ANYONS

J. Myrheim

Abstract

Fractional statistics of identical particles is a theoretical possibility
both in one and two dimensions. Two-dimensional particles of this
kind are called anyons. The most important application so far is in
the theory of the fractionally quantized Ilall cffect, where the quasi-
particle excitations can be described as anyons. The theory of iden-
tical particles, in particular the theory of anyons, is discussed here
from the points of view of Schrodinger and Heisenberg quantization,
as well as the Feynman path integral quantization. Two topics dis-
cussed in some detail are the equation of state of a gas of anyons,
and the relation belween particle interchange phases and geometric
phascs (Berry phases).

1 Introduction

The subject of these notes is the non-relativistic quantuin theory of identical
particles, and in particular the fractional statistics allowed in one- or two-
dimensional systems. The concept of fractional statistics has now both
theoretical and experimental interest, and may serve as an example, among
many others, to illustrate that quantum mechanics is still a very active tield
of research, one hundred years after Planck’s constant.

At least three different formulations of the quantum theory exist, mostly
but not entirely equivalent, to be identified here by the names of Heisenberg,
Schrédinger and Fevnman quantization. Most attention is given to the last
two, and to the conclusion drawn from both that “anyons™ may exist in two
dimensions having “any” statistics in between Bose-Einstein and Fermi-
Dirac. Fractional statistics in one dimension is discussed in less detail here
but is also the subject of other lectures.

1t is & pleasure and a great honour to talk at Les Houches about Feynman
path integrals for systems of identical particles, since the founder of the
School, DeWitt, is also the founder of this particular branch of guantum
theory {1,2]. By means of path integrals, Laidlaw and DeWitt gave the first
topological proof of the symmetrization postulate in the quantumn theory of
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identical particles, and at the same time showed the fundamental difference
between two- and three-dimensional space.

As an application of the general theory, the gas of anyons is discussed,
in the two special cases of free anyons and of anyons in a magnetic field.
Especially the magnetic field case should he of interest for applications in the
fractionally quantized Hall effect. The final topie is the connection between
the statistics phases related to the topology of the configuration space of
a system of identical particles, and the geometric phases related to the
geometry of the quantum mechanical state space. This connection has been
used as a tool for investigating the statistics of quasi-particle excitations in
the fractional quantum Hall syster.

I hope that the list of refercnces is nseful and representative. It is cer-
tainly incomplete, and I want to apologize for omissions. Some review
articles and books are e.g. the references [3-20]. Several of the books are
reprint collections, containing reprints of many articles cited here, and many
morde.

1.1 The concept of particle statistics

Immediately after Heisenberg and Schridinger formulated quantum me-
chanics as it is known today, Heisenberg and Dirac extended the theory
to systems of identical particles [21-23]. They noted that the operators
representing observables in such a system must be symmetric under any
interchange of particle labels, since non-symmetric observables would allow
an ohserver to distinguish betwoeen particles. This rather obvious statement
was the key to the correct quantum theory, hecause symmetric operators
preserve the symmetry properties of the wave functions. For example, if
the operator A and the wave function i are both totally symimetric, then
the wave function Az is also totally symmetrie. And similarly, if A is sym-
metric but ¢ is totally antisymmetric, then Ay is totally antisymmetric.
Consequently, there exists a complete quantum theory of identical particles
using only the totally symmetric wave functions, and there exists a different
complete theory using only the totally antisymmetric wave functions.

The symmetry or antisymmetry of the allowed wave functions is a char-
acteristic property of a given system of identical particles, called the stafis-
tics of the particles. Particles described by symmeatric wave functions satisfy
Bose-Einstein statistics and are called bosons. Particles described hy anti-
symmetric wave functions satisfy Fermi-Dirac statistics, they are fermions,
and because of the antisymmetry they obey the Pauli exclusion principle,
that two particles can not occupy the same quantum state. The symmeoetry
or antisymmetry results in an effective attraction between bosons and an
effective repulsion hetween fermions, both of a purely guantum mechanical
nature. We may refer 1o this kind of attraction or repulsion as a statis-
tics interaction. The mutual repulsion between fermions is quite literally a
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tangible fact: we can walk on the earth because matter consists of a small
number of different species of fermions. In fact, the stability of matter
{at least the proof of stability) depends on the fermionic nature of mat-
ter [24, 25].

Since the theory of Heisenberg and Dirac predicted that identical par-
ticles had to be either bosons or fermions, and since this prediction was
verified experimentally, there was not much need for a better theory. How-
ever, the theory could be questioned on philosophical rather than experi-
mental grounds. One possible objection is the vagueness of the concept of
particle interchange. The most obvious way to make it precise is perhaps
to define it simply as an interchange of particle labels. Then it becomes
a purely mathematical operation with no physical content, meaningful in
the mathematical description of a system of identical particles, but with
no counterpart in the physical reality. It simply reflects the fact that the
correspondence between physics and mathematics is not one to one.

One may argue, however, that such an interpretation is too superficial.
Let us consider particles that are so far apart that they can not. be physically
interchanged. Then it is intuitively obvious, and indeed true, that it does
not matter whether we symmetrize or antisyinmetrize our wave functions,
or do neither of the two. This example suggests that the symmetrization
or antisymmetrization postulate is not truly fundamental, but is rather a
consequence of some more fundamental principle. It also indicates that this
new fundamental principle must somehow give meaning to the concept of
physical interchange of particles.

Regardless of whether an interchange of identical particles is regarded
as a mathematical or a physical operation, it is obviously an identity trans-
formation from the physical point of view. In quantum mechanics it is
not umusual that a physical identity transformation is represented mathe-
matically by a phase factor, since two wave functions represent the same
physical state if they differ only by an overall phase factor. Any permuta-
tion of bosons is represented by the trivial phase factor +1, whereas even
and odd permutations of fermions are represented by 41 and —1, respec-
tively. A natural question is then, why only 41 and not more general phase
factors?

Laidlaw and DeWitt answered this question in the context of nomn-
relativistic quantum mechanics when they applied the Feynman path in-
tegral formalism to systems of identical particles [1]. In their formalism the
interchange of identical particles has a clear physical meaning as a contin-
uous process in which each particle moves along a contimious path. The
path dependence of the interchange is all important, since it relates the
quanturn mechanical concept of particle statistics to the topology of the
classical configuration space. The phuse factors associated with different
interchange paths must define a representation of the first homotopy group
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{the fundamental group) of the configuration space [26]. This requirement
leads to the conclusion that only bosons and fermions can exist it Euclidean
space of dimension three or higher, whereas more general possibilitics open
up in the two-dimensional case. The formalism does not apply in one
dimension.

