G-space [N| of N.

DEFINITION (3.3) The simplicial G-nerve (ISNJ, SN) induced by a locally finite
refined slice covering © is defined by SN=U7.,SN* as a collection of G-simplexes
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where

SN*={Gbyg o -+ > Gby I1Al; ¢Su -+ GSor¢}

and ISN| is a G-invariant closed subspace of |A| which is spanned by the G-
simplexes in SN.

3.B. A dominating G-nerve on GL(G)

We need the following theorem due to G. Mostow [12]. See also [13].

THEOREM (Mostow). Let G be a compact Lie group end X be a G-space
which is completely regular. Then there exists a slice at x for every point «
of X.

We recall that (@) is a Banach space with a G-action and its norm is G-
equivariant. Moreover GL(G) is an open G-invariant subspace of the G-equivari-
ant Banach space N(G). Then there is a ‘small’ ball with center x for every
point @ of GL(G), where the ball with radius ¢ is said to be ‘small’ if the con-
centrie ball with radius 3¢ in W(G) is contained in GI(G). Since GL(G) is metriza-
ble and therefore completely regular, we can use the above theorem of Mostow
and get a slice S, at . Let U,=Ul(z, ¢(x)) be a ‘small’ ball with center x and
radius (). Then since U, is H,-invariant, H,(StNU,)==S,nU,. On the other
hand since S.NU, is open in S%, G(S4NU.) is open. Therefore S;NU,; is also a
slice at . Heneceforth we can assume S;cU,.

Because the metric on GL(G) is G-invariant, GL(G)/G is a metrie space and
therefore paracompact. We choose a countable locally finite refined covering of
the covering {S4/G; x€GL(G)} of GL(G)/G and a partition of unity on GL(G)/G
attached to the refined covering. This refined covering and the partition of unity
induce a countable locally finite refined slice covering {S; a slice at z;: j (natural
number)} of GL(G) and a collection of G-invariant functions ¢; on GL(G) with
supp ¢, GS;, Se,(x)=1, ¢{(x)=0, ¢{gx)=¢;(x) and ¢,(2)>0 for only finite j’s.

When x€GS;, we introduce the notation z;(z) which stands for the centering
point g(z)x; of the unique slice g(x)S; which contains z. Here g(x)€G is deter-
mined modulo H,. Also we shall use the convention S;{z) instead of g(x)S;. In
this notation z,(gx)=gx;(x) holds for any g€ G because gS;(x)==S,(gx).

Let ¢; denote the radius e(z;) of the ‘small’ ball with center z; which has
been given for every point x at the beginning. Then

S;cSjcU;=Ulgx;, ¢;) .
Therefore if ¢;(x)>0 then
z€ Sz Ulx ), ;) .

Since ¢;(x)>0 for only finite j’s, there is an index m=m(z) such that ¢,(x)>0
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and ¢, z¢; for any j with ¢;(@)>0. Then since Uta;(x), ¢;)'s are also ‘small’
balls, both « and x,(x)’s are contained in U(s,.(), 32.). Therefore by the convexity
of the ball, for every € GL(G) and 0=¢=1,

Efz) (At it 3 ¢ ez i)
is contained in GL(G). Here ¢,;’s are G-invariant and z;’s are G-equivariant.
Then £, (0<t<1) gives a G-homotopy from the identity map £y of GL(G) onto
GL(G) to &= 3 ¢,

On the other hand let N be the G-nerve induced by the countable locally
finite refined slice covering {S,:j (natural number)}. Let b;(x) stand for glx)b;
where g-:g(z) satisfies z;(x)=-g#;, Then the G-equivariantness of z,(-) induces
that of b,(-). Define two maps,

o: GL(G)—]N} and p: IN|->GL(G)
by
o(x) 30 ¢ (mbiz) and p(X t;0,(x))= 2 t;m;(x) .

Then these two maps are well-defined, G-equivariant and continuous with respect
to the topology of [N|. Moreover we have proved that peo=:%;, is G-homotopic
to the identity map of GL(G) onto GL(G). This means that |N| dominates GL(G)
equivariantly.

