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May 9, 2015: Midwest topology seminar talk:

http://www.math.uchicago.edu/ may/TALKS/Chicago2015.pdf

Most slides: Equivariant May and Segal machines on G -spaces.

All of that is fine and I will not repeat much of it here.

Today’s talk is also online:

http://www.math.uchicago.edu/ may/TALKS/Chicago2016.pdf

The subject is infinite loop G -category theory.



OUTLINE

Brief summary: SG from F -G -spaces to orthogonal G -spectra

A triviality: B from F -G -categories to F -G -spaces

The rest: from sensible categorical input to F -G -categories

(1) F -categories in Cat(V ) for general V , such as G -spaces

(2) The additive input: symmetric monoidal V -categories

(3) From additive input to F -algebras (F -V -categories)

(4) The multiplicative input: the relevant multicategories

(5) From multiplicative input to Mult(F -Alg) - Start

(6) The formal theory of 2-monads

(7) Codescent objects (2-categorical coequalizers)

(8) From multiplicative input to Mult(F -Alg) - Finish

(9) Controlling the equivariant homotopy theory

(10) Input to the multiplicative input



From F -G -spaces to orthogonal G -spectra

F is the category of finite based sets n = {0, 1, · · · , n},
basepoint 0. (Alias Γop)

An F -G -space is a functor X : F −→G−Spaces, notation n 7→ Xn;

We assume X is reduced: X0 = ∗.

φ : n→ 1, φ(i) = 1, 1 ≤ i ≤ n: induces “product” φ : Xn −→ X1

Segal maps δ : Xn −→ X n
1 ; coordinates δj : n→ 1, δj(i) = δi ,j .

X is special if δ : XΛ
n −→ (X n

1 )Λ is a homotopy equivalence for

all Λ ⊂ G × Σn such that Λ ∩ Σn = {e}. (e.g. Λ = H ⊂ G .)

X n
1 Xn

δ
'
oo φ //X1



Theorem (M, Merling, Osorno)

There is a lax symmetric monoidal functor SG from F -G -spaces
to orthogonal Ω-G -spectra. If X is special, then Ω∞SGX is an
equivariant group completion of X1.

Group Completion: group completion on H-fixed points, H ⊂ G .

From (topological) F -G -categories to F -G -spaces

Topological G -category: Object and morphism G -spaces such that
Source, Target, Identity, and Composition are maps of G -spaces.

Notation: GU = G -spaces; Cat(GU ) = topological G -categories.

An F -G -category is a functor X : F −→ Cat(GU ).

Special is defined just as for F -G -spaces, via (−)Λ.



Theorem (easy)

The classifying space functor B from topological F -G -categories
to F -G -spaces is symmetric monoidal, and it takes special
F -G -categories to special F -G -spaces.

Generalize: do equivariant theory without working equivariantly.

Separate formal arguments from context specific arguments

V any bicomplete closed symmetric monoidal category,
not just the case V = GU of immediate interest.

For derived algebraic geometry, maybe Voevodsky’s motivic spaces.

Cat(V ) = categories internal to V : object and morphism objects
in V ; Source, Target, Identity, and Composition maps in V .



Notation F -Alg ≡ Cat(V )F

This is a 2-category: V -functors X : F −→ Cat(V ), V -natural
transformations, V -modifications are 0-cells, 1-cells, and 2-cells.

It is symmetric monoidal via Day convolution (left Kan extension)

F ×F

∧F

��

X ×Y // Cat(V )

F
X ⊗Y
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Let GS = orthogonal G -spectra, symmetric monoidal under ∧.

SG ◦ B : Cat(GU )F −→ GS

is lax symmetric monoidal.

Goal: categorical machine with additive and multiplicative input
(for any V ) and additive and multiplicative output in F -Alg.



THE ADDITIVE INPUT

Permutativity Operad P = {E Σj} in Cat.

E is the chaotic categorification functor from Sets to
contractible categories, left adjoint to the object functor.

Permutative categories A : action of P

given by functors P(k)×A k −→ A .

Symmetric monoidal categories: pseudoaction of P

given by pseudofunctors P(k)×A k −→ A .

“pseudo” means “up to invertible 2-cells”, not strict structure.

(Corner-Gurski define operadic pseudoactions carefully)



Permutativity G -Operad PG = {Cat(E G,E Σj)} in GCat

G = Cat(E G,−) is the G -ification functor: Cat −→ G-Cat.