Using a more traditional approach to quantization, Leinaas and 1 de-
rived the same relation between particle statistics and topology [27]. Our
approach was based on the geometrical interpretation of wave functions
which is the basis of gauge theories, and which goes back to Weyl and
Dirac {28- 32]. We studied in some detail the more general kinds of statisties
allowed in one- and two-dimensional systems. In cither case there exists a
continuously variable parameter defining the statistics, interpolating contin-
uously between Bose -Einstein and Fermi-Dirac statistics. Tn one dimension
the parameter may be interpreted as the strength of a d-function potential
between bosons, and when the strength becomes infinite, the bosons be-
come fermions [33-36]. In two dimensions the parameter may be chosen as
a phase angle # which is 0 for bosons and 7 for fermions, and we showed
by the example of the two-dimensional harmonic oscillator that the contin-
uous variation of the phase angle gives a continuous interpolation between
the boson and fermion energy spectra. The intermediate statistics, as we
called it, is now nsually called fractional stotistics. In the two-dimensional
case, the word “fractional” refers to interchange phases that arc arhitrary
rational or irrational fractions of «.

A third approach leading to the same results is that of Goldin et al.
[6,37-41]. They studicd the representations of the commutator algebra
of particle density and current operators. This algebra has commutation
relations that are independent of the particle statistics, but has inequivalent
representations corresponding to the different statistics.

Wilczek arrived at the concept of fractional statistics by considering the
fact that the spin of two-dimensional particles is theoretically allowed to
take arbitrary values, not just integer or half-integer multiples of A. The
relation between spin and statistics would require particles of fractional
spin to have fractional statistics as well [42,43]. He introduced the name
agnyons for two-dimensional identical particles having an interchange phase
of “any™ fixed value, not necessarily 0 or «, and also proposed a model
for them as particles carrying both electric charge and magnetic flux, so
that the interchange phasc could be understood as an Aharonov-Bohm
cffect, [44-46].

The fundamental group of the configuration space of identical particles
in the planc plays a fundamental role in the theory of anyons. This group
is called the braid group |47,48], and its role was emphasized cspecially by
Wu [49,50]. It is interesting that mathematicians have arrived at exactly
the same configuration space concept from the opposite direction, namely
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as a useful tool for studying the braid group [51-54]. For reviews of braids
and knots and some applications in physics, see e.g. [55, 56].

The concept of the geometric phase, discovered by Berry [15,57-61],
was immediately applied to the calculation of interchange phases by Arovas
et al. [62-64]. We will return to the question of how these phases are related,
in Section 10 below.

In quantum field theory the symmetry or antisymmetry of many-particle
wave functions results from the canonical commutation or anticommutation
relations of the field operators [65]. It is not obvious how to interpolate
continuously between commutation and anticommutation relations so as to
get a gquantum ficld theory for anyons, but a sclution to this problem is to
use either a “boson™ or a “fermien” gauge and then describe the deviation
from Bose- Einstein or Fermi-Dirac statistics as due to a “statistics™ field,
which is then a vector potential analoguons to the clectromagentic vector
potential [3, 4,66-69). The statistics vector potential is an example of a
Chern-Simons field [70-76].

There are many other developments in the theory of fractional statistics
about which little, or nothing, will be said here. Among those are statistics
in one dimension [5,77], or on two dimensional surfaces of a more com-
plicated topology than the Euclidean plane. Thouless and Wu considered
identical particles on the sphere, and found restrictions on the statistics
angle dependent on the number of particles [78,79]. Einarsson showed how
to implement fractional statistics ou a torus [80,81], and more general dis-
cussions can be found e.g. in references [82,83].

Certainly one of the most interesting topics is the connection hetween
spin and statistics. The spin of the statistics field plays an essential part
in establishing a connection [42,43,84-86]. However, it seems impossible to
exclude for example the possibility that non-relativistic spin zerc particles
could be fermions, unless some extra assumptions are introduced [82, 87).
General topological arguments have been put forward, in which the existence
of antiparticles is a crucial assumption [5,88-92].

Particles and antiparticles are just one example of interacting anyons of
different kinds. This is closely related to the possibility of interactions be-
tween distinguishable particles resembling the statistics interaction of iden-
tical particles [41,93-95].

1.2 Statistical mechanics and the many-body problem

The statistical mechanics of bosons and fermions, i.e. the Bosc—Einstein
and Fermi-Dirac statistics, existed even hefore quantum mechanics received
its final form [22,96-100]. The theory is no more difficult than the corre-
sponding theory of distinguishable particles, since the only effect of the
indistinguishability of bosons or fermions is te forbid wave functions of the
wrong symmetry type, thereby reducing the degeneracy of each energy level.
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The statistics interaction between bosons or between fermions does not
change the energies of individual levels.

The ideal gas, i.e. a gas of particles with no interaction apart from the
statistics interaction, is a simple model which is useful for many purposes.
In order to calculate the energy levels for a system of many non-interacting
particles that are either bosons or fermions, one need only distribute the par-
ticles among the one-particle energy levels, counting degeneracies according
to the Bose—Einstein or Fermi-Dirac statistics. Knowing the many-particle
energy levels and their degeneracies, one may proceed to caleulate the equa-
tion of state.

The statistical mechanics of anyons is more difficult. It has to be, sim-
ply because the bosonic and fermionic energy spectra are different, and the
hosonic spectrum is supposed to change continuously into the fermion spec-
trum when the statistics angle 8 changes from the boson value 0 to the
fermion value m. The only way this can happen is that the energy lev-
els move, either upwards or downwards. Thus, the statistics interaction of
anyons affects not only the state counting, but also the energy eigenvalues.

The harmonic oscillator problem is the standard excreise in quantum
mechanics, but even this is difficult for more than two anyons. The centre of
mass motion in an external harmonic oscillator potential is separable, even
for anyons, and the relative motion is governed by a two-body harmonic
oscillator interaction potential. A slightly more general class of quadratic
Hamiltornians, including that of a constant magnetic field, can be treated
just as easily. The two-anyon harmonic oscillator problemn was solved in
reference [27]. Wu made the first attempt to solve the three-anyon problem,
and found a class of exact solutions [101]. However, the ground state close to
Fermi statistics was not among his exact solutions, and it is still not exactly
known. More general exact solutions in harmonic oscillator potentials and
magnetic fields, alone or together, have becn found, but all have energies
that depend linearly on the statistics angle [11,102-115].