3.C. Equivariant extension of a G-map p: |[N|->GL(G) over C|N|

Let b be a coset G in the one point coset space G/G. If the G-map p’:
[N|Ub->GL(G), defined by p’|IN|=p and o’(b)==1€ GL(G), is extended equivariantly
over bo|N|=:C|N|, then p is G-homotopic to a constant map. Moreover this G-
homotopy induces a G-homotopy &, (12¢<2) from £,==ps¢ to a constant map $,=
1e GL{G). Then combining with the G-homotopy &, (0=t<1) we get a G-homo-
topy &, (0:5¢:52) from the identity map of GL(G) onto GL(G) to a constant map
1e GL(G) which gives a G-contracting function of GL(G).

The next lemma is a key lemma to prove the extendability of the G-map.

LEMMA (3.4) Let X be a weakly G-contractible space which is a G-ANR.
Let A be a closed G-invariant subcomplex of o G-simplex A%=Gbyo --- < Gb,.
Then any G-map o:ANdd;—X can be extended equivariantly over A. Here
the k-cells in the cell complex structure of dg are gubao - © garbor’s with
{ectg, < -+, ax} {0, - -+, n} and we mean by G-ANR [13] a completely regular G-space
X which has a G-map extension property that any G-map of closed G-invari-
ant subspace of ¢ normal G-space to X is equivariantly extendable over a G-
invariant neighborhood.

GIL(G) is weakly G-contractible by the theorem (2.2) and a G-ANR because
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it is an open G-invariant subspace of a G-equivariant Banach space which is
easily proved to be a G-ANR. Hence we can take GI(G) as X in the above lemma.
And for any J3e SN, CIN|NCJ; is a closed G-invariant subecomplex of G-simplex
Cdg=GboGbyo --- o Gb,. Then any G-map of CININHCI)=-CIN|N(CaI2UdD) to
GL(G) is extendable over CININCJ:. Applying this to the G-simplexes Jf%’s in
SN we get the extension of the G-map of |N|N(UJ0):- N over CIN®. Let us
assume the G-map has been extended over C|N*| so as to be compatible with
the original map as the induction hypothesis, then the G-map of C|N*|U|N++|
is extendable over C|N**!|. This induction gives an extension of the G-map over
CIN|. Therefore assuming the lemma (3.4) we get

THEOREM (3.5) GILAG) is G-contractible.

REMARK. When G is a finite group the lemma (3.4) is an easy consequence
of Bredon’s technique. And in this case we do not need the assumption that X
is a G-ANR.

§4. Proof of the Lemma (2.4)

We shall reduce the lemma (3.4) to the lemma (4.3). In general the reduc-
tion depends on the proposition (4.4) which says that any G-manifold has a G-CW
complex structure. But when G is a finite group the lemma (4.3) is only a gen-
eralization of the lemma (8.4) and when G is an abelian group we only need
that any free G-manifold has a G-CW complex structure. In this section we use
the notation Hz for the isotropy subgroup at 2 instead of H, to avoid the com-
plexity of multiple subindices.

4. A. The case when G is an abelian compact Lie group

Take the barycentric manifold M- Gby X -+ X Gb, =t g0 bs, €405 ; tyty-
o-=t,} of a G-simplex 4%=Gbyo -+ o Gb,. Mx4*/~. The weak topology of 4
with respect to the closed cells induces a discrete topology on M. So when G is
a positive dimensional group we need to change the cell complex structure on M.

When G is an abelian group all the isotropy subgroups at points of M.
Gbox< -++ XGb, is the same group Hb,N --- N Hb, and the induced differentiable
G'=G[(Hb,N --- N Hb,)-action on M is free. Then the orbit space M/G- MG’
is also a differentiable manifold and has a triangulation by the $.8. Cairns’
theorem. Now take a slice covering {S,; « € A} of M. The slice covering induces
an open covering {¥(S.); a€ A} of M/G where v stands for the natural projection
v: M~ M/G. Here we should remark that the restriction of v on S, is an into
homeomorphism because G’-action on M is free. Take a sufficiently fine sub-
division of the triangulation so that the diameter of any simplex is smaller than
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the Lebesgue number of the open covering. Then any given simplex J; (i€ 4) of
the subdivision is contained in the image of a slice »(S,), and an index choosing
function @: 4 -» A can be defined s0 as to be 4,Cu(S,,). We define a closed cell
o5 (corresponding to 4,) in M by the homeomorphic inverse image (v[S, ;) ().
Then M- Ga, (A€ 1) (disjoint union), where 7; stands for the interior of the cell o;.

