Principal Bundles over Valued Fields

Laurent Moret-Bailly

IRMAR, Université de Rennes 1

The Arithmetic of Fields, Mathematisches Forschungsinstitut Oberwolfach June 2013

Laurent Moret-Bailly (IRMAR)

Principal Bundles over Valued Fields

Oberwolfach, June 2013

1 / 24

Joint work with

Ofer Gabber (CNRS, IHES)

and

Philippe Gille (CNRS)

Summary

2 Principal bundles and torsors

3 The main result

Admissible valued fields

5 The smooth case and the general strategy

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields

Oberwolfach, June 2013

2 / 24

Introduction

We start with:

- a topological field k,
- an algebraic k-group G,
- a k-variety Y, and
- a G-torsor (principal G-bundle) $f : X \to Y$ over Y.

Introduction

Taking rational points, we get

- a topological group G(k),
- a continuous free action of G(k) on the space X(k),
- a continuous map $X(k) \rightarrow Y(k)$, invariant for this action.

This map is not surjective in general.

We will consider the following questions, in the case of a henselian valued field:

- What does the image I of this map look like, as a subspace of Y(k)?
- Is the induced map $X(k) \rightarrow I$ a principal G(k)-bundle?

Remark: the answers are easy and well known in characteristic zero (and more generally if G is smooth).

```
Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 4 / 24
```

Principal bundles in topology

Let G be a topological group. A (left) G-bundle consists of the following data:

- a continuous map $f: X \to Y$,
- a (left) action $G \times X \to X$ commuting with f (i.e. f(g.x) = f(x)).

A *G*-bundle is trivial if it is isomorphic (in the obvious sense) to $G \times Y \xrightarrow{\operatorname{pr}_2} Y$ with the action of *G* on itself by left translation.

It is principal if it is locally trivial (on Y), in the obvious sense.

Principal bundles in algebraic geometry: torsors

Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:

- a k-morphism $f: X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) *G*-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a *k*-morphism $h: Y' \to Y$ such that:

- *h* is flat and surjective,
- *h* trivializes *f*, i.e. the pullback *G*-bundle $X \times_Y Y' \to Y'$ is trivial.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 6 / 24

A simple example

Let n be a positive integer. Consider the n-th power map

$$\begin{array}{cccc} f: \mathbb{G}_{\mathrm{m},k} & \longrightarrow & \mathbb{G}_{\mathrm{m},k} \\ x & \longmapsto & x^n. \end{array}$$

This is a μ_n -torsor (with the obvious action of $\mu_n = \text{ker}(f)$ on $\mathbb{G}_{m,k}$).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \to Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if char(k) = 0.

But in our example, if n = char(k) > 0, then f is just the Frobenius map on $\mathbb{G}_{m,k}$.

Characterization of torsors

A *G*-bundle $f : X \to Y$ in topology (resp. in algebraic geometry) is a *G*-torsor if and only if:

 it is "formally principal" (or a "pseudo-torsor"), i.e. the natural morphism

$$egin{array}{cccc} G imes X &\longrightarrow & X imes_Y X\ (g,x) &\longmapsto & (g.x,x) \end{array}$$

is an isomorphism,

• *f* has local sections on *Y*, in the obvious sense (resp. in the flat topology sense).

Laurent Moret-Bailly (IRMAR)

Principal Bundles over Valued Fields

Oberwolfach, June 2013

8 / 24

Characterization of torsors

The "pseudo-torsor" property

$$G \times X \xrightarrow{\sim} X \times_Y X$$

is completely "categorical", and is preserved by any functor on *k*-varieties that commutes with fiber products, such as the functor of rational points $R: Z \mapsto Z(k)$.

It follows that if $f : X \to Y$ is a *G*-torsor over *k*, then the induced map of sets (or discrete spaces)

$$R(f): X(k) \longrightarrow Y(k)$$

(which may not be surjective) induces a principal G(k)-bundle over its image.

Torsors over topological fields

From now assume that k is a topological field, e.g. a valued field. For every k-variety Z the set Z(k) has a natural topology. The result

For every k-variety Z, the set Z(k) has a natural topology. The resulting topological space will be denoted by Z_{top} (or $Z(k)_{top}$).

In particular, for a *G*-torsor $f : X \rightarrow Y$:

- $G_{\rm top}$ is a topological group, and
- $f_{top}: X_{top} \to Y_{top}$ is a G_{top} -bundle, in fact automatically a pseudo-torsor.