In the three-anyon problem, approximations to the wave functions cor-
responding to non-linear variation of energy have been found [116], and
an almost complete separation of variables has been achieved [117]. The
lowest part of the energy spectrum of three or four anyons in a harmonic
oscillator potential has been calculated numerically [118-122]. Another line
of attack is to use perturbation theory, starting from the known boson and
fermion spectra [123-125]. The Hartree-Fock approximation has also becn
used [126,127).

Arovas et al. made the first step towards determining the equation of
state for a gas of non-interacting anyons when they caleulated the sccond
virial coefficient [66,128). Their result is exact, since it is obtained from the
exactly soluble two-anyon problem. To have a finite density with only two
particles, they put them in a box with hard walls. Comtet ef al., and also
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Johnson and Canright, simplified the ealculation by confining the particles
in an external harmonic oscillator potential [102,129-131], in the same way
as Fermi did for fermions [98].

The caleulation of the third virial coefficient involves the three-anyon
problem, which is niot yet completely solved for any potential. Some ex-
act results arc nevertheless known. In particular, Sen has shown that the
third virial coeflicient is symmetric under a “supersymmetry” transforma-
tion which transforms bosons into fermions and vice versa, and more gener-
ally transforms & into = — # [132,133]. Other exact results are the first and
second order perturbation expansions about the boson and fermion values
¢ = 0 and # = 7, not only for the third virial coefficient, but for the full
cluster expansion [134-141]. The equation of state for anyons in a magnetic
field can be computed exactly, in the strong field limit where all particles are
in the ground state [142]. Numerical results exist for the third and fourth
virial coefficients at general values of ¢ [122,143-146). See also [147] for a
summary and general discussion.

1.3 Experimental physics in two dimensions

There are three examples of physical systems that are studied experimen-
tally, where it has been suggested that the theory of fractional statistics
may be relevant. One of these applications, in the fractional gnantum Hall
effect, seems rather well established, whereas the other two, in high tem-
perature superconductivity and in superfluid helium, are doubtful, at best.
The last example, vortex motion in superfluid helium, will not be discussed
any further here [148-153]. The statistics of vortices is discussed in more
general contexts e.g. in [154-156].

It is a surprising fact that zero-, one- and two-dimensional experimental
physics is possible in our three-dimensional world [157--163) (Ref. [157] is
a review with nearly 2000 references). The strict confinement of clectrons
to surfaces, or cven to lines or points, is possible thanks to the third law
of thermodynamics, which states that all degrees of freedom freeze out in
the limit. of zero temperature. Thus, in a strongly confining potential at
low enough temperature it may happen that the excitation energy in one
or more directions is much higher than the average thermal energy of the
particles, so that those dimensions are effectively frozen out.

Fowler, Fang, Howard and Stiles performed the first experiment with a
two-dimensional electron gas in 1966, and later experiments usc essentially
the same technique [164]). The clectrons are confined to the surface of a
semiconductor by a strong electric field, and they move freely along the
surface, whereas the energy AF needed to excite motion in the direction
perpendicular to the surface is typically several millielectronvolt [165]. At
a temperature of, for example, T = 1K, the thermal energy is kg7 =~
0.1mceV, where kg is Boltzmann's constant. Hence, assuming for example
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a transverse excitation energy of AFE = 10 meV, the fraction of electrons in
the lowest excited transverse energy level is given by the Boltzmann factor

e EnT = o100 5 107, (1)

which is zero for all practical purposes. Thus the clectron gas is truly two-
dimensional.

Two-dimensional physics is no longer an exotic field since von Klitzing
et al. discovered the quantized Hall effect (QHE} in 1980 [166, 167]. The
discovery was totally unanticipated, and a new surprise was the discovery
of the fractionally guantized Hall effect (FQHE) by Tsui et al. in 1982
[168.169). The effect observed is that, under certain conditions, the Hall
resistance for a two-dimensional electron gas in & magnetic field is quantized
as

h 25812.807 8!

Ro=—5 = (2)
where £ is Planck’s constant and ¢ is the elementary charge. v is cither
an integer or a rational fraction, which can be interpreted as the filling
fraction, i.e. the nnmber of degenerate energy levels (Landau levels) filled
by conduction electrons, in the simple picture of a two-dimensional gas of
free electrons. Thus, the fact that v is not just inversely proportional to
the magnetic field, but may stay constant while the field is changed by a
finite amount, means that the number of conduction electrons varies with
the field within certain limits.

The universality of the gnantized Hall effect has been tested to a preci-
sion of 107! in an experiment comparing two different integer quantization
levels in two different materials [170]. Thus, in spite of the fact that it
involves an extremely complicated many-body problem, the integer quan-
tum Hall effect seems to provide a precise method for measuring the fine
structure constant a = e?/(4meghc) (in MKSA units), where 274 = h, and
¢ is the speed of light. It is independent of other methods, such as the mea-
surement of the anomalous magnetic moments of electrons and muons, and
gives a comparable precision. The same effect also provides a very accurate
and stable standard resistor, easily realizable in the laboratory, and of a
convenient magnitude. The conventional value of 25812.807 Q2 is fixed by
itternational agreement from January 1, 1990.

Laughlin proposed to explain the observed fractional quantization of the
Hall resistance as the manifestation of a new state of matter, the incom-
pressible quantum fuid, with elementary excitations that could be described
as quasiparticles, or quasiholes, with fractional clectric charge [171-174].
Halperin suggested that the fractional charge was associated with fractional
statistics as well, and Arovas et al. verified by calculation the fractional
values for both the charge and statistics phase angle of the quasiparticles
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in Laughlin's theory [62,175). Jain et al. have tried to treat the integer
and fractional quantum Hall effecis in a more unified way [176-181]. Fur-
thermore, Liitken and Ross have emphasized the universal character of the
transition between different quantum Hall plateaux, and have suggested that
the complete structure of the phase diagram, including the plateaux and the
transition regions, can be understood as resulting from a discretc SL(2,2)
symmetry [182-186}. But none of these theories change the prediction of
quasiparticle excitations having fractional charge and statistics.

