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Abstract

In this note, we present a proof of the classical Poincare-Hopf theorem
by localization at critical points. We use the deformation to the normal
cone construction of groupoids.

1 Some premilnaries on Groupoids, and
index maps
The deformation to the normal cone construction (DNC), was used in
noncommutative geometry by A. Connes ([2]), to give a simple proof of
Atiyah-Singer index theorem. Many authors have generalised this con-
struction. The construction in the greatest generality was systematicly
studied in [3].

We will introduce some vocabulary to facilitate the exposition. A
manifold pair (M,V ) will mean a smooth manifold M and an injectively
immersed non empty manifold V ⊆ M . A smooth map f : (M,V ) →
(M ′, V ′) will mean a smooth map f : M →M ′ such that f(V ) ⊆ V ′ and
f |V : V → V ′ is smooth.

Let (M,V ) be a manifold pair. One can construct a manifold DNC(M,V )
called the deformation to the normal cone. As a set it is equal to M ×
R∗

∐
NM

V × {0}.
Proposition 1.1. The set DNC(M,V ) has naturally the structure of a
smooth manifold without boundary.

Proof. We outline the proof for the sake of completeness. Let exp : U ⊆
NM

V → φ(U) be a diffeomorphism given by the tubular neighbourhood
theorem. Let Ũ = {((x, v, t) ∈ NM

V × R : vt ∈ U)}. We define a map as
follows

¯exp : Ũ → DNC(M,V )

¯exp(x, v, 0) = (x, v, 0)

¯exp(x, v, t) = (exp(tv), t), if t 6= 0

We cover DNC(M,V ) by two sets; the first being M ×R∗ and the second
being ¯exp(Ũ). We declare the two sets as open sets each with its topology,
the first coming from the product topology and the second from the map
¯exp. We can verify directly that this topology is well defined and that both

the topology and the smooth structure don’t depend on the exponential
map.

The smooth structure is generated by three types of smooth functions;
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1. The map

π : DNC(M,V )→M

(x, t)→ x ∀x ∈M, t ∈ R∗

(x,X)→ x ∀x ∈ V,X ∈ NM
V,x

is smooth.

2. Given a smooth function f ∈ C∞(M) such that f |V = 0, then the
following function is smooth

DNC(M,V )→ C

(x, t)→ f(x)

t
∀x ∈M, t ∈ R∗

(x,X)→ dfx(X) ∀x ∈ V,X ∈ NM
V,x

3. Given a smooth function f ∈ C∞(R), then the following function is
smooth

DNC(M,V )→ C
(x, t)→ f(t) ∀x ∈M, t ∈ R∗

(x,X)→ f(0) ∀x ∈ V,X ∈ NM
V,x

Proposition 1.2 (Functoriality of DNC). Given a smooth map f : (M,V )→
(M ′, V ′), then the map defined by

DNC(M,V )→ DNC(M ′, V ′)

(x, t)→ (f(x), t) ∀x ∈M, t ∈ R∗

(x,X)→ dfx(X) ∀x ∈ V,X ∈ NM
V,x

is a smooth map denoted by DNC(f) : DNC(M,V )→ DNC(M ′, V ′).

Proposition 1.3. Given two smooth maps f : (M,V ) → (S, T ) and
g : (M ′, V ′) to(S, T ) that are transversal. By this we mean that the each
one of the two pairs of maps f : M → S, g : M ′ → S and f : V → T, g :
V ′ → T is transversal, then there is a canonical diffeomorphism

DNC(M ×S M
′, V ×T V

′)→ DNC(M,V )×DNC(S,T ) DNC(M ′, V ′)

Definition 1.4. A groupoid pair (G,H) is a manifold pair (G,H) such
that both G and H are Lie groupoids and that the inclusion i : H → G is a
functor of categories. Notice that this implies that (G0, H0) is a manifold
pair.

Theorem 1.5. If (G,H) is a groupoid pair then the manifold DNC(G,H) =
G×R∗

∐
NG

H is canonically a Lie groupoid over DNC(G0, H0) whose al-
gebroid is equal to DNC(AG,AH)

Proof. This is a direct consequence of proposition 1.1 proposition 1.2 and
proposition 1.3. The only non trivial part is the injectivety of the natural
map DNC(i) : DNC(G0, H0) → DNC(G,H). This is equivalent to the
statement TxH ∩ TxG

0 = TxH
0 for every x ∈ H0. The last statement is

straightforward to verify.

Remark 1.6. We could have replaced the interval R∗ by ]0, 1] or ]0,∞[. We
will use the three depending on the application we have. If we want to be
precise then we will use DNCR(M,V ), DNC[0,1](M,V ), DNC[0,∞[(M,V )
to denote each one respectively.
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Using the exact sequence

0→ C∗H ⊗ C(]0, 1])→ C∗DNC(G,H)
ev0−−→ C∗NG

H → 0 (1)

we easily deduce the following proposition
Proposition 1.7. The map ev0 defines is an isomorphism in K theory.
In particular K∗(C∗DNC(G,H)) = K∗(C

∗NG
H ).