Laurent Moret-Bailly (IRMAR)

Principal Bundles over Valued Fields

Oberwolfach, June 2013 10 / 24

Torsors over topological fields

Example of the squaring map:

$$egin{array}{rcl} f: \mathbb{G}_{\mathrm{m},k} & \longrightarrow & \mathbb{G}_{\mathrm{m},k} \ & & & & & x^2. \end{array}$$

If $k = \mathbb{R}$, the image of f_{top} is $\mathbb{R}_{>0}$ (open and closed in \mathbb{R}^{\times}), and f_{top} induces a trivial $\{\pm 1\}$ -bundle over this image.

If $k = \mathbb{C}$, then f_{top} is surjective and induces a nontrivial principal $\{\pm 1\}$ -bundle over \mathbb{C}^{\times} .

If $k = \mathbb{F}_2((t))$, then f_{top} is a homeomorphism onto its image, which is closed in k^{\times} .

Torsors over topological fields

Back to a general G-torsor $f : X \to Y$ over a topological field k:

We can factor $\mathit{f}_{\mathrm{top}}: \mathit{X}_{\mathrm{top}}
ightarrow \mathit{Y}_{\mathrm{top}}$ as

$X_{ m top}$	\longrightarrow	$X_{ m top}/G_{ m top}$	\longrightarrow	$\operatorname{Im}(f_{\operatorname{top}})$	\longrightarrow	$Y_{ m top}$
	quotient map		continuous		topological	
	(open)		bijection		embedding	

which gives rise to natural questions:

Torsors over topological fields

- **1** Is the image of f_{top} closed (open, locally closed) in Y_{top} ?
- 2 Is the middle bijection a homeomorphism? (In other words, is f_{top} a strict map?)
- Is X_{top} → X_{top}/G_{top} a principal G_{top}-bundle? Equivalently, does this map have continuous local sections everywhere?

Note that a positive answer to both Questions 2 and 3 is equivalent to a positive answer to

• Is $X_{top} \rightarrow Im(f_{top})$ a principal G_{top} -bundle?

The main result

Definition

A valued field (K, v) is admissible if

- (K, v) is henselian;
- the completion \widehat{K} of K is a separable extension of K.

Main Theorem

Let (K, v) be an admissible valued field, G an algebraic K-group, and $f : X \rightarrow Y$ a G-torsor. Then:

- Im (f_{top}) is locally closed in Y_{top} .
- 2 The induced map $X_{top} \to Im(f_{top})$ is a principal G_{top} -bundle.

Remark. In some cases, we can say more about $Im(f_{top})$:

- it is open and closed in Y_{top} if G is smooth, or if K is perfect;
- it is closed in $Y_{\rm top}$ if $G_{\rm red}^{\circ}$ is smooth, or if G is commutative.

```
Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 14 / 24
```

The case of homogeneous spaces

As an example, we can take for X an algebraic group and for G a subgroup of X, and consider $f : X \to Y := X/G$.

Then the image of f_{top} is the orbit X_{top} . y (y=origin of Y). The theorem says that

- \bullet this orbit is locally closed in $Y_{\rm top},$ and
- the induced map $X_{top} \rightarrow X_{top}.y$ is a principal G_{top} -bundle (in particular, $X_{top}/G_{top} \rightarrow X_{top}.y$ is a homeomorphism).

When K is a local field, this is due to Bernstein and Zelevinsky (1976).

An example of a non-closed orbit

Assume char (K) = p > 0. Let $S = \mathbb{G}_a \rtimes \mathbb{G}_m$ be the affine group in dimension 1, acting on $X = \mathbb{A}^1_K$ transitively "via Frobenius on S":

$$\begin{array}{rccc} S \times \mathbb{A}^1 & \longrightarrow & \mathbb{A}^1 \\ ((x,y),u) & \longmapsto & (x,y).u := x^p + y^p u \end{array}$$

For $u \in K$, consider the orbit morphism

$$f_u: S \to \mathbb{A}^1, \quad s \mapsto s.u.$$

This is a torsor under the stabilizer S_u of u.

The image of $f_{u,top}$ is the orbit $S(K).u = K^p + (K^{\times})^p u \subset K$. In particular:

- if $u \in K^p$, the orbit is K^p , which is closed in K if K is admissible;
- for any choice of *u*, the orbit has 0 in its closure (consider the action of 𝔅_m).