Different experiments seem to confirm the existence of fractionally
charged excitations [187-193]. Thas, if fractional charge can be taken as
a signature of fractional statistics [194], anyons may be said to have been
dircctly observed in the fractional quantum Hall system.

Other examples of two-dimensional systems experimentally available are
the high temperature superconductors, discovered by Bednorz and Miiller
[195-197]). The conduction takes place in two-dimensional layers, and
Laughlin suggested a connection with the fractional quantum Hall effect
[198,199]. This idea raises two questions, discussed e.g. in references [14,
200]. First, whether systems of anyons show superfluidity and supercon-
ductivity, and second, whether such effects have anything to do with the
observed high temperature superconductivity.

The second question must be answered experimentally, and some at-
tempts have been made. The experiments are based on the general, but not
very quantitative, prediction that anyons viclate both time reversal and par-
ity invariance, and that these effects are likely to arise because of local mag-
netic flelds. The fields in adjacent layers might point in opposite directions,
50 as to cancel, or they might add up to a global field. Three experimental
groups have tried to measure the effects of such global fields on transmitted
or reflected polarized light, but with confiicting results [201-204]. A fourth
group has probed the local magnetic field by means of muons, and set a
rather small upper limit of 0.8 G [205]. Since no effect is seen cither in this
experiment or in the most sensitive of the optical experiments [203], the ex-
perimental evidence is clearly against the anyon theory for high temperature
superconductivity.

1.4 The algebraic approach: Heisenberg quantization

The various approaches to the quantum theory for systems of identical par-
ticles mentioned so far, are closely related and may be grouped together
under the heading of Schridinger quontization. There exists an alternative
approach, which we may call Heisenberg guantization, leading to somewhat
different results, especially in one and two dimensions [152, 206--208]. Note
that Schradinger and Heisenberg quantization are not unique and detailed
prescriptions for how to quantize, but rather two different general strategies.
Schrodinger quantization is a configuration space approach, emphasizing the
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role of the wave functions defined on the configuration space. Heisenberg
quantization is a phase space approach, emphasizing the algebraic relaticons
between observables, which in the classical theory are real valued functions
defined on the phase space.

For example, the most general classical observable for one point particle
on a line is a function A = A(x, p) of the coordinate x and the momentum
p. From two such observables A and B we may form the linear combination
C' = ad + 38, where & and 3 are arbitrary real numbers, as well as two
different bilinear products, the pointwise product D = AB = BA, and the
Poisson bracket E = {A, B} = —{B, A}. By definition,

C(s’;,p) = O(A(SL',;I}) + )G’B(I,p), D($p) = A(:Cp) B(:I?, p): (‘3)
and
_9A0B  0BoA »
= %8—:{) - EE% . (

In Heisenherg quantization one tries to represent the classical observables
as linear, Hermitean operators on some complex Hilbert space, preserving
as many as possible of the algebraic relations. The pointwise product is re-
placed by the operator product, and the Poisson bracket by the commutator
product,

1
_E[

Since it is impossible to preserve all the algebraic relations exactly, one has
to select some relations to be treated as more fundamental than the rest.
Thus, in the example with one particle on a line, the relation

{z,p} =1 (6}

is considered fundamental, and is replaced by the canonical commutstion
relation

E .1
z

A B| = —(AB - BA). (5)

[x,p) = iA. (7}

However, for two or more identical partiéles this simple prescription does
not work, and one has to find alternatives.

We will return to this point of view, although our main concern here
is with the Schrodinger quantization. Briefly stated, the results are as fol-
lows, when the Heiseuberg quantization is performed s0 as to respect the
full symmetry between position and momentum variables. In one dimen-
sion fractional statistics is possible, described by one continuously variable
statistics parameter. It is different from the fractional statistics obtained
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by Schrédinger quantization in one dimension, and resembles more the
two-dimensional fractional statistics of Schrodinger quantization. In two
dimensious only the standard Bose-Einstein and Fermi-Dirac statistics are
obtained. Thus, anyons are not. included in this maximally symmetric ver-
sion of Heisenberg quantization. In fact, anyons respect the rotational sym-
metry which involves coordinates only or momenta only, but break the phase
space symietry between coordinate and momenturn.

1.5 More general quantizations

The basic philosophy behind both Schrédinger and Heisenherg quantization,
as discussed above, is that the quantum theory of indistinguishabie particles
should resemble as much as possible the theory of distinguishable particles,
that only such modifications are permitted as are necessary because the
particles are indistinguishable. A number of different theorics have been
proposed departing more radically from the standard theory. They may
allow interpolation between Bose-Einstein and Fermi-Dirac statistics inde-
pendent. of the configuration space dimension.

One possibility is to consider quantum field theories with fields that do
not commute according to the canonical commutation or anticommutation
relations. An example is the so-called parastatistics proposed by Green
(209 211]. It allows not only the completely symmetric or antisymmetric
representations of the symmetric group, but also more general symmetry
classes [23,212]. Thus, parastatistics of order p allows Young tableaux of up
to p rows in the para-Bose case, or up to p columns in the para-Fermi case,
while infinite order parastatistics allows all symmetry classes. Doplicher
et al. deduced precisely these three possibilities in local relativistic quantum
theory without long range forees (213,214].

A number of proposed generalizations of the canonical commutation or
anticommutation relations, starting with Wigner [215], are summarized in
reference [216]. A simple example, leading to infinite statistics, is the so-
called “g-mutation relations”,

ajal —~ gala; = d;x, (8)

where a and a' are annihilation and creation operators, 7, k label the degrees
of freedom of the field, and ¢ is a number [217-225]. See also [226]. A
vacuum state |0} is postulated with the property that a;|0) = 0 for all j,
and the Fock space is generated from it by repeated applications of creation
operators. The scalar product in the Fock space is uniquely defined by the
g-mutation relations, and Fivel and others have shown that the condition
—1 < ¢ <1 is necessary and sufficient to ensure that the scalar product is
positive definite [220,223,224]. No rules exist relating the products ¢;ax and

Ak, OF a;ai and afal, except that it is possible to prove commutativity

gt
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in the boson case ¢ = 1 and anticommutativity in the fermion case ¢ = —1.
The simple form N; = ala; for the number operators is no longer valid in
general. In the special case of one degree of freedom the number operator
is [221]

- (1 _(})n. in, n
N= e a"g" 9
; el (9)
An entirely different approach, suggested by Haldane, is to modify directly
the Pauli exclusion principle [227-237]. Johnsou and Canright have applied
this so called fractional exclusion statistics in the fractional ¢uantum Hall
gystem [238,239].

