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Abstract 

Fractional statistics of identical particles is a theoretical possibility 
both in one and two dimensions. Two-dimensional particles of this 
kind are called anyons. The most important application so far is in 
the theory of the fractionally quantized Hall effect, where the quasi­
particle excitations can be described as anyons. The theory of iden­
tical particles, in particular the theory of anyons, is discussed here 
from the points of view of Schrodinger and Heisenberg quantization, 
as well as the Feynman path integral quantization. Two topics dis­
cussed in some detail are the equation of state of a gas of anyons, 
and the relation between partide interchange phases and geometric 
phases (Berry phases). 

1 lntroduction 

The subject of these notes is the non-relativistic quantum theory of identica! 
particles, and in particular the fractional statistics allowed in one- or two­
dimensional systems. The concept of fractional statistics has now both 
theoretical and experimental interest, and may serve as an example, among 
many others, to illustrate that quantum mechanics is stiU a very active field 
of research, one hundred years after Planck's constant. 

At least three different formulations of the quantum theory exist, mostly 
but not entirely equivalent, tobe identified here by the names of Heisenberg, 
Schrodinger and Feynman quantization. Most attention is given to the last 
two, and to the conclusion drawn from both that "anyons" may exist in two 
dimensions having "any" statistics in between Bose-Einstein and Fermi­
Dirac. Fractional statistics in one dimension is discussed in less detail here 
but is also the subject of other lectures. 

It is a pleasure and a great honour to talk at Les Houches about Feynman 
path integrals for systems of identica! particles, since the founder of the 
School, DeWitt, is also the founder of this particular branch of quantum 
theory [1,2]. By means of path integrals, Laidlaw and DeWitt gave the first 
topologica! proof of the symmetrization postulate in the quantum theory of 
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identica! particles, and at the same time showed the fundamental difference 
between two- and three-dimensional space. 

As an application of the general theory, the gas of anyons is discussed, 
in the two special cases of free anyons and of anyons in a magnetic field. 
Especially the magnetic field case should be of interest for applications in the 
fractionally quantized Hall effect. The final topic is the connection between 
the statistics phases related to the topology of the configuration space of 
a system of identical particles, and the geometric phases related to the 
geometry of the quantum mechanical state space. This connection has been 
used as a tool for investigating the statistics of quasi-particle excitations in 
the fractional quantum Hall system. 

I hope that the list of references is useful and representative. It is cer­
tainly incomplete, and I want to apologize for omissions. Some review 
articles and books are e.g. the references [3-20]. Several of the books are 
reprint collections, containing reprints of many articles cited here, and many 
more. 

1.1 The concept of partide statistics 

Immediately after Heisenberg and Schrodinger formulated quantum me­
chanics as it is known today, Heisenberg and Dirac extended the theory 
to systems of identical particles [21-23]. They noted that the operators 
representing observables in such a system must be symmetric under any 
interchange of partide labels, since non-symmetric observables would allow 
an observer to distinguish between particles. This rather obvious statement 
was the key to the correct quantum theory, because symmetric operators 
preserve the symmetry properties of the wave functions. For example, if 
the operator A and the wave function 'lj; are both totally symmetric, then 
the wave function A'lj; is also totally symmetric. And similarly, if A is sym­
metric but 'lj; is totally antisymmetric, then A'lj; is totally antisymmetric. 
Consequently, there exists a complete quantum theory of identical particles 
using only the totally symmetric wave functions, and there exists a different 
complete theory using only the totally antisymmetric wave functions. 

The symmetry or antisymmetry of the allowed wave functions is a char­
acteristic property of a given system of identical particles, called the statis­
tics of the particles. Particles described by symmetric wave functions satisfy 
Bose-Einstein statistics and are called bosons. Particles described by anti­
symmetric wave functions satisfy Fermi-Dirac statistics, they are fermions, 
and because of the antisymmetry they obey the Pauli exclusion principle, 
that two particles can not occupy the same quantum state. The symmetry 
or antisymmetry results in an effective attraction between bosons and an 
effective repulsion between fermions, both of a purely quantum mechanical 
nature. We may refer to this kind of attraction or repulsion as a statis­
tics interaction. The mutual repulsion between fermions is quite literally a 
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tangible fact: we can walk on the earth because matter consists of a small 
number of different species of fermions. In fact, the stability of matter 
( at least the proof of stability) depends on the fermionic nature of mat­
ter [24, 25]. 

Since the theory of Heisenberg and Dirac predicted that identical par­
ticles had to be either bosons or fermions, and since this prediction was 
verified experimentally, there was not much need for a better theory. How­
ever, the theory could be questioned on philosophical rather than experi­
mental grounds. One possible objection is the vagueness of the concept of 
partide interchange. The most obvious way to make it precise is perhaps 
to define it simply as an interchange of partide labels. Then it becomes 
a purely mathematical operation with no physical content, meaningful in 
the mathematical description of a system of identical partides, but with 
no counterpart in the physical reality. It simply reflects the fact that the 
correspondence between physics and mathematics is not one to one. 

One may argue, however, that such an interpretation is too superficial. 
Let us consider partides that are so far apart that they can not be physically 
interchanged. Then it is intuitively obvious, and indeed true, that it does 
not matter whether we symmetrize or antisymmetrize our wave functions, 
or do neither of the two. This example suggests that the symmetrization 
or antisymmetrization postulate is not truly fundamental, but is rather a 
consequence of some more fundamental principle. It also indicates that this 
new fundamental principle must somehow give meaning to the concept of 
physical interchange of partides. 

Regardless of whether an interchange of identical partides is regarded 
as a mathematical or a physical operation, it is obviously an identity trans­
formation from the physical point of view. In quantum mechanics it is 
not unusual that a physical identity transformation is represented mathe­
matically by a phase factor, since two wave functions represent the same 
physical state if they differ only by an overall phase factor. Any permuta­
tion of bosons is represented by the trivial phase factor + 1, whereas even 
and odd permutations of fermions are represented by + 1 and -1, respec­
tively. A natural question is then, why only ±1 and not more general phase 
factors? 

Laidlaw and DeWitt answered this question in the context of non­
relativistic quantum mechanics when they applied the Feynman path in­
tegral formalism to systems of identical partides [1]. In their formalism the 
interchange of identical partides has a dear physical meaning as a contin­
uous process in which each partide moves along a continuous path. The 
path dependence of the interchange is all important, since it relates the 
quantum mechanical concept of partide statistics to the topology of the 
dassical configuration space. The phase factors associated with different 
interchange paths must define a representation of the first homotopy group 
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(the fundamental group) of the configuration space [26]. This requirement 
leads to the conclusion that only bosons and fermions can exist in Eudidean 
space of dimension three or higher, whereas more general possibilities open 
up in the two-dimensional case. The formalism does not apply in one 
dimension. 

Using a more traditional approach to quantization, Leinaas and I de­
rived the same relation between partide statistics and topology [27]. Our 
approach was based on the geometrica! interpretation of wave functions 
which is the hasis of gauge theories, and which goes back to Weyl and 
Dirac [28-32]. We studied in some detail the more general kinds of statistics 
allowed in one- and two-dimensional systems. In either case there exists a 
continuously variable parameter defining the statistics, interpolating contin­
uously between Bose-Einstein and Fermi-Dirac statistics. In one dimension 
the par am eter may be interpreted as the strength of a 8-function potential 
between bosons, and when the strength becomes infinite, the bosons be­
come fermions [33-36]. In two dimensions the parameter may be chosen as 
a phase angle (} which is O for bosons and 1r for fermions, and we showed 
by the example of the two-dimensional harmonic oscillator that the contin­
uous variation of the phase angle gives a continuous interpolation between 
the boson and fermion energy spectra. The intermediate statistics, as we 
called it, is now usually called fractional statistics. In the two-dimensional 
case, the word "fractional" refers to interchange phases that are arbitrary 
rational or irrational fractions of 1r. 

A third approach leading to the same results is that of Goldin et al. 
[6, 37-41]. They studied the representations of the commutator algebra 
of partide density and current operators. This algebra has commutation 
relations that are independent of the partide statistics, but has inequivalent 
representations corresponding to the different statistics. 

Wilczek arrived at the concept of fractional statistics by considering the 
fact that the spin of two-dimensional partides is theoretically allowed to 
take arbitrary values, not just integer or half-integer multiples of n. The 
relation between spin and statistics would require partides of fractional 
spin to ha ve fractional statistics as well [42, 43]. He introduced the name 
anyons for two-dimensional identica! partides having an interchange phase 
of "any" fixed value, not necessarily O or 1r, and also proposed a model 
for them as partides carrying both electric charge and magnetic flux, so 
that the interchange phase could be understood as an Aharonov-Bohm 
effect [44-46]. 

The fundamental group of the configuration space of identica! partides 
in the plane plays a fundamental role in the theory of anyons. This group 
is called the braid group [4 7, 48], and its role was emphasized especially by 
Wu [49, 50]. It is interesting that mathematicians have arrived at exactly 
the same configuration space concept from the opposite direction, namely 
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as a useful tool for studying the braid group (51-54]. For reviews of braids 
and knots and some applications in physics, see e.g. [55, 56]. 

The concept of the geometric phase, discovered by Berry [15, 57-61], 
was immediately applied to the calculation of interchange phases by Arovas 
et al. (62-64]. We will return to the question ofhow these phases are related, 
in Section 10 below. 

In quantum field theory the symmetry or antisymmetry of many-particle 
wave functions results from the canonica! commutation or anticommutation 
relations of the field operators [65]. It is not obvious how to interpolate 
continuously between commutation and anticommutation relations so as to 
get a quantum field theory for anyons, but a solution to this problem is to 
use either a "boson" or a "fermion" gauge and then describe the deviation 
from Bose-Einstein or Fermi-Dirac statistics as due to a "statistics" field, 
which is then a vector potential analoguous to the electromagentic vector 
potential [3, 4, 66-69]. The statistics vector potential is an example of a 
Chern-Simons field [70-76]. 

There are many other developments in the theory of fractional statistics 
about which little, or nothing, will be said here. Among those are statistics 
in one dimension (5, 77], or on two dimensional surfaces of a more com­
plicated topology than the Euclidean plane. Thouless and Wu considered 
identica! particles on the sphere, and found restrictions on the statistics 
angle dependent on the number of particles [78, 79]. Einarsson showed how 
to implement fractional statistics on a torus [80, 81], and more general dis­
cussions can be found e.g. in references [82,83]. 

Certainly one of the most interesting topics is the connection between 
spin and statistics. The spin of the statistics field plays an essential part 
in establishing a connection [42,43,84-86]. However, it seems impossible to 
exclude for example the possibility that non-relativistic spin zero particles 
could be fermions, unless some extra assumptions are introduced [82, 87]. 
General topologica! arguments have been put forward, in which the existence 
of antiparticles is a crucial assumption [5, 88-92]. 

Particles and antiparticles are just one example of interacting anyons of 
different kinds. This is closely related to the possibility of interactions be­
tween distinguishable particles resembling the statistics interaction of iden­
tica! particles [41, 93-95]. 

1.2 Statistica/ mechanics and the many-body problem 

The statistica! mechanics of bosons and fermions, i.e. the Bose-Einstein 
and Fermi-Dirac statistics, existed even before quantum mechanics received 
its final form [22, 96-100]. The theory is no more difficult than the corre­
sponding theory of distinguishable particles, since the only effect of the 
indistinguishability of bosons or fermions is to forbid wave functions of the 
wrong symmetry type, thereby reducing the degeneracy of each energy level. 
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The statistics interaction between bosons or between fermions does not 
change the energies of individuallevels. 

The ideal gas, i. e. a gas of particles with no interaction apart from the 
statistics interaction, is a simple model which is useful for many purposes. 
In order to calculate the energy levels for a system of many non-interacting 
particles that are either bosons or fermions, one need only distribute the par­
ticles among the one-particle energy levels, counting degeneracies according 
to the Bose-Einstein or Fermi-Dirac statistics. Knowing the many-particle 
energy levels and their degeneracies, one may proceed to calculate the equa­
tion of state. 

The statistica! mechanics of anyons is more difficult. It has to be, sim­
ply because the bosonic and fermionic energy spectra are different, and the 
bosonic spectrum is supposed to change continuously into the fermion spec­
trum when the statistics angle () changes from the boson value O to the 
fermion value 1r. The only way this can happen is that the energy lev­
els move, either upwards or downwards. Thus, the statistics interaction of 
anyons affects not only the state counting, but also the energy eigenvalues. 

The harmonic oscillator problem is the standard exercise in quantum 
mechanics, but even this is difficult for more than two anyons. The centre of 
mass motion in an external harmonic oscillator potential is separable, even 
for anyons, and the relative motion is governed by a two-body harmonic 
oscillator interaction potential. A slightly more general class of quadratic 
Hamiltonians, including that of a constant magnetic field, can be treated 
just as easily. The two-anyon harmonic oscillator problem was solved in 
reference [27). Wu made the first attempt to solve the three-anyon problem, 
and found a class of exact solutions [101). However, the ground state close to 
Fermi statistics was not among his exact solutions, and it is still not exactly 
known. More general exact solutions in harmonic oscillator potentials and 
magnetic fields, alone or together, have been found, but all have energies 
that depend linearly on the statistics angle [11, 102-115). 

In the three-anyon problem, approximations to the wave functions cor­
responding to non-linear variation of energy have been found [116], and 
an almost complete separation of variables has been achieved [117). The 
lowest part of the energy spectrum of three or four anyons in a harmonic 
oscillator potential has been calculated numerically [118-122]. Another line 
of attack is to use perturbation theory, starting from the known boson and 
fermion spectra [123-125]. The Hartree-Fock approximation has also been 
used [126, 127). 

Arovas et al. made the first step towards determining the equation of 
state for a gas of non-interacting anyons when they calculated the second 
virial coefficient [66,128]. Their result is exact, since it is obtained from the 
exactly soluble two-anyon problem. To have a finite density with only two 
particles, they put them in a box with hard walls. Comtet et al., and also 
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Johnson and Canright, simplified the calculation by confining the particles 
in an external harmonic oscillator potential [102, 129-131], in the same way 
as Fermi did for fermions [98]. 

The calculation of the third virial coefficient involves the three-anyon 
problem, which is not yet completely solved for any potential. Some ex­
act results are nevertheless known. In particular, Sen has shown that the 
third virial coefficient is symmetric under a "supersymmetry" transforma­
tion which transforms bosons into fermions and vice versa, and more gener­
ally transforms () into 1r- () [132, 133]. Other exact results are the first and 
second order perturbation expansions about the boson and fermion values 
() = O and () = n, not only for the third virial coefficient, but for the full 
cluster expansion [134-141]. The equation of state for anyons in a magnetic 
field can be computed exactly, in the strong field limit where all particles are 
in the ground state [142]. Numerical results exist for the third and fourth 
virial coefficients at general values of() [122, 143-146]. See also [147] for a 
summary and general discussion. 

1.3 Experimental physics in two dimensions 

There are three examples of physical systems that are studied experimen­
tally, where it has been suggested that the theory of fractional statistics 
may be relevant. One of these applications, in the fractional quantum Hall 
effect, seems rather well established, whereas the other two, in high tem­
perature superconductivity and in superfiuid helium, are doubtful, at best. 
The last example, vortex motion in superfiuid helium, will not be discussed 
any further here [148-153]. The statistics of vortices is discussed in more 
general contexts e.g. in [154-156]. 

It is a surprising fact that zero-, one- and two-dimensional experimental 
physics is possible in our three-dimensional world [157-163] (Ref. [157] is 
a review with nearly 2000 references). The strict confinement of electrons 
to surfaces, or even to lines or points, is possible thanks to the third law 
of thermodynamics, which states that all degrees of freedom freeze out in 
the limit of zero temperature. Thus, in a strongly confining potential at 
low enough temperature it may happen that the excitation energy in one 
or more directions is much higher than the average thermal energy of the 
particles, so that those dimensions are effectively frozen out. 

Fowler, Fang, Howard and Stiles performed the first experiment with a 
two-dimensional electron gas in 1966, and later experiments use essentially 
the same technique [164]. The electrons are confined to the surface of a 
semiconductor by a strong electric field, and they move freely along the 
surface, whereas the energy f1E needed to excite motion in the direction 
perpendicular to the surface is typically several millielectronvolt [165]. At 
a temperature of, for example, T = 1 K, the thermal energy is kBT ~ 
0.1 meV, where k8 is Boltzmann's constant. Hence, assuming for example 
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a transverse excitat ion energy of t::.E = 1 O me V, the fraction of electrons in 
the lowest excited transverse energy level is given by the Boltzmann factor 

(1) 

which is zero for all practical purposes. Thus the electron gas is truly two­
dimensional. 

Two-dimensional physics is no longer an exotic field since von Klitzing 
et al. discovered the quantized Hall effect (QHE) in 1980 [166, 167]. The 
discovery was totally unanticipated, and a new surprise was the discovery 
of the fractionally quantized Hall effect (FQHE) by Tsui et al. in 1982 
[168, 169]. The effect observed is that, under certain conditions, the Hall 
resistance for a two-dimensional electron gas in a magnetic field is quantized 
as 

h 25 812.807 o 
RH=-=-----

ve2 v 
(2) 

where h is Planck's constant and e is the elementary charge. v is either 
an integer or a rational fraction, which can be interpreted as the filling 
fraction, i. e. the number of degenerate energy levels (Landau levels) filled 
by conduction electrons, in the simple picture of a two-dimensional gas of 
free electrons. Thus, the fact that v is not just inversely proportional to 
the magnetic field, but may stay constant while the field is changed by a 
finite amount, means that the number of conduction electrons varies with 
the field within certain limits. 

The universality of the quantized Hall effect has been tested to a preei­
sion of w-lO in an experiment comparing two different integer quantization 
levels in two different materials [170]. Thus, in spite of the fact that it 
involves an extremely complicated many-body problem, the integer quan­
tum Hall effect seems to provide a precise method for measuring the fine 
structure constant o:= e2 /(47rEolic) (in MKSA units), where 21rn = h, and 
c is the speed of light. It is independent of other methods, such as the mea­
surement of the anomalous magnetic moments of electrons and muons, and 
gives a comparable precision. The same effect also provides a very accurate 
and stable standard resistor, easily realizable in the laboratory, and of a 
convenient magnitude. The conventional value of 25 812.807 O is fixed by 
international agreement from January 1, 1990. 

Laughlin proposed to explain the observed fractional quantization of the 
Hall resistance as the manifestation of a new state of matter, the incom­
pressible quantum fluid, with elementary excitations that could be described 
as quasiparticles, or quasiholes, with fractional electric charge [171-17 4]. 
Halperin suggested that the fractional charge was associated with fractional 
statistics as well, and Arovas et al. verified by calculation the fractional 
values for both the charge and statistics phase angle of the quasiparticles 
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in Laughlin's theory [62, 175]. Jain et al. have tried to treat the integer 
and fractional quantum Hall effects in a more unified way [176-181]. Fur­
thermore, Li.itken and Ross have emphasized the universal character of the 
transition between different quantum Hall plateaux, and ha ve suggested that 
the complete structure of the phase diagram, including the plateaux and the 
transition regions, can be understood as resulting from a discrete SL(2, Z) 
symmetry [182-186]. But none of these theories change the prediction of 
quasiparticle excitations having fractional charge and statistics. 

Different experiments seem to confirm the existence of fractionally 
charged excitations [187-193]. Thus, if fractional charge can be taken as 
a signature of fractional statistics [194], anyons may be said to have been 
directly observed in the fractional quantum Hall system. 

Other examples of two-dimensional systems experimentally available are 
the high temperature superconductors, discovered by Bednorz and Mi.iller 
[195-197]. The conduction takes place in two-dimensional layers, and 
Laughlin suggested a connection with the fractional quantum Hall effect 
[198, 199]. This idea raises two questions, discussed e.g. in references [14, 
200]. First, whether systems of anyons show superfluidity and supercon­
ductivity, and second, whether such effects have anything to do with the 
observed high temperature superconductivity. 

The second question must be answered experimentally, and some at­
tempts have been made. The experiments are based on the general, but not 
very quantitative, prediction that anyons violate both time reversal and par­
ity invariance, and that these effects are likely to arise because of local mag­
netic fields. The fields in adjacent layers might point in opposite directions, 
so as to cancel, or they might add up to a global field. Three experimental 
groups have tried to measure the effects of such global fields on transmitted 
or reflected polarized light, but with conflicting results [201-204]. A fourth 
group has probed the local magnetic field by means of muons, and set a 
rather small upper limit of 0.8 G [205]. Since no effect is seen either in this 
experiment or in the most sensitive of the optical experiments [203], the ex­
perimental evidence is clearly against the anyon theory for high temperature 
superconductivity. 

1.4 The algebraic approach: Heisenberg quantization 

The various approaches to the quantum theory for systems of identical par­
ticles mentioned so far, are closely related and may be grouped together 
under the heading of Schrădinger quantization. There exists an alternative 
approach, which we may call Heisenberg quantization, leading to somewhat 
different results, especially in one and two dimensions [152, 206-208]. Note 
that Schrădinger and Heisenberg quantization are not unique and detailed 
prescriptions for how to quantize, but rather two different general strategies. 
Schrădinger quantization is a configuration space approach, emphasizing the 
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role of the wave functions defined on the configuration space. Heisenberg 
quantization is a phase space approach, emphasizing the algebraic relations 
between observables, which in the classical theory are real valued functions 
defined on the phase space. 

For example, the most general classical observable for one point partide 
on a line is a functionA= A(x,p) of the coordinate x aud the momentum 
p. From two such observables A aud B we may form the linear combination 
C = aA + (JB, where a aud (J are arbitrary real numbers, as well as two 
different bilinear products, the pointwise product D = AB =BA, aud the 
Poisson bracket E ={A, B} = -{B, A}. By definition, 

aud 

C(x,p) = aA(x,p) + (JB(x,p), D(x,p) = A(x,p) B(x,p), 

E- âAâB âBâA 
- âx âp - âx âp · 

(3) 

(4) 

In Heisenberg quantization one tries to represent the classical observables 
as linear, Hermitean operators on some complex Hilbert space, preserving 
as many as possible of the algebraic relations. The pointwise product is re­
placed by the operator product, aud the Poisson bracket by the commutator 
product, 

1 1 
E = in[A,B] = ilî(AB- BA). (5) 

Since it is impossible to preserve all the algebraic relations exactly, one has 
to select some relations to be treated as more fundamental than the rest. 
Thus, in the example with one partide on a line, the relation 

{x,p} = 1 (6) 

is considered fundamental, aud is replaced by the canonical commutation 
relation 

[x,p] = ilî. (7) 

However, for two or more identica! particles this simple prescription does 
not work, aud one has to find alternatives. 

We will return to this point of view, although our main concern here 
is with the Schrodinger quantization. Briefiy stated, the results are as fol­
lows, when the Heisenberg quantization is performed so as to respect the 
full symmetry between position aud momentum variables. In one dimen­
sion fractional statistics is possible, described by one continuously variable 
statistics parameter. It is different from the fractional statistics obtained 
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by Schrodinger quantization in one dimension, and resembles more the 
two-dimensional fractional statistics of Schrodinger quantization. In two 
dimensions only the standard Bose-Einstein and Fermi-Dirac statistics are 
obtained. Thus, anyons are not included in this maximally symmetric ver­
sion of Heisenberg quantization. In fact, anyons respect the rotational sym­
metry which involves coordinates only or momenta only, but break the phase 
space symmetry between coordinate and momentum. 

1.5 More general quantizations 

The basic philosophy behind both Schrodinger and Heisenberg quantization, 
as discussed above, is that the quantum theory of indistinguishable particles 
should resemble as much as possible the theory of distinguishable particles, 
that only such modifications are permitted as are necessary because the 
particles are indistinguishable. A number of different theories have been 
proposed departing more radically from the standard theory. They may 
allow interpolation between Bose-Einstein and Fermi-Dirac statistics inde­
pendent of the configuration space dimension. 

One possibility is to consider quantum field theories with fields that do 
not commute according to the canonica! commutation or anticommutation 
relations. An example is the so-called parastatistics proposed by Green 
[209-211]. It allows not only the completely symmetric or antisymmetric 
representations of the symmetric group, but also more general symmetry 
classes [23,212]. Thus, parastatistics of order p allows Young tableaux of up 
to p rows in the para-Bose case, or up to p columns in the para-Fermi case, 
while infinite order parastatistics allows all symmetry classes. Doplicher 
et al. deduced precisely these three possibilities in local relativistic quantum 
theory without long range forces [213, 214]. 

A number of proposed generalizations of the canonical commutation or 
anticommutation relations, starting with Wigner [215], are summarized in 
reference [216]. A simple example, leading to infinite statistics, is the so­
called "q-mutation relations", 

(8) 

where a and a t are annihilation and creation operators, j, k la bel the degrees 
of freedom of the field, and q is a number [217-225]. See also [226]. A 
vacuum state IO) is postulated with the property that aj IO) = O for all j, 
and the Fock space is generated from it by repeated applications of creation 
operators. The scalar product in the Fock space is uniquely defined by the 
q-mutation relations, and Fivel and others have shown that the condition 
-1 ~ q ~ 1 is necessary and sufficient to ensure that the scalar product is 
positive definite [220,223,224]. No rules exist relating the products ajak and 
akaj, or ajat and ataj, except that it is possible to prove commutativity 
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in the boson case q = 1 and anticommutativity in the fermion case q = -1. 
The simple form N 1 = a}a1 for the number operators is no longer valid in 
general. In the special case of one degree of freedom the number operator 
is [221) 

(9) 

An entirely different approach, suggested by Haldane, is to modify directly 
the Pauli exdusion principle [227-237). Johnson and Canright have applied 
this so called fractional exdusion statistics in the fractional quantum Hall 
system [238, 239). 

2 The configuration space 

We will now discuss in more detail the quantum theory of identical partides. 
Our basic principle here is that an interchange of identical partides gives 
rise to a phase factor depending on the type of partides and on a continuous 
interchange path. 

The path dependence of the phase factor suggests immediately a path 
integral approach [1), but we will discuss first the description by means of 
wave functions, which is usually more suitable for calculations [27). There 
are two steps in our quantization scheme. The first step, discussed in the 
present section, is to identify the configuration space of the system of iden­
tica! partides, and the different dasses of possible interchange paths. The 
second step, discussed in the Sections 3 and 5, is to introduce wave functions 
on the configuration space. In two or higher dimensions the wave functions 
must be treated as geometrica! objects. 

Let X be the configuration space of a system of one partide. The con­
figuration space of a system of N distinguishable partides moving in X is 
the Cartesian product space xN' defined as the set of all ordered N-tuples 
ofthe form 

x = (x1,x2, ... ,xN) with x1 E X for j = 1,2, ... ,N. (10) 

If p is a permutation of the partide labels 1, 2, ... , N, then we define 

(11) 

The set of all permutations of N objects is the symmetric group S N. It acts 
as a group of transformations on X N, by the above definition. 

If the partides are indistinguishable, then a configuration of N partides 
is simply a set of N points in X, 

(12) 
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The order in which we list the partide positions is now arbitrary, so that 
the two points x and p( x) in X N represent the same configuration of the N­
partide system. Thus, the configuration space of the system of N identical 
partides is the Cartesian product xN with the identification p(x) ==X for 
any x E X N and any p E 5 N. A natural name for this identification space 
is XN /5N. 

We will consider here only the Eudidean one-partide spaces X = Rd, 
of dimension d = 1, 2, 3, since these are the simplest examples and the most 
useful for applications. An important simplification in the Eudidean case 
is that the centre of mass position splits off in a trivial way, so that 

(13) 

where the factor X in the Cartesian product represents the centre of mass 
position, and XN- 1/5N represents the relative positions of the particles. 
The same factorization is not possible when the one-particle space is, e.g., 
a cirde [27], a torus [80] ora sphere [78]. 

2.1 The Euc/idean relative space for two partic/es 

In the Euclidean case the interesting part of the configuration space is the 
relative space Rd(N- 1) /5N. Let us examine the simplest case, N = 2. We 
have to labei the particles arbitrarily as 1 and 2, in order to define the 
relative position as 

(14) 

If the two parti des are at the positions a and b, then we get either x = a- b 
or x = b - a, depending on which one of the two possible labellings we 
choose. Thus, because the particles are identica!, the relative positions x 
and -x describe the same configuration, and we see that the two-partide 
relative space Rd/52 is Rd with the identification x =:: -x. 

An immediate consequence of the identification x == -x in Rd is that 
any time dependent curve x(t) is identified with y(t) = -x(t). Hence the 
tangent (or velocity) vector v = dxjdt at x is identified with w = dyjdt = 
-v at y = -x. 

The two spaces Rd /52 and Rd are locally isometric, in fact the iden­
tification x == -x is clearly irrelevant whenever we look at a small region 
n c Rd such that -x 1:- n for every X E n. However, this isometry does 
not hold at the origin, because any open region in Rd containing the origin 
must contain at least one pair of points x and -x. In other words, the 
origin is a singular point for the identification x =:: -x. This local difference 
between Rd /52 and Rd at the origin results also in a global difference. 

Perhaps the most dramatic manifestation of the global difference is 
the fact that Rd is flat, whereas Rd /52 is globally curved when d 2': 2. 
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To measure the global curvature one need not even approach the singular­
ity at the origin. Curvature is defined in terms of the parallel transport of 
tangent vectors around closed curves, and the interesting curves are those 
starting at any given point x E Rd and ending at -x. By definition, they 
are closed curves in R d j 82 • Start with some vector v at x, and parallel 
transport it along any curve to -x. Because Rd is flat, the vector is moved 
unchanged, but, as we have seen, the vector v at -x is identified with the 
vector -v at x. Hence, the effect of the parallel transport around this kind 
of closed curve in Rd j 82 is to reverse the direction of every tangent vector. 

