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Cubes, cubes, cubes...

I will talk about my attempts to understand the new and exciting
developments on Cartesian cubical type theories:

Computational Higher Type Theory III:
Univalent Universes and Exact Equality

(Angiuli, Favonia, Harper - AFH)

Cartesian Cubical Type Theory
(Angiuli, Brunerie, Coquand, Favonia, Harper, Licata - ABCFHL)

These provide us with new constructive models of Univalent Foundations
and higher inductive types
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yacctt

Slogan: the best way to understand type theory is to implement it!

Together with Carlo Angiuli I have adapted the code-base of cubicaltt to
implement a Cartesian cubical type theory:

yacctt: yet another cartesian cubical type theory1

https://github.com/mortberg/yacctt/

Inspired by Cubical Type Theory: a constructive interpretation of the
univalence axiom (Cohen, Coquand, Huber, M. - CCHM)

1https://en.wikipedia.org/wiki/Yacc
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yacctt

In this talk I will present this syntactically, however everything I say can be
done internally in a topos extended with suitable axioms following:

Axioms for Modelling Cubical Type Theory in a Topos
(Orton, Pitts)

Internal Universes in Models of Homotopy Type Theory
(Licata, Orton, Pitts, Spitters)

This is the approach taken in ABCFHL
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yacctt

My main motivation for implementing another cubical type theory is to
explore the following:

1 How convenient is it to formalize mathematics in this new system
with its new primitives?

2 Does this compute more efficiently than cubicaltt? (Can we compute
the Brunerie number?)
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yacctt

yacctt extends dependent type theory (with eta for Π and Σ) with:

Path types based on a Cartesian interval

Diagonal context restrictions (generating cofibrations)

Generalized Kan operations (transport of structures2)

V-types (special case of Glue-types that suffices for univalence)

Fibrant universes

Some higher inductive types

2cf. Bourbaki: Theory of sets, 1968
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Cartesian interval

Formal representation of the interval, I:

r , s ::= 0 | 1 | i

i , j , k ... formal symbols/names representing directions/dimensions

Contexts can contain variables in the interval:

Γ `
Γ, i : I `
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Cartesian interval

i : I ` A corresponds to a line:

A(0/i) A(1/i)A

i : I, j : I ` A corresponds to a square:

A(0/i)(1/j) A(1/i)(1/j)

A(0/i)(0/j) A(1/i)(0/j)

A(1/j)

A(j/i)

A(0/j)

A(0/i) A(1/i)
j

i

Diagonal substitutions are allowed (no linearity constraint as in BCH)
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Path types

The Path types are modelled as:

Path(A) := AI

PathA(a, b) := {p ∈ Path(A) | p 0 = a ∧ p 1 = b}

In the syntax we write PathAa b for the Path types and 〈i〉 u for Path
abstraction

These types are defined by the same rules as in CCHM and provide a
convenient syntax for directly reasoning about (higher) equality types

We can directly prove that these satisfy function extensionality (CCHM)
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Composition operations

We want to be able to compose paths:

a b
p

b c
q

We do this by computing the dashed line in:

a c

a bp

a q

In general this corresponds to computing the missing sides of
n-dimensional cubes
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Composition operations

Box principle: any open box has a lid

Cubical version of the Kan condition for simplicial sets:

“Any horn can be filled”

First formulated by Daniel Kan in “Abstract Homotopy I” (1955) for
cubical complexes

Anders Mörtberg Context restrictions June 6, 2018 11 / 40



Context restrictions

To formulate this we need syntax for representing partially specified
n-dimensional cubes

We add context restrictions Γ, ϕ where ϕ is a “face formula” representing
a subset of the faces of a cube

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | (i = j) | ϕ ∧ ψ | ϕ ∨ ψ

Key new idea is to allow (i = j) as context restrictions! (AFH)
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Partial elements

Any judgment valid in a context Γ is also valid in a restriction Γ, ϕ

Γ ` A

Γ, ϕ ` A

If Γ ` A and Γ, ϕ ` a : A then a is a partial element of A of extent ϕ

We write Γ ` b : A[ϕ 7→ a] for

Γ ` b : A Γ, ϕ ` a : A Γ, ϕ ` a = b : A
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Box principle in CCHM

In CCHM we formulated the box principle as:

Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` u0 : A(0/i)[ϕ 7→ u(0/i)]

Γ ` compi A [ϕ 7→ u] u0 : A(1/i)[ϕ 7→ u(1/i)]

u0 is the bottom

u is the sides

compi A [ϕ 7→ u] u0 is the lid

Semantically this is a structure (and not a property) of a type. A type is
called fibrant if it can be equipped with this structure
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Composition operations: example

With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j ] (p i) : Path A a c

a c

a b
p i

a q j
j

i
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Transport as composition in CCHM

Composition for ϕ = 0F corresponds to transport:

Γ, i : I ` A Γ ` u0 : A(i/0)

Γ ` transporti A u0 = compi A [] u0 : A(i/1)

u0 • • transporti A u0

A(0/i) A(1/i)A
i
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Kan filling from composition

A key observation in CCHM is that we can compute the filler of a cube
using composition and connections

In yacctt we don’t have any connections... What can we do?