2 The configuration space

We will now discuss in more detail the quantum theory of identical particles.
Our basic principle here is that an interchange of identical particles gives
rise to a phase factor depending on the type of particles and on a continuous
interchange path.

The path dependence of the phase factor suggests immediately a path
integral approach [1], but we will discuss first the description by means of
wave functions, which is usually more suitable for calculations [27]. There
are two steps in our gquanmtization scheme, The first step, discussed in the
preseut section, is to identify the configuration space of the system of iden-
tical particles, and the different classes of possible interchange paths. The
second step, discussed in the Sections 3 and 5, is to introduce wave functions
on the configuration space. In two or higher dimensions the wave functions
must be treated as geomctrical objects.

Let X be the configuration space of a system of one particle. The con-
figuration space of a system of N distinguishable particles moving in X is
the Cartesian product space X, defined as the set of all ordered N-tuples
of the form

®={x). @3, ..., xy) with x;€¢X for j=1,2, ... N. (10)
If p is a permutation of the particle labels 1,2, ... | N, then we define
plx) = (mp_‘(l)ﬁmp—]&)s ,ﬂ?p—l(N))- (11)

The set of all permutations of N objects is the symmetric group Sx. Tt acts
as a group of transformations on X", by the above definition.

If the particles are indistinguishable, then a configuration of N particles
is simply a sct of N points in X,

z={&, @, ..., Tn} CX. {12)
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The order in which we list the particle positions is now arbitrary, so that
the two points & and p(z) in XV represent the same configuration of the N-
particle system. Thus, the configuration space of the system of N identical
particles is the Cartesian product X~ with the identification p(z) = = for
any x € X" and any p € Sn. A natural name for this identification space
is XN / 5 N

We will consider herc only the Euclidean one-particle spaces X = R?,
of dimension d = 1,2, 3, since these are the simplest examples and the most
useful for applications. An impertant simplification in the Euclidean case
is that the centre of mass position splits off in a trivial way, so that

XN /8y =X x (XNT1/80), (13)

where the factor X in the Cartesian product represents the centre of mass
position, and XN_]‘/ Sw represents the relative positions of the particles.
The same factorization is not possible when the one-particle space is, e.g.,
& circle [27], a torus [80] or a sphere [78].

2.1 The Euclidean refative space for two particles

In the Euclidean case the interesting part of the configuration space is the
relative space RAY-1 /Sxn. Let us examine the simplest case, N = 2. We
have to label the particles arbitrarily as 1 and 2, in crder to define the
relative position as

L= -z (14)

If the two particles are at the positions a and b, then we get eitherz = a—b
or £ = b— a, depending on which oue of the two possible labellings we
choose. Thus, because the particles are identical, the relative positions x
and —x describe the same configuration, and we see that the two-particle
relative space R%/S; is R? with the identification = = —a.

An immediate consequence of the identification = —x in R is that
any time dependent curve ®(¢) is identified with y{t) = —x(¢). Hence the
tangent {or velocity) vector v = dar/df at z is identified with w = dy/dt =
—vat y = —x.

The two spaces R /52 and R” are locally isometric, in fact the iden-
tification ® = — is clearly irrclevant whenever we look at a small region
€2 C R such that —a ¢ § for every & € (2. However, this isometry docs
not hold at the origin, because any open region in R containing the origin
must contain at least one pair of points ® and —x. In other words, the
origin is a singular point for the identification & = —z. This local difference
between R?/S, and R? at the origin results also in a global difference.

Perhaps the most dramatic maunifestation of the global difference is
the fact that R? is flat, whereas R%/S, is globally curved when d > 2.



282 Topological Aspects of Low Dimensional Systems

To measure the global curvature one need not even approach the singular-
ity at the origin. Curvature is defined in terms of the parallel transport of
tangent vectors around closed curves, and the intercsting curves are those
starting at any given point @ € R? and ending at —z. By definition, they
are closed curves in RY /S2. Start with some vector v at ®, and parallel
transport it along any curve to —z. Because R? is flat, the vector is moved
unchanged, but, as we have seen, the vector v at —x is identified with the
vector —v at x. Hence, the effect of the parallel transport arcund this kind
of closed curve in R*/S; is to reverse the direction of every tangent vector.

This reversion by parallel transport may lead to confision as to whether
or not a given vector field v = v(x) on R"/S> is single-valued. Lot us write

d
vi{x) = Z'uj(a:)em_,-, (15)
=1

where each eg; is a basis vector at @, and v;(2) is the j-th component
of the vector v{x) located at &. In Euclidean space we are used to basis
vectors that are parallel everywhere, so that eg; is parallel to ey; for any
two points @ and y. Unfortunately, as we have seen, it is impossible to
introduce parallel hasis vectors in R?/5;, unless we place two sets of basis
VeCtOrs, €x1,€a2, ... ;8ug aNd —~€41, —€ua, ..., —€gq, at the same point
x. It follows that if v = v(2) is a single-valued vector field on R%/S,, its
components ¥; = v;(x) with respect to parallel basis vectors are double-
valued functions on R*/5y. We may of conrse introduce basis vectors that
are single-valued functions of position, so that the components of a single-
valued vector field are also single-valned, but such basis vectors can not be
parallel. As we shall see, similar problems arise when we introduce wave
functions.

The generalization to & identical particles, with N > 2, is straightfor-
ward. Let us ignore those configurations where two or more particle posi-
tions coincide. Then each point in the full configuration space RN /8w, or
in the relative space R4NV-1 /Sn, corresponds to N points either in RN
or in RN In general, a closed curve in R“¥~1/Sx connects a point
x e RUN1) g the point p{x), where p is any one of the N! permutations
in the symmetric group Sy . Parallel transport moves a vector v unchanged
from = to p(x). However, the vector v at p(x) is not the same as v at =.
Rather, v at @ is identified with p(v) at p(x), hence v at p(x) is identified
with p~1(v) at @. Thus we see that the effect of the parallel transport of v is
to transform it into p~1(w). Given one vector v at @ € RYY "1 /8 | there
are altogether N1 vectors at 2 that are parallel to it, by parallel transport
around different closed curves in R =1 /8y
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2.2 Dimensionsd =1,2,3

Let. us consider a little more explicitly the simplest examples with two iden-
tical particles in Fuclidean space. In one dimension the relative space R/5S;
is the half-line = > 0, where & = x; — @7 is the single relative coordinate.
Choosing = > 0 instead of x < (0 is of course pure convention, it simply
means that we always label the rightmost particle as number 1.