The revised cell complex structure on M is defined to be K~{v=2g,0;; ¢,€G,
Ze A}y, The main reason that we do not take the alternative possibility K’ :={g;;
Z€ A} is that the cell components of ds; are not contained in K’ because even if
4; s lifted by u;S,, ¢, any simplex components of do; need not be lifted by the
same homeomorphism v/ S, . We shall list up the properties of (IK|[==M, K).

ProperTiES (#) (1K, K) is a pair of a Hausdorfl G-space |K| and a collection
of cells K which satisfies:

(a) K|~ Ud (ve K) (disjoint union),

(b) each cell has ils (onto) characteristic map f,: " - ¢" with

(b1) fl{d 6d) is a homeomorphism onto &

(b2)  fady: o™ JK* Y where [K*' is the (n—1) skeleton of K, the union
of all cells whose dimensionalities do not exceed (n-—1).

REMARK TO (a) AND (b). J.H.C. Whitchead defined the cell complex by the
conditions (a) and (b) in [16]. Here we should remark that do is not a union of
the lower dimensional cells but is only contained in the union of the lower di-
mensional cells.

{¢) |K|/G is a Hausdor{l space,

(d) G acts cellularly, that is, o€ K includes gv€ K for any g€ G,

(e) all the isotropy subgroups at interior points of a cell ¢ are the same sub-
group Ho, in particular, a boundary point of ¢ is fixed by Ho,

(f) il ¢ is not contained in He, then ¢d is disjoint from 4.

The properties (3 induce a cell complex structure on the orbit space |K|/G
by {¢/G:oe K}. And in the case of M the induced cell complex structure on MG
is the subdivision of the original triangulalion, in particular, 2 CW complex
structure. Now we can define a G-CW complex even for a general compact Lie
group.

DeriniTION (4.1) Let G be a compact Lie group and |K| satisfies the 1st
axiom of countability. The pair (K|, K) with the properties (x) which induce
a CW complex structure on the orbit space is defined to be a G-CW complex.

LeMMa 4.2) A G-CW complex has a property: (G-W) |K| has the weak
topology with respect to the G-orbits of closed cells in K.

We omit the proof of this lemma here. (See [11].) But it is evident that
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the G-CW complex structure on a G-manifold M has this property.

We have defined the G-CW complex. In the rest of this subseetion we shall
prove the lemma (3.4) assuming that the barycentric manifold M has a G-CW
complex structure. The proof of this assumption when G is not an abelian group
nor a finite group is deferred to the proposition (4.4) in the next subsection.

Since

dgee Mo A~ = (M I U (M <547, ~

(where ~ stands for a factorization), the revised cell complex structure L on J,;
is defined by (o d®)/~¢€ L if and only if c€ K, where K is the revised cell com-
plex structure of M. But here we should define |L !} -é6d; instead of the or-
dinary condition |L™":=¢. The space of this type shall be defined to be a relative
G-CW complex.

DerFiNITION (4.1} Let [L| be a Hausdorfl G-space which satisfies the 1st
axiom of countability. And let L be a collection of non-negative dimensional
cells in {L| and a closed subspace 1L which is considered to be the (--1)-dimen-
sional skeleton. The triple (|L1, L, |L']) is defined to be a relative G-CW com-
plex if it satisfies the same properties as a G-CW complex. (In this case the
orbit space has the induced relative CW complex structure.) The only difference
is that L4,

LEMMA (4.3) Let X be a weakly G-contractible space. Let ((L], L, |L7) be
a relative G-CW complex. Then any G-map o:1L7Y > X can be extended equi-
variantly over (L.