This reversion by parallel transport may lead to confusion as to whether 
or not a given vector field v = v ( x) on R d j 82 is single-valued. Let us write 

d 

v(x) = L Vj(x) emj, 
j=1 

(15) 

~here each emj is a hasis vector at x, and Vj ( x) is the j-th compo~ent 
of the vector v(x) located at x. In Euclidean space we are used to hasis 
vectors that are parallel everywhere, so that ewj is parallel to eyj for any 
two points x and y. Unfortunately, as we have seen, it is impossible to 
introduce parallel hasis vectors in R d j 82 , unless we place two sets of hasis 
vectors, ewb eoo2, ... , emd and -eml, -em2, ... , -emd, at the same point 
x. It follows that if v = v(x) is a single-valued vector field on Rd/82 , its 
components Vj = Vj(x) with respect to parallel hasis vectors are double­
valued -functions on Rd j 82 . We may of course introduce hasis vectors that 
are single-valued functions of position, so that the components of a single­
valued vector field are also single-valued, but such hasis vectors can not be 
parallel. As we shall see, similar problems arise when we introduce wave 
functions. 

The generalization to N identica! particles, with N > 2, is straightfor­
ward. Let us ignore those configurations where two or more partide posi­
tions coincide. Then each point in the full configuration space R dN j 8 N, or 
in the relative space Rd(N-1) /8N, corresponds toN! points either in RdN 
or in Rd(N-1). In general, a closed curve in Rd(N- 1)/8N connects a point 
x E Rd(N-1) to the point p(x), where p is any one of the N! permutations 
in the symmetric group 8 N. Parallel transport moves a vector v unchanged 
from x to p(x). However, the vector v at p(x) is not the same as v at x. 
Rather, v at x is identified with p( v) at p( x), hence v at p( x) is identified 
with p- 1 ( v) at x. Thus we see that the effect of the parallel transport of v is 
to transform it into p-1 (v). Given one vector v at x E Rd(N-l) /8N, there 
are altogether N! vectors at x that are parallel to it, by parallel transport 
around different closed curves in Rd(N-1) /8N. 
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2.2 Dimensions d = 1, 2, 3 

Let us consider a little more explicitly the simplest examples with two iden­
tica! particles in Euclidean space. In one dimension the relative space R/ S2 
is the half-line x :::0: O, where x = x1 - x2 is the single relative coordinate. 
Choosing x :::0: O instead of x :::; O is of course pure convention, it simply 
means that we always label the rightmost partide as number 1. 

In two dimensions the identification x = -x can be pictured as a folding 
of the plane into a cone of opening half-angle 30°. The points x and -x 
in the plane are folded onto the same point on the cone, and the origin of 
the plane becomes the top of the cone. Equivalently, writing the relative 
position as X= (x, y), we may define R 2 1 s2 as the upper half-plane y:::: o, 
but with the boundary points (x, O) and ( -x, O) identified. The cone is 
locally fiat everywhere except at the top point, since it is locally isometric 
to the plane. But it is globally curved, with infinite curvature at the top, 
so that parallel transport of a tangent vector once around the top point 
reverses its direction. 

In three dimensions, ifwe write the relative position as x = (x, y, z), then 
we may define R 3 / S2 as the upper half-space z :::0: O, with the boundary 
points (x, y, O) and ( -x, -y, O) identified. Again the origin is a singular 
point of the identification space, and the space is locally fiat everywhere 
except at the origin, since it is locally isometric to R 3 . And again there is 
a global curvature, located at the origin, such that parallel transport of a 
tangent vector once around the origin reverses its direction. 

2.3 Homotopy 

In order to classify the interchange paths, we have to examine the path con­
nectivity of the configuration space. Again we consider only the Euclidean 
case, so that it is enough to examine the relative space Rd(N-l) /SN. 

Two curves from a point x to a point y are said to be homotopic if they 
can be continuously deformed one into the other [26]. A homotopy class 
consists of all the curves that are homotopic to one given curve. Concate­
nation of curves defines a natural product: two curves e1 and e2 can be 
spliced into one curve e2e1 if e2 starts at the point where e1 ends. That is, 
if el goes from X to y and e2 from y to z, then e2e1 is a curve going from 
x to z. This multiplication of curves is also a multiplication of homotopy 
classes. 

If we consider only the closed curves, or loops, start ing and ending at one 
given point x, then the product of any two such loops is well-defined. The 
homotopy classes of loops at x forma group, called the first homotopy group, 
or fundamental group, of our space. In a connected space this definition does 
not depend on the point x, in the sense that groups defined at different 
points are isomorphic. The single point x is a degenerate kind of loop, the 
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corresponding homotopy class consists of all the loops from x back to x 
that can be continuously deformed into a point, and this class is the unit 
element of the group. The inverse of a loop is the same loop traversed in 
the opposite direction. 

By definition, a space is simply connected if every loop can be continu­
ously deformed into a single point, or equivalently, if the fundamental group 
is the trivial group consisting of one element only. Similarly, it is doubly 
connected if the fundamental group has exactly two elements, and it is in­
finitely connected if the fundamental group is infinite, e.g. isomorphic to Z, 
the addition group of integers. 

The Euclidean space of any dimension is simply connected, and in par­
ticular the configuration space RdN for N distinguishable particles in d 
dimensions is simply connected. The path connectivity of the configura­
tiau space R dN / S N for N identica} parti des is a matter of definition. In 
the liter~l sense RdN /SN is simply connected, but we want to argue that 
a more natural definition of homotopy is such that RdN /SN is not simply 
connected when N 2: 2. 

Note that the fundamental group is the same for RdN / SN as for the 
relative configuration space Rd(N-1) /SN, because the centre of mass posi­
tion splits off as in equation (13). We have seen in the example with N = 2 
that there exist two classes of loops in R d / S2 with respect to the parallel 
transport of relative tangent vectors, transporting a vector v into +vor -v, 
respectively, and it is natural to define that a "+" and a "-" loop are not 
homotopic. If we want to deforma "+" loop continuously into a "-" loop, 
or vice versa, then one stage in the process must be a loop going through 
the singular point where the two particles collide. Such a loop is itself sin­
gular in the sense that the parallel transport of a vector is ambiguous. The 
natural solution is to simply exclude such singular paths, or equivalently, 
to exclude the singular point from the relative space, making it multiply 
connected. 

In the general N-particle case there will be at least N! inequivalent 
classes of loops corresponding to the N! possible permutations of partide 
labels in the local space of tangent vectors. This definition of homotopy 
means that we exclude all the singular points of the configuration space, 
i.e. all those configurations in which two or more particles are at the same 
position. This restriction implies that the one-dimensional case ( d = 1) 
is uninteresting, because the relative space R N - 1/ S N without its singular 
points is connected, but has no continuous paths that interchange partide 
positions. It implies further that in dimension two or higher (d 2: 2) there is 
always a homomorphism from the fundamental group onto the symmetric 
group SN. In dimension three or higher (d 2: 3) the homomorphism is in 
fact an isomorphism: the fundamental group is just the symmetric group 
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SN. In two dimensions, however, the fundamental group is a non-trivial 
extension of the symmetric group, called the braid group. 

2.4 The braid group 

For two particles in the plane (N = 2, d = 2), i.e. for the relative configu­
ration space R 21 S2 , the fundamental group is Z. This is so because every 
loop has an integer winding number, which is the number of times it encir­
cles the origin, and the winding number is additive under concatenation of 
loops. By arbitrary convention, we count anticlockwise winding as positive 
and clockwise winding as negative. Two loops are homotopic if and only if 
they have the same winding number, in other words, the winding number 
labels uniquely a homotopy class. A curve in R 21 S2 can also be regarded 
as a curve in R 2 , and its winding number is even if the curve in R 2 starts 
at x and returns to x, or odd if the curve in R 2 goes from x to -x. Thus, 
parallel transport of a tangent vector V around a closed loop in R 21 s2 gives 
the vector ( -1)Qv, where Q is the winding number of the loop. 

For N particles in the plane (d = 2), i.e. for the relative configuration 
space R 2(N-l) 1 SN, the fundamental group is the braid group BN [47,48,51-
54]. We have seen that B2 = Z. In general, BN can be generated from 
N -1 elements, in the following way. The j-th generating element Tj is the 
homotopy class of loops that do nothing more than interchange the particles 
j and j + 1 in the anticlockwise direction. It can be represented graphically 
as in Figure 1. Obviously, two such generators commute if they do not 
interfere, that is, 

if IJ- kl > L (16) 

Neighbouring generators do not commute, but satisfy the following 
relations, 

for j = 1, 2, ... , N- 2, (17) 

which can be proved graphically as in Figure 2. Note that T1 and TJ+ 1 are 
homotopy classes of loops, so that the equality sign here means homotopy 
of loops. 

It is easy to see that every one-dimensional representation of BN is 
given by one single number T. In fact, if the generator Tj is represented 
by the number Tj, then the relation TjTJ+lTj = Tj+lTjTJ+l means that 
Tj = Tj+l = T, independent of j. The general braid has the form 

(18) 

where each index ]k is an integer from 1 to N- 1, and each power nk is 
a positive or negative integer. In the one-dimensional representation b is 
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1 j j+1 N 

1 X 1 
1 j j+1 N 

Fig. 1. The braid group generator Tj, an anticlockwise continuous interchange of 

the particles j and j + 1. The horizontal axis represents space, R 2 , the vertical 

axis represents "time", i. e. the parameter of the curve. 

j j+1 j+2 J j+l j+2 

"" l "" 

~ 
j j+1 j+2 j j+1 j+2 

represented by TQ, where Q is the winding number, defined as 

(19) 

The difference between the braid group BN and the symmetric group SN 

is that there is one more set of defining relations for the symmetric group, 

for j = 1, 2, ... , N- 1. (20) 

This implies for the one-dimensional representations of the symmetric group 
that r- 1 = r. Hence there are exactly two such representations, one with 
T = 1 and one with r = -1. 

In three or higher dimensions a clockwise continuous interchange of two 
particles is homotopic to an anticlockwise interchange. See Figure 3. There­
fore equation (20) holds, so that the fundamental group of the configuration 
space R dN / S N in dimension d ;:::: 3 is S N. 

3 Schrodinger quantization in one dimension 

The one-dimensional case is rather special, since particles on the line can 
not be continuously interchanged without colliding. The mathematical 
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n (\ 
• • • • u u 

Fig. 3. Interchange of two particles, either anticlockwise (left) or clockwise (right). 
In three or higher dimensions these two interchange loops are homotopic, by ro­
tation an angle 1r about the line joining the particles. 

expression of this fact is that the configuration space of a system of identica! 
particles on the line has a boundary, consisting of those configurations where 
two or more particle positions coincide. In particular, as we have seen, the 
relative space of the two-particle system is a half-line, with the origin as a 
boundary. Therefore the quantization problem reduces to the problem of 
specifying the proper boundary conditions on the wave functions. 

The role of boundary conditions in quantum mechanics is to make certain 
operators Hermitean, and the most important operator is the Hamiltonian 
H. Hermiticity of H means that probability is conserved. Let us assume a 
standard two-particle Hamiltonian of the form 

(21) 

Here m is the particle mass, X= (x1 +x2)/2 the centre of mass position, and 
x = x 1 -x2 the relative position. For identica! particles the potential V must 
be symmetric, V(x2, xl) = V(x1 , x2), or equivalently V(X, -x) = V(X, x), 
which implies that H is symmetric under interchange of particle labels, as 
an observable should be. For simplicity we will further assume here that 
V is non-singular as a function of x, or at least is no more singular than 
1/x. We will discuss a 1/x2 potential below, in connection with Heisenberg 
quantization. More singular potentials lead to important complications. 

The Schrodinger equation 

in81/J = H1/J 
ât 

(22) 
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for the wave function 1/J = 1/J(xh x2 , t) = 1/J(X, x, t) implies the continuity 
equation 

âp âjx âjx _O 
ât + âX + âx - ' 

where p = j'ljJj 2 is the probability density, and 

. R (·'·* It â'ljJ ) Jx = e '+' 4mi âX ' 

(23) 

(24) 

are the X and x components of the probability current density. 1/J* is the 
complex conjugate of 1/J. 

The physically acceptable way to impose conservation of probability is 
to require that the normal component of the probability current vanishes 
everywhere on the boundary. That is, in the two-particle case, ix(X, O)= O 
for every X. However, this is a quadratic boundary condition for the wave 
function, whereas the superposition principle demands a linear condition. 
We therefore postulate that 

(25) 

with 'TJ a real parameter, independent of 1/J. This is a stronger condition, 
implying that ix = O at x = O, and it is linear. 'TJ could in principle be a 
function of X, but that would break translation invariance. The particles 
are bosons if 'TJ = O and fermions if 'TJ = ±oo, but in principle 'TJ is a continuous 
variable that could take any intermediate value. 

Since the wave function 1/J = 1/J(X,x) is defined only for x;:::: O, we are 
free to extend the domain of definition to x < O, for example by imposing 
the bosonic symmetry 1/J (X, -x) = 1/J( X, x). The symmetric extension will 
make the partial derivative at x = O discontinuous if equation (25) holds 
with 'TJ =f. O. The discontinuity of the partial derivative is then equivalent to 
a statistics interaction described by the 8-function potential 

2'T}It2 
Vs(x) = - 8(x). 

m 
(26) 

As is well known, the 8-function potential has exactly one bound state if 
'TJ <o. 

We may use the externa! harmonic oscillator potential 

(27) 
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as an example to illustrate how the parameter ry defines a continuous interpo­
lation between bosons and fermions. The Schrodinger equation is separable, 
so that we need only solve the energy eigenvalue equation 

(28) 

for the relative wave function 'lj; = 'lj;(x). For a given relative energy E there 
exists a unique solution which is square integrable in the limit x --+ oo, 
and it can be expressed in terms of the confiuent hypergeometric function 
U = U (a, b, z) defined in Chapter 13 ofreference [240], 

( 1 E 1 x2 ) ( x2 ) 
'lj;(x) = co U 4- 2fu..J ' 2 , a5 exp - 2a5 , (29) 

where co is a normalization constant, and a0 is a characteristic length, 

ao = {2i; · 
V~ 

(30) 

The boundary conditionat x =O, equation (25), gives the following energy 
quantization condition, involving the Euler r-function [240], 

(31) 

In particular, with ry =O we get the boson spectrum 

n =O, 1,2, . o.' (32) 

and with ry = ±oo we get the fermion spectrum 

n=0,1,2, (33) 

The level spacing is constant for bosons and fermions, but not for interme­
diate values of ry. Figure 4 shows how the lowest energies vary with ry. 

The obvious generalization to the N-particle case is the convention that 
the general wave function 'lj; = 'lj;(x1 , x2 , .•. , XN) is defined for X1 2:: X2 

> ... 2:: x N and satisfies the boundary conditions 

â'lj; â'lj; 
- - -- = 2ry'lj; at Xj = xi+1 (j = 1, 2, ... , N- 1). (34) 
âxj âxj+l 

Lieb and Liniger have solved this particular N-particle problem in the case 
when ry > O and there is no other external or interaction potential [34, 35]. 
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4 Heisenberg quantization in one dimension 

The Schrodinger quantization, as presented above, is not the only way 
to get intermediate statistics of particles in one dimension. In fact, the 
Heisenberg quantization leads just as naturally to a different type of inter­
mediate statistics, equivalent to an inverse square statistics potential rather 
than a 8-function potential [152, 206]. The one-dimensional case is special 
in this respect. In higher dimensions only bosons and fermions emerge if we 
apply Heisenberg quantization in the most straightforward way. 

The indistinguishability of the particles implies extra freedom in the 
quantization for a system of two or more particles, because it restricts the 
class of observables. To see how, it is again convenient to discuss the two­
particle case as an example. The centre of mass position X= (x1 + x2)/2 
and the total momentum P = p 1 +p2 are observables, since they are symmet­
ric under interchange, but the relative position x = x1 - X2 and momentum 
p = (p1 ·_ p2 )/2 are antisymmetric and therefore not observables. Thus, 
the canonica! commutation relation, equation (7), between relative position 
and momentum is meaningless in a minimal theory which includes only such 
operators as represent observable quantities. 

If we can not use x and p as basic observables, then the next simplest 
choice are the quadratic polynomials x 2 , p2 and xp, which are symmetric 
and therefore observables, at least in the classical theory. It is convenient 
to introduce an arbitrary length scale a0 and define the dimensionless ob­
servables 

(35) 

In the quantum theory they should satisfy the following commutation rela­
tions, which follow either from the Poisson brackets in the classical theory, 
or from the canonical commutation relation in the quantum theory, 

[A,B] = iC, [A,C] = -iB, [B,C] =-iA. (36) 

It is natural to adopt equation (36) as the basic set of commutation re­
lations defining the quantum theory of two identical particles on the line. 
They define the Lie algebra sp(l, R) = sl(2, R) of the real symplectic group 
Sp(l, R) = SL(l, R), consisting of the area-preserving linear transforma­
tions in the plane1 . 

There exists a quadratic Casimir operator, 

(37) 

1 Unfortunately, different conventions exist, and this group is often called 8p(2, R). 
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commuting with all operators in the Lie algebra. It must take a constant 
value if we require the linear representation of the Lie algebra to be irre­
ducible, implying that only two of the three observables A, B and C are 
independent. Clearly two independent variables are just what we need to 
describe the two-dimensional relative phase space. In the classical case, 
r = o identically, wheras equation (35) together with equation (7) imply 
that r = -3/16. However, if x and p do not exist as operators, then we 
have to give up both equation (35) and equation (7), and there is no obvious 
reason any more to require that either r =o or r = -3/16. 

There exists in fact a family of physically acceptable irreducible repre­
sentations of sp(1, R), depending on one continuously variable parameter 
ao >O. If we denote the basis vectors of one such representation by !ao, n), 
with n =O, 1, 2, ... , then 

r iao, n) 

A iao,n) 

(B + iC) iao, n) 

(B- iC) iao, n) 

ao(ao- 1) lao, n), 

(ao + n) iao, n), 

y'(n + 1)(n + 2ao) iao, n + 1), 

y'n(n- 1 + 2ao) iao, n- 1)· 

Note that if a0 is given by equation (30), then 

(38) 

(39) 

is just the harmonic oscillator relative Hamiltonian encountered earlier in 
equation (28). Thus, a 0 = 1/4 corresponds to bosons and ao = 3/4 to 
fermions, and the parameter a 0 provides a continuous interpolation between 
these two special cases. When a 0 changes, the whole harmonic oscillator 
spectrum is rigidly shifted with all level spacings constant, which proves 
that Schrodinger and Heisenberg quantization lead to inequivalent types of 
intermediate statistics. Figure 4 shows the bottom part of the harmonic 
oscillator energy spectrum as a function of the statistics parameter, both 
for Schrodinger and Heisenberg quantization. 

4.1 The coordinate representation 

We may change basis from the harmonic oscillator eigenstates ia0 , n) to 
the eigenstates !x) of the relative position x, restricted to x 2': O. In this 
coordinate representation x 2 is diagonal, whereas p2 is a differential operator 
containing the par am eter a 0 , 

2 2 d2 >..n2 
p = -h d 2 + -2 ' 

X X 
with (40) 
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3 

2 

1 

-1 

Fig. 4. E /(2hw ), where E is the energy of relative motion of two identical particles 

with harmonic oscillator interaction. The lowest energies are shown as functions 

of the statistics parameter 77' = (2/7r) arctan 77 (Schri.idinger quantization, left ), or 

ao (Heisenberg quantization, right). Bosons have 77' =O and ao = 1/4, fermions 

have 77' = ±1 and ao = 3/4. From [208], reprinted with permission. 

x 2 and p2 define the operators A and B, whereas C is given by the commu­
tation relation, 

. i 22 1(d d) 
C = -z[A,B] = 8n2[P ,x] = 4i x dx + dxx · ( 41) 

When the above definition of p2 is inserted into the harmonic oscillator 
Hamiltonian, equation (39), the result is an extra inverse square statistics 
potential, 

>.n2 
Vs(x) = --2 , 

mx 
with (42) 

in the Schrodinger equation, vanishing precisely in the boson case o:0 = 114 
and the fermion case o:0 = 314. The modified eigenfunctions are of the form 

~(x)=c0 x(2<>o-~)M(a0 - 2~, 2o:o, :~)exp(-;:6 )- (43) 

The main difference from equation (29) is that the confluent hypergeometric 
function M = M(a, b, z) replaces U, and the energy quantization condition 
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is now that M reduces to a polynomial, which happens when [240] 

E = 2(n + ao)!U.v, n =O, 1,2, ... (44) 

The choice of eigenfunction in equation ( 43) is dictated by the boundary 
conditionat x----+ 0+, and there is an argument behind the choice of bound­
ary condition. The eigenvalue equation H'lj; = E'lj;, regarded as a second 
order ordinary differential equation, 

--- + -- + -mw2x2 '1/J = E'lj;, ( 
fi2 d2 >..n2 1 ) 

m dx2 mx2 4 
(45) 

has two independent solutions behaving asymptotically as x" in the limit 
x----+ 0+, where 

1 
v =V±= "2 ± (2a0 - 1). (46) 

(The case a 0 = 1/2 is special, then the asymptotic form is either y'x or 
y'xlogx.) The general solution 'ljJ = 'lj;(x) has the asymptotic form (for 
ao =1- 1/2), 

(47) 

for some constants C±, implying the asymptotic form of the probability 
current density, 

. _ R (·1,* ti d'lj;) 2n(2a0 - 1) I ( * ) Jx- e 'P -.- rv m c_c+ . 
mzdx m 

(48) 

The condition that the wave function must be square integrable requires 
that c_ =O for v_ :S -1/2, i.e. for a 0 ?: 1, but puts no restriction on the 
coefficients C± when O < a 0 < 1. One possible linear condition which will 
make jx ----+ O as x ----+ 0+, is that 

(49) 

with TJ a real parameter. The superposition principle requires that TJ = 
c_ / c+ must be the same for all wave functions. The parameter TJ here is of 
course related to the one introduced earlier, equation (25) is in fact just the 
special case a 0 = 1/4. 

In the present case TJ can not vary continuously, however. The point is 
that we want all three operators A, B and C to have a common domain of 
definition, but C changes the asymptotic form of the eigenfunctions of A in 
the limit x ----+ 0+, unless we impose one of the two conditions c+ = O or 
c_ = O. In fact, 
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which means that C transforms 'f) into 

~ (2v_+1)c_ 2v_+1 1-o:o 
'f)= = 'r]=--'f). 

(2v+ + 1)c+ 2v+ + 1 O:o 
(51) 

Which of the two conditions c+ = O or c_ = O we impose, is only a matter 
of convention, since we may interchange v+ and v_ by replacing o:o with 
1 - o:0 . We choose the condition c_ = O, so that wave functions ha ve 
the asymptotic form xC2<>o-!) as x ---> O+, and this convention selects the 
particular solution in equation ( 43). 

There is a somewhat more physical way to understand why only the 
values 'f) =O or 'fJ = ±oo are left invariant by the operator C. The reason is 
that C is the infinitesimal generator of scaling transformations, it scales x 
and hence 'f), since 'f) has the same dimension as xCv+-v-) = x2C2<>o-I). To 
see that C generates scaling of x, consider the transformed wave function 
;j; = (I - 2iEC)'Ij;, where 1/J is a general wave function, I i~ the identity 

operator and E is an infinitesimal parameter. The functions 1/J and 1/J have 
the same shape, but ;j; is expanded by the factor 1 + E = 1/(1 - E) as 
compared to 1/J, since 

The Heisenberg quantization for systems of more than two identica! par­
ticles is an unsolved problem. However, if the two-particle Heisenberg 
quantization in one dimension is regarded as a special kind of Schrodinger 
quantization, involving an inverse square statistics potential, then it can be 
immediately generalized to the N-particle case [206]. The statistics poten­
tial becomes 

(53) 

The general wave function 1/J = 1/J( XI, x 2, ... , x N) is defined for XI 2: x2 2: 
... 2: XN and satisfies the boundary conditions 

1/J(xi,X2, ... ,xN) ""'(xj- XJ+I)(2ao-!) as 

Xj- Xj+l---> 0+ (j = 1,2, ... ,N -1). (54) 

The N-particle problem of this kind is again exactly soluble, when there is 
no externa! or interaction potential besides the statistics potential, or when 
there is a harmonic oscillator potential which is either externa! or defines a 
two-particle interaction [241-250]. 
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5 Schrodinger quantization in dimension d ~ 2 

The geometrica! interpretation of the wave function is too trivial to be 
meaningful in one dimension, but is non-trivial in higher dimensions, and 
indeed necessary when we want a theory that can describe fermions as well 
as bosons. Bosons are easy to describe, because the wave functions of a 
system of N bosons are symmetric functions on R dN and hen ce are single­
valued functions on the configuration space RdN /SN. The fermionic ·wave 
functions are also single-valued on R dN, but their antisymmetry implies 
that they are double-valued on R dN / S N. Many-valued wave functions find 
a natural place in the geometrica! picture introduced by Weyl and Dirac 
around 1930 [28, 29]. The mathematical structures involved are called fibre 
bundles in modern terminology [26,251-256]. 

To be more precise, in our case the fibre bundle is a vector bundle. It 
has the configuration space R dN / S N as its base space, and at every point 
x E RdN /SN there is located a fibre, which is a finite dimensionalcomplex 
Hilbert space h"'. A wave function ~ is a cross-section of the fibre bundle, 
that is, the function value ~(x) at the point x E RdN /SN is a vector in 
the local Hilbert space h"'. Let us assume that the complex vector space 
hm has dimension r, independent of x. Then we may choose, for every 
X E RdN / S N, a set of hasis vectors Xml, Xm2 , ... , Xmr E hm, so that we 
may write 

r 

~(x) = L '1/Jk(X)Xmk, (55) 
k=l 

where each component '1/Jk ( x) is a complex number. Each '1/Jk is a com­
plex valued function defined on the configuration space RdN /SN, it is one 
component of an r-component wave function 

(56) 

Note that we use the term "wave function" here for two different, related 
objects. One is the cross-section ~ of the fibre bundle, and the other is the 
column matrix 'lj; of r complex valued functions. The set of hasis vectors 

{Xmk 1 X E R dN / S N, k = 1, 2, ... , r} (57) 

may be called a gauge. It defines a translation between the language of 
fibre bundles and the language of multi-component complex valued wave 
functions. 



296 Topologica! Aspects of Low Dimensional Systems 

The wave function w is assumed tobe single-valued, in the sense that the 
function value W ( x) E hx at any given point x is unique. It is a geometrica! 
object which exists without any reference to local basis vectors, whereas the 
r-component complex wave function 'lj; is undefined until we have "chosen 
a gauge", i. e. defined a set of local basis vectors. Clearly 'lj; is also single­
valued as long as we introduce a unique set of basis vectors at each point 
x. However, we may sometimes want to use simultaneously two or more 
different sets of local basis vectors, with the result that 'lj; becomes many­
valued. This is the natural way to introduce the double-valued fermion wave 
functions, as we shall see. 

5.1 Scalar wave functions 

Let us examine the simplest case, when the particles have no spin or other 
interna! degrees of freedom. Then there is only one basis vector Xx E hx, 
and equation (55) simplifies to 

w(x) = 'lj;(x)xx. (58) 

A vector bundle with one-dimensional fibres is called a line bundle. 
It is natural to impose the normalization condition lxx 1 = 1. This stil! 

leaves us with the freedom to make a change of basis of the form 

(59) 

where a = a(x) is an x-dependent real phase (in addition it could be time 
dependent). Such a local change of basis is called a local gauge tmnsforma­
tion. The complex wave function 'lj; must transform as follows, 

'l/;(x) ~ ;J(x) = e-ia(x) 'l/;(x) ' (60) 

since W is gauge independent, 

w(x) = 'l/;(x)xx = ;J(x)xx. (61) 

In order to define gauge invariant differentiation we need a connection on 
the fibre bundle, i.e. a rule for parallel transport between the fibres along 
continuous curves in tbe base space. The parallel transport along some curve 
C from a point x to a point y must define a linear and unitary operator 
Pc(y,x): hx ----+ hy. It is actually sufficient to define the infinitesimal 
parallel displacement from x to x + dx, and we postulate the following rule, 

P(x+dx,x)xx = (1+idxjaj(x))Xx+dx· (62) 

Here we denote the local coordinates in RdN / SN by xJ, j = 1, 2, ... , dN, 
and we use the summation convention for repeated indices. a1 , a 2 , ... , adN 
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are the components of a covariant vector field, a gauge potential, which is 
real in order to make P(x + dx, x) unitary. The infinitesimal rule implies 
the following rule for a finite curve C, 

Pc(y, x) Xoo = exp(i i dx1 aj(x)) Xy. (63) 

The gauge invariant differentiation D1 with respect to xi is defined by the 
relation 

w(x + dx) = P(x + dx, X) ( w(x) + dxj [Dj w] (x)) . (64) 

By definition, both w(x) and [D1w](x) are vectors in the local Hilbert space 
h00 , whereas w(x + dx) belongs to the neighbouring space hoo+doo· We need 
the parallel displacement operator in order to compare the local vectors at 
two different, neighbouring points. Note that this definition is explicitly 
gauge independent, since it does not involve the local hasis vectors. 

Once we ha ve chosen a gauge, which defines 'ljJ as the component of \]!, 
it is very natural to define D1'1jJ as the component of D1w, 

[D1w](x) = [DJ'I/J](x)xoo. (65) 

Comparing equation (64) with another formula, 

w(x + dx) = '1/J(x + dx) Xoo+doo = ('1/J(x) + dx1 [âj'I/J](x)) Xoo+doo, (66) 

in which â1 = â / âxi is the ordinary partial derivative, we see that 

(67) 

which we write simply as 

Dj = â1 - ia1 . (68) 

By definition, the local gauge transformation in equation (59) transforms 
aj into aj, such that 

P(x + dx, x) Xoo = (1 + i dx1 aj(x)) Xoo+doo. (69) 

It follows that 

(70) 

and hence that 

D- â . - D ·a -ia.(oo) D ia.(oo) J = 1 - 2 a1 = 1 + 2 1a = e 1 e . (71) 

This formula for the gauge transformation of the differentiation operator 
D1 implies that D1'1jJ transforms in the same way as 'ljJ under a gauge trans­
formation, 

(72) 
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5.2 Homotopy 

The commutator 

(73) 

is invariant under local gauge transformations, and measures the non­
triviality, or curvature, of the connection. It is the field strength corre­
sponding to the gauge potential aj, thus it corresponds to the magnetic flux 
density in electromagnetism ( the electric field is included if we add time 
components), or to the Riemann curvature tensor in geometry. 