G (−)G is Thomason’s homotopy fixed point functor.

permutative G -categories A : action of PG .

Symmetric monoidal G -categories: pseudoaction of PG .

“Unbiased” structure: defined using all A k , not just the first few.

Operadic formulation is vital:

no “biased” definitions are known equivariantly.

(Sick Sic: not the same as G -symmetric monoidal category!)



Processing the additive input

PG -PsAlg: PG -pseudoalgebras and pseudomorphisms.

D = D(PG ): Category of operators generated by PG

Π
ι //D

ξ //F

Π ⊂ F : permutations, projections, injections |φ−1(j)| ≤ 1 if j ≥ 1.

D(m,n) =
∐

φ : m−→n

n∏
j=1

PG (|φ−1(j)|)

D-PsAlg: D-pseudoalgebras and pseudomorphisms.

D-AlgPs: D-algebras (functors) and pseudomorphisms.

D-AlgSt: D-algebras and morphisms (transformations)



D-AlgSt
ξ∗

&&
PG -PsAlg

R // D-PsAlg

St
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ξ# // F -Alg.

R: (RX )(n) = X n (right adjoint to L, L(Y ) = Y (1))

St: St = strictification (Power-Lack) (left adjoint to inclusion J)

ξ∗: ξ∗(Y ) = F ⊗D Y (left adjoint to pull back of action ξ∗)

(I’ll come back to the triangle after describing multiplicative input.)



Multicategories = operads with many objects = colored operads
Understood to be symmetric.

For a symmetric monoidal category (C ,⊗), the multicategory
Mult(C ) has k-morphisms the maps X1 ⊗ · · · ⊗ Xk −→ Y in C .
Since SG ◦ B is lax symmetric monoidal, it gives a multifunctor

SG ◦ B : Mult(Cat(GU )F ) −→Mult(GS ).

For any V , the target of our categorical machine is Mult(F -Alg).

Can form Mult(C ) for some categories that are NOT symmetric
monoidal. Same formal structure, data complicated by 2-cells:

Mult(O) ≡Mult(O-PsAlg) Mult(D) ≡Mult(D-PsAlg)

for suitable operads O and categories of operators D = D(O).



THE MULTIPLICATIVE INPUT

Mult(O), O a “pseudocommutative” operad such as P or PG

k-morphisms (F , δi ) : (A1, · · · ,Ak ; B) between O-pseudoalgebras:

1-cell F : A1 × · · · ×Ak −→ B

Invertible distributivity 2-cells δi = {δi (n)}, 1 ≤ i ≤ k :

O(n)× (A1 × · · · ×Ak)n
id×Fn

//

�� δi (n)

O(n)×Bn

θ(n)

��

A1 × · · · × O(n)×A n
i × · · · ×Ak

ti

OO

id×θ(n)×id

��
A1 × · · · ×Ak

F
// B

ti from ∆: Aj −→ A n
j , j 6= i , and transpositions.

Complicated looking but straightforward coherence data



Mult(D), D a “pseudocommutative” 2-category of operators

k-morphisms (F , δ) : (X1, · · · ,Xk ; Y ) between D-pseudoalgebras:

1-cells F : X1(n1)× · · · ×Xk(nk) −→ Y (n1 · · · nk)

Invertible distributivity 2-cells δ:

∏
j D(mj , nj)×

∏
j Xj(mj)

id×F //

t

��
�� δ

∏
j D(mj , nj)× Y (m)

∧D×id

��∏
j D(mj , nj)×Xj(mj)

∏
j θ

��

D(m, n)× Y (m)

θ

��∏
j Xj(nj)

F
// Y (n).

Here m = m1 · · ·mk , n = n1 · · · nk , and 1 ≤ j ≤ k.

Complicated looking but straightforward coherence data



Processing the multiplicative input

Theorem
If O is a pseudocommutative operad, then D = D(O) is a
pseudocommutative category of operators and R extends
to a multifunctor Mult(O) −→Mult(D).

Proof.
Horrible but straightforward checks of coherence. Essential point is
that the δi in the operadic context work iteratively to construct the
single δ in the category of operators context.

So far this is as in May, 2015, Midwest. The rest is all changed!