In two dimensions the identification @ = — can be pictured as a folding
of the plane into a cone of opening half-angle 30°. The points @ and —x
in the plane are folded onto the same point on the cone, and the origin of
the plane becomes the top of the cone. Equivalently, writing the rclative
position as & = (z,y), we may define R*/S; as the upper half-plane y > 0,
but with the boundary points (x,0) and {—x,0} identified. The cone is
locally flat everywhere except at the top point, since it is locally isometric
to the plane. But it is globally curved, with infinite curvature at the top,
so that parallel transport of a tangent vector once arcund the top point
reverses its direction.

In threc dimensions, if we write the relative position as © = (&, y, 2}, then
we may define R®/S, as the upper half-space z > 0, with the boundary
points (x,y,0) and {—z, —y, 1) identified. Again the origin is a singular
point of the identification space, and the space is locally flat everywhere
except at the origin, since it is locally isometric to R*. And again there is
a global curvature, located at the origin, such that parallel transport of a
tangent vector once around the origin reverses its direction.

2.3 Homotopy

In order to classify the interchange paths, we have to examine the path con-
nectivity of the configuration space. Again we consider only the Euclidean
case, so that it is enough to examine the relative space R*" ™" /Gy

Two curves from a point. & 10 a point ¥ are said to be homotopic if they
can be continuously deformed one into the other [26]. A homotopy class
consists of all the curves that are homotopic to one given curve. Coucate-
nation of curves defines a natural product: two curves C and C3 can be
spliced into ene curve CpC if O starts at the point where € ends. That is,
if €y goes from = to y and Cy from y to z, then €5 is a curve going from
2 to z. This multiplication of curves is also a multiplication of homotopy
clagses.

If we consider only the closed curves, or loops, starting and ending at one
given point @, then the product of any two such loops is well-defined. The
homotopy classes of loops at @ form a group, called the first homotopy group,
or fundamental group, of our space. In a connected space this definition does
not depend on the point @, in the sense that groups defined at different
points are isomorphic. The single point x is a degenerate kind of loop, the
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corresponding homotopy class consists of all the loops from @ back to =
that can be continuously deformed into a point, and this class is the unit
element of the group. The inverse of a loop is the same loop traversed in
the apposite direction.

By definition, a space is simply connected if every loop can be continu-
ously deformed into a single point, or equivalently, if the fundamental group
is the trivial group consisting of one element only. Similarly, it is doubly
connected if the fundamental group has exactly two elements, and it is #n-
finitely connected if the fundamental group is infinite, e.g. isomorphic to Z,
the addition group of integers.

The Enclidean space of any dimension is simply connected, and in par-
ticular the configuration space RY for N distinguishable particles in d
dimensions is simply connected. The path connectivity of the configura-
tion space R /Sy for N identical particles is a matter of definition. In
the literal sense R*Y /Sy is simply connected, but we want to arguc that
a more natural definition of homotopy is such that R*Y /Sy is not simply
connected when N > 2.

Note that the fundamental group is the same for R*V /Sy as for the
relative configuration space RN /Sn, because the centre of mass posi-
tion splits off as in equation (13). We have seen in the example with N = 2
that there exist two classes of loops in Rdj 57 with respect to the parallel
transport of relative tangent vectors, transporting a vector v into +wv or —w,
respectively, and it is natural to define that a “+" and a “~" loop are not
homotopic. If we want to deform a “+" loop continucusly into a “-" loop,
or viee versa, then one stage in the process must be a loop going through
the singular point. where the two particles collide. Such a loop is itself sin-
gular in the sense that the parallel transport of a vector is ambignous. The
natural solution is to simply exclude such singular paths, or equivalently,
to exclude the singular point from the relative space, making it multiply
connected.

In the general N-particle case there will be at least V! inequivalent
classes of loops corresponding to the N possible permutations of particle
labels in the local space of tangent vectors. This definition of homotopy
means that we exclude all the singular points of the configuration space,
t.e. all those configurations in which two or more particles are at the same
position. This restriction implies that the one-dimensional case (d = 1)
is uninteresting, because the relative space RV /S without its singular
points is connected, but has no continuous paths that interchange particle
positions. It implies further that in dimension two or higher {d > 2} there is
always a homomorphism from the fundamental group onto the symmetric
group Sy. In dimension three or higher (d > 3) the homomorphism is in
fact an isomorphism: the fundamental group is just the symmetric group



Nl

J. Myrheim: Anyons 285

Sn. In two dimensions, however, the fundamental group is a non-trivial
extension of the syminetric group, called the braid group.

2.4  The braid group

For two particles in the plane (N = 2, d = 2), 4.¢. for the relative confign-
ration space R? /54, the fundamental group is Z. This is so because every
loop has an integer winding number, which is the number of times it encir-
cles the origin, and the winding mumber is additive under concatenation of
loops. By arbitrary convention, we count anticlockwise winding as positive
and clockwise winding as negative. Two loops are homotopic if and only if
they have the same winding nmmber, in other words, the winding number
labels nniquely a homotopy class. A curve in R?/S; can also be regarded
as a curve in R?, and its winding number is even if the curve in R? starts
at @ and returns to &, or odd if the curve in R? goes from & to —a. Thus,
parallel transport of a tangent vector v around a closed loop in R2/ So gives
the vector (~1)%v, where Q is the winding number of the loop.

For N particles in the plane {d = 2), i.e. for the relative configuration
space RZ(N_U/SN, the fundamental group is the braid group By [47,48,51-
54]. We have seen that B; = Z. In general, By can be generated from
N —1 elements, in the following way. The j-th generating clement T is the
homatopy class of loops that do nothing mere than interchange the particles
Jand j+ 1 in the anticlockwise direction. It can be represented graphically
as in Figure 1. Obviously, two such generators commute if they do not
interfere, that is,

TT=TT; i [j—kl>1 (16)

Neighbouring generators do not commute, but satisfy the following
relations,

TjTj+1Tj = Tj+1i’}Tj+1 for =12 ... :f\"_ -2, (17)

which can be proved graphically as in Figure 2. Note that T; and T,4, are
homotopy classes of loops, so that the equality sign here means homotopy
of loops.