Hence, if $u \notin K^p$, then $\operatorname{Im}(f_{u, \operatorname{top}})$ is not closed in K.

Laurent Moret-Bailly	(IRMAR)	Principal Bundles over Valued Fields	Oberwolfach, June 2013	16 / 24
----------------------	---------	--------------------------------------	------------------------	---------

Notation and conventions

- R: a valuation ring,
- $K = \operatorname{Frac}(R)$,
- v: the valuation,
- \widehat{K} : completion of K,
- K-variety = K-scheme of finite type,
- algebraic K-group = K-group scheme of finite type,

Properties of admissible valued fields

Assume (K, v) is admissible. Then:

- K is algebraically closed in \widehat{K} .
- If *L* is a finite extension of *K*, then:
 - L is admissible (for the unique extension of v),
 - ▶ as a topological K-vector space, L is free (isomorphic to $K^{[L:K]}$),
 - $\blacktriangleright \widehat{K} \otimes_{K} L \xrightarrow{\sim} \widehat{L}.$
- If char (K) > 0, the Frobenius map K → K is a closed topological embedding.
- *R* has the strong approximation property (à la Greenberg).

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 18 / 24

Admissible valuations: topological properties of morphisms

Proposition 1

Assume (K, v) is admissible, and let $f : X \to Y$ be a morphism of *K*-varieties. Consider the induced continuous map $f_{top} : X_{top} \longrightarrow Y_{top}$.

- "Implicit function theorem": If f is étale, then f_{top} is a local homeomorphism.
- 2 If f is smooth, then f_{top} has local sections at each point of X_{top} . (In particular, it is an open map).
- "Continuity of roots": If f is finite, then f_{top} is a closed map (hence proper, since it has finite fibers).

Warning! If f is proper, f_{top} is not a closed map in general. But its image is closed in Y_{top} .

Now let us return to the main result:

Main Theorem

Let (K, v) be an admissible valued field, G an algebraic K-group, and $f : X \rightarrow Y$ a G-torsor. Then:

- Im (f_{top}) is locally closed in Y_{top} .
- 2 The induced map $X_{top} \to Im(f_{top})$ is a principal G_{top} -bundle.

Laurent Moret-Bailly (IRMAR)

Principal Bundles over Valued Fields

Oberwolfach, June 2013

20 / 24

The smooth case

Let us explain the smooth case. If G is smooth, then:

- $f: X \to Y$ is a smooth morphism,
- hence f_{top} has local sections at each point of X_{top} .
- This proves that
 - $Im(f_{top})$ is open, and
 - $X_{\text{top}} \rightarrow \text{Im}(f_{\text{top}})$ is a principal G_{top} -bundle.

Next, a standard "twisting argument" shows that $Y_{top} \setminus Im(f_{top})$ is a union of subsets similar to $Im(f_{top})$. Hence $Im(f_{top})$ is also closed.

Strategy for general G

Let K_s be a separable closure of K. G has a largest smooth subgroup G^{\dagger} , which can be defined as the Zariski closure of $G(K_s)$ in G.

This construction is functorial in G and commutes with separable ground field extensions.

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields

Oberwolfach, June 2013 22 / 24

Strategy for general G

It is easy to check that $(G/G^{\dagger})(K_s) = \{e\}$ (in particular $(G/G^{\dagger})(K) = \{e\}).$

More generally, if T is a G-torsor over K, then T/G^{\dagger} has at most one rational point.

Now let $f : X \to Y$ be a *G*-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^{\dagger} \xrightarrow{h} Y.$$

The corresponding factorization of $f_{\rm top}$ looks like

$$X_{ ext{top}} \longrightarrow ext{Im}(\pi_{ ext{top}}) \subset extsf{Z}_{ ext{top}} \xrightarrow{ extsf{hop}} extsf{Y}_{ ext{top}}$$

 $G_{ ext{top}}^{\dagger}$ -bundle ext{open, closed} ext{injective}

Strategy for general G

The hard part of the proof is to show that h_{top} is in fact a topological embedding, with locally closed image.

This uses:

- strong approximation,
- the construction (due to Gabber) of a remarkable *G*-equivariant compactification of G/G^{\dagger} .

Laurent Moret-Bailly (IRMAR) Principal Bundles over Valued Fields Oberwolfach, June 2013 24 / 24