(Digression: Frank Adams wrote out the jokes in his talks.)

I once asked Frank Adams for a copy of some work in
progress, and his delightful response went as follows:

It is perfectly true that when I last wrote to you I had drafts
of sections one and three which I was willing to let people see.

Today I still have the same pieces of paper, but like
Mr. Brown, I discern the Capability of Improvement.1

The chief rogue (a definition, needless to say) has been marched
off to the condemned cell, where he lodges till I determine whether
his rival is likely to serve the crown more usefully; he took with him
a handful of perfectly valid theorems (humming sadly ”we shall not
all die, but we shall all be changed”)

1Refers to Capability Brown, a famous 18th century landscape architect



Condemned
ξ∗

((
Mult(PG )

R //Mult(D)

St
77

ξ# //Mult(F -Alg).

The formal theory of 2-monads

Translate problem to monadic avatar:

Mult(D) ∼= Mult(D)
ξ# //Mult(F-Alg) ∼= Mult(F -Alg).

D and F are 2-monads in the 2-category K ≡ Cat(V )Π.

(DY )n = D(−,n)⊗Π Y .

(As in May-Thomason on the level of spaces.) Danger?

Colimits don’t commute with B. We don’t give a damn!



A graded monoid of monads

Monads Dk on Cat(V )Πk

, D0 = ∗,

DkW = Dk ⊗Πk W

Suitably associative and commutative system of pairings

Dj × Dk −→ Dj+k .

Have ∧kΠ : Πk −→ Π; LkY = Y ◦ ∧kΠ for Y : Π −→ Cat(V ).

If Xi , 1 ≤ i ≤ k and Y are D-pseudoalgebras, then
X1 × · · · ×Xk and LkY are Dk -pseudoalgebras, and
a k-morphism (X1, · · · ,Xk ; Y ) in Mult(D) is exactly
a pseudomorphism of Dk -pseudoalgebras

X1 × · · · ×Xk
// LkY . (1)



E2LY
µ //

EeΘ

��
EeΛ

!!

ELY

eΘ

��
eΛ

~~

ESELY
SEΘ //

EmΘ

��

EC
∼=

��

SELY

mΘ

��

C
∼=

��

ESΛY
Λ̄ //

EmΛ

��

SΛY

mΛ

��
ELDY

Λ //

ELeθ

��

LD2Y
Lµ //

LDeθ

��

LDY

Leθ

��

AI
λ̃

ELSDY
Λ

//

ELmθvv

LDSDY
LSDθ

//

LDmθ

��

LSDY

Lmθ
((

ELY
Λ

// LDY
Lθ

//

EM
Lφ̃

LY



The previous slide, a perfectly valid diagram, was smuggled out of
the condemned cell. Ignore it. We head towards ξ∗, St, and ξ#.

Coequalizer and reflexive coequalizer data:

K1

d0

��
d1

��
K0

K1

d0

��
d1

��
K0

s0

OO

Monadic example: Let ξ : D −→ E be a map of 2-monads in K ,

ν = µ ◦ Eξ : ED −→ EE −→ E.

EDY

ν
��

θ
��

EY

Eη

OO

π
��

ξ∗Y = E⊗D Y



Codescent and reflexive codescent data:

K2

d0

��
d1

��
d2

��
K1

d0

��
d1

��
K0

s0

OO

K2

d0

��
d1

��
d2

��
K1

d0

��
d1

��

s1

OO
s0

OO

K0

s0

OO

The identities for compositions of face and degeneracy operators
for the 2-skeleton of a simplicial object are replaced by prescribed
invertible 2-cells, which are part of the data.



A codescent object for such codescent data is a pair (k , ζ)
consisting of a 1-cell k and an invertible 2-cell ζ

K0

k
��
K

ζ : k ◦ d0 =⇒ k ◦ d1

such that certain equalities of pasting diagrams hold, and (k , ζ) is
universal with this coherence property.

The universal property is the natural 2-categorical generalization of
the existence and uniqueness universal property of coequalizers.
Displaying the diagrams2 would only make simple things look hard.

2They are displayed in the Appendix at the end.



Monadic example: Let ξ : D −→ E be a map of 2-monads in K ,

ν = µ ◦ Eξ : ED −→ EE −→ E.