Proor: The proof is donc inductively. Assume p is already defined on [L7]
(—1=n). Take an (n-41) cell o''. Then do it (L7 and pldo+) X" Because
m,{X %) vanishes, we may extend o over o in such a way plo)c X%, Define,
for g€G and x€4, plgx): golx)€gX X" If ¢z’ gz, then o'~ x and ¢’
gh for some h€ Ho so that g’s(a’):—golx) (since () and plz)e X'), which shows
this definition is valid. And this extension is continuous with respect to the G-
weak topology because of the lemma (4.2). The extension over |L*''] is com-
pleted by taking an (n-+1) cell from each G-orbit of the (n-} 1)-cells and following
the procedure above. Even if the dimension of L is not finite, the induction is
valid because 0o intersects with the only finite G-orbits of cells by the closure
finiteness. q.c.d.

PROOF OF THE LEMMA (3.4) UNDER THE ASSUMPTION THAT THE BARYCENTRIC
MANIFOLD M=Gb, % --- % Gb, OF THE G-SIMPLEX 4%=Gbgo -+ o Gb,= M < 4%/~ HAS
A G-CW COMPLEX STRUCTURE WHICH INDUCES A TRIANGULATION ON THE ORBIT SPACE:
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Because X is a G-ANR, we may get a G-invariant neighbourhood U of A dd,;
in 04, on which the G-map is already extended. Let 4 be a positive number
satisfying dist (AN0od.), 0d,--U)>25. Let K be a G-CW complex structure on
M and take a sufficiently fine subdivision of it so that the diameter of any cell
is less than 6. Then the smallest subcomplex K’ of K, including the G-orbits of
the cells which intersect with A is also a G-CW complex and satisfies (K| 54 "M
and (|K'\»di~)yniad,c U, Let L’ be a subcomplex of L which is defined by
[L (K o di~ymiod ) UANG4,) and (e d")/~e L’ if and only if € K. Then
(L}, LD s a relative G-CW complex and we may assume that the G-map
is already defined on |L7]. By the lemma (4.3) we may extend the G-map over
L', Sinec A is a subcomplex in the original cell complex structure of 4.,

AAANANUANM)»d% ]~

and then A is contained in |L’|. Therefore restricting this map on 4 we get a
desired extension over A. q.e.d.

4.B. The cuse when G is a general compact Lie group

As we have remarked in §4. A, we finish up the proof of the main theorem
with the next proposition.

PROPOSITION (4.4) Let G be a compact Lie group. Any closed differentiable
G-manifold M has a G-CW complex structure which induces o triangulation on
the orbit space.

We use the following theorem due to C.T. Yang. Let (H)={gHg™*; geG}
and My, ={x€M; Hee(H)} where H is a closed subgroup of G. When M., ¢,
(H) is called an G-orbit type of M. Then M decomposes into a disjoint union
M--UMy, (H) is an G-orbit type of M).

THrEOREM (Yang) [17]. M/G has a triangulation so that the interior of each
stmplex 18 contained in M /G for some (H).

PROOF OF THE PROPOSITION (4.4): When M has a unique orbit type (H), we
can lift every simplex in a sufficiently fine subdivision of the triangulation of
MiG into M by a slice covering as we did in §4.A for a manifold with a free
action. But we have another lifting of the unsubdivided triangulation. Let J¢
be a simplex in the triangulation of M;G. Because J is contractible, v !(4) is
isomorphic to 4XG/H as fibre bundles with G/H as a fibre. Thus we may get
a continuous section s of v over 4 so that all the isotropy subgroups at interior
points of s(d) is H. Then s(d) is a desired lifting of 4.

In the general case we shall lift a barycentric subdivision of the preferred
triangulation of the orbit space. Let 4 be a simplex in the triangulation. We
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take a simplex J’* in a barycentric subdivision of J* and consider to lift 4" into
v 4", We may assume that each vertex v, of 4’* is the barycenter of an
(n—1)-dimensional simplex 4*7° in J* and J*>J%15...24°%  Then we get
(xx)(HyS(Hp<---=(H,) where (H,) denotes the unique orbit type of the
interior of 4"* which contains v»,. (Uniqueness comes from the theorem of Yang.)

Following to R. Palais [13], the orbit space of a G-space is a X(G)-space.
{We do not need the definition of general X(G)-spaces and need only that of the
isomorphism between orbit spaces as X(G)-spaces here.) An isomorphism between
orbit spaces as Y(G)-spaces is defined to be a homeomorphism which preserves the
orbit type of each point. The lifting method decomposed into two steps and the
following lemma due to R. Palais is very useful.