Definition 1.8. We call the map

ev1 ◦ ev−1
0 : K∗(C

∗NG
H )→ K∗(C

∗G)

the index map of the DNC construction. We will use the notation Ind(G,H),
usually assuming that the inclusion map is clear from the context.
Example 1.9 (Index map for groupoids). Given a groupoid G. The index
map

Ind(G,G0) : K∗(C0(A∗G))→ K∗(C
∗G)

is the map sending a symbol to its index. We will denote this element by
Ind(G).
Definition 1.10. Let AG be the algebroid of a Lie groupoid G. Let
σ(v, x) = c(v) ∈ End(

∧
A∗G ⊗ C), the Clifford multiplication map. The

map σ defines an element in K0(C0(A∗G)). We define the Euler char-
acteristic of a Lie groupoid to be the index of σ which we denote by
χ(G) ∈ K0(C∗G).
Proposition 1.11. Let G be a Lie groupoid, F ⊂ G0 a closed saturated
subset. The following diagram commutes

K∗(C0(A∗G))
resF //

Ind(G)

��

K∗(C0(A∗(G|F )))

Ind(G|F )

��
K∗(C

∗G)
resF // K∗(C∗(G|F )))

2 Poincare-Hopf index theorem
While the Poincare-Hopf index theorem, is usually stated with vector
fields. It is more natural to state it for 1-forms.
Definition 2.1. Let G be a Lie groupoid. By dual vector field on G, we
mean a section of A∗G. We denote by Crit(X) the set of zeros of X.
Proposition 2.2. For a generic X, the set Crit(X) is an embedded sub-
manifold of G0 of codimension equal to rank of AG. Its normal bundle
isomorphic (by the map dX) to A∗G|Crit(X).

Proof. This is a direct application of Thom transversality theorem.

From now on we will always assume thatX is generic, and Z = Crit(X)
is its zeros.

We will regard the groupoid DNC[0,1](G,Z). The domain of the index
map associated to this Dnc construction is equal to

K0(C∗(AG|Z ⊕NG0

Z )) = K0(A∗G|Z ⊕ (NG0

Z )∗).

By proposition 2.2, the vector bundle A∗G|Z ⊕ (NG0

Z )∗ is isomorphic to
A∗G|Z ⊕ AG|Z . This vector bundle has a natural symplectic form given
by ω(α, v) = α(v). Hence it is canonicaly K-oriented[1]. By composing
the index map with the Thom isomorphism, we obtain a map

Ind(X) : K0(Z)→ K0(C∗G).
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Theorem 2.3. One has

Ind(X)([1]) = χ(G).

Proof. One has
ADNC(G,Z) = DNC(AG,Z).

This is a vector bundle over DNC(G0, Z) which is naturally isomorphic
to π∗AG, where π : DNC(G0, Z) → G0 is the smooth map of type 1, on
the DNC construction. Similarly, one has

A∗DNC(G,Z) = DNC(A∗G,Z) = π∗A∗G.

h : DNC(A∗G,Z)→ π∗A∗G⊗ C

h(x, ξ, t) =
ξ

t
+ i

X(x)(1− t)
t

h(x, ξ, v) = ξ + idX(x)(v)

It is easy to check that h−1(0) = Z × [0, 1], hence compact. It fol-
lows that c(h) the clifford action given by h, defines an element [c(h)] ∈
K0(ADNC[0,1](G,Z)). Let IndDNC(G,Z)([c(h)]) ∈ K0(C∗DNC(G,Z)) be
the index of [c(h)]. By proposition 1.11, one deduces that

ev0 IndDNC(G,Z)([c(h)]) = IndDNC(G,Z)(ev0([c(h)]))

One sees easily that ev1([c(h)]) is the symbol of the De Rham opera-
tor. Hence IndDNC(G,Z)(ev1([c(h)])) = χ(G). Similarly one see that
ev1([ch(h)]) is the Thom element for the Orientation choosen by dX , and
the symplectic form. Hence by the definition of the map Ind(X), one has

Ind(X)([1]) = χ(G).

Now let us regard the classical case G = M ×M and X is a vector
field with isolated singularities nondegenerate zeros, Z = {x : X(x) = 0}.
Lemme 2.4. Ind(X) : ⊕x∈ZZ→ K0(K(LM )) = Z is the homomorphism
sending (ax) to

∑
x Indx(X)ax.

Proof. The sign comes from the fact that the orientation on TM ⊕ T ∗M
coming from dX, agrees or disagrees with the Bott orientation depending
on the determinant of dXx.

Corollary 2.5. (Poincare-Hopf index theorem) Given a vector field X on
a manifold M with isolated non-degenerate singularities we have∑

x

Indx(X) = χ(M)
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