EDDY

νD
��

Eµ
��

EDθ
��

EDY

ν
��

Eθ
��

EDη

OO

Eη

OO

EY

Eη

OO

(The resulting codescent object is a 2-truncation of
an ∞-categorical 2-sided monadic bar construction.)



With suppressed conventions (all unit data is strict), all but one of
the required simplicial identities hold strictly; the only non-identity
invertible 2-cell required (d1 ◦ d2

∼= d1 ◦ d1) comes from the
pseudoaction 2-cell φ of Y :

Eφ : E(θ ◦ Dθ) =⇒ E(θ ◦ µ).

If Y is a D-algebra, φ = id and we require no non-identity 2-cells.
Write

ξ#Y = E�D Y

for the resulting codescent object, writing

EY

π

��
ξ#Y

ζ : π ◦ ν =⇒ π ◦ Eθ

for the 1-cells and 2-cells witnessing the universality.



The codescent object ξ#Y is a strict E-algebra since our
codescent data are in E-AlgSt and our codescent objects
are constructed there; similarly for morphisms.

Back to processing multiplicative input

Can apply general construction to id : D −→ D; strictification is

id#
∼= St : D-PsAlg −→ D-AlgSt.

The multicategory associated to the target 2-category is in the
condemned cell because the distributivity constraints there would
still be unstrictified 2-cells.

Can also apply the general construction to ξk : Dk −→ Fk to get

ξk# : Dk -PsAlg −→ Fk -Alg, k ≥ 1.



Let F : X1 × · · · ×Xk −→ LkY be a pseudomorphism of
Dk -pseudoalgebras. We get a natural transformation of functors
F k −→ Cat(V ), ψ coming via the universal property of ξk#LkY :

ξ#X1 × · · · × ξ#Xk

∼=
��

ξk#(X1 × · · · ×Xk)

ξk#F

��
ξk#LkY

ψ

��
ξ#Y ◦ ∧k

F

By left Kan extension, this is this is the same as a natural transformation
of functors F −→ Cat(V )

ξ#X1 ⊗ · · · ⊗ ξ#Xk
// ξ#Y ,

that is a k-morphism in Mult(F -Alg). This gives

ξ# : Mult(D) −→Mult(F -Alg)



Controlling the equivariant homotopy theory

NO equivariant considerations used in this formal theory,

BUT how do we know that ξ# takes equivalences to

equivalences and takes special D-pseudoalgebras to special

F -G -categories? That is a question about the underlying

additive theory. The nonequivariant specialization is easier.

Equivalence Y −→ Z : equivalences Y Λ
n −→ Z Λ

n for

Λ ⊂ G × Σn such that Λ ∩ Σn = {e}, as in “special”.



Formal theory would see G × Σn-equivalences, which is too strong.

Such a strong notion of specialness would lead only to products of

Eilenberg-Mac Lane G -spectra.

ξ# cannot give an equivalence in the 2-category Cat(GU )Π.

FG : finite G -sets; ΠG accordingly.

Categories of operators D and DG from a G -operad O.

Prolongation P from D-pseudoalgebras to DG -pseudoalgebras.

Concrete inspection: B ◦ P ∼= P ◦ B on strict D-algebras.

Topologically, an F -G -map X −→ Y is an equivalence if and only

if PX −→ PY is a level G -equivalence. Transports to Cat(GU ).



DG �DG
PY

ξ //

∼=
��

FG �DG
PY

∼=
��

s
oo

P(D�D Y )
Pξ
// P(F�D Y )

Work in ground 2-category Cat(GU )O(ΠG), which sees

only levelwise G -information.

Section s : FG −→ DG , levelwise G -map (ignore Σn).

Induces s in diagram such that ξ ◦ s = id.

Universal property gives invertible 2-cell id −→ s ◦ ξ,

a homotopy on application of B.

Implies ξ : Y ' StY −→ ξ#Y is an equivalence.



Input to the multiplicative input

Little multicategories Q parametrize algebraic structures

One object = operads: Ass, Com: monoids, comm. monoids

Two objects: multicategory for monoids acting on objects.

(Think of rings and modules). Many others. Categorify via E Q.

Big multicategories M , like Mult(C ,⊗), are the home for

multiplicative structures given by morphisms of multicategories

X : Q −→M .

Objects X (q) of C ; k-morphisms Q(q1, · · · , qk ; r) induce

X (q1)⊗ · · · ⊗ X (qk) −→ X (r).