Solution: strengthen the composition operation!
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Strengthened composition

Compose from r to s:

Γ, i : I ` A Γ ` r : I Γ ` s : I
Γ ` ϕ : F Γ, ϕ, i : I ` u : A Γ ` u0 : A(r/i)[ϕ 7→ u(r/i)]

Γ ` comr→s
i A [ϕ 7→ u] u0 : A(s/i)[ϕ 7→ u(s/i), r = s 7→ u0]

We recover comp when r = 0 and s = 1

We get the filler when r = 0 and s is a dimension variable j : I
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Strengthened composition

We can now define com by cases on the type A just like in CCHM,
however in order to also be able to support HITs we first decompose the
operation into homogeneous composition and coercion:

Γ ` A Γ ` r : I Γ ` s : I
Γ ` ϕ : F Γ, ϕ, i : I ` u : A Γ ` u0 : A[ϕ 7→ u(r/i)]

Γ ` hcomr→s
i A [ϕ 7→ u] u0 : A[ϕ 7→ u(s/i), r = s 7→ u0]

Γ, i : I ` A Γ ` r : I Γ ` s : I Γ ` u : A(r/i)

Γ ` coer→s
i Au : A(s/i)[r = s 7→ u]
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Coercion examples

Given i : I ` u : A we get:

A(0/i) A(1/i)

u(1/i)

u(0/i)

A

u
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Coercion examples

Given i : I ` u : A we get:

A(0/i) A(1/i)

u(1/i)

u(0/i) coe0→1
i Au(0/i)

A

u
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Coercion examples

Given i : I ` u : A we get:

A(0/i) A(1/i)

u(1/i)

u(0/i) coe0→1
i Au(0/i)

A

u

coe0→i
i Au(0/i)
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Coercion examples

Given i : I ` u : A we get:

A(0/i) A(1/i)

u(1/i)

u(0/i) coe0→1
i Au(0/i)

A

u
coei→1

i Au

coe0→i
i Au(0/i)
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Reversals

Given p : PathAa b we can define p−1 : PathAb a as

p−1 := 〈i〉hcom0→1
j A [(i = 0) 7→ p j , (i = 1) 7→ a] a

This corresponds to the dashed line in:

b

a a

a

p

p−1

a

a
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Connections

Given p : PathAa b we can define:

〈i j〉hcom0→1
k A [(i = 0) 7→ hcom1→0

l A [(k = 0) 7→ a, (k = 1) 7→ p l ] (p k)

,(i = 1) 7→ hcom1→j
l A [(k = 0) 7→ a, (k = 1) 7→ p l ] (p k)

,(j = 0) 7→ hcom1→0
l A [(k = 0) 7→ a, (k = 1) 7→ p l ] (p k)

,(j = 1) 7→ hcom1→i
l A [(k = 0) 7→ a, (k = 1) 7→ p l ] (p k)] a

This has boundary: a

a a

b

a

p

a

p
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a a

b

a

p

a

p
p
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Reversals and connections

These definitions of reversals and connections does not satisfy as many
judgmental equalities as the corresponding ones in CCHM

How does this affect practical formalization?

For example in CCHM we directly get that (C op)op = C using reversals

However, many examples that use reversals and connections in CCHM can
be done directly with the generalized Kan operations
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Coercion back and forth

Given i : I ` A and a : A(0/i) we have:

A(0/i) A(1/i)

a

A
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Coercion back and forth

Given i : I ` A and a : A(0/i) we have:

A(0/i) A(1/i)

a coe0→1
i Aa

A
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Coercion back and forth

Given i : I ` A and a : A(0/i) we have:

A(0/i) A(1/i)

coe1→0
i A (coe0→1

i Aa)

a coe0→1
i Aa

A
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Coercion back and forth

Given i : I ` A and a : A(0/i) we have:

A(0/i) A(1/i)

coe1→0
i A (coe0→1

i Aa)

a coe0→1
i Aa

A

p?
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Coercion back and forth

Given i : I ` A and a : A(0/i) we have:

A(0/i) A(1/i)

coe1→0
i A (coe0→1

i Aa)

a coe0→1
i Aa

A

p?

We take p := 〈j〉 coej→0
i A (coe0→j

i Aa)
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Coercion back and forth

Given i : I ` A and a : A(0/i) we have:

A(0/i) A(1/i)

coe1→0
i A (coe0→1

i Aa)

a coe0→1
i Aa

A

p?