It is casy to see that every one-dimensional representation of By is
given by one single number 7. In fact, if the generator T; is represented
by the number 7;, then the relation 77,147 = 7y417;7;41 means that
T; = Tj+1 = 7, independent of j. The general braid has the form

b= T 18)
where each index ji is an integer from 1 to N - 1, and each power 7y, is
a positive or negative integer. In the one-dimensional representation b is
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1 53+l N
N
N

1 J Jit1 N
Fig. 1. The braid group generator T;, an anticlockwise continnous interchange of

the particles j and j + 1. The horizontal axis represents space, R?, the vertical
axis represents “time”, i.e. the parameter of the curve.

j—l—l i+2 ] 3—1—1 j+2
: J+lj+2 j ;+13+2

Fig. 2. Graphlcd_l proof of the rclatlon Tl T =TT 4.
represented by 79, where  is the winding number, defined as

K
Q= an‘ {19)
k=1

The difference between the braid group By and the symmetric group Sy
is that there is one more set of defining relations for the symmetric group,

'T.-_-}' = TJ for .}' = 132:\ e ‘J*'\'r -1 (20)

2

This implies for the one-dimensional representations of the symmetric group
that 71 = 7. Hence there are exactly two such representations, one with
7 =1 and one with 7 = —1.

In three or higher dimensions a clockwise continuous interchange of two
particles is homotopic to an anticlockwise interchange. See Figure 3. There-
fore equation (20) holds, so that the fundamental group of the configuration
space RdN/SN in dimension d > 3 is Sx.

3 Schriédinger quantization in one dimension

The one-dimensional case is rather special, since particles on the line can
not be continuously interchanged without colliding. The mathematical
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» - [ ] [ ]
Fig. 3. Interchange of two particles, either anticlockwise (left) or clockwise (right].

In three or higher dimensions these two interchange loops are homotopic, by ro-
tation an angle « about the line joining the particles.

expression of this fact is that the configuration space of a system of identical
particles on the line has a boundary, consisting of those configurations where
twe or more particle positions coincide. In particular, as we have seen, the
relative space of the two-particle system is a half-line, witl the origin as a
boundary. Therefore the gnantization problem reduces to the problem of
specifying the proper boundary conditions on the wave functions.

The role of boundary conditions in quantum mechanics is to make certain
operators Hermitean, and the most important operator is the Hamiltonian
H. Hermiticity of H means that probability is conserved. Let us assume a
standard two-particle Hamiltonian of the form

B 92 h? 52
“Imat  maag T T

B2 92 R &2
- - 7T ~Y . 21
dm oXx?2 maszl—V(X,;r) (21)

Here mt is the particle mass, X = (z1+x2)/2 the centre of mass position, and
& = x1—z7 the relative position. For identical particles the potential ¥V must
be symmetric, V(xz, 1) = V(z1, 72}, or equivatently V(X, —z) = V(X,x),
which implies that H is symmetric under interchange of particle labels, as
an observable should be. For simplicity we will further assume here that
V' is non-singular as a function of x, or at least is no more singular than
1/x. We will discuss a 1/z? potential below, in connection with Heisenberg
quantization. More singular potentials lead to important complications.

The Schrodinger equation
9y

ihm = Hy (22)
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for the wave function 3 = ¥(x;,72,t) = ¥(X,x,¢) implies the continuity
equation

ap aJX 83:!‘ .
o tax tae 0 (23)

where p = ||? is the probability density, and

| L h oy . = Re [y 100
Jx =Re (qb MS_}—{)’ o = Re (v mi 5‘33) oy

are the X and r components of the probability current density. +* is the
complex conjugate of .

The physically acceptable way to impose conservation of probability is
to require that the normal component of the probability current vanishes
everywhere on the boundary. That is, in the two-particle case, j.(X.0) =0
for every X. However, this is a quadratic boundary condition for the wave
function, whereas the superposition principle demands a linear condition.
We therefore postulate that

A 1 oy 30
83" X=consL. 2 535‘1 Zog=const. 83:2 ¥1=consk,
=m at x=mx —a2 =0, {25)

with 1 a real parameter, independent of . This is a stronger condition,
implying that j, = 0 at & = 0, and it is linear. % could in principle be a
function of X, but that would break translation invariance. The particles
are bosens if 7 = 0 and fermions if # = +oc, but in principle % is a continucus
variable that could take any intermediate value.

Since the wave function ¥ = (X, z) is defined only for > 0, we are
free to extend the domain of definition to x < 0, for example by imposing
the bosonic symmetry (X, —2) = (X, x). The symmetric extension will
make the partial derivative at x* = 0 discontinuous if equation {25) holds
with % # (1. The discontinuity of the partial derivative is then equivalent to
a statistics interaction described by the d-function potential

2nh?

Vi(a) = =1

5(x). {26}

As is well known, the #-function potential has exactly one bound state if
< 0.
We may use the external harmenic oscillator potential

1 : . i
V= 3 mw? (z1 + 25) = mw’X* + i muwa? (27)
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as an example 1o illustrate how the paramneter 1 defines a continuous interpo-
lation between bosons and fermions. The Schrédinger equation is separable,
so that we need only solve the energy eigenvalue equation

A% d? 1
(--——— + = mwgzr2) i = K1 (28)

for the relative wave function ¥ = 3{x). For a given relative energy E there
exists a unique solution which is square integrable in the limit x — oo,
and it can be expressed in terms of the confluent hypergeometric function
U =Ula,b, 2} defined in Chapter 13 of reference [240],

) 1 E 1 z? x? ‘
w(l‘)_('UU(Z_%S 3 a_ﬁ) eXD(—Eg)r {29)

where ¢ is a normalization constant, and ag is a characteristic length,

P (30)
Trw

The boundary condition at x = 0, equation (25}, gives the following energy
quantization condition, involving the Euler I'-function [240],
() 20§ - o)
PO wl{f - #)

= 1. (31)
In particular, with » = 0 we get the boson spectrum
1
E:(2n+§)ﬁw, n=1012, ..., {32)
and with n = +00 we get the fermion spectrum
3 .
E= 271—1—-2— A, n=012 ... {33)