LeMMA (Palais) [Theorem (2.5.2) loc. cit.]. Let G be a compact Lie group.
Let the orbit space of a locally compact, Hausdorff, second countable G-space X
be isomorphic with Zx1I as E(G)-spaces, where Z is the orbit spaces of a G-space
and I is a closed interval. Then there exists a pair of G-space Y whose orbit
space is isomorphic with Z as Y(G)-spaces and a G-homeomorphism f: Y xI-->X
with vy Xid=vy o f.

1st step: Take a point %, over w, and a slice S, at x, in the G-space
vi{4’"), Because ¥(S,) is open in 4'", ¥(S,) contains a small similar simplex
v, o 44! for some t#£1 where 4/ '={S tv;; Jt1, ¢,20, t,=t}cd". Since
the condition (x*) shows that the orbit type of a point 3¢, of 4'* is (H;) where
j=min{¢; £,#0}, Ut (0st'<?) is isomorphic with 4{"~'x I as X(G)-spaces.
Then by the lemma of Palais, we may get a G-homeomorphism,

Sy s L - (U A 05 S58)
Using this we define a revised maximal slice S}, at =, by
She= (S, Ny w,, o APNULS, Ny ) <) .
Here the essential point is v(S4)=-47", and in this meaning the slice S} is called
maximal. This is well-defined because f may be taken to be identity on v~}{4{"").

REMARK (n) We may take Hw, as H,. Then the slice S, is itself an H,-
space. The restriction of the natural projection v on S% is denoted by v,. The
orbit space v,(S.)==S4/H, coincides with 4’». The H,-orbit type of the vertex
Vi,=v, (15n) is (H; =g, Hg7") for some g,€G. Moreover the H, -orbit type of
a point X t,v;., (15n) is (H;,) where j=min{i; £,#0}

Consider 4’»'=4d}""! to be the orbit space of the H,-space S,y (4",
Take a point z,_; of S, over v,_; and a slice S, ; at z,_; in this H, -space.
Then the remark (n) above makes us able to get a revised maximal slice S,.., at
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%, ; in the H,-space S.7v (4" ) by the procedure previous to the remark {(n).
Rewriting (n-—1) instead of » in and below the remark (n) we may get a
revised maximal slice S, ;. Repeating this procedure we get a sequence of slices,

S8t e 8IS

where S, is a slice at ., over v, in the H,., = Hz,.. -space S, Yd*) and
the orbit space of H-space S} is 4%, Moreover the H-orbit type of a point
St of A% ig (H; - Hey) where J= min {1 ¢,50}.

2nd step: Since Sf consists of one point, a section s; on 4° into S§ is already
given. Assume as an induction hypothesis that we have already got a section
sy on 4% into S, (k0 so that all the isotropy subgroups at interior points of
si(4'%) is H,. Regarding s} as a section into S),;, we may get an extension $..,
over di¥ (0£¢<1) by the use of the Palais’ lemma for H, . -orbit spaces
so that all the isotropy subgroups at interior points of s.., (4" —wv.,) 18 Hy.
Then since Sh. Ny (v,,) consists of one point ., we may define a con-
tinuous section 8Ly, on 4% into S%.; by 8h(ven) =2 and sLH{(d”‘”w—-'vkﬂ)
“8ryi.  This completes an inducting step. Then we may get a seetion sh on 4’
into S, (hence into X) so that all the isotropy subgroups at interior points of
st (¥ is H,. This shows s,(d’") is a desired lifting of 4’".

Lifting every simplex in the barycentric subdivision by the procedure above
we get a G-CW complex structure on M which induces the original barycentric
subdivision of the preferred triangulation on the orbit space. q.e.d.

COROLLARY (4.5) et G be a compact Lie group. Let X be a locally com-
pact, Hausdorff, second countable G-space whose orbit space has a locally finite
triangulation so that the interior of each simplex is contained in X, /G for
some orbit type (H). Then X has a G-CW complex structure which induces a
rarycentric subdivision of the original triangulation on the orbit space.