Here we want to discuss only the special case when !Jk = O identically. 
One way to justify this restriction might be to say that we do not want to dis­
cuss the kind of interactions represented by a non-vanishing field strength. 
Another way might be to say that we want to study the ambiguity in the 
gauge potential aj for a given field strength iJk· In fact, if !}~) = !}~), with 

(74) 

then the difference aj = a;l)- a?) is a gauge potential having fjk =O. See 
however reference [257] for an example where the non-vanishing part of !Jk 
is also important. 

The curvature, or field strength, !Jk vanishes identically if and only if aj 
is the gradient of some function o:, in other words, if and only if there exists 
a gauge transformation such that aj = aj - âjo: = O identically. The "if" 
part of this statement is trivial, that !Jk = O when aj = âjo:, The "only if" 
part is true with the important reservation that the function o: is guaranteed 
tobe single-valued only when the space is simply connected. Let us see how 
the relation between aj and o: depends on the path connectivity. 

If aj = âjo:, then o: is obtained from aj by a line integral, 

o:(y) = o:(x) + fc dzj aj(z), (75) 

where C is an arbitrary curve from x to y. This equation proves that the line 
integral is independent of C whenever aj is the gradient of a single-valued 
function o:. 

Conversely, when aj is given, we may always try to solve the equation 
âjo: = aj for o: by choosing one point x, fixing o:(x) arbitrarily, and using 
equation (75) to define o:(y) for general y. If !Jk =O identically, then the 
value of the line integral is unchanged by a continuous deformation of the 
curve C, and the function o: defined by equation (75) has the desired gra­
dient aj. The invariance of the line integral under continuous deformation 
means that equation (75) defines a unique value of o:(y) for every homotopy 
class of curves from x to y. In particular, if we restrict ourselves to a simply 
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connected region O, then by definition there exists exactly one homotopy 
class of curves inside O from x to y, and equation (75) defines a function a 
which is single-valued onO. In a doubly connected region where fik = O, a 
defined by equation (75) may become double-valued, and so on. 

Let us summarize our discussion so far. We assume that the wave func­
tion \]! = w(x) is single-valued, and that there exists a set of local basis 
vectors {XaJ which is also single-valued ( i. e., contains only one basis vector 
at each point x), such that the connection is given by equation (62). We 
assume further that the gauge potential a1 is such that the curvature, or 
field strength, fik vanishes. With a single-valued basis the complex wave 
function 'ljJ = '1/J(x) is also single-valued. We have shown how to introduce 
a local gauge transformation, as defined in equation (59), such that the 
transformed gauge potential vanishes, i.e. a1 = a1 - a1a = O. Such a 
gauge transformation is always single-valued in a simply connected regioh, 
otherwise it may be many-valued. For example, it may be double-valued 
in a doubly connected region. A many-valued gauge transformation will 
transform the single-val~ed complex wave function 'ljJ into a many-valued 
complex wave function 'ljJ = e-ia'ljJ. 

Thus, if the field strength vanishes, iJk = O, we may choose a gauge 
such that the vector potential vanishes, a1 = O, but in a multiply connected 
space this may imply that the complex valued wave function becomes many­
valued. On the other hand, we may always work with single-valued wave 
function, but then, if the space is multiply connected, we may have to live 
with a vector potential which is not zero. 

5.3 lnterchange phases 

If we put y = x in equation (63), then the basis vector Xx is the same on 
the two sides of the equality sign, so that the parallel transport operator 
becomes just a gauge independent phase factor, 

(76) 

Obviously, the parallel transport around first one loop C1 and then another 
loop c2 gives a phase factor which is the product ofthe two individual phase 
factors, 

(77) 

Our previous assumption that iJk = O implies that the line integral in 
equation (76), and therefore the whole phase factor, is invariant under any 
continuous deformation of the loop C. We may deform the loop continuously 
without moving the point x where it starts and ends, and such deformations 
produce loops in the same homotopy class as the originalloop C. Thus, all 
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loops belonging to the same homotopy class have the same phase factor. 
However, the phase factor Pc(x, x) is unchanged even if we deform the 
loop C continuously in such a way that the point x moves. In summary, we 
have derived the following important result. 

- A connection with zero curvature on a complex line bundle is uniquely 
characterized by a one-dimensional unitary representation of the 
fundamental group. 

We have seen that the fundamental group for the configuration space 
RdN /SN of N identical particles in dimension d is SN if d ?: 3. The 
symmetric group S N with N > 1 has exactly two one-dimensional represen­
tations: the completely symmetric representation defining bosons, and the 
completely antisymmetric representation defining fermions. 

We have also seen that the fundamental group in two dimensions is the 
braid group BN. Since SN is a homomorphic image of BN, any repre­
sentation of S N defines a representation of B N, but B N has more general 
one-dimensional representations in addition to the symmetric and antisym­
metric representations. 

In particular, the braid group B2 for two particles is isomorphic to Z, 
and its general representation by phase factors is characterized by one real 
number, a phase angle (), such that 

(78) 

where Q is the winding number of the given homotopy class of loops. Obvi­
ously, this relation defines () only up to an arbitrary multiple of 2n, since Q 
is an integer. Two-dimensional identical particles characterized by a general 
statistics angle () are called anyons. Special cases are bosons, with () = O, 
and fermions, with () = 1r. 

We see that for two anyons there is a phase factor e-iO associated with 
a loop of winding number Q = 1. Let us introduce Cartesian coordinates 
x, y and polar coordinates r, </> such that the relative position of the two 
particles is 

x = Xt- x2 = (x, y) = (rcos<f>, rsin</>). (79) 

The relative angle </> increases by 1r when we go through a loop of winding 
number one, and we symbolize this by saying that we go from the point 
(r, </>) to (r, </> + n). The parallel transport around this loop takes the hasis 
vector Xr,</> at (r, </>) into 

-iO 
Xr,<1>+1r = e Xr,</> • (80) 

This corresponds to the following condition on the complex wave function 
'1/J, in polar coordinates, 

(81) 
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It is important to read this formula correctly. The implicit convention when 
we write </J + 1r, is that the angle <jJ is increased continuously by 7r. 

Note also that the phase factor eHi appears when we use parallel basis 
vectors, so that the gauge potential aj vanishes. In every case, except for 
bosons, local basis vectors that are parallel, have to be many-valued on 
the relative configuration space R 2 / S2 . For example, in the fermionic case 
e-i& = -1, parallel basis vectors are double-valued. 

5.4 The statistics vector potential 

As we have seen, it is not necessary to use parallel many-valued basis vectors 
and the corresponding many-valued complex wave functions. One alterna­
tive is to use single-valued basis vectors, with a non-vanishing gauge po­
tential. The most general possibility, however, is to use many-valued basis 
vectors and at the same time a non-vanishing gauge potential. Thus, let 'ljJ 
denote the many-valued wave function relative to a parallel basis, satisfying 
equation (81), and let the wave function 1/Jv be defined by 

(82) 

where v is some arbitrary constant. The new wave function satisfies the 
following symmetry condition, 

(83) 

The gauge invariant derivative is trivial in the "parallel" gauge, D,. = 8,., 
Dq, = aq,, but is non-trivial in the "v" gauge, 

Dq, = 8q, + iv. 

The corresponding formulae in Cartesian coordinates are, 

D.r 
sin <jJ . y 

cos<jJD,.- -- Dq, = Ox- zv-z, 
T T 

. COS </J . X 
sm<jJD,. + -- Dq, = ay + zv 2 · 

T T 

Note that thc gaugc potential in the general gauge, 

y 
a:r: =v-z, 

T 

X 

ay = -v r2' 

(84) 

(85) 

(86) 

is singular at r = O whcn v =/= O. The reason is that the gauge transfor­
mation in equatiou (82) is singular, in the sense that the factor e-iv</> is 
discontinuons at r = O. 

We see that the definition in equation (82), with the special choice 

e 
V= VE=-, 

7r 
(87) 
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gives a wave function 1/Jv = 'l/;8 which is single-valued, since it has the 
bosonic symmetry 

1/Js(r, cP + 1r) = 1/Js(r, c/J). (88) 

We may call this the bosonic gauge. The next simplest choice is the 
fermionic gauge, with 

B-7r 
V = VF = VB - 1 = -- , 

7r 
(89) 

in which the wave function 1/Jv = 1/JF is double-valued, having the fermionic 
symmetry 

WF(r, c/J + 1r) = -1/JF(r, c/J). (90) 

Remember that ax and ay given here are only the relative components of 
the gauge potential, i.e. the components in the relative space R 2 /S2 . If we 
transform from the centre of mass and relative coordinates 

X= Xl + X2 

2 ' 
y = Y1 +y2 

2 ' 
Y = Y1- Y2, (91) 

back to the parti ele coordinates x 1 , y 1 , x2, Y2, the gauge potential must 
transform in the same way as the partial derivatives 

a 1 a a a 1 a a -=--+- ----
' axl 2 aX ax ' ax2 2 ax ax 

a 1 a a a 1 a a 
(92) -=--+- ----· ay1 2 aY ay ' ay2 2 aY ay 

By assumption, the centre of mass components of the gauge potential vanish. 
Hence, the gauge potential expressed in particle coordinates is, with r 2 = 
(x1 - x2)2 + (Yl - Y2) 2, 

Y2- Y1 
a2x = -ax = V r2 

X2- X1 
a2y = -ay = -v r 2 (93) 

A natural way to interpret equation (93) is that a particle at the position 
x E R 2 experiences a certain vector potential A = A ( x). 1 t does not 
experience its own field, only the one generated by the other particle. Thus, 
particle 1 at x 1 = (x1 ,yl) generates a vector potential at x = (x,y) with 
components 

Ax(x) 

Ay(x) (94) 
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and partide 2 at x 2 experiences the vector potential a 2 = A(xz). 
To the vector potential A corresponds the field strength, or flux density, 

(95) 

Green's theorem gives the relation between BandA in integral form, 

r d2x B = 1 dx. A= { -27fV if Xl ~ o, 
Jn fan O otherw1se. 

(96) 

where O is a region with boundary 80, and where the direction of the line 
integral is anti-dockwise. This shows that the flux is located exactly at the 
position of partide 1, 

B(x) = -21rvo(x- x 1 ). (97) 

5.5 The N -partide case 

The generalization to N partides is quite straightforward. As always, we 
use a notation identical to or similar to the one introduced in equation (10) 
and equation (11). 

A dosed loop in the configuration space R dN j S N, or in the relative space 
Rd(N-l) /SN, induces a permutation pE SN of the N identical partides, 
and is characterized by a winding number Q. Ifwe work in the many-valued 
parallel gauge, where the gauge invariant differentiation is trivial, Dj = Oj, 
then an interchange path of winding number Q is accompanied by a phase 
factor eiQB in the wave function. 

If we work instead in the single-valued bosonic gauge, in the double­
valued fermionic gauge, or more generally in some many-valued "v" gauge 
with a non-vanishing gauge potential, then the interchange phase factor in 
the wave function is eiQ(&-v-rr). In addition there is a gauge potential which 
has the following components, as we can see by generalizing equation (93), 

(98) 

It is worth noting that the components as defined in equation (98) are many­
valued, but they detine a single-valued vector field on RdN / SN. Like in 
the two-partide case, the special choice v = VB = (] j1r gives symmetric 
(i.e. bosonic) wave functions, whereas v = VF = VB -1 gives antisymmetric 
( fermionic) wave functions. 



304 Topologica! Aspects of Low Dimensional Systems 

The N-particle Hamiltonian is 

N 

1 2 1 2: ( )2 H=-(p-lia) +V=- p1 -lia1 +V. 
2m 2m 

j=l 

(99) 

In our notation partide j has the position Xj = (xJ, Yj) and the canonica! 
momentum 

Pj = ~ â~j = ~ ( â~j ' â~J) . (100) 

The statistics vector potential aj = (ajx, ajy) is given by equation (98). The 
potential V= V(x) = V(x 1 ,x2 , ... ,xN) may be the sum V= VE+ Vi of 
an externa!, one-particle part 

N 

vE= L:vl(xj), 
j=l 

and an interna! or interaction, two-particle part 

Vi= L V2(Xj, Xk), 

j<k 

(101) 

(102) 

where V2 is a symmetric function, V2 (y,x) = V2 (x,y). There is usually 
no need to include more complicated interactions involving three or more 
particles, although it could of course easily be done. Note however that the 
square of the statistics vector potential, a 2 = I::J a], contains three-body 
terms. 

Note that the N-anyon problem for N :2: 2 actually contains another 
continuously variable parameter, in addition to the phase angle () [258-261]. 
The reason is that the eigenfunctions of the above Hamiltonian depend on 
the boundary conditions in the limits [x1 - xk[ ---> O for 1 :;: j < k :;: N. 
Usually the condition of quadratic integrability forbids singular solutions 
and thereby fixes uniquely the asymptotic form of the wave function for 
small distances, but there is some exception to this rule. 

5.6 Chern-Simons theory 

An equivalent point of view in the N-particle case is that partide j, at 
x 1 E R 2 , experiences a vector potential a1 = A(xJ) which is generated by 
aU the other particles, 

(103) 
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It is easily seen by comparison with the equations (94, 95) and (97) that 
the statistics gauge potential A defined here satisfies the field equation 

8xAy- 8yAx = -21rvp, 

where p = p( x) is the parti ele density, 

p(x) = L 6(x- Xk). 
k#j 

(104) 

(105) 

In a field theory we want to modify the source term p so that the particle 
j itself is included, even though this leads to the usual problems with self­
interactions. 

The field equation can be derived from a Lagrangian if we allow the 
field components Ax and Ay to become explicitly time dependent, and add 
a third field component A0 . It is convenient to introduce the relativistic 
notation 

8 
8J.L = -;:;--- ' uxJ.L 

(x0 ,x1 ,x2 ) = (ct,x,y), 

(A0 ,A) = (A0 ,Ax,Ay), AJ.L = (A0 , -A), jJ.L = (cp,j). (106) 

c is a constant velocity (the speed of light). Then we may add two field 
equations to obtain the following relativistic form, where E is antisymmetric 
and E012 = 1, 

J.L~<A!::> A - 27rv ·ţt 
E u"' >.- --J . (107) 

c 

A necessary consistency condition is that the current jJ.L is conserved, 8J.LjJ.L = 
O. These equations are gauge invariant, so that if AJ.L is a solution, then the 
gauge transformed field 

(108) 

is also a solution. There always exists a "radiation gauge" with Ao = O, 
therefore the introduction of A0 does not change the physics. 

The field equations for AJ.L follow from the Lagrangian density 

.c - ne J.LKA A 8 A It . J.L A - 4Jrv E J.L "' >. - J J.L · (109) 

The first term is the Chern-Simons term, which exists only when space-time 
is three-dimensional. .C is gauge invariant when the current jJ.L is conserved, 
in the sense that it changes by a divergence under the gauge transformation 
of equation (108), 

(110) 
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It is well known that the 2 + 1-dimensional Maxwell theory with an ad­
ditional Chern-Simons term describes massive photons. If an ordinary 
Maxwell term is added to the Lagrangian density C above, then the modified 
theory describes anyons of finite size [262, 263]. 

When the matter fields that define the current jl-' are quantized, either 
as bosons or fermions, relativistically or non-relativistically, the result is a 
field theory of anyons [67--69]. We will not discuss these theories any further 
here. 

6 The Feynman path integral for anyons 

Laidlaw and DeWitt worked out the Feynman path integral treatment of 
systems of identica! particles [1,49,66], inspired by earlier work of Schulman 
on the path integral for configuration spaces that are not simply connected 
[264, 265]. We derive it here from the Schrodinger formalism, to show that 
the two are equivalent. Closely related is the work by Wiegel and by and 
Inomata and Singh on the entanglement of polymers, and by Gerry and 
Singh on the path integral treatment of the Aharonov-Bohm effect [266-
269]. See also [211,237] for the path integral treatment of exclusion statistics 
and parastatistics. 

What we will derive is the path integral formula for the partition function 
of the N-particle system, 

00 

ZN(f3) = Tre-!3HN = Le-!3ENk. 

k=O 

(111) 

We ha ve had little need so far to distinguish explicitly between operators and 
numbers, but in the present section we will use a "hat" to denote operators, 
in order to prevent unnecessary confusion. 

We assume that the particles are confined by an external potential in 
such a way that the Hamiltonian operator .fiN has a discrete eigenvalue 
spectrum, and the trace is well-defined. At least in principle, ZN as a 
function of (3 determines the energy eigenvalues ENo :::; EN1 :::; ... :::; ENk 
:::; .... In statistica! mechanics (3 = 1/kBT, where T is the temperature 
and kB is Boltzmann's constant. More formally, (3 may be thought of as 
imaginary time, since the time evolution operator for a time interval t = 

-in(J is, with .ii= .fiN, 

(112) 

The simplest derivation starts from the "bosonic" description, in which the 
N -partide wave functions are symmetric complex valued functions on R dN. 

The Hamiltonian operator is given by equation (99), and any deviation from 
Bose-Einstein statistics is described by a vector potential a on RdN, as 
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given in equation (98), with v = v8 = () j1r. The "fermionic" description, 
where the wave functions are antisymmetric, leads to the same end result, 
but the derivation is complicated by an extra minus sign associated with 
every odd permutation of the N particles. Therefore we prefer the bosonic 
description. 

6.1 Eigenstates for position and momentum 

For distinguishable particles the general position eigenstate is ia:), where 
x E R dN. We have the orthonormality relation 

(::z:jy) = 8(x- y), (113) 

and the completeness relation, also called the resolution of the identity 
operator, 

(114) 

The bosonic position eigenstates are symmetric under all permutations of 
partide labels, and with the proper normalization they are 

1 
l::z:)s = ri\Tj L jp(::z:)) · 

vN! pESN 

(115) 

This definition implies that 

1 
s(::z:jy)s = N! L 8(p(x)- q(y)) = L 8(r(x)- y), (116) 

p,qESN rESN 

where r = q-1p. Note that the permutations p and q here act on RdN as 
linear operators of determinant ±1, and therefore we may change variables 
in the Dirac 8-function without introducing an extra Jacobi determinant. 
It follows that if we restrict both x and y to lie in the true configuration 
space R dN / S N, then we have the standard orthonormality relation also for 
the bosonic position eigenstates, 

s(::z:jy)s = 8(x- y). (117) 

The identity operator in the space of bosonic states is 

Îs = r ddNX ix)s s(::z:l = N1, r ddNX ix)s s(::z:l. 
lRdN/SN · lRdN 

(118) 

When regarded as an operator on the full Hilbert space that includes states 
of all symmetry classes, Î 8 is the projection operator onto the subspace of 
symmetric states. The above definition of 1 x) 8 gives that 

~ 1 "\;"'{ dN 
ls = (N!)2 L.,. }J dN d X jp(::z:))(q(::z:)j. 

p,qESN R 
(119) 



308 Topologica! Aspects of Low Dimensional Systems 

If we define y = p(x), z = q(x), r = qp-1 and s = pq-1 , then we get two 
more forms of the above resolution of the bosonic identity operator, 

ÎB = ~! L 1 dN ddNY IY)(r(y)l = ~! L 1 dN ddNz ls(z))(zl. (120) 
rESN R sESN R 

The momentum eigenstates for distinguishable particles may be defined as 

(121) 

They satisfy similar orthonormality and completeness relations as the posi­
tion eigenstates, 

(plq) = t5(p- q), (122) 

6.2 The path integral 

The trace in the definition of the partition function, equation (111), is.the 
trace within the subspace of bosonic states, which we may obtain by insert­
ing the projection operator ÎB. Thus [66], 

ZN(f3) = Tr(e-!3ilÎB) = ~! L 1 dN ddNx (p(x)le-13ilix), (123) 
pESN R 

where we have used equation (120) and the general formula Tr(ÂI'!ţ1)(xl) = 
(xiÂI'!ţ1). As remarked earlier, the formula would be the same in the 
fermionic picture, except for a minus sign for every odd permutation, com­
pensated for by the use of v = VF = VB -1 instead of v = VB in the statistics 
vector potential. 

We now expand as follows, 
r.~il~ ~il~ ~il~ ~ ~il~ 

e-,.., IB=e-:n Ie-:n l···le-:n IB. (124) 

It is simpler to use the identity operator Î of the full Hilbert space here 
instead of the identity operator Îs of the bosonic subspace, which would 
seem more logica!. Actually the above formula is equally valid if we replace 
every Î by ÎB, because the Hamiltonian fi and hence the exponential op­
erators in the formula are symmetric under interchange of partide labels, 
so that they commute with ÎB. It is essential to include ÎB once, but once 
is enough. Using the resolution of the identity, equation (114), we get the 
following formula, 
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The only manifestation of the fact that the particles are identical, is that 
we integrate over ali paths x --+ y --+ z --+ ... --+ u --+ p( x) start ing at 
x and ending at p(x), and we average over ali permutations p. These are 
precisely the closed paths in the configuration space R dN 1 S N. 

The desired path integral formula for the partition function is obtained in 
the limit n--+ oo, when a suitable approximation is used for the propagator 

(126) 

Here the real variable T = n/3 1 n corresponds to the imaginary time interval 
t = -iT. The approximation must be sufficiently accurate in the limit 
T--+ 0. 

By complex conjugation of the definition of G foliows the Hermitean 
symmetry 

G(y, x; T)* = G(x, y; T). (127) 

An approximation which respects this symmetry is the following, 

G(y, x; T)::::; (yl exp (-.!..._V- Tn â2 ) exp(_!_ â · iJ) exp(--T- iJ2 ) 
2n 4m 2m 2nm 

( T ~ ~) ( T ~ Tn ~2) 
1 

\ x exp - p · a exp --V - -a x 1 2m 2n 4m 
(128) 

= exp(- ;n (V(y) + V(x)) 

Tn ( 2 2)) - 4m ia(y)i +la(x)l G1(y,x;T), 

where 

C1 (y, x; T) = (yi exp(_!_ â · fjÎ exp(-_!__ p2) Î exp(_!_ p · â) lx)· (129) 
2m ') 2nm 2m 

Here we ha ve inserted the identity operator between two of the exponentials, 
and when we use equation (122), we get that 

with 

(131) 

Without further justification we now introduce the foliowing approximation 
for c2' which is formaliy just a first order approximation for the exponential 
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function, 

G2(p,x;r) ~ (PI(Î + 2~ p·â)lx) = (1 + 2~ p·a(x)) (pix) 

~ exp(..!_ p · a(x)- !:_ p · x). (132) 2m n 
It leads to the following approximation for G~, 

(2nnm) d: ( rn 2 m 2 
G1 (y,x;r)~ - 7 - exp Bm(a(y)+a(x)) - 27n(y-x) 

+~ (a(y) + a(x)) · (y- x)), 
(133) 

where the normalization factor comes from the Gaussian integral 

!RdN ddNP exp (- 2;m (p- ~ (a(y) + a(x))- i~ (y- x)) 2) 
= (2n:m) d: (134) 

And finally the desired approximation for G, 

G(y, x; r) ~ ( 2n:m) d: exp(- 2~n (y- x) 2 - ;n (V(y) + V(x)) 

+~ (a(y) + a(x)) · (y- x)) . (135) 

We have neglected the following terms in the exponent, 

- ;~ (la(y)l2 + la(xW) + ;~ (a(y) + a(x))2 

rn 2 
=-Sm (a(y)- a(x)) , (136) 

because the Gaussian weight factor exp( -m(y- x) 2 /2rn) makes the dis­
tance IY- xl small, of order y'T. 

In the limit n --+ oo the discrete path x --+ y --+ z --+ •.• --+ u --+ p( x) 
approaches a continUOUS path x(r), with 0 ~ T ~ n(3, while the product of 
propagators diverges as follows, 

c(p(x),u; ~) .. -c(z,y; n:) c(y,x; n:) 

dNn 
( 2nmn) - 2- _ s -iOQ 

--+ --(3-- e x . (137) 
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S is the action in imaginary time, which we define here as 

["13 (m 1 dx 1

2 
) S = Jo dT 2 dT + V(x) ' (138) 

and Q is the winding number of the N-particle path, defined by the line 
integral of the statistics vector potential along the path x(T), 

N 1 dx · a(x) = L 1 dxj · aj(x) = -n:vQ = -BQ. (139) 
J=l 

We define the path integral measure as 

including the divergent normalization factor from the product of propaga­
tors. With these definitions, 

(141) 

The domain of integration C(p) for a given permutation pE SN consists of 
all continuous paths x(T) with O:::; T:::; nf] and with x(nf]) = p(x(O)). 

Let C(p, Q) consist of those paths in C(p) that have the winding number 
Q, and define 

(142) 

Thus, Pp ( Q, {3) is the probability of the winding number Q, given the per­
mutation p, and given that the particles are bosons. Define also the Fourier 
transform of the probability distribution of winding numbers, which is called 
the probability generating function, 

00 

Fp(B,f]) = L Pp(Q,f])e-ieQ. (143) 
Q=-oo 

Below we will usually write simply Pp(Q) and Fp(B) instead of Pp(Q, {3) and 
Fp(B, {3), but one should remember that these quantities are temperature 
dependent. These definitions enable us to isolate the dependence of the 
partition function ZN on the statistics angle e, 

(144) 
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The fact that the probability Pp ( Q) is real implies that Fp ( B) * = Fp ( -B). 
Furthermore, in the definition of Pp(Q), both the action S and the path 
integral measure V( x ( T)) are invariant under the time reversal transforma­
tion 

X(T) r-> X(T) = x(fi/3- T). (145) 

If the path x(T) has the winding number Q, then the time reversed path 
x(T) has the winding number -Q. Hence time reversal invariance implies 
that Pp( -Q) = Pp(Q), which in turn implies that the probability generating 
function is real, 

(146) 

The fact that Fp(B) is real, is consistent with our path integral formula for 
the partition function ZN, equation (144), and with the fact that ZN is real 
by definition. 

6.3 Conjugation classes in SN 

By definition, a cycle of length L is a cyclic permutation i1 r-> iz r-> ... r-> 

iL r-> i1 of the L integers ir, iz, ... , iL, and it is denoted by (i1iz ... iL)· 
It follows directly from the definition that, for example, 

A transposition is a cycle (i1iz) of length 2, and the generators of SN intro­
duced in Subsection 2.4 are the transpositions Tj = (j,j + 1). A cycle of 
length L may be written as a product of transpositions, e.g. in the following 
way, 

(148) 

Two cycles commute if they are disjoint. Every permutation p E SN can 
be factored into a product of disjoint cycles, and the factorization is unique 
apart from the order of the factors. Let VL be the number of cycles of length 
L in the factorization of p. Then the sequence of non-negative integers 
v1, vz, ... , VL, ... is called a partition of N, because L:L LvL = N. Let 
v = L:L VL be the number of cycles in the factorization of p, then the sign 
of p is 

sgn(p) =IT p(j~ = ~(k) =IT ( -1)(L-l)vL = ( -1)N-v. (149) 
j<k J L 

Two permutations p, q E SN are conjugate if q = rpr-1 for somer E SN. 
The conjugation class of p consists of all permutations that are conjugate 
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to p. The mapping p ~---+ rpr- 1 preserves the group structure of SN, i.e., it 
is an automorphism of S N. 

The conjugate of a cycle is 

(150) 

It follows that two cycles are conjugate if and only if they have the same 
length. And in general, two elements of S N are conjugate if and only if 
they have the same cycle structure, in the sense that they define the same 
partition of N when factorized into disjoint cycles. Thus the conjugation 
classes in SN are in one to one correspondence with the partitions of N. Let 
P be the conjugation class in SN corresponding to the partition L:L LvL = 

N. Then the number of elements in P is 

Np= N! 
nL (vL! L"L) 

(151) 

Let us now go back to equation (123). The integral there depends on the 
petmutation p, but it is the same for any permutation q = rpr- 1 conjugate 
to p. That is, 

To prove this equality, note that the operator e-f'JH is permutation invariant, 
which implies that 

(q(y)le-{'JHIY) = (r- 1 (q(y))le-{'JHir-1 (y)) 

= (p(r-l(y))le-{'JHir-l(y)) 

The substitution x = r- 1 (y) completes the proof. 

(153) 

Therefore we need not sum over all permutations p E S N in equa­
tion (123), it is enough to pick one arbitrary permutation p from each 
conjugation class P in SN. The sum reduces to a sum over all conjuga­
tion classes, or equivalently, a sum over all partitions of N, 

(154) 

The path integral formula, equation (144), is modified accordingly, 

ZN(/3) = L TI ( 1 1 L" ) Fp(O) r V(x(T)) e-i . (155) 
p L VL· L lc(P) 

The class C(P) of paths consists of all continuous paths inducing one arbi­
trary, but fixed, permutation p E P. 
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j = 1 2 3 1 2 3 1 2 3 
Fig. 5. Schematic representations of the three classes of closed three-anyon paths 
x(T). The classes 1 + 1 + 1 (left) and 3 (middle) are even, whereas 2 + 1 (right) 
is odd. 