We take p := 〈j〉 coej→0
i A (coe0→j

i Aa)

The corresponding result in CCHM is quite a bit more involved (it uses 3
non-homogeneous compositions)
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hcom and coe

We define the judgmental computation rules for hcom and coe by cases of
the type A

There are no surprises for Π, Σ, Path and basic datatypes like N

The algorithms for hcom and coe are often simpler than the corresponding
ones for com, so I would conjecture that this decomposition is also good
for efficiency

The decomposition is also very natural for formalization: we often want to
compose in a constant type or just coerce without any constraints
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Univalence and V-types

In order to be able to prove univalence we need a way to turn equivalences
into paths in the universe

We could use CCHM Glue-types (as in ABCFHL), but instead we follow
AFH and introduce a special case of Glue-types called “V-types”3

These allow us to “glue” an equivalence to one side of a line between
types (i.e. to extend an equivalence along an endpoint inclusion)

3“V” in honour of Voevodsky
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V-types

In the case when r is a dimension variable i : I the V-type Vi (A,B, e) can
be drawn as the dashed line in:

A

B(0/i) B(1/i)

e ∼

B

Vi (A,B, e)
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V-types typing rules (slide of death)

Γ ` r : I Γ, r = 0 ` A Γ ` B Γ, r = 0 ` e : EquivAB

Γ ` Vr (A,B, e)[r = 0 7→ A, r = 1 7→ B]

Γ ` r : I Γ, r = 0 ` u : A
Γ ` v : B[r = 0 7→ e u] Γ, r = 0 ` e : EquivAB

Γ ` Vinr u v : Vr (A,B, e)[r = 0 7→ u, r = 1 7→ v ]

Γ ` r : I Γ ` u : Vr (A,B, e)

Γ ` Vprojr u e : B[r = 0 7→ e u, r = 1 7→ u]
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V-types

Semantically V-types correspond to the following special case of
Glue-types:

Γ, (i = 0) Γ

A

B

∼
e

B
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V-types

Semantically V-types correspond to the following special case of
Glue-types:

Γ, (i = 0) Γ

A

B

∼
e

B

Vi (A,B, e)
Vproji
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V-types: fibrancy

To prove that these types are fibrant we have to define:

hcomr→s
i (Vj(A,B, e)) [ϕ 7→ u] u0 coer→s

i (Vj(A,B, e)) u

Both hcom, and coe when i 6= j , are straightforward

Only coe when i = j requires e to be an equivalence, furthermore this case
crucially uses the diagonal constraints/cofibrations

None of the cases uses the ∀i operation of CCHM
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V-types: coer→s
i (Vi(A,B , e)) u : Vs [r = s 7→ u]

For this let:

u′ := Vprojr u e(r/i)

P := coer→s
i B u′

(C1,C2) := e(s/i).2 P

R := hcom1→0
k (Fiber e(s/i)P) [r = 0 7→ C2 (u, 〈 〉P) k

, r = 1 7→ C1]C1

S := hcom1→0
k B(s/i) [s = 0 7→ R.2 k

, r = s 7→ Vprojs u e(s/i)]P

and we define
coer→s

i (Vi (A,B, e)) u := Vins R.1 S
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Fibrant universes

We also have universes in yacctt, however as we are not using Glue-types
we have to do more work to prove that they are fibrant

We follow a direct argument from AFH for glueing on lines of types onto a
line of types4

The coe operation uses ∀i , and both coe and hcom uses the diagonal
constraints/cofibrations in a crucial way

4This is similar to an unfolded version of composition for the universe in CCHM,
which in fact is what we implemented in cubicaltt for efficiency
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Univalence and V-types

I have formalized two proofs of univalence in yacctt

The first proof uses the observation that we can prove the full univalence
axiom from an operation

ua : EquivAB → Path UAB

satisfying
uaβ : PathB (coe0→1

i (ua e i) a) (e a)

for all a : A
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Univalence and V-types

Given e : EquivAB we define:

ua := 〈i〉Vi (A,B, e)

If we unfold the algorithm for coercion in V-types we see that

coe0→1
i (ua i) a = coe0→1

i (Vi (A,B, e)) a

= coe0→1
i B (e a)

We can hence define

uaβ := 〈i〉coei→1
i B (e a)

This is simpler than in cubicaltt where the algorithm for composition for
Glue-types gives two trivial compositions
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V-types and univalence

The second proof of univalence is similar to the one in CCHM where we
show that unglue is an equivalence:

Γ, (i = 0) Γ

A

B

∼
e

B

Vi (A,B, e)

∼

Vproji
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V-types and univalence

From this we can directly prove that given any type A : U the type
(B : U)× EquivAB is contractible5

Corollary (Univalence)

For any term

t : (A B : U)→ Path U A B → EquivAB

the map t A B is an equivalence for all A and B

5I was a bit surprised that this worked out so smoothly
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Higher inductive types

We have so far only added support for a few hardcoded HITs, but it
should be possible to add a schema of them following

Computational Higher Type Theory IV: Inductive Types
(Cavallo, Harper)

The algorithms for coe in HITs are very similar to those in CCHM:

On Higher Inductive Types in Cubical Type Theory
(Coquand, Huber, M.)
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Conclusions

We have implemented a simple experimental proof assistant based on
Cartesian cubical type theory

Some proofs are simpler compared to cubicaltt, while some are a bit harder

I’m optimistic that the V-types might be a bit more efficient than
Glue-types for computing with univalence
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Open questions

Can we make progress on computing Brunerie’s number using yacctt?

Can we design a super cubical type theory with connections, reversals
and generalized Kan operations?
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Thank you for your attention!

https://github.com/mortberg/yacctt/
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