In the proof of the proposition (4.4) the differentiability is used only to de-
duce a preferred triangulation on the orbit space by the theorem of Yang. In
particular we can omit the closedness condition on M in the proposition (4.4).

§5. Concluding remarks

5.A. Let I’ be a separable real (quaternionic) Hilbert space instead of a
separable complex Hilbert space. Then we also get the G-contractibility of GL(G)
=GLLYG, I*)) using real (quaternionic respectively) representations. There are
two points which should be remarked.

1st point: The statements that every irreducible representation is contained
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in LAG, [?) with countable multiplicity and that any representation of a closed
subgroup is contained in a representation of G can be reduced to the complex
case. (For example see [14].)

2nd point: If V is an irreducible real (quaternionic) representation of G, the
ring Hom (V, V) of G-equivariant real (quaternionic) endomorphism of Vis iso-
morphic with the field of real, complex or quaternion numbers. This is because
it is a skew-field and an algebra over the real number field. Then we may use
the Kuiper’s corresponding results and prove the weakly G-contractibility of GL(G).

5.B. Let X be a ‘real’ space which means a C,-space, where C. stands for
the eyelic group of order 2. Define the Ciy-action on § by TV(a) jT(j 'a) where
J=-77% stands for the conjugation. Then we also get a similar exact sequence in
the theorem (1.2), changing K. (X) by KR(X) which is the ‘real’ K-group in the
sense of Atiyah [8]. And C.-stationary subgroup of GI. is the general linear
group on a separable real Hilbert space because an operator satisfving 77~ T is
an operator with real coefficients. Hence GL is weakly C.-contractible and we
get

MaiNn TraeoreMm 11, For any compact ‘real’ space X, there is a canonical
1somorphism

(X, ¥le, > KR(X).

ReEMARK. The C,-stationary subspace of ® corresponds to the space of Fred-
holm operators on a separable real Hgbert space and hence this theorem gives
also a known representation, [X, ] — KO(X) for any compact space X 19].

Let X be a ‘real’ G-space which means a C.> G-space. Since the G-action
on § is commutable with C.-action, % and GL have C.» G-action. Beeause C.-
stationary subspace of G1 is the general linear group on separable real Hilbert
space it is weakly G-contractible by the result of §5.A. Hence GL is weakly
C, < G-contractible. Therefore constructing the similar exaet sequence in the
theorem (1.2) we get

MAIN THEOREM IV. For any compact ‘real’ G-space X, there is a canonical
1somorphism

(X, Bleye > KRG(X) .

5.C. Let X be a ‘real’ space. In this subsection we use the notation D,
for the cyclic group of order 2 acting on X to distinguish from that of the pre-
vious subsection. A complex vector bundle over a ‘real’ space, F-»> X is said to
be a quaternionic vector bundle if it has a guaternionic structure j:E-»>FE with
#*==—1 and compatible with the conjugations of the coefficient field and the base
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space. Define KQ(X) to be the Grothendieck group of quaternionic vector bundles
over X. If we regard 2 separable quaternionic Hilbert space as a separable
complex Hilbert space, then it has a quaternionic structure j with j2==—1. De-
fine the Ds-action on ¥ by T¥(a)=jT(j'a). Then D, -stationary subspace of GL
is the general linear group on a separable quaternionic Hilbert space and hence
weakly contractible. Therefore constructing the similar exact sequence in the
theorem (1.2) we get

MAIN THEOREM III. For any compact ‘real’ space X, there is a canonical
180morphism

(X, §lo > KQUX) .

REMARK. The D.-stationary subspace of § corresponds to the space of Fred-
holm operators on a separable quaternionic Hilbert space and hence this theorem
gives also a known representation, [X, Fou] =, KSp(X) for any compact space X [9].

We also define KQu(X) for a ‘real’ G-space X. Then by the result of §5. A
we goetl

MAIN THEOREM 1. For any compact ‘real’ G-space X, there is a canonical
1somorphism

[X, Fln, -~ KQu(X) .

REMARK. The j-structure is a real structure when j3:=1 and is a quaternionic
structure when j*=:--1. Thus using the j-structure we may argue both the real
and quaternioni¢ cases in a parallel way.
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