The probability generating function Fp(B) depends implicitly both on 
(J and on the potential V. The values at the boson point ()=O and at the 
fermion point () = 1r are known, 

Fp(O) = L Pp(Q) = 1, 
Q 

Fp(1r) = LPp(Q) (-1)Q = sgn(P) = (-1)N-v. (156) 
Q 

The fermion value follows because the winding number Q is always even 
for all even permutations and always odd for all odd permutations. More 
generally, it follows that 

Fp(B ± 1r) = sgn(P) Fp(B). (157) 

Take N = 3 as an example. The 3! = 6 permutations in 83 fall into three 
conjugation classes, illustrated in Figure 5. The two classes, or partitions, 
1 + 1 + 1 and 3 are even, and the class 2 + 1 is odd. 

6.4 The non-interacting case 

The N-boson path integral occurring in equation (155) can be simplified if 
there is no interaction potential so that the particles are only infiuenced by 
an external potential, 

N 

V(x) = L:vl(xj)· 
j=l 

(158) 

Then the factorization of the permutation p into disjoint cycles implies a 
similar factorization of the path integral, so that 

(159) 
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T 

3'/i(J • • 

2'/i(J • • 

nfJ • • 

o 

Fig. 6. A three-particle path :z:(r) inducing a cyclic permutation, and the same 
path represented as a closed one-particle path over three times the time interval. 

where eL is a class of L-particle paths which induce a fixed cyclic permuta­
tion of the L particles. But an L-particle path inducing a cyclic permutation 
is equivalent to a one-particle path over a T-interval which is L times as long, 
as illustrated for a three-cycle in Figure 6. Therefore the cyclic L-particle 
path integral is related to the one-particle partition function, and it follows 
that 

(160) 

6.5 Duality of Feynman and Schrodinger quantization 

It is worthwhile observing that the expansion of the partition function given 
in equation (160) is actually valid much more generally, if we interpret it in 
a suitable way. The present discussion is partly based on reference [270). 

In equation (160) we considered noninteracting anyons in two dimen­
sions, treating them as bosons with no other interactions than a statistics 
interaction turning them into anyons. But we may consider more generally 
bosons or fermions in any dimension, or even particles described by wave 
functions of a more general symmetry class Y, with quite general externa! 
potentials and interactions between the particles. We may always write 

(161) 

interpreting the coefficient F:ţ ([J) as a general correction factor describing 
the effect of all externa! and interna! interactions, including statistics in­
teractions that might transmute the partide identity. For example, bosons 
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(Y = B) might turn into anyons, as in equation (160), and in particular 
bosons might turn into fermions. Or fermions (Y = F) might turn into 
anyons, and in this connection bosons count as anyons as well. 

In the general expansion, equation (161), the superscript Y identifies 
the symmetry class of the wave functions used in computing the N-particle 
partition function ZX.(f3), and we sum over conjugation classes in the sym­
metric group S N, because the conjugation classes classify the paths going 
into the Feynman path integral. Thus the formula relates two approaches 
that are dual, in a certain sense: either solving the Schrodinger equation for 
identica! particles and classifying the solutions according to the symmetry 
of the wave functions, or expanding the Feynman path integral as a sum 
over permutations. 

A symmetry class is the same as an irreducible representation of the 
symmetric group SN, which is identified by its Young tableau Y. Consider 
the Hilbert space 1t of all wave functions, of arbitrary symmetry. Every 
permutation p E SN acts as a linear operator fi on 1t, and so does every 
conjugation class P C S N, if we define 

p = LP· (162) 
pEP 

The projection operator projecting out the subspace 1ty of the symmetry 
class Y, is 

~ d(Y)" ~ 
ly = /il Lt x(P; Y)P , 

. p 
(163) 

where d(Y) is the dimension of the irreducible representation Y, and x(P; Y) 
is the character in the representation Y of the permutations belonging to 
the conjugation class P. The inverse relation is 

p = N " x(P; Y) Î 
P Lt d(Y) y. 

y 

(164) 

Np is the number of elements in the conjugation class P, as given in equa­
tion (151). 

By definition, the partition function ZX.(!3) is the trace of the operator 
e-f3H restricted to the subspace 1ty, 

Z1(!3) = Tr(e-f3ilÎy) = d~? LX(P;Y)Tr(e-f31ip) . (165) 
. p 

The last equality follows from equation (163). Comparing with equa­
tion (161), we see that we may define 

y( ) - [rr f ( L )vL] d(Y) . ( -(JH~) Fp {3 - L '-'L· Zl(L{3) N! x(P, Y)Tr e p . (166) 
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On the other hand, equation (164) with equation (151) gives that 

Tr(e-f3Hp) = N! L x(P;Y) zY((3). 
TIL(vL! UL) Y d(Y) N 

(167) 

Thus we see that if we are able to calculate the partition function zJ:r' ((3) 
for every symmetry class Y', for example by solving the Schrodinger equa­
tion for wave functions of arbitrary symmetry, then we may calculate every 
coefficient Fţ from the formula 

y (rr 1 ) "\:' x(P; Y') y' ( ) 
Fp ((3) = d(Y)x(P; Y) L (Zl (L(3) )vL f;- d(Y') Z N ((3) . 168 

Note that Fţ depends on the symmetry class Y only through the represen­
tation dimension d(Y) and the character x(P; Y). 

In particular, equation (160) refers to the case Y = B, for which d(Y) = 
d(B) = 1 and x(P; Y) = x(P; B) = 1. 

7 The harmonic oscillator 

We can gain some general insight into the properties of anyons, and even 
learn something about the gas of free anyons, by doing the harmonic oscil­
lator problem. 

For two anyons it can be solved analytically, and all the energy eigenval­
ues depend linearly on the statistics angle B, with a slope of fixed absolute 
value, sometimes changing sign at the bosonic values B = 2mr for integer n. 
For three anyons, however, only about one third of the energy eigenvalues 
have the simple linear e dependence and are known analytically. 

7.1 The two-dimensional harmonic oscillator 

Let us treat the one-particle problem in some detail, in order to have some 
notation and results for later use. The Hamiltonian for one partide of mass 
m in a harmonic oscillator potential is 

p2 1 
H = - + - mw2 x 2 . 

2m 2 
(169) 

x is the postition, p the canonica! momentum, and w the angular frequency, 
which characterizes the strength of the potential. H is rotationally symmet­
ric and commutes with the canonical angular momentum L = xpy- YPx· 

In order to quantize H and L simultaneously, it is convenient to intro­
duce the characteristic length 

Â= rr;-, 
V~ 

(170) 



318 Topological Aspects of Low Dimensional Systems 

the dimensionless complex coordinate 

X+ iy 
z=-A-, 

and the differential operators 

(171) 

(172) 

such that 8z = 8*z* = 1, 8*z = 8z* =O. In this complex formalism z and 
its complex conjugate z* are treated as independent variables. We have 
that 

L n(z8- z*8*)) 

H fu.; ( -2 88* + lz~2) . 

The following annihilation and creation operators, 

z* 
a=8+-

2 ' 
at = -8* + ~ 

2' 

8* z 
b = + 2) 

z* 
bt = -8 +-

2 ' 

satisfy the canonical commutation relations 

and allow us to write 

L 

H 

n(ata-btb), 

fu.J(ata+btb+1). 

The non-normalized wave function 

( izl 2 ) 1/Jo =exp -2 

(173) 

(174) 

(175) 

(176) 

(177) 

is the unique solution of the equations a'ljJ0 = b'ljJ0 = O, and describes the 
ground state of the Hamiltonian H. A complete orthonormal set of simul­
taneous eigenfunctions of L and H are 

1/Jj,k = V \k, (at)J (bt)k 1/Jo ' 
7rJ .. 

(178) 

with j, k =O, 1, 2, .... The state 1/JJ,k has angular momentum Rn = (j- k)n 
and energy E = (j + k + 1)fu.J. 
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These one-particle energy levels give the following partition function, 
with ~ = (3/uu, 

-E 1 
Zl ((3) = ""'e-{3EJ,k = e = -----,--.,-

~ (1 - e-E)Z 4 . hz (S.) 
J,k sm 2 

(179) 

The repeated action of the creation operators at and bt on 7/Jo produces 
wave functions that are polynomials in z and z*, multiplied by 7/Jo. It is 
natural to split off the Gaussian factor 7/Jo explicitly and write a general 
wave function 7/J as 

(180) 

In consequence, we replace a general operator A by A, defined such that 

This gives in particular that 

and hence, 

a= 8, 

b = 8*' 

at = -8* + z, 

[;t = -8 + z*, 

L h (ata- [;t[;) = h(z8- z*8*) = L, 

(181) 

(182) 

H !Uu(ata+btb+1) =!Uu(-288*+z8+z*8*+1). (183) 

Thus, one possible approach to the simultaneous eigenvalue problem for L 
and H is to look for polynomials ;(; that are eigenfunctions of L = L and of 
ii. The homogeneous polynomial zj (z*)k, for example, is a solution of the 
eigenvalue equations 

(184) 

It is not an eigenfunction of H, because 

(185) 

but we see that a unique eigenfunction of ii and L can be constructed as a 
linear combination 
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with n = min(j, k). This is of course the same state as in equation (178). 
In fact, starting with the ground state ~o= 1, we have 

'1/Jj,k (at)j (bt)k~o = ( -8* + z )j ( -8 + z*)k~o 
( -8* + z)j (z*)k = ( -8 + z*)k zj . (187) 

The lowest order termin equation (186) is either zj-k or (z*)k-j, depend­
ing on whetherj ~ k or j -:=:; k. Thus the asymptotic form of the wave 
function '1/J = '1/J'l/Jo as lzl -+ O is lzlll'l, where f = j - k, and fn is the 
angular momentum. The quantum number n = min(j, k) describes radial 
excitations. 

A standard asymptotic analysis of the eigenvalue equations H '1/J = E'ljJ 
and L'ljJ = fn'ljJ gives the same result. Let r and 4> be polar coordinates, that 
is, x = r cos c/>, y = r sin cj>, then we ha ve 

An eigenfunction for L = -ifi8 / 84> has the form 

'1/J(r,c/>) = f(r)eil<P. (189) 

Assuming that f(r) has the asymptotic form f(r) <X r~' as r -+ O, and 
inserting into the equation H'ljJ = E'ljJ, we get asymptotically as r -+ O 
the equation ţt? - 1!2 = O. The minimum requirement is that '1/J must be 
quadratically integrable, implying the inequality ţt > -1, but since there is 
no reason for '1/J to be singular at r = O, we have to require that ţt ~ O, and 
hence Jt = ICI. 

7.2 T wo anyons in a harmonic oscillator potential 

The two-particle Hamiltonian is 

1 ( 2 2) 1 2 ( 2 2) H = 2m P1 + P2 + 2 mw x1 + X2 . (190) 

We introduce the anyon statistics by requiring an arbitrary wave function 
'1/J to be multivalued, with 

(191) 

for an anticlockwise interchange of partide positions. The phase angle () is 
defined modulo 21r, and we will assume here that () = v1r with O -:::; v < 2. 
Then v = O represents bosons, while v = 1 represents fermions. 
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The motion of the two particles can be decomposed into independent 
motions of the centre of mass position X= (x1 + x 2)/2 and the relative po­
sition x = x1 -x2. The canonically conjugate momenta are P = p 1 +p2 and 
p = (p1 - p 2 )/2. This gives the following expression for the Hamiltonian, 

p2 p2 1 
H =-+- +mw2 X 2 + -mw2 x 2 . 

4m m 4 
(192) 

Thus the centre of mass is represented as a "partide" of mass 2m, whereas 
the relative coordinate describes a "partide" of the "reduced mass" m/2. 

The anyonic symmetry condition affects the relative motion only, and 
takes the following form, stiH with the antidockwise convention for changing 
x into -x, 

'1/J(X, -x) = ei9 '1/J(X, x). (193) 

This condition is singular at x = O, whenever () is not an integer multiple of 
1r, and so forces the wave function to behave singularly there, in the sense 
that it goes to infinity or is not differentiable. 

Let r and cp be the relative polar coordinates, then the relative motion 
part of the wave function must have the following asymptotic form as r ---+ O, 

.t. ( ri.) ţL il</> '!-'rei r, '1-' = r e , (194) 

with Rn = () + 2kn for some integer k. Like in the one-partide case we get 
from the energy eigenvalue equation, to leading order in r, that p,2 - R2 = O. 
We choose the solution J.L = IRI, to make '1/J finite in the limit r ---+ O, even if it 
should happen that IRI < 1 so that quadratic integrability allows the choice 
J.L = -IRI. We have assumed here that () = vn and O ::; v < 2, hence there 
are two dasses of energy eigenstates: dass (I) having J.L = v, v+2, v+4, ... , 
and dass (II) having J.L = 2- v, 4- v, 6- v, .... 

Let us introduce the complex cootdinates z 1 and z2 in the same way as 
before, and define Z = (z1 + z2 )/2 and z = z1 - z2 • Then the Hamiltonian 
lS 

H= 

(195) 

and the total angular momentum is 

L= !!<( 8 * 8 8 * 8) n Z1 ~ - z 1 >:> * + z2 ~ - z 2 >:> * 
uz1 uz1 uz2 uz2 

fi (z _i_ - Z* _!!__ + z !_ - z* _!_) · 
8Z 8Z* 8z 8z* 

(196) 
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Next we define annihilation and creation operators as follows, 

1 â z 
a=---+-

v'2 âZ* y'2' 
1 â Z* 

b = y'2 âZ + y'2 ' 

In â z 
c = v.: âz* + 2v'2 ' 

â z* 
d = h-â + In' z 2v2 

1 â Z* 
at=--- +-

v'2 âZ y'2' 
1 â z 

bt=---+­
v'2 âZ* y'2' 

â z* 
ct=-J2- +-

âz 2v'2' 

dt =-h~+ _z_. 
âz* 2v'2 

The non-vanishing commutators among these operators are 

(197) 

(198) 

With these definitions we obtain the following form of the total angular 
momentum and Hamiltonian, 

L = n(ata-btb+ctc-dtd), 

H = nw(ata+btb+ctc+dtd+2). (199) 

Two energy eigenstates having the correct symmetry under partide inter­
change, and belonging to the classes (I) and (II) defined above, are 

• 1,(I) _ zv •1• 
'f'O - 'f/0' 

•1,(II) _ ( *)2-v .1 • 
'f'O - Z 'f/0' (200) 

with 

They have energies Ea1) = (2 + v)nw and Eaii) = (4- v)nw. 
We may construct a complete set of energy eigenstates by starting from 

these "ground states" and acting with the creation operators at, bt, ct and 
dt, within certain restrictions. Because ct and dt are antisymmetric under 
interchange, we have to use either (ct)2 , (dt)2 or ctdt in order to preserve 
the interchange symmetry of the wave functions. There are two further 
restrictions, when O< v < 1 or 1 < v < 2, because the action of either (ct) 2 

on 1/Jal) or of (dt)2 on 1/Jaii) produces a singular wave function. However, 
ct dt is always a "good" operator. Hence the general eigenstates are, with 
j, k, l, m independent non-negativ integers, 

(202) 
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Here j, k are quantum numbers of centre of mass excitations, while l, m 
describe excitations of the relative degrees of freedom. The corresponding 
energy levels are 

E(I) 
j,k,l,m 

E(II) 
j,k,l,m 

(2 +V+ j + k + 2l + 2m) nw, 

( 4 - V + J + k + 2l + 2m) nw . 

This gives the two-particle partition function, again with ~ = (3nw, 

e-(2+v)~ + e-(4-v)~ z 2 ((3) = "'"' e- f3 E j. k, k ,l, m = -,------:;:-:-;c-.,.,-----;;:= 
. 6 (1 - e-~)2 (1 - e-2~)2 
),k,l,m 

cosh((1- v)~) 

8 sinh2 (O sinh2 ~ 

7.3 More than two anyons 

(203) 

(204) 

Although the complete solution of the N-anyon problem in a harmonic 
potential can only be obtained numerically when N > 2, it is still possible 
to find a number of exact energy eigenstates. 

The N-particle Hamiltonian is asum of N one-particle contributions, 

(205) 

The centre of mass motion can be separated from the relative motion, be­
cause the potential is separable by the identity 

N 2 1 ( N ) 2 1 N k-1 2 
.t;xj = N .t;x1 + N ~.t; (x1 - xk) (206) 

The centre of mass energy spectrum is identical to the o ne-partide spectrum, 
that is, the energy levels are nnw with degeneracy n, for n = 1, 2, .... 
Hence the centre of mass motion contributes to the energy but not to the 
degeneracy of the ground state. 

The bosonic ground state has all N particles in the lowest one-particle 
level, hence it is non-degenerate and has energy Nnw, including the centre 
of mass contribution. In the fermionic ground state the N one-particle 
states of lowest energy are filled. Thus there exist "magic numbers" N = 

n(n + 1)/2 = 1, 3, 6, 10, ... , with n = 1, 2, ... , such that the one-particle 
levels up to and including nnw are completely filled. The total energy is 
then 

E= (1 + 4 + .. ·+n2)nw= n(n+1)(2n+1) nw= Nv8N+1 nw. (207) 
6 3 
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For these magic numbers the fermionic ground state is non-degenerate, but 
for other values of N it is degenerate. Thus the degeneracy is 2 for N = 2, 
3 for N = 4 and N = 5, 4 for N = 7 and N = 9, 6 for N = 8, and so on. 

Like in the one-particle case we may introduce complex coordinates Zj 
as well as annihilation and creation operators aj, bj, aj, bJ, in order to write 
the Hamiltonian as 

H ~ liw t, ( -28;8j + ~ lz;l') ~ liw t, ( a)a; +b)b; + 1) , (208) 

and the total angular momentum as 

N N 

L =li L (zjl)j- zjâj) =li L ( aJaj- bJbj) (209) 
j=l j=l 

Assuming that ali the operators aJaj and bJbj are non-negative, we derive 
the foliowing inequality relating the energy E and total angular momentum 
tii, 

E ~ (/f/ +N)hw. (210) 

The non-normalized wave function 

(211) 

is annihilated by ali the operators aj and bj. Again we ~ay split off the 
Gaussian factor '1/Jo and write any wave function 'ljJ as 'ljJ = '1/J'l/Jo, at the same 
time as we replace any operator A by A, such that A'ljJ = (A~) 'ljJ0 . Then 
we have, in the same way as before, that 

and, 

aj = âj' -t- â* . aj-- j + z3 ' 
bj a;, bJ = -âj +zj' 

N N 

L =li L (ajaj- bJbj) =li L (zjâj- zjâj) = L, 
j=l j=l 

N - - ""' (-t- -t- ) H- hw L., aja] +bjbj + 1 
j=l 

N 

(212) 

= hw L ( -2âjâj + Zjâj + zjâj + 1). (213) 
j=l 
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The generalization of the exact two-anyon energy eigenstates of equation (200) 
are the states 

./,(1) _ ~v .J, 
'f'O - '1-'0' (214) 

where ~ is the lowest degree totally antisymmetric polynomial in the vari­
ables Z1, Z2, o o o , ZN, 

N k-1 

~ = II II (zi - Zk) = II (zj - Zk) o 

k=2j=l j<k 

Up to a sign, this is the Vandermonde determinant, 

1 1 
Z2 

1 

N-1 
ZN 

(215) 

(216) 

Since~isafunctionofz1 ,z2 , ooo ,ZN, butnotofzi,z2, 000 ,zjy,itfollows 
that ~ * is a function only of zi, z2, o o o , zjy o And sin ce ~ is a homogeneous 
polynomial, ~v and (~*)2-v are both homogeneous functions, of degrees 
N (N- 1 )ZI /2 and N ( N- 1) (2- ZI) /2, respectivelyo The homogeneity means 
by definition that 

N(N-1) AV 

2 Zlu. ' 

Thus the total angular momentum of the states '1/J~I) and '1/J~II) is 

fo(I)n = N(N- 1) Zln 

2 ' 
(218) 

respectively, and the total energy is 

In both cases E = (iei + N)fiw, meaning that these are ground states for 
those two values of the angular momentumo For ZI = 1, in particular, these 
are fermion states constructed either from the one-particle states zi'I/Jo or 
from the states (z*)i'ljJ0 , with j = O, 1, o o o , N- 1. However, the energy 
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is higher than the fermion ground state energy for every N > 2, and the 
discrepancy increases with N, since the energy increases like N 2 for large 
N, whereas the fermionic ground state energy increases like N -/N. The 
ground state energy is not exactly known for anyons close to fermions, even 
in the three-particle case. 

We may act on these two states by creation operators, taking care to 
preserve the interchange symmetry and avoid generating singular states. In 
this way we get energy eigenstates that we may classify as type (I) or (II). 
Besides the fact that we do not get the fermion states of lowest energy, 
another way to see that not all energy eigenstates are of either type (I) or 
(II), is by considering the asymptotic behaviour of the wave functions when 
two particles approach each other. The states of class (I) will all have the 
asymptotic form (zj- Zk)"'+2m as Jzj - zkl ---+O, whereas those of class (II) 
will have the asymptotic form (zj- zk) 2-v+2n, with m and n U@n-negative 
integers. But there must exist more general states that somehow mix these 
possibilities, an example is the three-fermion ground state, 

(220) 

Let us look more closely at the states of class (I). They are of the form 

(221) 

where we have split off, as usual, the Gaussian factor '1/Jo, and where f 
is a polynomial in the 2N independent variables z1 , ... , z N, zi, ... , zjy, 
symmetric under interchange of partide labels. The "reduced" Hamiltonian 
operator Îi, acting on ;J;, is given by equation (213). 

As a starting point for constructing an energy eigenstate, assume that 
f is a homogeneous polynomial, of degree J in Z1, z2 , .•. , ZN aud degree 
K in zi,z:i, ... ,zjy. Then we have that 

H(fllV) = (N(N -1) N J K) f 
fu.vllv 2 l/ + + + 

N N k-1 â*j â*j 
-2"â*âjf-2v"" j- k • (222) 
~ J ~~ z·-zk 
j=l k=2 j=l J 

If the last two terms here do not vanish, they add up to a homogeneous 
function of degree (J- 1, K- 1), which has tobe compensated for by the 
addition to the polynomial f of a "counterterm", in fact the same homo­
geneous function multiplied by some constant coeffi.cient. The counterterm 
may need a second counterterm, of degree (J- 2, K- 2), and so on, until 
the variables zi, z:i, ... , zjy are eliminated and the process stops after K 
steps. 
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This construction of an energy eigenstate works smoothly and produces 
a non-singular wave function as long as the counterterms arising are all 
polynomials. We see from equation (222) that the necessary and sufficient 
condition is that the polynomial a; f - a;J must always be divisible by 
Zj - Zk· This condition must hold when f is the homogeneous polynomial 
we start with, or any o ne of the counterterms that we construct successively. 
Since we are working with symmetric functions, it is enough to impose 
the single condition on f that au - a:;_ f must be divisible by z1 ..:_ z2. 
Equivalently, we must have aîf- a:;_j =O when z1 = z2. Remember that 
we treat z and z* as independent variables, so that z1 = z2 does not imply 
zi = z:;_. Explicitly written out the condition is that 

[a;J](z,z,z3, ... ,zN,zi,z~,z3, ... ,ziv)= 
[a~j](z,z,z3, ... ,ZN,zi,z~,z3, ... ,ziv). (223) 

Let us call a symmetric polynomial f "good" if it satisfies this condition. 
Since the condition is linear, any linear combination of good polynomials is 
a good polynomial. Almost as easy is it to see that any product of good 
polynomials is again good. 

Obviously, f is good if it does not depend on zi, z:;_, ... , ziv. Let S be 
the symmetrization operator, 

(224) 

Then the polynomials 

c· . . -'"V· . . S(z JNz JN-1+JN ... z Jl+h+·+JN) ]1,]2, ... ,]N - /)1,]2, ... ,]N 1 2 N ' (225) 

where j1,j2, ... ,jN are non-negative integers and '"'/j 1 ,)2, ... ,)N are (unspec­
ified) normalization factors, forma hasis for the vector space of symmetric 
polynomials in z1 , z2 , ... , ZN. These basis polynomials are homogeneous 
of degree j1 + 2j2 + · · · + NjN. By definition, the elementary symmetric 
polynomial ci in z1 , z2 , ... , ZN is the basis polynomial for which ji = 1 and 
jk = O when k -1- i. Explicitly written out, we have for example, 

C1 Z1 + Z2 + · · · + ZN , 
(226) 

The corresponding N -anyon energy levels of the harmonic oscillator are 
therefore 

( N(N -1) . . . ) 
Ej1,)2, ... ,)N= 2 v+N+J1+2J2+···+NJN fiw. (227) 
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In the system of charged anyons in a magnetic field, discussed in the next 
section, the same wave functions are even more useful, since they describe 
the degenerate ground state, the lowest Landau level "LLL". 

This is not yet the full story. In fact, any symmetric polynomial which 
is linear in zi, z2, ... , ziv, is also "good". It must be of the form 

N 

f = 2...:fj(ZI,Z2, ... ,zN)zj, 
j=I 

(228) 

With fJ(ZI,Z2, ... ,Zj, ... ,zN) = fi(z1,z2, ... ,ZI, ... ,zN), and with 
h (ZI, z2, ... , z N) symmetric in the N - 1 last arguments. The condition 
for f to be "good", 

h(z,z,z3, ... ,zN) = h(z,z,z3, ... ,zN), (229) 

is seen to hold automatically. It follows that all sums and products of 
symmetric polynomials linear in zi, z2, ... , ziv, are good polynomials. The 
tricky part of enumerating all such good polynomials is to avoid double 
counting. 

The enumeration can be done as follows. Let 

N 

Sk = 2:.:: z/, 
j=I 

N 

tk = 2:.:: z/ zj , 
j=I 

(230) 

and let g ( "Q" for "good") be the set of all polynomials in sI, s2, . . . , s N, 

ta, ti, ... , t N-I· Then it can be shown that g contains every symmet­
ric polynomial we can generate by taking sums and products of symmet­
ric polynomials that are either independent of or linear in zi, z2, ... , ziv. 
Moreover, because the 2N variables si,s2, ... ,sN,to,ti, ... ,tN-I are in­
dependent, the representation of a symmetric polynomial as a polynomial 
in these particular variables is unique. 

In order to see that we actually get eigenfunctions of the Hamiltonian, 
we should start with the hasis polynomial 

(231) 

in which JI,J2, ... ,jN, ki, k2, ... , kN are arbitrary non-negative integers, 
and carry out the construction as outlined above. The construction indeed 
works, and we get an energy eigenvalue which is 

(!) (N(N- 1) . . . 
Ej,, ... ,jN,kl, ... ,kN = 2 V+ N + JI + 2]2 + ... + NJN 

+ ki + 2k2 + · · · + NkN) hw . (232) 
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The energy eigenfunctions are 

7/J(I) . = (At)j1 ... (At )iN (Bt)k1 ... (Bt )kN Âv '1/Jo . (233) 
J1,····JN,k1,····kN 1 N o N-1 

when we write 

N N 

Ak = L)aj)k, B! = 2)aj)kbj . (234) 
j=1 j=1 

A parallel construction can be carried out for the states of class (II), leading 
to the energy eigenvalues 

(II) (N(N- 1) . . . 
Ej1, ... ,jN,k1, ... ,kN= 2 (2-v)+N+J1+2J2+···+NJN 

+ k1 + 2k2 + ... + NkN) fiw. 

(235) 

All of these energy eigenvalues depend linearly on the statistics parameter 
V. 

The partition function obtained by summing over the "linear" energy 
levels is then 

N 
L (e- N(r;;-1) ve+ e- N(r;;-1) (2-v)e) e-Ne II 1 ZN(f3) = (1 _ e-ne)2 

n=1 

1 (N(N- 1) ) N 1 
22N-l cosh (1- v)~ II . ( ) · (236) 

2 n=1 smh2 ~ 

The above arguments left a number of loose ends that we should try to tie 
up. Consider first the generating function for the elementary symmetric 
polynomials c1 , . . . , c N, 

N N 

g(w) = 1 + L:Ciwi =II (1 + wzj). (237) 
j=1 j=1 

On the one hand we have that 

Ing(w) 

(238) 



330 Topologica! Aspects of Low Dimensional Systems 

and this gives every polynomial Sk as a polynomial in c1 , o o o , CN o On the 
other hand we have that 

00 (( 1)k-1 ) 
g(w) =IT exp - k SkWk 

k=l 

(239) 

and this gives c1 , o o o , CN as polynomials in s 1 , o o o , s N o The fact that the 
last product of exponentials is a polynomial of degree N gives relations that 
can be used to express sk for every k >Nas a polynomial in s 1 , o o o , SNo 

The values of s1 , s2, o o o , SN determine the values of c1 , c2, o o o , CN, 

which in turn determine the values of z1 , z2 , o o o , z N, in arbitrary order, as 
the roots of the equation 

(240) 

Next, given z1 , o o o , ZN in a definite order, the values of t 1 , , tN deter­
mine uniquely zi', o o o , zN-0 This shows that the 2N variables s 1 , o o o , SN, t 0 , 

o o o , t N _ 1 are independent, and that every symmetric function of z1 , o o o , 
ZN, zi', 00 o , zN- must be functionally dependent on themo However, the 
functional dependence need not be polynomial, and there do indeed exist 
symmetric polynomials in z1 , o o o , ZN, zi', o o o , zN- that are non-polynomial 
functions of s1, 000 ,sN,to, 0 00 ,tN-lo 

As already noted, sk for k > N is always a polynomial in s 1 , o o o , SNo 

Another way to see this is to observe that 

k + k-l + + k-N Q Zj C!Zj o o o CNZj = (241) 

for every k > N and j = 1, 2, o o o , N, implying the following recursion 
relations, 

(242) 

In general, we may write every symmetric polynomial in the 2N variables 
z1 , o o o , z N, zi', o o o , zN- as a linear combination of the symmetric polyno­
mials generated by the following generating function, where w00 = 1, 

g(WIO,WQ1,W2o,Wn, 00 o)= .fi (~~Wklz/zj 1) 
N 

= 1 + LCjWIOj + 
j=l 

(243) 
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By a similar reasoning as above we find that all such polynomials can in 
turn be expressed as polynomials in the special symmetric polynomials 

(244) 

which include the polynomials Sk and tk defined above. 
Thus in particular, and as we already know, every symmetric polynomial 

in z, independent of z*, is a polynomial in s 1 ,s2 , ... SN. Furthermore, 
every symmetric polynomial in z and z*, linear in z*, is a polynomial in 
s1, ... ,sN,to, ... ,tN-b linear in to,t1, ... ,tN-1· 

One point we have not proved here is that our list of energy levels de­
pending linearly on v, is complete for states of class (I) when the polynomial 
part of the wave function is quadratic, cu bie or of higher degree in z*. 