SUMMARY

Multiplicative equivariant infinite loop space theory

transports a Q-structure on PG -categories A (q)

to a Q-structure on the G -spectra SGBξ#RA (q),

converts G -categorical input to G -spectrum output.

(Elmendorf-Mandell idea when G = e,
developed with very different methods)

Free functors give an important class of examples

— but the serious theory is not needed for that.



ALL such nonequivariant structures X : Q −→Mult(P)

extend equivariantly by G -ification GX : G Q −→Mult(PG ).

Conjecture

GX is a global G -structure “of type Q”.

Symmetric bimonoidal G -categories (⊕,⊗)

For Q = P, X : P −→Mult(P) gives a naive
commutative ring structure to a genuine G -spectrum.

For Q = PG , X : PG −→Mult(P) gives a genuine
commutative ring structure to a genuine G -spectrum.



There are intermediate kinds of operadic commutative ring
structures on genuine G -spectra.

(Kervaire invariant one; Blumberg and Hill)

Similarly ring, module, and algebra structures admit variants
on genuine G -spectra.

We now know how to recognize such structures on the level
of structured G -categories.

They are there. Let’s find them and see what they tell us!

I’ll end (again) at this beginning.



Appendix: Pasting diagrams for codescent objects
K2

d0

~~
d2

��

d1

  
K1

d0

��

d1

  

K1

d0

��

d1

  

K1

d1

��
K0

k
  

#+

K0

k

��

#+

K0

k
~~

#+
ζ

K

#+
ζ

= K2

d0

~~

d1

  
K1

d0

��

K1

d1

��

d0

ww
K0

k
  

�"

K0

k
~~

�"
ζ

K

K0

s0

��
K1

d0

~~

d1

  
K0

k
  

K0

k
~~

�"
ζ

K

= K0

s0

~~

s0

  
K1

d0   

K1

d1~~

�"

K0

k

��
K



The universality means two things

First, given a pair (`, χ), where ` : K0 −→ L is a 1-cell and
χ : ` ◦ d0 =⇒ ` ◦ d1 is an invertible 2-cell which make the evident
analogs of the diagrams above commute, there is a unique 1-cell
z : K −→ L such that z ◦ k = ` and z ◦ ζ = χ.

Second, given 1-cells z1, z2 : K −→ L together with an invertible
2-cell α : z1 ◦ k =⇒ z2 ◦ k such that

K1

d0

~~

d1

  
K0

z2◦k

  
z1◦k

33

K0

z2◦k

~~

�"
z2◦ζ

+3α

L

= K1

d0

~~

d1

  
K0

z1◦k

  

K0

z1◦k

~~
z2◦k

kk

�"
z1◦ζ

L,
�� α

there is a unique 2-cell β : z1 =⇒ z2 such that β ◦ k = α.



The monadic universal property

First, let ψ : EY −→ Z be a 1-cell in K and χ : ψ ◦ ν =⇒ ψ ◦ Eθ
be an invertible 2-cell such that

EDDY

ν

zz
EDθ
��

Eµ

$$
EDY

ν

��

Eθ

$$

EDY

ν

��

Eθ

$$

EDY

Eθ
��

EY

ψ
$$

EY

ψ

��

�'
Eφ

EY

ψ
zz

�'
χ

Z

�'
χ

= EDDY

ν

zz

Eµ

$$
EDY

ν

��

EDY

Eθ
��

ν

ttEY

ψ
$$

EY

ψ
zz

��
χ

Z

(The other coherence condition holds tautologically in our context).

Then there is a unique 1-cell γ : ξ#Y −→ Z such that

γ ◦ ζ = ψ and γ ◦ π = χ.



Second, let γ1, γ2 : ξ#Y −→ Z be 1-cells together with an
invertible 2-cell α : γ1 ◦ π =⇒ γ2 ◦ π such that

EDY

ν

{{

Eθ

##
EY

γ2◦π

##
γ1◦π

44

EY

γ2◦π

{{

��
γ2◦ζ

+3α

L

= EDY

ν

{{

Eθ

##
EY

γ1◦π

##

EY

γ1◦π

{{
γ2◦π

jj

��
γ1◦ζ

L,
�� α

Then there is a unique 2-cell β : γ1 =⇒ γ2 such that β ◦ π = α.