Another point worth noting is that there are three common operators in 
the two sets of creation operators producing the excited states of class (I) 
and (II), they are 

N N N 

Ai= I:a~, Bt = Lb~' BJ = I:a~b~. (245) 
j=l j=l j=l 

Two are linear and one is quadratic in the at and bt operators. The lin­
ear ones produce pure centre of mass excitations, whereas the quadratic 
operator 

(246) 

produces excitations of the relative motion, which can be interpreted as 
radial excitations. 

The distinguishing property of the two classes of so called "linear" wave 
functions is their asymptotic behaviour as two particles come together: 
(zj - zk)v+2k for class (I) and (zj - z~y-v+2k for class (II), with k = O, 
1, 2, ... But all wave functions, even the "non-linear" ones, must show one 
or possibly both of these two asymptotic behaviours for one given pair of 
particles. Since both asymptotic behaviours are "good" for the operators 
Ai, BI and BJ, it means that all wave functions belong to their domain of 
definition. Therefore all energy eigenstates, both "linear" and "non-linear", 
come in so called "towers", generated by the repeated action of .BJ on a 
"bottom state". Each tower has infinitely many states, with a constant 
energy spacing of 2tzw. 
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7.4 The three-anyon prob/em 

The three-anyon problem is the simplest example going beyond the solv­
able two-anyon case. It has received much attention, and yet nobody has 
succeeded in finding a set of coordinates making it completely solvable by 
separation of variables. The best choice seems to be the coordinates de­
scribed below, for which the separation is almost complete. More precisely, 
an anticlockwise cyclic interchange of the three particles gives a phase fac­
tor of e2i 0 in the wave function, and this condition is compatible with the 
separation of variables. The stumbling block is the condition due to the 
interchange of two particles, which can in general only be satisfied by a 
superposition of such separated wave functions. 

We introduce the primitive cube root of unity 

(247) 

with the properties that 'r/2 = -TJ- 1 = 'rJ* = 1/rJ, and define the dimen­
sionless complex coordinates 

z 

u (248) 

V= 

Here >. = y'njmw, as before. Z is the centre of mass coordinate, with a 
slightly unusual normalization, while u and v are relative coordinates. The 
inverse transformation is 

(249) 

This coordinate transformation is a discrete Fourier transformation, and it 
transforms the cyclic interchange of partide positions. 

(250) 

into the diagonal form 

(Z,u,v) ~ (Z,u,V) = (Z,r?u,17v). (251) 
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The interchange of particles 2 and 3 is just an interchange of u and v. 
These two permutations generate the whole symmetric group S3 . A similar 
treatment of permutatipn symmetry has been used for some time in nuclear 
physics [271, 272]. 

Three particles in the plane detine a triangle. The ratio 

Z3- Zl 
S=---

Z2- Z1 
(252) 

is real when the triangle is degenerate so that the particles lie on a straight 
line. We detine the orientation of a non-degenerate triangle as positive 
or negative depending on whether the imaginary part of s is positive or 
negative. Thus the orientation is positive when the loop z1 __, Z2 __, Z3 __, Z1 

is counterclockwise, and negative when the loop is clockwise. We have that 

lui 
lvl 

(253) 

Hence lui = ivi when the particles lie on a line, lui < ivi when the orientation 
of the triangle is positive, and lui > lvl when the orientation is negative. 

The quantization of the centre of mass motion is trivial, and the inter­
esting part of the problem is the simultaneous diagonalization of the relative 
Hamiltonian and angular momentum operators, 

nw (-2~- 2___!!__ + lul2 + ~) 
auau* avav* 2 2 ' 

Lrel = n. (u .!!.._ - u* ..!!__ + v .!!_ - v* _!!__) · 
Dv. au* av av* 

(254) 

The three-particle co11figuration is completely described by a total scale 
factor r > O, a relative scale factor q 2: O, and two angles cp1 and 'P2 such 
that 

V.= 
rq e i'PI 

Jl + q2 ' 

re icp2 
(255) V=-=== 

yT+q2 
These are the hyperspherical coordinates of Kilpatrick and Larsen, except 
that they used the a11gl('s .p1 ± cp 2 instead of cp1 and cp2 [273]. We now have 
that 

(256) 

Assume that the wav(' hmction of the relative motion is separable, 

11' = 1. ·(r. IJ • .Pl· -?2) = f(r) g(q) ei (jcp, +kcp2 ) • (257) 
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Then the eigenvalue equation Hrel 'lj; = E'lj; separates into an angular eigen­
value equation, 

2 ( 1 + q2 d d j2 2) (1+q) ----q-+-+k g=Ag, 
q dq dq q2 

(258) 

with A as eigenvalue, and a radial equation, 

1 "( ) 3 , ( A r 2
) ( ) E ( ) -- f r -- f (r) + - +- f r =- f r . 

2 2r 2r2 2 nw (259) 

A general wave function can be written as a linear combination of such sep­
arated wave functions. As will be seen below, we need linear combinations, 
where A and j + k are constant but j - k varies, in order to satisfy the 
anyonic boundary conditions. 

The radial wave function must have the form f(r) = rft e-r2 12 h (r2 ), 

with h a polynomial of degree nr = O, 1, 2, ... , and in the above radial 
equation we have to choose 

A = tJ(fJ + 2) , E = (2 + fJ + 2nr )nw . (260) 

We must take fJ :::: O if we require the wave function to be finite as r __, O, 
or fJ > -2 if we only require it to be normalizable. 

Equation (258) has two asymptotic solutions q±j in the limit q __, O. We 
exclude the singular solution (for j =O the singularity is logarithmic). In 
fact there is no reason for any singularity at q = O, where the configuration 
is an equilateral triangle. The solution 

g(q) = qljl (1 + lY" F(a, b; c; -q2 ) (261) 

is unique up to normalization. The constant K, may be chosen in one of two 
ways, 

or fJ 
fî,=--

2 ' 
(262) 

giving two different representations of the same solution. The constants 

a= ljl + lkl + K, 

2 ' 
b = lj 1 - 1 kl + fî, 

2 ' 
c = 1 + IJI, (263) 

define the hypergeometric series 

~ (a)m (b)m Xm 
F(a,b;c;x) = L..t () - 1 , 

Cm m. 
m=O 

(264) 

where, e.g. (a)o = 1, (a)n+l = (a)n (a+n). The convergence radius for this 
series is 1. A more convergent representation is, e.g., 

. ( ~ ) g(q) = qiJI (1 + q2 )''-a F a, c- b; c; 1 + q2 · (265) 
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We now need the boundary conditions in order to determine the allowed 
values of the quantum numbers j, k and A = J-t(J-t + 2) in equation (258). 
For three identica! particles there is a six-fold identification of points in 
the relative space. We will restrict the wave functions to the region O :::; 
q :::; 1, which corresponds to all the positively oriented triangles, but is 
stiU a three-fold covering of the true configuration space. The boundary 
conditions defining the particles to be anyons are of two types, since there 
are two classes of non-trivial permutations. The first class contains the 
three-particle cyclic permutations, which leave q invariant. The second class 
contains the two-particle interchanges, which transform q into 1/q, and so 
give boundary conditions at q = 1. 

Consider first a continuous, counterclockwise and cyclic deformation of 
the configuration, as defined in equation (250), with no extra overall rotation 
of the triangle. It gives a phase factor e2i 0 in the wave function, where 
() = V1f is the statistics parameter. We should keep fuf < fvf all the time 
during the deformation, that is, all the deformed configurations should be 
positive triangles, since this is the region where we require the wave function 
to be defined, and since this will ensure that no pair of particles wind around 
each other separately. Then the phase of v increases continuously from 'P2 to 
'P2 + (27r /3), whereas the phase of u changes from r.p1 to r.p1 - (21f /3) + 2m17f, 
where m 1 is any integer. Note that u = O represents a positively oriented 
equilateral triangle, and by means of small deformations close to u = O 
we may change the phase of u by an arbitrary multiple of 27f. We can 
not change the phase of v similarly without rotating the whole triangle, or 
deforming it so that its orientation becomes negative. The condition on the 
wave function is, therefore, 

( 27f 1 27f) 2il} ) 'l/J r, q, 'Pl - 3 + 2m 7f, 'P2 + 3 = e 'l/J(r, q, r.p1, 'P2 . (266) 

That is, 

o ( 27f 1 ) 27f J -3 +2m7f +k 3 = 2(n1 +v)1f, (267) 

for some integer n'. Since m 1 is an arbitrary integer, j must be an integer. 
Then 

k = j + 3(n + v) , (268) 

where n = n'- jm' is an arbitrary integer, and the eigenvalue of the relative 
angular momeutum Lrel is fii with 

f = j + k = 2j + 3(n + v). (269) 

These relatious take care of the cyclic permutations of all three particles. 
What remains is only to take care of one of the three cases where two 
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particles are interchanged, for example z2 +-+ z3 , or equivalently, u +-+ v. 
This is the same as q +-+ 1 / q and cp1 +-+ cp2, if we define angles so that u = v 
corresponds to cp1 = cp2. To be more precise, we consider a continuous 
interchange, with q = 1 at the beginning and end, and q < 1 during the 
interchange. The interchange should be anticlockwise, which means that we 
start with 'Pl > 'P2, and end with cp1 < cp2. There is one further restriction, 
that I'P1- 'P2I < (27r/3) when q = 1, meaning that the partide position Zt 

must not be encircled. 
Thus, the boundary condition on 'lj; at q = 1 is 

(270) 

for O < 'Pl - 'P2 < (27r /3). It is a special case of the general condition 

i!J 'lj;(r, 1/q, cp2, cpt) = e 'lj;(r, q, 'Pt, cp2) . (271) 

Since the Schrodinger equation is second order in the q derivative, we need 
boundary conditions at q = 1 both for the wave function 'lj; and its normal 
derivative '1/Jq = 8'1j;j8q. The derivative condition is easily deduced, 

(272) 

The boundary conditions for 'lj; and '1/Jq can not in general be satisfied by 
a wave function which is separable in q, cp1 and 'P2· But we may quantize 
the relative angular momentum 1!, and according to equation (269) 1!- 3v = 
2j + 3n is an integer, either even or odd. Let v' = v if n = 2m and v' = v + 1 
if n = 2m + 1, with m integer. Then 

(273) 

Let gm(q) be the function g(q) as given by equation (261). Introducing 
cp = (cp1 + 'P2)/2 and ~ = 3(cp1 - cp2), and summing over m, including an 
as yet undetermined coefficient 'Ym for each m, we get the following angular 
wave function, 

00 

f!(q,cpt,cp2) = L 'Ymgm(q)ei(j<pl+k'P2) 
m=-oo 

00 

=eU<p L 'Ymgm(q)e-i(m+(v'/2)).;_ (274) 
m=-oo 

It is natural to call O an anyonic spherical harmonic function, whenever 
it satisfies the anyonic boundary conditions. The two boundary conditions 
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that must hold for O < ~ < 21r are 

00 

ei(v7r-v'e) L 1'm9m(1)e-ime' 
m=-oo m=-oo 

00 00 

L 1'm9~(1)eime -ei(v7r-v'e) L 1'm9~(1)e-ime. (275) 
m=-oo m=-oo 

Recall that 9m(1) and g~(1) depend on the three parameters ţt, f and m. 
For each given f, the parameter ţt, which determines the energy E, has tobe 
adjusted so that the above boundary conditions have non-trivial solutions 
for the coefficients 1'm. For each f there will be many solutions, possibly 
more than one with the same ţt, and this procedure should give the complete 
set of anyonic spherical harmonics. 

The left hand sides in equation (275) are two functions of~ with Fourier 
components 1'm9m(1) and 1'm9~(1), respectively. They are periodic in~ 
with period 21r, and may be regarded as functions on the interval [0, 27r]. 
There is a natural scalar product between any two functions </> = </>(~) and 
X= X(~), with Fourier components </>m and Xm, 

1 {271" 00 

(</>, x) = 27r lo d~ (</>(~))* x(~) = L </>';" Xm o 

O m=-oo 

(276) 

Define the linear operator A by 

[A</>](~) = ei(v1r-v'e) </>(27r _ ~) , (277) 

for O < ~ < 27r. Then A is Hermitean with respect to the natural scalar 
product, and A2 = I, the identity operator. Note that A is a somewhat 
singular operator, unless vis an integer, since the factor eiCz.•1r-z/~), extended 
by periodicity outside the interval [0, 21r], is discontinuous at every integer 
multiple of 21r. This shows up in the slow asymptotic falloff of the matrix 
elements of A with respect to the hasis functions eime, 

Amn = Anm = ~ {271" d~ e-ime ei(v7r-v'~) ein(27r-e) = sin(v7r) ·(278) 
21r }0 1r(m + n + v) 

The bosonic li:mit v ---+ O is Amn = i5m,-n, and the fermionic limit v ---+ 1 is 
Amn = -Jm,-n-1· 

Define operators G and G' that are diagonal in the Fourier representa­
tion, with matrix elements 

Gmn = 9m(1)i5mn , (279) 

Then the above boundary conditions may be written as 

(I- A)G7 = O , (280) 
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Since A is a real symmetric matrix and A2 = I, the two vectors (J -
A)G1' and (J + A)G'1' are orthogonal, and we may for example add the two 
conditions to get one single, equivalent condition, 

( G + G' - A( G - G') )1' = O . (281) 

There exist non trivial solutions for 1' whenever the operator G + G'- A( G­
G') is singular. If we truncate the equation, the condition is that the deter­
minant must vanish. Since the determinant is real, and a small change in 
v could move a zero of the determinant, but not remove it, or introduce a 
new zero ( at least not without removing or adding a double zero at once) 
we conclude, by continuity in v, that thc anyonic solutions are in one to one 
correspondence with the bosonic and ferrnionic solutions. 

To find numerica! solutions we must truncate to a finite number M of 
coefficients. Remarkably enough, this method is capable of giving many 
energy levels with non-trivial accuracy cven if we take M tobe very small. 
This is so when the low Fourier components dominate. On the other hand, 
the convergence as M ----+ oo is sometimes very slow. This is clearly related 
to the fact that the wave functions for non-integer v have non-integer power 
behaviour at ~=O, where two particles meet. Hence the approximation by 
means of a finite Fourier series converges slowly. 

An empirica! rule is that the leading correction term for finite M is 
of order M-2v. Using two different M one may therefore extrapola te to 
M = oo, and this improves the convergence considerably. Another point to 
note is that one may take advantage of the supersymmetry in order to get 
more accurate energy levels. 

8 The anyon gas 

We will discuss in this section the cluster and virial expansions for the 
anyon gas, which are by now fairly well understood, although not com­
pletely solved. The fact that these expansions exist for anyons, is in itself 
non-trivial. 

Three complementary methods for computations, all with their own lim­
itations, are perturbation theory, non-perturbative numerica! computation 
of energy levels, and direct computation of partition func:tions by the Monte 
Carlo method. All three methods rely on regularization tcdmiques to ob­
tain the thermodynamic limit from finite systems. Perturhation theory has 
given important exact information, but will be mentioned onl.\· very briefiy 
here. A fourth method is mean field theory, whic:h shonld be covcred in 
other lectures. 

The present disc:ussion may seem like an evasion of t lw must interest­
ing topic:, which is the low temperature behavionr of a systcm of anyons. 
However, the low temperature problem is a hard nut to crack. aud the high 
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temperature side is one possible direction of approach. Attemts to under­
stand more directly the low temperature behaviour are usually based on 
mean field theory. 

8.1 The cluster and virial expansions 

The virial expansion for the equation of state of a gas, 

00 

{3P = P + L Anpn, (282) 
n=2 

is called so because it is related to the virial theorem, see e.g. [274]. Here 
{3 = 1/kBT, kB is Boltzmann's constant, T the temperature, P the pressure, 
p the number density, and An = An(T) is the n-th virial coefficient. 

Another representation of the equation of state is the cluster expansion, 

â({3P) 00 n 
p = z ---a;- = L nbnz . 

n=l 

(283) 

Any power series with a non-zero radius of convergence defines an analytic 
function, which in general is well defined in a region in the complex plane 
at least as large as the circle of convergence of the series. In fact the con­
vergence radius is the smallest distance from the origin to any singularity 
of the analytic function. In general there need not be any direct relation 
between the convergence radius of the virial expansion and the region where 
the equation of state it represents, is physically valid. We will use the clus­
ter and virial expansions here without worrying too much about questions 
of convergence. 

Eliminating z in equation (283) gives equation (282), with the following 
relations between the virial and cluster coefficients, 

b2 

(284) 

and so on. Or inversely, 

(285) 
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and so on. Note that the coefficient b1 is not determined by the virial coef­
ficients, because the normalization of z is not fixed by the equations (282) 
and (283). We may define z = ef3t-t, where f.L is the chemical potential. z is 
usually called fugacity, although strictly speaking it is only proportional to 
the fugacity, which has the dimension of pressure. 

If the particles interact by a two-particle potential, then a necessary con­
dition for the existence of the virial expansion in the thermodynamic limit 
of infinite volume and constant density, is that the potential has sufficiently 
short range. For example, if it decreases as r-n at large distance r, then 
the condition is that n > d, the configuration space dimension. However, 
this criterion does not apply to a vector potential, and the virial expansion 
exists for non-interacting anyons, even though anyons are two-dimensional 
and have a statistics interaction which may be represented by a vector po­
tential proportional to 11 r. One may argue that the interaction range is 
short in the sense that the statistics flux is localized exactly at the partide 
positions, and the statistics interaction is present only when the particles 
are close enough to interchange positions or encircle each other. 

The first clear evidence was the finite and exact result for the second 
virial coefficient of a gas of free anyons [66, 128]. Perturbation theory gave 
finite results for the expansion of the higher virial coefficients to first and 
second order around the boson and fermion points [102,129,130,134-141]. 
The third virial coefficient was proved to be finite for all e, and was calcu­
lated numerically [122,143-145]. 

A general proof can be based on the path integral representation for the 
N-partide partition function, which leads to a path integral representation 
for the duster coefficients, valid quite generally for anyons in two dimen­
sions, as well as for bosons and fermions in any dimension, interacting by 
general scalar and vector potentials. It follows from this representation that 
the cluster coefficients are finite when the interaction range is "short" in a 
well defined sense, although it does not follow at the same time that the 
cluster expansion converges. 

In particular, the duster and virial coefficients of the gas of free anyons 
are finite. What counts is the pointlike nature of the flux more than the 11 r 
dependence of the vector potential. The range is temperature dependent, 
however, because the statistics interaction is effective when the partide 
paths wind around each other, and each path in the path integral repre­
sents Brownian motion of a partide in the plane, covering an area inversely 
proportional to the temperature. 

8.2 First and second order perturbative resu/ts 

An important source of exact information about the duster and virial ex­
pansion for anyons is perturbation theory, to first and second order in e at 
the boson point e = o and at the fermion point e = 7T. 
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The straightforward way to do perturbation theory is to work, not in 
the parallel gauge we have used so far most of the time, but in the bosonic 
gauge, where all wave functions are symmetric, or in the fermionic gauge, 
where all wave functions are antisymmetric. Then the statistics gauge po­
tential is treated as a perturbation of the bosonic or fermionic Hamiltonian. 
Since this gauge potential is singular at those points where two particles 
come together, it is not obvious that perturbation theory should work, es­
pecially in the bosonic gauge, where the unperturbed wave functions need 
not vanish at coincidence points. Furthermore, those wave functions that 
do not vanish at coincidence points, depend on tOt rather than O in their 
asymptotic behaviour at such points. Thus it might be necessary to treat O 
and tOt as independent expansion parameters. 

Note that O is transformed into -0 by either a parity inversion ora time 
revers al. Equivalently we might say that O- 1r is transformed into - (O - 1r), 

since -0- 1r and -0 + 1r represent the same statistics. Thus, if either parity 
invariance or time reversal invariance hold, implying in particular that there 
is no external magnetic field to break these invariances, then the energy 
spectrum and the partition function (but not the energy eigenfunctions) 
will depend only on tOt, or equivalently, on tO-nt. 

On the other hand, at the fermion point O = 1r it must also be possible 
to treat wavefunctions, energy eigenvalues and the partition function as 
analytic functions of O. In fact, the source of the non-analyticity at the boson 
point O = O is the asymptotic behaviour of some energy eigenfunctions, that 
txj- Xjt!L as txj- Xjt-+ O, with J.L = tBt/n. It is mathematically possible 
to choose J.L = -tOt/n for small enough tOt, but that would make the wave 
functions diverge in the limit txj - Xj t -+ O, which is usually considered a 
physically unacceptable alternative. 

From this argument we conclude that when we make perturbation ex­
pansions around the fermion point O = n, we have a free choice whether 
we want to use O - 1r or t O - 1r t as our expansion par am eter. This means 
that the expansion of the partition function will contain only even powers 
of O- n. 

To be specific, let us consider the transformation from the parallel gauge 
to the bosonic gauge. It is most easily discussed in terms of dimensionless 
complex variables Zj = (xj +iyj)j>., where).. is some standard length. Like 
before, we define 8j = 8j8zj and 8J = 8j8zJ. Then the kinetic energy 
operator of partide j is, in the parallel gauge, 

(286) 

Let '1/J be the symmetric wave function in the bosonic gauge, and let <I> be 
some fixed multivalued function, such that <I>'Ij; is the multivalued wave func­
tion in the parallel gauge. The gauge independent ( covariant) derivatives 
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are â1 and âj in the parallel gauge, whereas in the bosonic gauge they are 
â1 - ia1 and âj - iaj, where by definition 

âj ( il>'lj;) = il> ( ( âj - ia j) 1/J) . (287) 

Thus the "statistics vector potentials" a1 and aj are 

a1 = iâ1 (In il>) , aj = iâj (In il>) . (288) 

The question remaining to be settled is how to choose the gauge transfor­
mation factor il>. One possible choice is the pure phase factor 

(289) 

where .6. = nj<k(Zj - Zk)· One problem with this is that the unperturbed 
wave functions will have the wrong asymptotic behaviour as lz1 - zkl ----+O, 
since the behaviour of the exact wave functions depends on v, for example 
as lz1 - Zkllvl. Another problem is that the gauge potentials, which are 

V"' 1 aoj iâ1 (ln il>o) = i-L......, , 
2 kfoj Zj- Zk 

a~1 = iâj(ln il>0 ) = -i ~ L * ~ * , (290) 
k#J zj zk 

give rise to three-body terms in the Hamiltonian, of the type 

v 2 1 
a~jaoj = 4 L L (z o- z )(z*- z*) . (291) 

kfojlfoj J k J l 

A better method is therefore to split off explicitly not only the phase factor 
il>0 , but also the factor l.6.llvl. Thus we detine 

iJ> = J.6.llvlif>o = ,6.1vh+v (,6.*) lvl2-v . (292) 

The corresponding vector potentials are 

o .lvl+vL 1 a1 = zâj(lnil>) = z --- ---, 
2 zo- Zk 

k#j J 

*=iâ*(lnil>)=ilvl-v"' 1 · 
aj 3 2 L z* - z* 

k#j J k 

(293) 

Note that a1 = O if v ::::; O, and aj = O if v 2: O. This gives that 

N N 1 1 [)*- [)* 
""([)* . *)(fJ . ) ""[)*[) V +V "" j k L......, 1 - za1 j - za1 = L......, 1 j + --2- L......, 
j=l j=l j<k Zj - Zk 

lvl - v"" âj -fA 
+ --2-L......, * *' 

j<k zj - zk 
(294) 
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and there are no longer any three-body terms presento lf we take v ~ O, we 
have v = lvl, and 

N N a-:- a* 
""(a;- iaj)(aj- iaj) = "'""a3'!'aj + lvl"'"" 3 k (295) 
~ ~ ~z·-zk 
j=l j=l j<k J 

lf instead v::; O, we have v = -lvl, and the complex conjugate operator, 

N N 

L(aj- iaj)(aj- iaj) = L:a;aj + lvl L ~! = ~~ o (296) 
j=l j=l j<k J k 

Multipyling with -2lî2 /(m>..2 ), we have here suitable kinetic energy opera­
tors for doing perturbation theoryo lf parity invariance and/or time reversal 
invariance hold, then the wave functions and energies can be expanded as 
power series in lvl, except that the wave function for vis the complex con­
jugate of the corresponding wave function for -V o 

The gauge transformation 't/J r---+ CI>0'tj; from the bosonic to the parallel 
gauge is unitary, since CI>0 as defined in equation (289) is a pure phase 
factor ( we do not mind that it is multivalued and hence singular if v is 
not an integer)o The gauge factor CI> defined in equation (292), on the 
other hand, is more than a pure phase factor, and hence defines a non­
unitary "gauge transformation" o One result of the non-unitarity is that 
the kinetic energy operator of either equation (295) or equation (296) is not 
Hermitian in the standard scalar product of the bosonic Hilbert spaceo This 
is one of the subtleties involved in the perturbation theoretic treatment of 
the statistics vector potential [275]0 To second order in lvl, Dasnieres de 
Veigy and Ouvry have computed the following result, which does not look 
particularly encouraging for anybody wanting to attempt third or fourth 
order computations [138, 276], 

A2{3P = ± f (±z}n -lv11 ± 1 (ln(l =f z))2 
n=l n 2 

2 1 ± z + 2(1- (1/24))z (l (1 ))2 
+ v 2(1 =f z) n =f z 

(±z)s+t+u+v ( 1 

+v2 L L s+t+u+v (s+v) 2 
s,t21 u,v20 

+( ;( ))c(s,t,u,v)o (297) s+u t+v 

The upper signs hold if v = O is defined as Bose statistics, whereas the 
lower signs hold if one instead defines v = O to mean Fermi statisticso 
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The coefficient C is defined as 

(I-1J+)(1J+-s)(1J++v) l ~l-1J+[+( ) (298) C(s, t, u, v) = n --- 1J+ <--+ 1}- , 
1J+ - 1J- 1J+ 

with 

st- uv ± J(s + u)(s + v)(t + u)(t + v) 
1J± = . 

s+t+u+v 
(299) 

The first order term in ivi vanishes at the fermion point, as it should. The 
cluster expansion to second order in v has the convergence radius izi = 1. 

8.3 Regularization by periodic boundary conditions 

We want to consider free particles in two dimensions, but in order to keep 
the partition functions finite we need some kind of regularization, by con­
finement of the particles inside a finite region. We may use a confining po­
tential, such as a harmonic oscillator potential, with soft walls, or a square 
box, with hard walls, but the fastest convergence to the limit of infinite 
system size is obtained by using periodic boundary conditions so that there 
are no edge effects due to the reflecting walls. The periodicity is then used 
only for normalization, and when we speak about anyons in the path inte­
gral formalism, the only restriction is that the start ing points of trajectories 
should be inside the given area. Otherwise the particles propagate freely in 
the plane and not on the torus. 

The one-particle partition function is, with periodic boundary conditions 
in a square box of area A, 

(300) 

The last formula is a Poisson resummation, by Fourier expansion of 

!( ) _ ~ (- 1r(n + x) 2A2 ) x-Lexp A , 
n=-oo 

(301) 

a periodic function of x [277]. A is the thermal de Broglie wave length, 

(302) 
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with m the partide mass. Below we will take 

(303) 

using only the leading term in the limit A ---+ oo. The correction terms 
for finite A are exponential in A. For comparison, the hard wall boundary 
conditions would give 

z,(fl) ~ [~exp(-•nt) r 
= ~ [~-~ + ~ exp(- 1rn

2 A)]
2 

(304) 
A2 2 2VA ~ A 2 ' 

with relative correction terms of order 1/ VA, which is the ratio between 
circumference and area of the square box. 

The formula (303) implies the following scaling relation, valid for one 
free partide in two dimensions, 

(305) 

The general relation in dimension d is, with V the d-dimensional volume, 

(306) 

It is convenient to introduce here the following notation. We defined a 
partition of N as a sequence of non-negative integers, P = (v1, v2, ... ), 
with I.:~=l LvL = N. Let CN denote the set of ali partitions of N, and let 
c = u~=oCN and C' = u~=l CN. In this notation we have that 

00 00 00 00 

L:=L:L:=L:L:···l:::··· (307) 

We will frequently use also another notation, writing for example 311 for 
the partition 5 = 3 + 1 + 1, which we would otherwise refer to as P = 
(2,0,1,0, ... ). 

The grand canonica! partition function is a function of the inverse tem­
perature (3 and the chemical potential f.L, 

00 

'2((3, f.L) = 1 + L ZN ZN(f3) ' (308) 
N=l 
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and the relation between quantum mechanics and statistica} mechanics is 
the equation 

00 

ln 3 = A{JP = AL bnzn . (309) 
n=l 

The area A enters in the two-dimensional case, but the formula is valid in 
arbitrary dimension d when A is replaced by the d-dimensional volume. An 
immediate consequence is that 

(310) 

and hence, 

(311) 

We are more interested in the inverse relation, which follows from the ex­
pansion 

(312) 

Here v = L:;~ 1 VL is the total number of cycles in the partition P. This 
gives the cluster coefficients in terms of the N-particle partition functions, 

In particular, 

Ab3 

z1, 
Z1 2 

= Z2-2' 

Z1 3 
Z3-Z2Z1+3, 

Z22 2 Z1 4 
z4 - Z3Z1 - 2 + Z2Z1 - 4 · 

(313) 

(314) 



J. Myrheim: Anyons 347 

Using these, we obtain the virial coefficients from equation (284), 

~ (1- 2 z2) 
2 Zf ' 

- 1 - 6- + 12- - 6-A2 ( z2 Zi z3) 
3 Zf Z[ Zt ' 

(315) 

A3 ( z2 z~ z~ Z3 Z3Z2 z4) - 1 - 12 - + 54- - 80- - 24- + 72 -- - 12- . 
4 Z2 z 4 Z6 Z3 z 5 Z4 

1 1 1 1 1 1 

Clearly many cancellations of leading order terms are needed to produce 
finite values for the cluster and virial coefficients in the free partide limit 
A ----+ oo. 

Next we use our general expansion of the N-particle partition function 
as asum over partitions of N, equation (160), reading explicitly as follows, 

We get then that 

( 1 (Z (LfJ))vL ) AbN ZN + ... = L Fp II ~ 1 L + ... 
PECN L L 

(317) 

in terms of a new set of coefficients, 

(318) 

The "· · ·" in the last formula represents asum of terms that are products of 
"F" coefficients. The "G" coefficients are useful especially because they tend 
to finite limits in the thermodynamic limit A ----+ oo, when all interactions 
have sufficiently short range, as we will prove below. Gp is the "connected 
part" of Fp for any partition P. The concept of connectedness will also be 
made more precise below. 

We have explicitly that G1 = F 1 = 1, GN = FN for N = 2, 3, 4, ... , 
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Gn 

Gu1 

G21 

Guu 

G2n 

G22 

G31 

(Fn- 1)Zl , 

= (Fm - 3Fn + 2)Z12 , 

(F21 - F2)Z1 , 

(Fnn - 4Hn - 3Fn2 + 12Fu - 6)Z13 , 

(F2n - 2F21 - F2Fn + 2F2)Z1 2 , 

(F22 - F22)Z1 , 

(F31 - F3)Z1 . 

(319) 

So far our formulae are dimension independent. From the specifically two­
dimensional equations (303) and (305) we now get the equation 

A2bN = L Gp II 1/ !~2VL , 
'PECN L L 

(320) 

in which all quantities are finite in the A~ oo limit. In particular, 

(321) 

8.4 Regularization by a harmonic oscillator potential 

Another useful regularization scheme is by means of an externa} potential 
V1 = V1(:.z:). Assuming that V1 varies slowly enough, we can simply take 
the pressure, density and fugacity in equation (283) to be functions of the 
position :.z:. In particular, the local fugacity is 

(322) 

with zo = ef3f.L independent of position. In this case we should replace 
equation (309) by the following equation [131], 

InS=! dd:.z:,BP(:.z:) = ln(l + 'f. z/;ZN). (323) 

To evaluate the integral in equation (323) explicitly, we use the local form 
of equation (283), with z = z(:.z:) as given by equation (322), and with an 
external potential of the harmonic oscillator form, 

(324) 
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Here m is the partide mass, and w the angular frequency of the oscillator. 
We take w > O in order to get a discrete energy spectrum, but in the end 
we want to take the free partide limit w ---+ O. It is convenient to introduce 
the dimensionless parameter ~ = fiw(3. Then we have that 

Comparison of equation (325) with equation (323) gives the following for­
mulae for the duster coefficients in terms of the partition functions, in 
dimension d = 2, 

A2 b1 

e 
A2 b2 

2~2 

A2 b3 
3~2 

A2 b4 
4~2 

z2 
z2- - 1 

2 ' 
z3 

z3 - Z2Z1 + -f , 
z~ 2 zt z4 - Z3Z1 - 2 + Z2Z1 - 4 · 

(326) 

Comparing with equation (314), we see that we may adopt the mechanical 
rule of substitution Abn---+ A2bn/(ne). 

From these equations and equation (284) follow the virial coefficients, 

(327) 

Note that Planck's constant cancels in the ratio A/~, but reappears in the 
partition functions. 

To obtain the virial coefficients for free partides we must take the limit 
w ---+ O. The existence of the limit is again a far from trivial issue, since the 
cancellation ofthe singular factor (A/02(n-I) cx: w- 2(n-l) in An depends on 
the vanishing of the factor containing the partition functions to ali orders 
below w 2Cn-I). That A3 is finite as w ---+ O, for the gas of free anyons, was 
proved in reference [145], by means of the path integral expression for Z3 . 
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The computation of the free partide Gp coefficients by means of the 
harmonic oscillator regularization is slightly tricky, partly because the sub­
stitution rule Abn ----+ A2bn/(n~2 ) involves a factor n, and partly because 
the scaling relation for the harmonic oscillator partition function, equa­
tion (179), in the limit w----+ O, 

z (L(J) = z1 ((J) 
1 L2 ' (328) 

differs from the relation Z1(L(J) = Z1((3)/L we assumed when writing equa­
tion (320). The correct limit for obtaining the free partide Gp is 

(329) 

8.5 Bosons and fermions 

For bosons and fermions with no mutual interaction the probability gener­
ating functions can be factorized as 

(330) 

where FL = 1 for bosons and FL = (-1)L- 1 for fermions. The factorization 
implies, by the equations (160) and (308), that 

3 = L IT~ (zLFLZ1(L(J))vL =IT exp (zLhZ1(L(J)). (331) 
PEC L VL· L L L 

This is nothing but the standard expression for the logarithm of the grand 
canonica! partition function as a sum over the one-partide energy levels 
E 1k, for an ideal gas bosons or fermions, 

and it gives directly the duster coefficients, 

(333) 

Thus we have GN = FN = (±1)N-1 , and Gp =O for every partition P 
containing two or more cydes. 

In two dimensions we get, using equation (303), and in particular the 
scaling relation (305), 

(334) 
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Similarly we get in dimension d, using equation (306), 

(±1)n+1 
bn = n(Ay'n)d . 

351 

(335) 

Note that the ideal gas cluster coefficients in any dimension are the same 
for bosons and fermions, except that the even numbered coefficients bz, b4, 
etc. have the opposite sign. This means that we can formally transform 
bosons into fermions and vice versa by substituting simultaneously z--+ -z, 
P --+ - P and p --+ - p. It follows that the virial coefficients possess the same 
symmetry as the cluster coefficients, 

(336) 

with superscripts "B" for boson and "F" for fermion. 
In particular, the density of the ideal gas of bosons or fermions in di­

mension d = 2 is 

00 1 
p = L nbnzn = =f AZ ln(1 =f z) . 

n=1 
(337) 

Hence the equation of state in two dimensions takes the form 

where Lb is the dilogarithm function [240]. 
Bose-Einstein condensation occurs in a three-dimensional ideal gas of 

bosons: above a certain critical density the extra particles condense in 
the lowest energy level and do not contribute to the pressure. The two­
dimensional ideal boson gas almost, but not quite, shows the same phe­
nomenon. In fact it has a finite pressure at infinite density, 

p _ Lb(O) _ 1r2 _ 1rm 

oo - (3A2 - 6(3A2 - 12fi2(32 . 

From equation (338) we get that 

where Bn is the n-th Bernoulli number [240]. Thus, 

Bn-1 (±A2r-1 
An = ----'--:--...L....-

n! 

(339) 

(340) 

(341) 



352 Topologica! Aspects of Low Dimensional Systems 

The function pf(e±A2 p - 1) is well behaved for all real values of p, but 
has poles in the complex p plane at A 2 p = 2mri, for any non-zero integer 
n. This means that equation (340) can be integrated to give P as a well 
defined function of p anywhere on the real axis, while the virial expansion 
converges for A2 \p\ < 27r but diverges for A2 \p\ > 27r. Note that the sum in 
equation (338) has different convergence properties, it converges for bosons 
at any non-negative density p but for fermions only when A2p < ln2. 

The relation between the boson or fermion ideal gas virial coefficients 
in two dimensions, and the Bernoulli numbers, was derived by Sen and by 
Viefers [134, 147, 278]. In particular, the even numbered virial coefficients 
A4, A 6, etc., all except A2 , vanish both for bosons and fermions. Since the 
odd numbered coefficients are the same for bosons and fermions, the only 
difference is the sign of A2 • The lowest coefficients are 

A2 A4 
A2 = =t=4, A3 = 36 , 

A4 = A6 = As = ... = O. 

A12 
A7 = 211680' 

(342) 

It may be instructive to rederive the results for bosons and fermions using 
the harmonic oscillator regularization. The one-particle partition function 
for the harmonic oscillator in d dimensions is 

1 
(343) 

with ~ = 1U.v(3, as before. We may use equation (333), and translate 
from one regularization scheme to the other by the rule of substitution 
Abn--.. (A/(.,fii~))dbn. This gives the same formula as before for the cluster 
coefficients of free bosons or fermions, 

8. 6 T wo anyons 

-t 
W-->0 

(344) 

The case of two anyons can be treated most simply by means of the harmonic 
oscillator regularization, since the energy spectrum is discrete and exactly 
known. 

Let us define the periodic sawtooth function 

a( O+ 2n7r) = ~ 
7r 

for n = 0,±1,±2, (345) 

In terms of it the two-anyon partition function in a harmonic oscillator 
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potential is 

Z2({J) = cosh((1- a)O 

(2sinh(0) 2 2sinh2~' 
(346) 

where the factor Z1 ({3) = 1/(2 sinh(~/2)) 2 is due to the motion of the centre 
of mass. Note that, in spite of the fact that the function a= a( O) is non­
differentiable both at the boson point e = o and the fermion point e = 7[' 

the partition function z2, as a function of e, is non-analytic only at the 
boson point. 

From equation (346) and equation (327) we get the well-known result 
for the second virial coefficient of the ideal gas of anyons, in the limit ~ ___, O, 

(347) 

There are two partitions of two, one even, 1 + 1 = 2, and one odd, 2 = 2. 
According to equation (160) we may write Z2 as asum over these partitions, 

1 2 1 
Z2({J) = 2 Fn(B) (Z1({J)) + 2 F2(B) Z1(2{J). (348) 

By equation (157), Fu(e + n) = F 11 (B) and F2(e + n) = -F2(B). The 
substitution e ___, e + 7[ is essentially the supersymmetry transformation 
introduced by Sen [132, 133], and it changes a into 1- a. Hence, splitting 
the partition function in equation (346) in two parts, one even and one odd 
under the substitution a ___, 1 - a, we deduce that 

( ) _ cosh ( (a - ~ H) 
Fn e - ( ) , 

cosh ~ 

sinh ( (a - ~) ~) 
F2(e) =- . 

sinh( ~) 
(349) 

From the probability generating functions F 11 and F2 we get the probability 
distributions of the winding number Q, 

2~tanh( O 
Pn(Q) = ~2 + (nQ)2 (Q even), 

2~ coth(O 
P2(Q) = ~2 + (nQ)2 (Q odd). (350) 

Note that we have defined the winding number Q as twice the number of 
windings around the origin, so that the probability distribution of even 
winding numbers, Pu(Q), is the same distribution as given by Wiegel and 
by Ouvry [130, 266]. 
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If we do not distinguish between even and odd winding numbers, then 
we may write 

Z2((3) = F(B) cosh; ' 

( 2 sinh( ~)) 2 sinh2~ 
(351) 

where F(O) is the total probability generating function for even and odd 
winding numbers, 

F(O) = ~ P(Q)e-i1JQ = cosh((1- a)~) , 
~ cosh~ 

Q=-oo 

and P(Q) is the probability of the winding number Q, 

P(Q) = ~ tanh ~ 
~2 + (rrQ)2 

(352) 

(353) 

From the above expressions we also get the G coefficients of free anyons, by 
equation (329), 

Gu = 2 lim (Fu - 1)Zl =a( a- 1) , 
w-+0 

G2 = lim F2 = 1- 2a. (354) 
w-->0 

8. 7 Three anyons 

The harmonic oscillator regularization is useful also for three anyons, even 
though the "non-linear" part of the energy spectrum has to be computed 
numerically. The third virial coefficient A3 has been calculated with high 
precision by the direct method of computing energy levels numerically and 
summing to get the partition function [122, 143, 144]. 

In order to compute the virial coefficient from the spectrum, we should 
incorporate all the exact knowledge we have. Therefore we subtract the 
known bosonic partition function zp and write the anyonic partition func­
tion as Z3 = zp + ~Z3 . Then we split the remainder further into contribu­
tions of energy levels that are linear and non-linear functions of the statistics 
angle (), writing ~Z3 = ~Zk + ~zrL. The "linear" part is exactly known, 

Z}(f3) = cosh(3(1 -a)~) , 

32 sinh2 ( ~) sinh2~ sinh2 ( ?f) 
(355) 

and from Z} we get ~Zk by subtracting the value for a = O. For the "non­
linear" part the best we can do is to split off the Z1 contribution due to the 
centre of mass, and the factor due to the tower structure of the spectrum, 
writing 

(356) 
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All in all we then get 

(357) 

This is an important simplification, since !:1Z has contributions only from 
"non-linear" states that are "bottom" states of infinite towers. All the () 
dependence of the third virial coefficient is seen to come from these states. 

One may calculate !:1Z numerically by calculating the lowest energy 
levels, then summing over them and extrapolating to the infinite sum as 
best one can. The most accurate calculation, including all bottom of tower 
energy levels up to around 40nw, gave the result [122] 

(358) 

with a coefficient 

-5 1 a= -(1.652 ± 0.012) x 10 =- (621 ± 5)1r4 (359) 

The first and second order perturbative calculations give the exact coeffi­
cient of the sin2() term, and it is a non-trivial consistency check that the 
numerica! calculation reproduces the exact result with high precision. The 
coefficient of sin4 () could in principle be calculated exactly by fourth-order 
perturbation theory, although this possibility seems rather remote. 

At this point some general observations might be in order. All observable 
properties of anyons must be periodic functions of() with period 2n. Energy 
eigenvalues and eigenfunctions are analytic functions of(), except that some 
are non-analytic at () = O, varying like JOI rather than e. Hence the partition 
functions and all thermodynamic quantities derivable from them will be 
analytic functions of e, even at the fermion point e = Jr, but generally not 
at the boson point e =o. 

In the absence of an externa! magnetic field, the theory is both time 
reversal and parity invariant if each of these transformations is defined so 
as to include a change in sign of e. It follows that energy eigenvalues and 
thermodynamic quantities, as functions of e, must be symmetric about () = 
O, hence they are functions of the quantity a( O) defined in equation (345), 
which is non-analytic in () at the boson and fermion points. Any even 
polynomial (or convergent power series) in a is analytic at the boson point, 
and any even polynomial in 1 - a is analytic at the fermion point. An 
example is the exact second virial coefficient, which is an even polynomial 
in 1- a. 
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The third virial coefficient is analytic at the boson as well as the fermion 
point, because it is "supersymmetric", i. e. symmetric under the substitution 
a -+ 1 - a [132, 133]. Being analytic everywhere, and periodic in (} with 
period 7f, it can not be polynomial in (}, because periodic polynomials do not 
exist, except constants. But it should be expandable as a rapidly converging 
power series in sin2B, as the above formula indicates. In fact, this is one 
possible way to represent a Fourier series with the desired properties. 

The three-anyon partition function may be written as a sum over three 
partitions, 

(360) 

The first two terms are even and the last term is odd under the supersym­
metry transformation of Sen, (}-+ (} + 7f [132, 133]. As observed by Sen, the 
odd part of zt' which is 

Z!i(/3, a)_ Zk(/3, 1 _a)= cosh(3(1- a)~)- cosh(3a~) , (361) 

32 sinh2 U) sinh2~ sinh2 ( ~) 

when taken at a = O, completely accounts for the difference between the 
bosonic and the fermionic partition functions, which is simply Z1 (2j3)Z1 (/3). 
Since the number of states does not vary with (},it is therefore possible, and 
indeed true according to Sen, that the odd part of Z3 is identical to the odd 
part of Zk also for intermedia te values of (}. We compute from this that 

( ) sinh( (a-!) 3~) 
F21 (} =- · 

sinh(~) 
(362) 

Note the similarity between the two-particle and three-particle functions 
F2(B) and F21(B). 

From F21 we get the exact G21 coefficient of free anyons, by equa­
tion (3.29), 

G21 = -2
3 lim (F21 - F2)Z1 = 2(1- 2a)a(a- 1) = 2H Gn . (363) 

W->0 

8.8 The Monte Car/o method 

Although A3 has been calculated with very high precision from numerical 
energy levels, it is useful to discuss here also how it can be calculated by 
the Monte Carlo method. This method is less precise for three anyons [145], 
but is so far the only one available for four anyons [146]. The Monte Carlo 
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method as such is important because it is a very natural approach to path 
integrals, and it leads to some general understanding of how they behave. 

For a Monte Carlo calculation we need a more explicit expression for the 
propagator, as defined in equation (126). What we need here is only the 
propagator for the harmonic oscillator in two dimensions, 

G(y, x; T) = 2nns:~(wT) exp (-:~ (tanh(~T) IY + xl2 

+coth(~T) IY- xl 2)), (364) 

since the many-particle paths we want, may be reinterpreted as consisting 
of independent cyclic one-particle paths. 

Consider one cyclic one-particle path from T = O to T = Ln/3. In the 
path integral formula for the partition function Z1(Lnf3) every point x(T) 
on the path is integrated out. If we integrate out every point except one, 
say the point x(O) = x(Ln/3) = x, then we get instead the propagator 
G(x, x; Ln/3). It follows that the probability density for the single point x 
on the path is 

( ) _ G(x,x;Ln/3) _ mw h(Lf.) ( mw h(Lf.) l 12) (365) p x - - - tan - exp -- tan - x . 
Z1 (Ln/3) nn 2 n 2 

This is a two-dimensional normal probability distribution of mean zero and 
standard deviation 

a-o= n (Lf.) --coth -
2mw 2 

1 
----t 
w---.o wylmL/3 · 

(366) 

Thus, loosely speaking, the point x = x(O) = x(Ln/3) is located inside an 
area proportional to ljw2 in the limit w-> O. 

By a similar reasoning, if we specify three imaginary times Ta < T < Tb 
and the two points x(Ta) = Xa and x(Tb) = Xb on the path, then the 
probability density of the position x( T) = x on the path is proportional to 
the product G(xb, x; Tb- T)G(x, Xai T- Ta) of two propagators. Again this 
defines a normal distribution, of mean 

sinh(w(Tb- T)) Xa + sinh(w(T- Ta)) Xb XT = _ ___o.__:_ __ .:...:..__.,.--_ __:_......:..._ __ .:...:.__ 

sinh(w(Tb- Ta)) 

and standard deviation 

nsinh(wh- T)) sinh(w(T- Ta)) 
----t 

mwsinh(w(Tb- Ta)) w--->0 

n(Tb -T)(T -Ta) 
m(Tb- Ta) 

(367) 

(368) 

The fact that a-7 tends to a finite, non-zero limit when w-> O, means that 
the area covered by a single cyclic path tends to a finite limit. 
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The asymptotic behaviour of a0 and O"y in the limit w ----+ O means that 
the probability that two cydes overlap, tends to zero as w2 . Furthermore, 
the probability that three cydes overlap simultaneously, tends to zero as 
w4 . Hence the winding number distribution for the three distinct cydes 
belonging to the partition 1 + 1 + 1 = 3 is determined by the two-partide 
windings, up to correction terms of order w4 . Which means that we may 
write 

Fm (B) = (Fn (B)) 3 ( 1 +Fiii (e)e + o(e)) . 
It also follows that the limit F~o) ( B) = limw_,0 F3 ( B) is finite, so that 

F3(8) = F~0\B) + 0(~). 

(369) 

(370) 

These results for the probability generating functions F111 and F3 , together 
with the exact result for F21 , implies that the third virial coefficient is finite, 

The supersymmetry of Sen is manifest in this formula for A3 . 

The equations (366, 367) and (368) are all we need in order to make a 
Monte Carlo simulation of the three-particle paths. The numerica! results 

[145] suggested the following simple formula for F~0)(B), which has since 
been proved to all orders in perturbation theory [270], 

(372) 

This formula, together with an estimate of the fourth order term F{{{(B), 
then gave the sin2B interpolation between the second order perturbative 
results for bosons and fermions. 

8.9 The path integral representation of the coefficients Gp 

The coefficient Gp for a given partition P representing a conjugation dass 
in the symmetric group S N, can be represented as a path integral over all 
paths inducing one given permutation represented by P, 

GpZ1=Np jv(xl(T), ... ,xN(T))exp(-~)gp. (373) 

Here x j ( T) is the path of partide j, as a function of the imaginary time T, 
and S is the free partide action in imaginary time, 

S = t {"'f3 dT m 1 dxj(T) 12 . 
lo 2 dT 

j=l 

(374) 



J. Myrheim: Anyons 359 

This representation is useful for numerica! computation by the Monte Carlo 
method, but can also be used in order to prove that the cluster coefficients 
are finite. 

We include the Gaussian factor exp( -S/n) as part of the integration 
measure, so that it is the integrand gp alone that represents the interac­
tion of the particles, and we include a normalization factor Np sa that 
Gp = Z1 v- 1 if gp = 1 identically. Note that Np is then finite (i.e. A 
independent), since the path integral is proportional to z1v when gp = 1. 
Note also that this path integral representation is actually very general, and 
can be applied to any N-particle system with (short range) interactions in 
any dimension, not just to the N -anyon system considered here. 

To see what the integrand gp looks like in our case, let us take the 
partition 2+ 1 + 1 of 4 as an example. A closed path in the four- partide 
configuration space interchanges the positions of two particles, say particles 
1 and 2, and takes the remaining two particles back to their starting points. 
The total winding number Q is the sum of six pairwise winding numbers, 

(375) 

Note that Q12 is an odd integer and Q34 an even integer (remember that the 
winding numbers are defined such that a complete revolution corresponds 
to the winding number 2), whereas Q 13 , Q 23 , Q 14, Q24 are in general non­
integer, because particies 1 and 2 do not return to their starting positions. 
However, the sums Qc12)3 = Q 13 + Q 23 and Qc12)4 = Q14 + Q24 are even 
integers. Hence Q is an odd integer. Let I be any subscript, and introduce 
the notation 

e1 = 1 +fi= exp(-iBQI). (376) 

In order to compute the coefficient G211 Z 1 = (F211 -2F21 -F2Fu +2F2)Z1 3 

we take the integrand to be 

g211 = e12 e(12)3 e(12)4 e34 - e12 e(12)3 - e12 e(12)4 - e12 e34 + 2e12 

= e12 (/(12)3 1(12)4 h4 + !(12)3 !(12)4 

+ !(12)3 h4 + !(12)4 h4) . (377) 

For example, we compute F 211 Z 1 3 by integrating 

exp( -iBQ) = e12 e(12)3 e(12)4 e34 , (378) 

and we compute 2F21 Z13 by integrating 

exp( -iB( Q12 + Q(12)3)) + exp( -iB( Q12 + Q(12)4)) 

= e12 e(12)3 + e12 e(12)4 . (379) 
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Equation (377) may be represented diagrammatically as 

(380) 

The particles are represented as points ( filled circles). The two-cycle is 
represented by e12 in the integrand and by a circle connecting two particles 
in the corresponding diagram. Each factor fi in the integrand is drawn as a 
single straight line in the diagram. Note that we should draw labelled graphs 
to represent the four terms in equation (377). But since the value of a graph 
is independent of the labelling, it is more natural to draw unlabelled graphs 
and include instead integer coefficients counting the number of ways each 
graph can be labelled. Hence the factor 2 in front of the last graph. 

In a similar way we find the diagrammatic representation 

GuuZ1 = ~ + 6 0 + 12 k1 + 3 D 
+4 L +12 U (381) 

The coefficient in front of each diagram is again the number of inequivalent 
ways of labelling the nodes of the graph. We may also write 

(382) 

We see that only connected diagrams contribute to the cluster coefficients. It 
follows that the latter are finite in the limit A--> oo. Indeed, any path gives 
a non-zero contribution to the path integral represented by some diagram 
only if for every line in the diagram, the corresponding winding number 
is non-zero. The probability for this to happen for a connected diagram 
goes to zero as (A 2 / A)v-l when A --> oo, since every L-cycle path gives a 
Gaussian distribution of points which essentially covers only a finite area, 
proportional to A 2 . Here v is the number of cycles, and v -1 is the minimum 
number of links in a connected graph with v nodes. The factor A -v+l 
cancels exactly the divergence of the factor Z 1v-l included in the definition 
of Gp, equation (319). 

The general meaning of the relations between the F and G coefficients 
should now be obvious. Fp is asum of both connected and disconnected 
diagrams, whereas Gp is the part of the sum including only the connected 
diagrams. For example, the relation 
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which follows from (319), is represented as 

FznZ13 = ~ + ~ +2 b +2 'o. 
'-v---" 

GznZ1 2Gz1G1Z1 2 
........._... • • 

+ o + o (384) 

------ ------GzGnZ1 2 GzG1G1Z1 3 

It is the last term that dominates in the thermodynamic limit, but it is Gzn 
only that contributes to the duster coefficient. Thus, as usual, the grand 
partition function is asum of ali diagrams but the thermodynamic potential 
is a sum of connected diagrams [279]. 

The Monte Carlo method consists in generating random paths according 
to the Gaussian distribution of paths valid for bosons. Each four-partide 
path is dosed over the imaginary time interval n{3, in the sense that the final 
configuration is identical to the initial one, but with the partide positions 
interchanged by a permutation belonging to the dass P C S N. Consider 
the partition 2 + 1 + 1 = 4, as in the example above. Then partides 1 
and 2 should interchange positions, while partides 3 and 4 should return to 
their starting points. We take, arbitrarily, the starting point for the path of 
partide 1 to be at the origin, this is then also the ending point for partide 
2. Equivalently, it is the ending point for partide 1 over the imaginary 
time interval 2h{3. The starting point for partide 2, equal to the position of 
partide 1 after half the imaginary time interval 2h{3, can then be generated 
according to a Gaussian distribution around the origin. The starting and 
ending point for partide 3 is generated according to a flat distribution inside 
a square area A centered on the origin. Similarly for partide 4. 

For each four-partide path generated we count the winding numbers Q12, 
Q(12)3, Q(12)4, Q34 and increment a histogram n(Q) in the following way. 
We compute the total winding number Q and add 1 to n(Q), this takes care 
of the integrand e12 e(12)3 e( 12)4 e34. We subtract 1 from n( Q12 + Q(12)3), 
in order to take care of the integrand -e12 e(Iz)3. Similarly, we subtract 
1 from n(Q12 + Q( 12J4) and from n(Qlz + Q34), and we add 2 to n(Qlz). 
Finally, G211 is the Fourier transform of the histogram n( Q), multiplied by 
the normalization factor Z 1 2 jn, where n is the total number of four-partide 
paths generated. The net contribution to the histogram vanishes if more 
than one of the three winding numbers Q(12)3, Q(12)4 and Q34 is zero, and 
this is what ensures a finite limit as A ---+ oo for the computed Gzn. 
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8.10 Exact and approximate po/ynomials 

The first cluster coefficient, with aur definition, is b1 

harmonic oscillator regularization we found that 

G11 = a(a- 1), 

1/ A2 . By the 

(385) 

G11 is even and G 2 is odd under the substitution a -+ 1 -a, and together 
they give the second cluster coefficient of free anyons, 

2 G11 G2 1 2 1 
A b2 = - + - = - (1 -a) - - · 

2 4 2 4 
(386) 

We also obtained the exact result 

(387) 

The third virial coefficient, 

(388) 

is even under a -+ 1-a, since the odd part of-2b3 /b13 , which is -A 4 G21/2, 
cancels the odd part of 4b2 2 / b1 4 , w hich is A 4G 11 G 2 . 

O ne further result [280], which is exact according to the perturbative 
calculation of reference [270], is 

(389) 

Various Monte Carlo simulations for single cycles of different lengths are 
consistent with this formula. 

Note that only harmonic oscillator energy levels depending linearly on a 
contribute to the three quantities G 2 = F2 , G 11 and G 21 . The computation 
of GL = FL for L > 2 by perturbation theory is much more non-trivial, 
because also states with non-linear a dependence contribute. This is essen­
tially the only exact result known for the non-linear energy levels. 

This is about as far as one can get with exact results. However, in the 
diagrammatic expansions shown above, one may argue quite generally that 
the tree graphs are expected to dominate, because every additional line in 
a diagram represents another factor of the type fr = exp( -iBQr) - 1 in 
the integrand, with Qr an even integer. This factor vanishes when Qr = O, 
which will happen with a certain probability which is definitely non-zero, 
and even if it does not vanish it will often have an absolute value smaller 
than 1. Furthermore, one may argue that the path integral represented by a 
tree graph should approximately factorize in the same way as its integrand. 
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These two assumptions, of tree diagram dominance and factorization, lead 
in a not entirely trivial way to the following polynomial approximation for 
the general coefficient Gp, 

Gp ::- Gp = Nv- 2Gnv- 1 II(LFLtL o 

L 

(390) 

There is a factor FL for every cycle of length L, a factor L 1L2Gu for 
every single line connecting two different cycles of lengths L1 and L2 ( each 
L-factor counts the number of ways the line can be connected to the cycle), 
and there is a sum over ali vv- 2 possible ways to connect the cycles into 
a tree grapho It is perhaps not obvious how this leads to equation (390), 
but a simple way to understand the connection is by looking at low order 
examples: consider the case of 3 cycles of lengths L 1 , L2, and L3o They can 
be connected to a tree graph in 3 possible wayso This gives a coefficient 

FL,FL2 FL 3 (L1L2G11 L2L3G11 + L2L3G11 L3L1G11 (391) 
3 

+L3L1G11 L1L2G11) = (L1 + L2 + L3) Gn 2 II LiFL,, (392) 
i=1 

which agrees with equation (390) since L 1 + L2 + L3 = No We should point 
out that equation (390) was first derived empirically as an approximate 
representation of the Monte Carlo resultso 

Special cases where these polynomial formulae are exact, as already men­
tioned, are the cyclic coefficients G L = FL, as well as Gn and G21 = 
2F2 G11 0 In the three-particle case there is one approximate polynomial, 

~ 2 
Gn1 = 3Gu o (393) 

The four-particle approximate polynomials are: 

(394) 

The polynomial approximations for the G coefficients imply the following 
polynomial approximations for the cluster coefficients, 

A 2b = ( -1) - II _ N (1 - a) = _1 II 1 _ N g N 1N-1( 2) N-1( ) 
N N2 1 k N2 k ' 

k=1 k=l 

(395) 

which imply that the virial coefficients are independent of the statistics, 
except for the second coefficient, 

(396) 
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The parameter g is defined here by 

g = 1 - (1 - a)2 . (397) 

One nice property of these polynomials is that they are analytic functions 
of() at the fermion point, as the exact cluster coefficients must be. However, 
they do not give the correct second derivatives at the boson and fermion 
points, known from perturbation theory, although they do give the correct 
first derivatives. An alternative way to introduce the same polynomials is 
to postulate that the second virial coefficient is given by equation (396), 
while ali higher virial coefficients are independent of a. That is, these are 
just cluster coefficients for two-dimensional exclusion statistics [236], with 
the statistics parameter given by (397). The corresponding second order 
diagrams were identified in reference [138]. 

This correspondence with exclusion statistics is of course only approxi­
mate, and it is weli known from perturbation theory that the higher virial 
coefficients of anyons ali have a second order variation with () at the bo­
son and fermion points. Nevertheless it might be interesting to understand 
better the deeper reasons behind, if any. 

8.11 The fourth viria/ coefficient of anyons 

Since the third virial coefficient is analytic in () everywhere, in contrast 
to the cluster coefficients, which are ali non-analytic at the boson point, 
one may be bold enough to conjecture that ali virial coefficients, with the 
exception of A2 , are analytic functions of O. If A4 is analytic, then it must 
have the form 

A4 = A 6 [ ~i;;~ ( ~ ln ( J3 + 2) + cos()) 

+ sin40 (c4 + d4 cos O)+···], (398) 

where the coefficients of the lowest order terms are fixed by perturbation 
theory at the boson and fermion points. A Monte Carlo calculation of A4 
gave indeed a result which was fitted to this form with no more than two 
parameters [146], 

C4 = -0.0053 ± 0.0003 , d4 = -0.0048 ± 0.0009 . (399) 

This fit is shown in Figure 13. 
It is rather remarkable how nearly constant the computed A4 is, that is, 

how clase to zero it is for ali values of O. In fact, it is closer to zero than the 
minimal Fourier series with c4 = d4 = c6 = d6 = ... =O. This is one partic­
ular example ofhow weli the anyon system realizes approximately Haldane's 
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Fig. 7. Gnn - 16(a(a- 1))3 as a function of a. The imaginary part is plotted 
to indicate the statistica! uncertainty of the real part of the Monte Carlo data. 
Only the interval O :::; a :::; 1/2 is plotted, because of the (anti)symmetry about 
a= 1/2. The curve marked "fit" is given in equation (400). From [146]. 

so-called exclusion statistics [227], characterized by a continuously variable 
parameter g, for which only the second virial coefficient depends on g, in 
two dimensions [236]. 

The computed G coefficients are plotted in Figures 7 to 11, as functions 
of a. 

In each case we subtract the polynomial approximation, which is the 
main contribution, and plot only the difference, marked by "Re(MC) -
polynomial" in the figures. Because of the statistica! errors, the Monte Carlo 
generated curve has also a non-zero imaginary part, marked "Im(MC)", 
which is useful because it indicates the statistica! errors in the real part. 
Since the real part is even about a = 1/2 and the imaginary part is odd, 
or vice versa, depending on whether the partition is even or odd, only the 
interval O :::; a :::; 1/2 is plotted in all figures. 

Figure 7 shows the computed Guu with the polynomial 16Gu3 = 
16( a( a - 1) )3 subtracted. The curve marked "fit" is mostly empirica!, and 
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Fig. 8. G2n - 8(1- 2a)(a(a- 1))2 versus a. The curve marked "fit" is given in 
equation (401). From [146]. 

is given by 

fit =- 3
2 a( a- 1) sin2(an) . 

11" 
(400) 

The figure shows that this is a perfect fit to the Monte Carlo curve, within 
the statistica! uncertainty as indicated by the imaginary part. 

Figure 8 shows the computed G211 with the polynomial 8F2 G11 2 = 
8(1- 2a)(a(a -1))2 subtracted. The curve marked "fit" is partly empirical, 
but with a coefficient which is chosen so as to produce the correct second 
order derivative at a = O [270]. The formula is: 

2 . 
fit = --2 (1- 2a) sm2(an). 

31!" 

Figure 9 shows the computed G22 with 4F22Gn 
subtracted. The "fit" here is 

(401) 

(402) 

Figure 10 shows the computed G31 with 3F3 G11 = 3(1- 3a)(1- (3/2)a)a 
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Fig. 9. G22 -4(1-2a?a(a-1) versus a. The "fit" here is given in equation (402). 
From [146]. 

(a - 1) subtracted. Here we ha ve chosen 

(403) 

Figure 11 shows the computed 0 4 = F4 with the polynomial (1 - 4a) 
(1- 2a)(1- (4/3)a) subtracted. The figure supports the claim that the 
polynomial is exact. Figure 12 shows the computed cluster coefficient, A 2 b4 

with the polynomial A2b4 of equation (395) subtracted. The parabolas given 
by the second order perturbation theory at a = O and a = 1 are shown. 

Figure 13 shows the computed virial coefficient, A4 / A 6 . The parabolas 
given by the second order perturbation theory at a = O and a = 1 are 
shown. Also plotted are two Fourier series, as given in equation (398). 
The curve marked "Fourier 1" is a minimal Fourier series having only the two 
terms required by perturbation theory, i.e. c4 = d4 = ... =O. The curve 
marked "Fourier 2" is a least squares fit with the coefficients c4 = -0.0053 
and d4 = -0.0048. The minimal Fourier series is seen to be inconsistent 
with the Monte Carlo curve, unless there are important systematical errors 
that dominate over the statistica! errors. 
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Fig. 10. G31 - 3(1 - 3a)(1 - (3/2)a)a(a - 1) versus a. The "fit" is given in 
equation (403). From [146]. 

8.12 T wo polynomial theorems 

As a mathematical appendix to the present Section we will prove the result 
that the polynomial approximation (395) for the cluster coeffi.cients is equiv­
alent to a virial expansion which is the same as for the two-dimensional free 
non-relativistic Bose gas, except that the second virial coeffi.cient is mod­
ified according to equation (396). We will also prove that the polynomial 
approximation (390) for G-p implies equation (395). 

For simplicity we fix the temperature and choose units such that (3 = 
A = 1. Thus, e.g., the fugacity is z = eJ.L. We make use of the expansions 

dP oo 

p = d = .L NbN ZN ' 
J-L N=1 

dJ-L ! dP dJ-L =! dP = f NANPN-2. (404) 
dp p dJ-L dp p dp N=1 

We also define 

oo ZN N-1 ( Ng) oo N (-l)N-1 (Ng) 
Pg(J-L) = ~ N !! 1 - k = ~ z N g N ' (405) 
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Fig. 11. F4- (1- 4a)(1- 2a)(1- (4/3)a) versus a. From [146]. 

which is the density corresponding to the cluster coefficients bN of equa­
tion (395). For the Bose gas, with g = O, we have p = -ln(1- z), or 
equivalently, f..l = ln z = ln(1- e-P). Shifting the second virial coefficient by 
an amount ~A2 = g /2 then gives 

(406) 

For every g > O and every f..l, or for g = O and every f..l < O, this equation 
clearly has a unique solution p > O. We want to prove that the solution is 
p = pg(f..l). 

For this purpose we rewrite equation ( 406) as 

oo n 

p =-In (1- ze-9P) = L :..__ e-ngp , 
n 

n=1 

(407) 

and apply the following theorem due to Lagrange (see Vol. 1, pp. 404-405 
of [281], or [282]): The equation p = f(p) has the solution 

00 1 ( d ) M-1 1 

p = I-1 M! dr f(r)M r=O 
(408) 
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Fig. 12. The fourth cluster coefficient minus the polynomial of equation (395), 

A2 (b4- b4), as a function of a. Also shown are the parabolas given by the second 

order perturbation theory ata= O and a= 1. From [146]. 

This gives 

p 
00 1 

LM! 
M=l 

00 00 

2: 
oo N 

L ZN L (-Ng)M-1 CN,M, (409) 
N=l M=l 

where 

(410) 

What we need to show is that 

(411) 
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Fig. 13. The fourth virial coefficient, A4 / A 6 , as a function of a. Also plotted are 
the parabolas given by the second order perturbation theory ata= O and a= 1, 
and two different Fourier series, as given in equation (398). The curve marked 
"Fourier 1" has C4 = d4 = ... = O, whereas "Fourier 2" is the least squares fit 
with C4 = -0.0053, d4 = -0.0048. From [146], reprinted with permission. 

It is straightforward to show that 

%;1 ZN %;1 gM CN,M = e-gln(1-z)- 1 = '%; ( -z)N (--;)' (412) 

and hence, 

tgM-1CN,M= (-1)N (--;). 
M=1 g 

(413) 

Substituting g ----+ - N g we get equation ( 411), completing the proof. 
We next turn to the cluster coefficients 

(414) 

given by the polynomial approximation in equation (390). We want to prove 
that b'tv = bN. 
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1 2 3 4 5 

Fig. 14. d(ln h) / dp2 as a function of p. This quantity measures the charge ratio 
q1je, see equation (527). The curves are for N = 2, 3, 4, 5 electrons, the leftmost 
peak for N = 2 and the rightmost peak for N = 5. The dashed line is 1/3. 

We may rewrite the above formula as 

N Nv-2 G v-1 oo oo v F 
b~ = L vi 11 L ... L Dnr+ .. ·+nv,N II nnJ . (415) 

v=l ' nr=l nv=l j=l J 

To evaluate p = "E.';/=1 Nb~ zN we insert equation ( 415), interchange the 
summation order of N and v and use the relations Nv-lzN = (d/dpt-lzN 
and "L-:=l znFn/n = Pa(p). We find 

(416) 

By the Lagrange theorem, equation (416) is the solution to the equation 
p = Pa(tL + Gnp), which, as we saw above, is equivalent to 

p + G11 p = ln (1- e-P) + ap. (417) 

This is precisely equation ( 406) with g = a - G11 = 1 - (1 - a )2 , which 
means that b~ = bN with bN as given in equation (395). 
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Fig. 15. The quasi-hole charge q1je, equation (527), as a function of p, the quasi­
hole distance from the origin. The curves are, from left to right, for 20, 50, 75, 
100 and 200 electrons. The horizontal line is 1/3. From [286], reprinted with 
permission. 

9 Charged particles in a constant magnetic field 

The quasi-particle excitations in the fractional quantum Hall system is 
so far the best (and maybe the only) experimental realization of anyons. 
The electrons of the two-dimensional electron gas, as well as the anyon-like 
quasi-particles, are electrically charged and therefore strongly infiuenced by 
the magnetic field. If the field is sufficiently strong, it effectively "freezes 
out" o ne degree of freedom, so that in a cert ain well defined sense the system 
becomes one-dimensional. 

The quantization problem for charged particles in a constant magnetic 
field reduces to the simultaneous quantization of energy and total angu­
lar momentum in a harmonic oscillator potential, discussed at length in 
Section 7 above. In the present context we want to discuss also one more 
topic, the coherent states, which are interesting because they are maximally 
localized ground states in the one-particle system. In particular, coherent 
states of anyons are supposed to be models of localized quasi-particles in 
the fractional quantum Hall system. 
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9.1 One partide in a magnetic fie/d 

The Hamiltonian for one partide of mass m and charge q in a constant 
magnetic field, in two dimensions, is 

(418) 

where 1r = p- qA is the kinematical and p = -in\7 the canonical mo­
mentum. The vector potential A = A(x) depends on the gauge. When 
the magnetic flux density B is constant, a convenient choice is the circular 
gauge, in which 

B 
A= (Ax,Ay) = 2 (-y,x). (419) 

In this gauge we have A 2 = B 2x 2 /4, and p ·A = A· p = BL/2, where 
L = xpy - YPx is the canonical angular momentum. Hence, 

1 2 121 221 
H = 2m (p- qA) = 2m p + S mw x =f 2 wL. (420) 

The last sign is - or + depending on whether the product qB is positive or 
negative, since we define the cyclotron frequency w to be positive, 

The commutator 

lqBI 
w=--· 

m 
( 421) 

(422) 

is gauge independent, and implies that H is formally just the Hamiltonian 
of a one-dimensional harmonic oscillator. We may define 

= P ± lqBI y = -in!!_ ± lqBI y 
X 2 0X 2 ' 

= P =t= lqBI x = -in!!_ =t= lqBI x 
y 2 oy 2 ' 

(423) 

so that 1r = 7r+ if qB > O and 1r = 1r- if qB < O. The four operators 
n;= and n;= are a complete set of observables in the faur-dimensional phase 
space, and they commute, except that 

(424) 

Since only o ne degree of freedom contributes to the energy, the second degree 
of freedom contributes only to the degeneracy of the energy levels, which 
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are called Laudau levels. Every level is infinitely degenerate, assuming of 
course that the system is infinite in extent. 

Another point of view is that H in the circular gauge is the Hamiltonian 
of a two-dimensional harmonic oscillator of angular frequency w /2, plus an 
angular momentum term, and the large degeneracy is due to cancellations 
between the two contributions. One usually defines the magnetic length as 

(425) 

In terms of the dimensionless complex coordinate 

x+iy 
z=--J2>. , (426) 

and the corresponding differential opera tors 8 = 8/8z and 8* = 8j8z*, we 
ha ve 

L = h(z8- z*8*) , 

H = ~ ( -288* + Jz~ 2 =r= (z8- z*8*)) . (427) 

We define annihilation and creation operators, in the same way as before, 

(428) 

such that [a, at] = [b, bt] = 1 and [a, b] = ... =O. Then the canonica! an­
gular momentum is 

(429) 

and the Hamiltonian is 

hw 
H = 2 (ata+ btb + 1 =f (ata- btb)) 

_ { hw (btb + ~) if qB >O, 
- hw(ata+~) if qB<O. 

(430) 
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For simplicity, we will mostly assume from now on that qB > O, the case 
qB < O is entirely analoguous. 

The normalized wave function 

Xo = - 1- exp(-B:) (431) .,fi 2 

is annihilated by both operators a and b, and is one of the infinitely many 
ground states of the one-particle system. When qB > O, a complete or­
thonormal set of wave functions in the lowest Laudau level are 

Xn= ~(at)nxo= ~znexp(-lz~2 ), n=0,1,2, (432) 

The wave function xo is distinguished by being maximally localized near 
the origin. However, the system is completely translation invariant, in fact 
the operators 1r; and 1r:;; are generators of translation that commute with 
the Hamiltonian, when qB > O. Therefore we may obtain a wave function 
of the lowest Laudau level which is maximally localized near any arbitrary 
point z = (, simply by translating Xo· The translated wave function is 

X = _1_ exp ( izl2 + 1(12 + (* z) 
( .,fi 2 

= ~ exp( (*z; (z*) exp( _Iz~ (1 2
). (433) 

In the last expression the first exponential gives the phase and the last 
exponential the magnitude of the wave function. Thus X<: is complex, except 
when ( = O. It is a coherent state in the sense that it is an eigenstate of the 
annihilation operator a [64, 283], 

ax(= (*x<: o (434) 

For later use, let us define the non-normalized wave function 

'1/J<: =exp(-lz~2 +(*z), (435) 

and compute the overlap integral for two such wave functions, 

J d2z ('1/J<:a(z))*'l/J<:b(z) = J d2z e-lzl2Haz*+(b'z = 7re(a(b' (436) 

Perhaps the most direct way to obtain this answer is to integrate separately 
over the real and imaginary parts of z, writing 

-lzi2 + (az* + (b'z =- ( Rez- (a; (b' r 
- (Imz- i -(a 2+ (b' r + (a(b' o (437) 
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The one-particle Hamiltonian in a constant magnetic field and in an external 
oscillator potential of angular frequency w0 is 

1 21 22 12 H = - (p- qA) + - mwo x = - p 
2m 2 2m 

1 1 + S m(w2 + 4wo2)x2 =t= 2 wL . (438) 

We introduce the external potential here for the purpose of regularization, 
thus we want to take the limit w0 --* O at the end of our calculations. The 
oscillator frequency is changed from w /2 to {W /2, with 

(439) 

As a consequence, if we do not modify the definition of z, we should substi­
tute everywhere yF!z for z. 

By quantizing L and H simultaneously, we find the energy eigenvalues 

with j, k = O, 1, 2, ... , and with 

w1 = ~ ( j w2 + 4w0 2 + w) , 
w2 = ~ ( )w2 + 4wo2 - w). 

(440) 

( 441) 

We see that w1 ---> w and w2 ---> O as w0 --. O, so that 17;.;.;1 is the modified 
energy difference between Landau levels, whereas 17;.;.;2 is the energy splitting 
within one Landau level due to the external potential. We see also that both 
w1 --* wo and w2 ---> w0 in the limit of zero magnetic field, w --* O. 

These one-particle energy levels give the partition function 

(442) 

9.2 Two anyons in a magnetic field 

The problem of many particles in a magnetic field falls into the class of 
problems with quadratic Hamiltonian which are exactly solvable for bosons 
or fermions, but not for anyons, except in a few special cases. Among those 
special cases is the problem of two anyons in a magnetic field, and this is still 
solvable if we add a harmonic oscillator interaction potential or an external 
harmonic oscillator potential, or both. 
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The two-partide Hamiltonian, induding an externa! potential, is 

We introduce the anyon statistics by requiring an arbitrary wave function 
'ljJ to be multivalued, with 

(444) 

for an antidockwise interchange of partide positions. Thus there is no 
contribution to the vector potentials from the statistics interaction. We 
assume that 8 = VTI with 0 S V < 2. 

The motion of the two partides can again be decomposed into indepen­
dent motions ofthe centre of mass position X= (x1 +x2 )/2 and the relative 
position x = x 1 - x 2 , with canonically conjugate momenta P = p 1 + p 2 

and p = (p1 - p 2 )/2. Let us introduce a similar notation for the vector 
potentials, writing 

(445) 

This gives the following expression for the Hamiltonian, 

1 ( 2 1 ( q )2 2 2 1 2 2 H =- P- 2qA) +- p--a + mw0 X +- mw0 x . 
4m m 2 4 

(446) 

The centre of mass is a "partide" of mass 2m and charge 2q, whereas the 
relative coordinate describes a "partide" having a "reduced mass" of m/2 
and a "reduced charge" of q/2. The ratio of charge to mass is the same for 
both, so that they have the same cydotron frequency w = fqB[jm. 

We introduce the complex coordinates ZI and z2 by the same definition 
as before, equation (426), with the same magnetic length >.. Then we define, 
quite naturally, Z = (zi +z2)/2 and z =ZI +z2 . However, we modify slightly 
the definitions of annihilation and creation operators, induding the scaling 
factor 'Y = J1 + ( 4w0 2 j w2 ), 

(447) 
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The non-vanishing commutators among these operators are 

(448) 

When qB > O we obtain the following form of the Hamiltonian, 

(449) 

with the angular frequencies w1 and w2 given by equation (441). Two energy 
eigenstates having the correct symmetry under partide interchange are 

zv exp( --y (1z12 + lz~ 2 )), 

(z*)2-v exp ( --y (1zl2 + lz~2)) . (450) 

They have energies E~I) = 1îw1 + (1 + ll)tiw2 and E~II) = (3- ll)lîwl + lîw2. 
A complete set of energy eigenstates are, with j, k, l, m independent non­

negativ integers, 

and the corresponding energy levels are 

E(I) 
j,k,l,m 

E(II) 
j,k,l,m 

(j + l + 1) lîw1 + ( k + l + 2m + 1 + li) lîw2 , 

(j + l + 2m + 3 - li) lîw1 + ( k + l + 1) lîw2 . 

This gives the two-particle partition function 

(451) 

(452) 

(453) 

The above calculation was done under the assumption that qB > O. Chang­
ing the sign of qB is the same as interchanging w1 and w2 . The same effect 
is obtained by substituting 2- li for li, or even simpler by the naive trick 
of switching the sign of w. 

By definition, the lowest Laudau level for qB > O consists of the energy 
levels 

(1) 
Eo,k,O,m = lîw1 + (k + 2m + 1 +li) 1îw2 . (454) 
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They lie lower than the lowest energy level of type (II), Ean) = (3- v)nw1 + 
nw2, as long as k and m are small, and wo is small so that w2 < < w1. At 
least this is true in the bosonic limit V --+ o+. In the other bosonic limit, 
v--+ 2-, we see that the Laudau levels are no longer clearly separated. For 
qB < O, on the other hand, it is in the limit v --+ 2-, and not as v --+ o+, 
that it has meaning to speak of separated Laudau levels. 

9.3 The anyon gas in a magnetic field 

We are now in a position to compute the second virial coefficient of a gas 
of charged anyons in a magnetic field, neglecting the Coulomb interaction. 
Using equation (327) we get (102, 284] 

A2 = J!~o ( 13~J 2 
( 1-2 ~?) 

A2 ( eCv-1){3/i.w 1 (!3nw)) 
= j3nw v - 1 - sinh(j3nw) + 2 coth -2- · (455) 

In the limit of zero magnetic field we recover the well known result, equa­
tion (347), 

lim A2 = A2 (~- (v - 1)2
) · 

W->0 4 2 
(456) 

More interesting are the next terms in the expansion around B =O, 

âA21 = .2_ âA21 = -A4 ~ v(v- 1)(v- 2) , (457) 
âB B=O m âw w=O h 6 

and 

82A2 1 =A6 (~)21-2v2 (v-2)2 . 
âB2 B=O h 24 

(458) 

The first derivative at B = O vanishes for bosons, v = O and v = 2, and 
for fermions, v = 1, but for no other types of anyons. This means that 
a gas of charged anyons that are not bosons or fermions, should develop 
a spontaneous magnetization even in the absence of an external magnetic 
field. 

The N-anyon problem in a magnetic field can only be solved numerically 
when N > 2, but it is stiU possible to treat exactly the limiting case when 
the field is strong enough, or the temperature low enough, that all energy 
levels not belonging to the lowest Laudau level can be neglected. As already 
noted, in order to speak meaningfully of separated Laudau levels, we have 
to exclude the bosonic limits V --+ 2- when qB > o, and V --+ o+ when 
qB <0. 
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The N-particle Hamiltonian is 

121 2 2 21 N ) H=~(2mpj +Sm(w +4w0 )xj =r= 2wLj . (459) 

Using our results for the harmonic oscillator we can immediately write down 
a complete non-orthogonal set of wave functions in the lowest Landau level, 

'ljiLLL · =s1j 1 s212 ... SNJNLlvexp(-']_~~z1·1 2), (460) 
]1,]2, ··· ,JN 2 6 

j=l 

with j1,)2, ... ,jN non-negative integers, Sk = L:.f=1 z/ and Ll = nj<k 

(zj - zk), and the energies, 

E LLL N '-· . ( . 2 . N . · · · = - ltWl + ]l + )2 + .. ' + ]N ]1,)2, ··· ,JN 2 

N N(N -1) )nw 
+2+ 2 1/ 20 (461) 

Hence the N -anyon partition function of the lowest Landau level is 

Special cases are bosons, v =O, and fermions, v = 1, which can be derived 
from the grand canonica! partition functions 

00 II (1 +ze-~,61i(w1+w2)e-j,61iw2) o (463) 
j=O 

In order to compute the cluster coeffi.cients we use equation (326), substi­
tuting ~ = f3nw0 0 In the free partide limit w0 ->O we then get 

(464) 

where p L is the surface density of quantum states in the lowest Lan dau 
level, 

f3nw lqBI 1 
PL = A2 = h = 27r ).2 o 

(465) 
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Note the clase resemblance of equation (464) with equation (395), the only 
significant difference is the factor 1/n in one formula versus 1jn2 in the 
other. 

Similarly, we may compute the virial coefficients using equation (327). 
The general result is 

(466) 

In particular, the second virial coefficient 

(467) 

is the same as we get from the exact equation (455) in the strong field limit, 
or more precisely, when (Jnw is large. The difference between ( 467) and 
(455) should be a useful measure of the error we make by neglecting the 
higher Laudau levels. 

An explicit proof that the virial coefficients ( 466) follow from equa­
tion (464), can be given by means of the results from Subsection 8.12. It 
follows from those results that the equation 

oo oo ( ')n n-1 

f3P = L bnzn = PL L 7 IT ( 1- n;), 
n=l n=l k=l 

(468) 

with z' = ze- ~ .Biiw, is equivalent to the equation 

z' = exp(v ~~) - exp((v -1) ~~) · (469) 

Operating on this equation with z'(8j8z'), and using that z'(8((3P)j8z') = 
p, we get that 

z' = (vexp(v ~~)- (v -1) exp((v -1) ~~)) ~ · (470) 

Equating these two formulae for z' we obtain the equation of state 

(JP = PL ln(PL- (v- 1)p) ' 
PL -vp 

which is equivalent to equation (466). 

(471) 

We see that the pressure diverges when the density p approaches the 
maximum value PL/v. This result for anyons is a direct generalization of 
the fact that the maximum density of fermions in one Laudau level is PL· 
The divergence is clearly unphysical, and would have been avoided if we 
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had been able to include the higher Landau levels. At some density before 
the first Landau level is full, the particles should start filling the next level. 

It was assumed in the above that qB > O. In the opposite case, qB < O, 
the same equation of state holds with the substitution v ----+ 2 - v. That is, 
we have 

(3P = PLln(PL- (1- v)p). 
PL- (2- v)p 

(472) 

10 lnterchange phases and geometric phases 

In this final Section we will discuss the relation between quantum mechanical 
phases of somewhat different origins, the interchange phases in systems 
of identica! particles, and the geometric phases, also called Berry phases, 
associated with cyclic evolution of quantum systems. This relation may be 
used for studying the statistics of particles or of particle-like excitations in 
a physical system. 

10.1 lntroduction to geometric phases 

The two-level time dependent Hamiltonian 

H(t) = fuJJ ( cos(2o:) . 
sin(2o:) e2 ~f3t 

sin(2o:) e-2i(3t ) 

- cos(2o:) ' 
(473) 

with w, o: and (3 real constants, illustrates well the phenomenon of the 
geometric phase, or Berry phase [15,57-61]. The instantaneous eigenvectors 
of H(t), with eigenvalues ±!lw, are 

_ ( sin o: e-2if3t ) 
X-(t)- -cos o: . (474) 

The exact solution of the time dependent Schri:idinger equation 

in d''I/J = H 1/J 
dt 

(475) 

is of the form 1/J(t) = U(t) 1/J(O), with 

and with 

w1 = .jw2 + (32 - 2w(3cos(2o:), 

8 = wsin(2o:) 
W1 

-i8 e-if3t sin(w1t) ) 
eif3t (cos(w1t) + irysin(w1t)) ' 

(476) 

w cos(2o:) - (3 
"'(= 

(477) 
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In the adiabatic limit when {3 is very small, but the product {3t is not 
necessarily small, we may put 

wrt ~ wt- {3tcos(2a), 'Y ~ cos(2a) , 6 ~ sin(2a) . (478) 

With these approximations the time evolution of the eigenvectors X±(O) of 
H(O) is that 

U(t) X±(O) ~ e=Fi(wt +.B)t X±(t) ~ e=fiwt e'fi.Bt(l-cos(2a)) X±(t) . (479) 

In other words, an eigenvector of H(O) evolves approximately into an eigen­
vector of H(t). The phase =f=Wt in equation (479) is readily understood as 
due to the time evolution of states with energies ±!iw. But there is an 
additional phase, 

D(t) = D±(t) = =Ff3t (1- cos(2a)) , (480) 

which can be interpreted as an effect of the geometry of the Hilbert space 
of spinors to which the eigenvectors X±(t) belong. 

In fact, given x(t) = X+(t) or x-(t), normalized such that lxl2 = xtx = 
1, let us ask for the time dependent real phase D(t) such that the curve 
'1/J(t) = ei'19(t) x(t) in the Hilbert space has minimal length. The length is, 
with the time derivative d/dt denoted by a dot, 

To minimize the integral we must minimize the integrand, i.e. choose D(t) 
such that 

(482) 

The last equality follows because x is normalized, so that 

(483) 

If x = Cxo, where xo is unnormalized and C is a positive normalization 
factor such that x is normalized, then equation (482) takes the form 

J=-Im(xtx) =-Im(cxb(cxo+Cxo)) =-C2Im(xbxo). (484) 

For the phases D(t) = D±(t) corresponding to x(t) = X±(t) we get the two 
equations 

J+ = i (X+)t X+= -2{3sin2a = -{3 (1- cos(2a)) 

J_ = i (x-)t x- = {3 (1- cos(2a)) , (485) 
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which are the same as equation (480) if we take '1?±(0) =O. 
The time dependence of H(t) is periodic with period T = 1rj/3, and the 

eigenvectors X±(O) of H(O) evolve over one whole period T into 

U(T) X±(O) ~ e=fiwT e=fi7r(l-cos(2a)) X±(O) . (486) 

The additional phase over one complete cyde of the variation of H(t) is the 
Berry phase 

'19~ = =f7r (1- cos(2a)) . (487) 

The superscript "0" indicates that it has to do with a dosed loop. It is 
independent of the period T, it depends only on the sequence of eigenstates 
X±(t) gone through and not on the specific parametrization of the curve. 
Hence it makes sense to speak of a geometric phase associated with any 
dosed loop in the space of state vectors, irrespective of whether the loop is 
a physical time evolution due to the adiabatic deformation of a Hamiltonian. 

In fact, the Berry phase '19° is unchanged if the eigenvector x(t) is mul­
tiplied by an arbitrary t-dependent phase factor, as long as x(T) = x(O). 
Thus it depends only on the sequence of physical states gone through. Re­
member that a physical state is represented in quantum mechanics not by 
one unique vector in the Hilbert space, but rather by a one-dimensional 
subspace. That is, two unit vectors in the Hilbert space represent the same 
physical state if they differ only by a phase factor. 

10.2 One partide in a magnetic field 

As an example of the geometric phase, or generalized Berry phase, let us 
calculate the phase induced when a charged partide is moved around a 
loop in a magnetic field. Both the one- and two-partide cases have been 
discussed by Leinaas [153]. See also [64]. The original derivation of the 
Berry phase applied to a non-degenerate energy level of a Hamiltonian which 
was time dependent, although varying slowly. The present example is of a 
diametrically opposite kind, since the Hamiltonian is time independent and 
ali energy levels are infinitely degenerate. 

Assume that the localized quantum state xc:, equation (433), is moved 
once around the cirde 1(1 = p, in the antidockwise direction. That is, we 
parametrize ( = peia and let the angle a increase from O to 27r. Note that, 
by equation (426), the dimensionless radius p corresponds to a dimensioned 
~adius r = J x2 + y2 = y'2 >..p. In principle, the circular motion could be 
induced by a weak central electric field, since a charged partide in crossed 
electric and magnetic fields drifts perpendicularly to both fields. By direct 
generalization from equation (482) we definea geometric phase '19 such that 

~: = i j d2z x( ~:( = (* j d2z zlxc:l2 = 1(12 = p2 , (488) 
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where we have used that 

axe, = ac axe, + a(* axe, = i( axe, _ i(* axe, = -i(* z . 
aa aa a( aa a(* a( a(* Xc, (489) 

Integrated over a from O to 27r this gives the generalized Berry phase, which 
is independent of the phase convention for the localized states xc,, 

13o = 21rp2 = lq:l 1rr2 . (490) 

Note that we get 13° > O because we assumed that qB > O. The case 
qB < O corresponds to the complex conjugate wave function, which will 
give 13° < O. Thus we may drop the absolute value sign in equation (490) 
and write 

o qB 2 <1> 
rJ = fi: 1rr = 27r <l>o , (491) 

where <1> = B1rr2 is the magnetic flux encircled, <1>0 = hjq is the flux quan­
tum, and both <1> and <1>0 may have either sign. 

There is an alternative way to compute the same Berry phase, using the 
non-normalized coherent state wave function '1/Jc, defined in equation ( 435). 
By generalization from equation ( 484), we ha ve that 

(492) 

where I is the one-particle normalization integral, which by rotation invari­
ance is independent of a, 

1 2 2 2 
I=I(p)= dzl'l/Jc,l =7reP. (493) 

The point now is that '1/Jc, depends on a only through ( = peia, and is an 
analytic function of (*, so that 

drJ 1 (. * ai ) 1 ( ai * ai ) 
da = I lm z( a(* = 2I ( a( + ( a(* 

2 d 2 = p dp2 ln I (p) = p . ( 494) 

Here we have used that 

2 2 ~ - !..._ - a(!..._ a(* ~ - !..._ * ~ . 
p ap2 - p ap - p apa( + p ap ac· - (a( + ( a(* (495) 

We have assumed here that qB > O. As already mentioned, if qB < O 
instead, we have to use the complex conjugate wave function. Because 
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it depends analytically on ( instead of (*, there is a change of sign in 
equation (494), so that we get 

d'!? 2 d ( ) 2 - = -p - lnJ p = -p . 
da dp2 

(496) 

10.3 Two particles in a magnetic field 

In the case of two bosons or fermions in a magnetic field, in the lowest 
Landau level, the one-particle coherent states may be used to construct 
two-particle states where both particles are maximally localized. Simply 
take the product of the one-particle wave functions localized at (a and (b, 
and symmetrize if the particles are bosons, or antisymmetrize if they are 
fermions. A continuous variation of the parameters (a and (b induces a 
deformation of the two-particle wave function, and if (a is changed continu­
ously into (b, and vice versa, this deformation is a closed loop starting and 
ending with the same physical state. It is in effect an interchange of the 
particles, and not unexpectedly, the corresponding Berry phase turns out 
to be related to the symmetry or antisymmetry of the wave function. 

For two bosons we define the non-normalized wave function 

with '1/Jr:; as defined in equation (435). For two fermions we define 

dividing by an extra factor G - (t which serves two purposes. Since the 
wave functions '1/Jf ,. and '1/Jf ,. represent the same physical state, we want 

":,a,":.b ":.b,":.a 

them to be completely identica! and not just identica! up to a sign. Also, it 
is nice to have '1/JLr:;b well defined in the limit J(a- (bJ-+ O. The boson and 
fermion wave functions are both analytic functions of (~ and (t. 

To simplify, let us take the one-particle coherent states to be localized 
symmetrically about the origin, with (a = -(b = ( = pe ia. Then, since the 
wave function is analytic in (*, the Berry phase is related to the normaliza­
tiau integral in the same way as in the one-particle case above. The boson 
and fermion normalization integrals are, respectively, 

(499) 
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Keeping the radius p fixed and increasing the angle a from O to 1r corre­
sponds to an anticlockwise interchange. The Berry phase is, for two bosons, 

And, for two fermions, 

d't9F d 
't9F(7r)=7r da =7rp2 dp2 lnJF(p)=7r(2lcoth(2l)-1). (501) 

The asymptotic limit as p ----t oo is 27rp2 in both cases. This we recognize as 
the one-particle contribution, due to the displacement of each of the two one­
particle coherent states around a half circle. Subtracting this one-particle 
contribution, we are left with the genuine two-particle Berry phases, 

d 
19~ = 1rl dp2 (lnJ~(p)- 2lnh(p)) = 27rl(tanh(2l) -1), 

F 2 d F 
Bs = 1rp dp2 (lnJ2 (p)- 2lnh(p)) 

= 7r (2p2 ( coth(2p2) - 1) - 1) . (502) 

Here h (p) is the one-particle and 12 (p) the two-particle normalization in­
tegral. We will refer to '198 as the statistics Berry phase. The asymptotic 
values O for bosons and -7!" for fermions, when p ----t oo, justify the termi­
nology. Since we define 738 to depend on the distance p, it is not surprising 
that there is a deviation from the asymptotic values O and -7!" when p is so 
small that the two one-particle coherent states overlap significantly. 

Note that for (a= -(b = (, the boson and fermion two-particle coherent 
states defined in equations (497) and (498) have a common form, apart from 
constant factors, 

00 ('*)2k 
'1/J(v) = ""' ., z2k+v '1/J 

L....-r(2k+v+1) 0 ' 
k=O 

(503) 

with 

and with Z = (z1 + z2)/2, z = z1 - z2. The boson state has v = O and 
the fermion state v = 1. Note however that in equation (503) we could 
take for example v = O, 2, 4, ... and get infinitely many different bosonic 
two-particle coherent states, with different asymptotic behaviour as z ----t O. 
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The hasis states z2k+v7j;0 for fixed z; are orthogonal, and they are nor­
malizable whenever 2k + z; > -1. The normalization integral for 'lj;(v) is, 
again apart from constant factors, 

J(v) - f _..:__(2..:..._p2....:...)_2k----,­
- k=o r(2k + v + 1) 

(505) 

We could generalize from bosons and fermions to various two-anyon states 
that localize each of the particles more or less well. The most obvious gen­
eralization is simply to allow z; in equation (503) to take any real value, 
with the only restriction that z; > -1, for normalizability. This can be 
interpreted as the anyon coordinate eigenstate projected onto the lowest 
Laudau level [285]. Another two-anyon state which has also been proposed 
as a natural generalization is the coherent state of a particular su( 1,1) al­
gebra [64, 285], 

(X) (~'* )2k 
1/J~v) = L '> z2k+v 1/Jo . (506) 

k=o 2kJk! r(k + v + ~)r(2k + v + 1) 

The normalization integral for this is given by a modified Bessel function 
fv-(1/2)' 

(507) 

The statistics Berry phase 

(508) 

has the asymptotic value of -ZJ7f for both these two-anyon states, but there 
is a difference between them for small p. Note that fJiv) -+ O for p -+ 

O, independent of v. This does not mean that the bosons, fermions or 
anyons are not pointlike particles, what it means is that they are not sharply 
localized. Sharp localization is impossible as long as we admit only states 
belonging to the lowest Laudau level. 

We may now turn the whole argument around and use the Berry phase 
to define a distance dependent "anyon parameter" 

(509) 

which is then asymptotically equal to the actual statistics parameter z; at 
large distances. 
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In the discussion so far we have assumed that qB > O. The only differ­
ence in the case qB < O is that we have to take the complex conjugates of 

the wave functions '1/J(v) and 'I/J2v), defined in equations (503) and (506), but 
when we change z into z*, we have to change zv into (z*)-v, in order to 

preserve the meaning of the anyon parameter v. Thus the anyon states of 
negative charge are 

00 (2k 
.1.(v) = "" (z*)2k-v .!, 
<v Lr(2k-v+1) <vo, 

k=O 

(510) 

and 

(511) 

These states are well defined for v < 1, and are singular as lzl -+ O if 
O<v<l. 

The complex conjugate wave functions depend analytically on ( instead 
of(*, which implies an opposite sign in the relation between the Berry phase 
and the normalization integral. Thus, for qB < O, equation (509) is replaced 
by 

VBerry = p2 d~2 (lnJ~v)(p)- 2lnh(p)). (512) 

10.4 lnterchange of two anyons in potential wells 

The results just derived for two particles in a magnetic field indicate a 
general relation between the geometric phase, or Berry phase, and the in­
terchange phase in a system of identical particles. The existense of such a 
relation is not entirely trivial, since the two phases are conceptually rather 
different. One phase has to do with the geometry, or more precisely the met­
ric, in the Hilbert space of quantum state vectors, the other has to do with 
the topology of the configuration space. One phase arises when the whole 
wave function is changed continuously, the other arises when the argument 
of one single wave function is changed. 

As another example, we may imagine two identical particles in two di­
mensions trapped inside two separate deep potential wells, and interchange 
the partide positions by interchanging the wells [63]. If only one potential 
well is present at the origin, let '1/Jo denote its ground state wave function, of 
energy E0 . For simplicity we assume that the well is rotationally symmetric, 
so that '1/Jo has angular momentum zero. Let '1/Ja be the wave function '1/Jo 
translated to the position a, that is, 

'1/Ja(x) = '1/Jo(x- a) . (513) 
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Table 1. The approximate energies, with the exact and approximate wave func­
tions for two bosons or two fermions in the double well. Normalization constants 
are ignored. 

1 Energy 1 Boson wave function Fermion wave function 

2Eo +E 1/J_(xl)1/J-(x2) 
~ 1/Ja(xl)'I/Ja(x2) + 1/J&(X1)1/J&(X2) 
-1/Ja(xl)1/J&(X2)- 1/J&(x1)1/Ja(x2) 

2Eo 1/J_(xl)1/J+(x2) + 1/J+(x1)1/J-(x2) 1/J_(xl)1/J+(x2)- 1/J+(xl)1/J-(x2) 
~ 1/Ja(xl)'I/Ja(x2)- 1/J&(xl)1/J&(x2) ~ 1/Ja(Xl)1/J&(X2)- 1/J&(Xl)1/Ja(X2) 

2Eo- € 1/J+(xl)1/J+(x2) 
~ 1/Ja(xl)'I/Ja(x2) + 1/J&(xl)1/J&(X2) 
+1/Ja(xl)1/J&(x2) + 1/J&(xl)'I/Ja(x2) 

Then if the two wells are located at a and at b, and if the overlap between 
the two wave functions '1/Ja and '1/Jb is small, the one-particle ground state is 
nearly degenerate, since there are two energy eigenstates 

(514) 

The energies are E0 =f c/2, and the energy splitting E is small. 
The lowest energies and the corresponding wave functions for two par­

ticles in the two wells are tabulated in Table 1, for the boson and fermion 
cases. Note that the single fermionic energy eigenstate has essentially only 
one partide in each well, but in all three of the bosonic energy eigenstates 
the probability of finding both particles in the same well is either 50% or 
100%, approximately. It follows by interpolation to the anyon case that 
there is in general no anyonic energy eigenstate with the two particles in 
separate wells. On the other hand, if the energy splitting E is very small, 
then there surely exists an approximate energy eigenstate with two anyons 
in separate wells, and the transition probability from this state to other 
states is small. It is this particular state we are interested in here. Call its 
normalized wave function xo. 

It is convenient to introduce polar coordinates, ( R, il>) for the centre of 
mass position and (r, cp) for the relative position, and to work in what we 
have called the parallel gauge, so that the statistics vector potential vanishes 
and every wave function 'ljJ satisfies the following periodicity condition, 

iO 'I/J(R,i!>,r,cp+7r) =e 'ljJ(R,i!>,r,cp). (515) 

Assume now that the positions of the two wells are a and b = -a, and that 
they are interchanged simply by a rotation an angle 7r about the origin. 
Define a set of wave functions Xa, depending on the real parameter a, such 
that 

Xa(R, il>, r, cp) = eivaXo(R, il>- a, r, cp- a) , (516) 
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with v = 8j1r. The phase factor eiva is introduced in order that X1r = Xo· 
Apart from that, the wave function Xa is just xo rotated anticlockwise by an 
angle a, in other words it is the approximate eigenstate for the Hamiltonian 
where the two wells have been rotated into new positions. 

The geometric phase {) associated with a change in a is determined by 
the equation 

d{) ·f *8Xa (L) - = z (RdR)dq, (rdr)d<P x - = -v +- · 
da a 8a fi 

(517) 

(L) is the expectation value in the state Xa of the angular momentum 
operator 

(518) 

Since we have assumed that the two wells are so far separated that there 
is negligible overlap of the two ground state wave functions '1/Ja and '1/J-a, 
it can not matter for the expectation value (L) whether the particles are 
bosons, fermions or anyons. Hence we conclude that (L) =O always, as is 
the case for bosons. Consequently, the geometric phase associated with an 
interchange by rotation an angle 1r is the negative of the anyonic statistics 
angle (), 

o d{) {) = 1r - = -V1r = -{} . 
da 

10.5 Laughlin 's theory of the fractional quantum Hal/ effect 

(519) 

Arovas et al. used the concept of the geometric phase in order to calculate 
the charge and statistics of the elementary excitations in Laughlin's theory 
of the fractional quantum Hall effect [62, 175]. Although the original idea of 
Laughlin was very simple and elegant, it applied only to the simple fractions 
1/3, 1/5, etc., and the hierarchical extensions of the theory needed for other 
fractions become rather complicated [171, 172]. As our final example, we 
will discuss the calculation of Arovas, Schrieffer and Wilczek for sufficiently 
small number of electrons that it can be done either exactly or numerically 
[285, 286]. 

Since we want to discuss both particles of positive and of negative charge, 
we will assume throughout that the magnetic field is positive, B > O. Then 
since electrons have negative charge q = -e, we will have qB < O for the 
electrons. The canonica! unit of length is the magnetic length for electrons, 

(520) 
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and the one-particle basis states are the complex conjugates of the wave 
functions Xn in equation (432). In the state Xn the partide is located 
approximately at a distance lzl = ,jn from the origin, since that is where 
the probability density lxnl 2 is maximal. Hence, if we put an upper limit 
on n, say n < M, this means that we ha ve an approximate description of a 
system of finite radius r = Aelzl < AeVM· 

If we now distribute N electrons among the M first one-particle states 
in the lowest Lan dau level, the filling fraction is Vf = N / M. The particles 
may be electrons, and we may make the (somewhat dubious) assumption 
that the electron spin is completely polarized in the magnetic field, so that 
the N-electron system is described by a wave function which is a totally 
antisymmetric function of the particle positions z1 , z2 , ... , ZN. For a filling 
fraction Vf = 1/ p,, where p, is an odd integer, the non-normalized wave 
function proposed by Laughlin is 

(521) 

It is antisymmetric when p, is odd, and is obviously a ground state of 
a system of non-interacting electrons, built from the one-particle states 
X o, XÎ, · . . , XÂI _1 , where 

M = p,(N- 1) + 1 ~ p,N. (522) 

Due to the factor ( zj - z}j-', the wave function '1/J/; minimizes very well, if 
not perfectly, the probability of finding two particles j and k close together, 
so that it is still an approximate ground state of the system when we take 
into account the Coulomb repulsion between the electrons. 

The simplest excitation of the system is a vortex at an arbitrary position 
z = (, described by the wave function 

N 

'I/J1 =IT (zj- (*) '1/Jb' . (523) 
j=1 

The vortex represents a "quasihole", since it repels the electrons and thereby 
creates an excess of positive background charge at ( (we assume that the 
total electron charge is neutralized by a uniform background density of 
positive charge). Note that it takes p, vortices at the same position to 
create a positive excess charge equal in magnitude to the electron charge, 
thus we expect naively that the charge of the vortex is 1/ p, ( or rather -1/ p,) 
of the electron charge. 

We now ask for the geometric phase '!9 1 arising when the vortex is moved 
around the circle ICI = p. That is, we parametrize ( = peia and let a increase 
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from O to 27r. The total phase is 

f)o = r27r da drJl = 27r drJl . 
1 } 0 da da 

(524) 

Since 'lj;1 depends on a only through ( = pe ia, and is an analytic function 
of (*, we have, by a similar reasoning as before, that 

where h (p) is the normalizat ion integral, 

N 

h(p) J II d2zj i'!f;ll 2 
j=l 

(525) 

N N 

I>2k /II d2zj icN-k(z;, ... ,z1\rWI'!f;b'l 2 . (526) 
k=O j=l 

Here Ck are the elementary symmetric polynomials encountered earlier, see 
equations (226) and (237). 

We may try to interpret the phase rJf as due to the motion of a charge 
q1 in the magnetic field, and then the vortex charge q1 is related in the 
following way to the absolute value of the electron charge, lql = e. According 
to equation (491), drJifda is proportional to the charge q1 , and according 
to equation ( 488) we ha ve drJ /da = p2 for a positive charge e. Hence, 

ql = _..!._ drJl = ~ lnh(p). 
e p2 da dp2 

(527) 

In particular, we conclude immediately that q1 is positive. 
The normalization integral h (p) is tabulated in Table 2 for p, = 3 and up 

to 5 electrons. Based on this table, the quantity d(ln h (p)) / dp2 is plotted 
in Figure 14 as a function of p. Although N = 5 is a very small number, 
the plot already suggests that qife = 1/3 for large N. This is confirmed 
by the results of Monte Carlo integrations with N = 20, 50, 75, 100 and 
200, as shown in Figure 15 [286]. Note that the wave function 'lj;1 describes 
essentially a system of finite radius p N ~ J p,( N - 1) + 1 ( which is 3.6 
for p, = 3 and N = 5, and 24.5 for N = 200), and that d(lnh(p))/dp2 

approaches N / p2 for p > p N. One should therefore consider only the region 

p< PN· 
The wave function for a state with two vortices, at the positions ( and 

-(, is 

N N N 

'!f;2 =II (zj- (*) II (zj + (*) '!f;b' =II ((zj)2 - ((*)2) '!f;i;. (528) 
j=l j=l j=l 
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Table 2. The one-vortex normalization integral h for p, = 3 and for N = 2, 3, 4, 5 
particles. 

N !1 

2 8·3 (11 + 4p" + 2p4 ) 

3 64. 81· 5 (2 · 761 + 2 • 3 • 71 p• + 3 • 31 p4 + 31 p0 ) 

4 2'5 • 3". 5•. 7 (8 • 625 • 41 + 4 • 11 • 1259 p2 + 4 · 3 · 5 · 157 p4 + 4 • 353 p0 + 353 p0 ) 

5 2'" . 31~ • 5" . 72 ( 4 . 122 297 213 + 4 . 35 404 417 p2 + 2 . 5 . 787 . 2711 p• 
+2. 27.47317 p6 + 3. 5 ·109 ·179p8 + 3 ·109 ·179p10) 

Fig. 16. The distance dependent statistics parameter -p2 (d/dp2)(lnh- 2lnh) 
as a function of p. The curves are for N = 2, 3, 4, 5 electrons, the leftmost peak 
for N = 2 and the rightmost peak for N = 5. The dashed line is 1/3. 

If the two vortices are interchanged by an anticlockwise circular motion an 
angle 1r, this again gives rise to a geometric phase 

f)~ = r da dfJ2 = 1r dfJ2 . 
la da da 

(529) 

By the same derivation as above, we have that 

(530) 
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where I2(p) is the normalization integral for 'I/J2, 

N 

I2(P) = J IT d2Zj I'I/J21 2 
j=l 

N N 

= I>4k J IT d2z3 icN-k((zr)2, ... , (zi\r?WI'I/Jb'l 2 • (531) 
k=O j=l 

It is tabulated in Table 3 for 1-L = 3 and up to 5 particles. 
Subtracting the one-vortex contribution 2'!?1 from the two-vortex phase 

'!?2, we would like to interpret the remaining phase as due to the quantum 
statistics of the vortices. More precisely, we use the definition (509) of the 
distance dependent anyon par am eter, 

I.IBerry = -p2 d~2 (lnJ2(p)- 2lnh(p)). (532) 

This is plotted as a function of p in Figure 16. It clearly depends on the 
distance between the vortices, at least for small distances. We should in fact 
expect the vortex statistics to depend on distance, for small distances, since 
the vortices are not point particles, but have a finite size. More remarkably, 
the plot indicates that when the vortices are well separated, then there is 
an approximately constant part of the Berry phase, giving 

1 
I.IBerry ~ 3 · (533) 

This is again confirmed by Monte Carlo integrations, with N from 20 and 
up to 200, as shown in Figure 17. 

In order to compare with the statistics phases of the anyon states given 
in equations (503) and (506), we have to remember that our present length 
se ale is the electron magnetic length Ae, corresponding to the elementary 
charge e, whereas the vortices that we want to describe as anyons have 
charge e/ ţL, with ţL = 3 in our numerical example, so that the "vortex mag­
netic length" is >. = .fii>.e. This stretching of the length scale must be 
compensated for by dividing the dimensionless length in the anyon system 
by .fii in every formula we use. The comparison is shown in Figure 18, it in­
dicates that the anyon model with v = 1/3 is a reasonably good description 
of the Laughlin quasi-hole states for the filling fraction Vf = 1/3. 

Laughlin also proposed wave functions representing quasi-electron ex­
citations, in which the electron density is increased locally. These quasi­
electron states were examined in reference [284], and within the approxi­
mations used, the results imply that the charge and statistics parameter 
should have the values -ejţL and +1/ţL, respectively, for a filling fraction of 
1/ 1-L with 1-L odd. 
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Table 3. The two-vortex normalization integral h for p, = 3 and for N = 2, 3, 4, 5 
particles. 

N 12 
2 16.3 (64 + 2 ·11 p4 + p") 
3 64. 81· 5 (16 . 47. 223 + 8 . 3 . 1097 p4 + 2 . 3 . 11 . 23 p" + 31 pl;(,) 
4 2'0 • 3" . 5~ . 1 (128. 5. 17. 26 561 + 64. 709. 839 p4 + 64. 3. 47. 181 p" 

+32 . 7 . 11 . 13 p12 -t 353 p16) 
5 220 • 31;j • 55 • 7" (256. 25 . 13 . 23. 5 670 473 + 64. 7. 467. 6 931193 p'* 

+8 · 5 · 1 030 094 323 p8 + 4 · 3 · 72 197 057 p12 
+2 . 9 . 13 . 61 . 593 p16 + 3 . 109 . 179 p20) 

0.4 

0.3 

0.2 

0.1 

Fig. 17. The quasi-hole statistics parameter VBerry' equation (532), as a function 
of p, half the distance between the two quasi-holes. The curves are, from left to 
right, for 20, 50, 75, 100 and 200 electrons, and the horizontal line is 1/3. From 
[286]. 

The proposed wave function for one quasi-electron located at the position 
( is the following polynomial in (, 

'lj!~ = 'lj!o (fi (a; - ()) ( 6. * )11-' (534) 
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Fig. 18. Comparison of the distance dependent statistics parameter for two 
Laughlin quasi-holes, and for localized states in the system of two anyons. The 
lowest lying curve is for 75 electrons, then follows a common curve for the three 
cases of 20, 50 and 100 electrons, and the third curve is for 200 electrons. Some­
what higher lies the Berry phase curve calculated from the anyon position eigen­
state projected onto the lowest Laudau level, and even higher the one calculated 
from the coherent state of the SU(l, 1) algebra. From [286]. 

with Ll =II (zj- Zk) and '1/Jo = exp (-~2)zil2). 
J<k J 

The normalization integral may be rewritten by partial integration as 

N 

I~ = J d2Nz'I/Jo2 1Lli21L II (lzk- (1 2 -1) · 
k=l 

(535) 

It is again a polynomial in p = 1(1, due to rotational invariance. The 
difference from the quasi-hole normalization integral is the extra -1 in each 
factor lzk - (1 2 - 1. Without this -1, the quasi-electron and quasi-hole 
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-0.1 

-0.2 

-0.3 

-0.4 

Fig. 19. The quasi-electron charge qUe, equation (536), as a function of p, the 

quasi-electron distance from the origin. The curves are, from left to right, for 20, 

50 and 75 electrons. The horizontalline is -1/3. From [286]. 

integrals would be identica!, and the charge of the quasi-electron, 

qi d 
- = --lnh(p), 
e dp2 

(536) 

would be the same as that of the quasi-hole, just with an opposite sign, 
because the quasi-electron wave function depends on ( and the quasi-hole 
wave function on (*. This approximation seems hard to justify, nevertheless 
it may be valid asyptotically for large N, as the results of Monte Carlo 
integrations shown in Figure 19 seem to indicate. 

Two quasi-electrons at ( and -( are described, according to Laughlin, 
by the wave function 

(537) 

which yields, by partial integration, the normalization integral 

N 

~~ = J d2Nz 'I/Jo21~12~-' IT (lzk 2- (212- 4lzkl2 + 2). (538) 
k=l 
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Fig. 20. The distance dependent statistics parameter for quasi-electrons, equa­
tion (539), versus p, half the distance between the quasi-electrons. The lowest 
lying curve is for 20 electrons. N ext are curves for 50 and 75 electrons. The 
100 electron curve is cut at p = 8 and the 200 electron curve at p = 6, to avoid 
numerica! problems. The horizontalline is 1/3. From [286]. 

Comparing with the quasi-hole integral in equation (531), we see that for 
two quasi-electrons there are correction terms, like in the case of a single 
quasi-electron. 

The distance dependent statistics parameter is now 

1/~erry = p2 d~2 (ln I~ (p) - 2 ln J~ (p)) . (539) 

This quantity, as computed by Monte Carlo integration, is plotted in 
Figure 20. It is found to be positive, although one can hardly justify the 
conclusion that the asymptotic value is 1/3, as one might want it tobe. 

In Figure 21 the Monte Carlo data are compared with the curves for 
anyons of negative charge -e/3 and with the anyon parameter v = 1/3. 
Note that these two-anyon states are actually singular where the anyon 
coordinates coincide. It is seen that the small distance behaviour is well 
represented by the anyon model, but the behaviour at larger distances is 
not at all well represented. It may be that the calculations were done with 
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Fig. 21. The distance dependent statistics parameter for Laughlin quasi-electrons, 
compared to the two-anyon states. The five curves for 20, 50, 75, 100 and 200 
electrons coincide for small p. The 200 electron curve overshoots the horizontal 
line 1/3 at p ~ 3. The curve lying lowest for small p represents an anyon eigenstate 
projected onto the lowest Landau level, whereas the curve going highest for large 
p represents the coherent state of the SU(1, 1) algebra. From [286]. 

too few electrons, but at least one may conclude that there is a marked 
difference between the quality of the anyon description for the Laughlin 
quasi-hole states versus the quasi-electron states. 

In these calculations the anyon model was compared with the Laughlin 
wave functions. A more interesting question is perhaps how it compares 
with experiment, or if not directly with experiment, at least with some less 
idealized theoretical model. One such model calculation for the quantum 
Hall system is that of reference [238], which did not rely on any specific trial 
wave function, but rather on state counting based on numerical simulations 
for interacting electrons on a sphere. The value of the one-dimensional 
exclusion statistics parameter [227] was found to be 1/3 in the case of 
quasi-holes, and 2 - 1/3 for the quasi-electrons, near to the magic filling 
fraction 1/3. 

The exclusion statistics parameter is in principle the same parameter 
as one reads from the Berry phase, although with an opposite sign for 
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the quasi-electrons, because their charge is negative. Thus the predictions 
for the anyon parameter, based on the numerica! results for the exclu­
sion statistics parameter, would be 1/3 for quasi-holes and -2 + 1/3 for 
quasi-electrons. The values 1/3 and -2 + 1/3 for the anyon parameter de­
fine of course the same partide statistics, but we distinguish between them 
here in the way we define the correspondence between quasi-particles and 
anyons. Thus, in the case of quasi-electrons, 1/3 and -2 + 1/3 would rep­
resent the same species of anyons, but different anyon states, the 1/3 state 
singular and the -2 + 1/3 state non-singular. 

It is interesting to note that the numerica! results for the exclusion statis­
tics parameter of realistic quasi-holes and quasi-electrons are easily inter­
preted in terms of anyons of positive and negative charge, respectively, with 
non-singular wave functions, and with the same statistics in the two cases. 
That quasi-holes and quasi-electrons should have the same statistics, is also 
what one would expect if one regards them as antiparticles of each other. 

I want to thank my coauthors J.M. Leinaas, A. Kriskoffersen, S. Mashkevich, K. Olaussen 
and H. Kj0nsberg, as well as the publisher, World Scientific, for their permission to reprint 
some figures. Figure 4 is reprinted from [208]. Figures 7 to 13 are from [146]. Figures 15 
and 17 are reprinted from [286]. 
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