The level spacing is constant for bosons and fermions, but not for intertne-
diate values of n. Figure 4 shows how the lowest energies vary with n.
The ohvious generalization to the N-particle case is the convention that

the general wave function 3 = {11, 22, ... ,zx) is defined for 1 = 12
> ... > apn and satisfies the boundary conditions
ay _ oAl

= Dy} L= i=12 ...,N-1). 34
a5, B meoat xi =35 (=12, ) (34)

Lieb and Liniger have solved this particular N-particle problem in the case
when 7 > {0 and there is no other external or interaction potential (34, 35].
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4 Heisenberg quantization in one dimension

The Schrédinger quantization, as presented above, is not the only way
to get intermediate statistics of particles in one dimension. In fact, the
Heisenberg quantization leads just as naturally to a different type of inter-
mediate statistics, equivalent to an inverse square statistics potential rather
than a 4-function potential {152,206]. The one-dimensional case is special
in this respect. In higher dimensions only bosons and fermions emerge if we
apply Heisenberg gquantization in the most straightforward way.

The indistinguishability of the particles implies extra freedom in the
yuantization for a system of two or more particles, becanse it restricts the
class of observables. To see how, it is again convenient to discuss the two-
particle case as an example. The centre of mass position X = (1 + ®2)/2
and the total momentum P = p; +p2 are observables, since they are symmet-
ric under interchange, but the relative position z = x; — x» and momentum
2 = (p1 =~ p2)/2 are antisymmetric and therefore not observables. Thus,
the canonical commutation relation, equation (7}, between relative position
and momentum is meaningless in a minimal theory which includes only such
operators as represent obscrvable quantities.

If we can not use x and p as basic observables, then the next simplest
choice are the quadratic polynomials 22, p* and zp, which are symmetric
and therefore observables, at least in the classical theory. It is convenient,
to introduce an arbitrary length scale ay and define the dimensionless ob-
servables

a3 22 a§ L - 1
A—4h21 + B:Iﬁ,_fp —r‘%a: ) /=Zﬁ(xp+psr:}. (35)

In the quantum theory they should satisfy the following commutation rela-
tions, which follow either from the Poisson brackets in the ¢lagsical theory,
or from the canonical commutation relation in the quantum theory,

[A,B)=iC, [AC]=—iB, [B,C]=—-iA. (36)

It is natural to adopt equation (36) as the basic set of commutation re-
lations defining the quantum theory of two identical particles on the linc.
They define the Lie algebra sp{1.R) = s{(2, R) of the real symplectic group
Sp(1,R} = SL{1,R), consisting of the area-preserving linear transforma-
tions in the plane!.

There exists a quadratic Casimir operator,

=A% B*-(? (37)

!Unfortunately, different conventions cxist, and this group is often called Sp(2, R).
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comnuting with all operators in the Lie algebra. It must take a constant
valne if we require the linear representation of the Lic algebra to be irre-
ducible, implying that only two of the three observables A, B and C are
independent. Clearly two independent variables are just what we need to
describe the two-dimensional relative phase space. 1n the classical case,
[’ = 0 identically, wheras equation (35) together with equation (7) imply
that I' = -3/16. However, if + and p do not exist as operators, then we
have to give up both equation (35) and equation (7), and there is no obvious
reason any more to require that either ' =0 or T' = —3/16.

Therve exists in fact a family of physically acceptable irreducible repre-
scritations of sp(1, R}, depending on one continuously variable parameter
ag > 0. If we denote the basis vectors of one such representation by |eg, 1),
with n=10,1,2, ..., then

e, ny = aplag — 1) |ao, 1),

Alag.ny = (ag + n}|ag, 1), (38)
(B +iCYlag.ny = /(n+ 1)(n + 2ag) |ag,n + 1},
(B —iC)la.n) = v/n(n— 1+ 2ag) |ag.n — 1)-

Note that if ag 18 given by equation (30), then

¥ 1.
2wA == + = mwia? (39)

m 4
is just the hiarmonic oscillator relative Hamiltonian encountered earlier in
equation (28). Thus, ay = 1/4 corresponds to bosons and ay = 3/4 to
fermions, and the parameter oy provides a continuous interpolation between
these two special cases. When o changes, the whole harmonic oscillator
spectrum is rigidly shifted with all level spacings constant, which proves
that Schrddinger and Heisenberg quantization lead to inequivalent types of
intermediate statistics. Figure 4 shows the bottom part of the harmonic
oscillator energy spectrum as & function of the statistics paramcter, both
for Schrodinger and Heisenberg quantization.

4.1 The coordinate representation

We may change basis from the harmonic oscillator eigenstates |ag, 7} to
the eigenstates |x) of the relative position z, restricted to z > (. In this
coordinate representation x? is diagonal, whereas p? is a differcntial operator
containing the parameter oy,

. d2  aR? 1 3
2 p2 " _ _ = —-29. 4
P A P + el with A=4 (Q‘o 4) (0:{) 4) (40)
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Fig. 4. E/{2hw), where E is the energy of relative motion of two identical particles

M

with harmonic oscillator interaction. The lowest energies are shown as functions
of the statistics parameter ' = (2/7) arctan n (Schrédinger quantization, left), or
o (Heisenberg quantization, right). Bosons have ' = 0 and ag = 1/4, fermions
have i’ = £1 and ao = 3/4. From [208], reprinted with permission.

x? and p? define the operators 4 and B, whereas C is given by the commu-
tation relation,

. i 1 d d
C=-i[A,B]= gﬁ[pz,a?] =5 (Ta—; + ax) : (41)

When the above definition of p? is inserted into the harmonic oscillator
Hamiltonian, equation (39), the result is an extra inverse square statistics
potential,

by . 1 3 )
Vilz) = —5, with A=4 (ao — Z) (Off) — 1) . (42)

mx

in the Schrédinger equation, vanishing precisely in the boson case oy = 1/4
and the fermion case ag = 3/4. The modified eigenfunctions are of the form

2 2
] — 2 _1 E . x i .
P(x) = cpz@-z) M (fm ~ 555 20 . Eg) exp(—2—a(2]') . (43)

The main difference fromn equation (29) is that the confluent hypergeometric
function M = M{a,b, 2) replaces I, and the energy quantization condition



J. Myrheim: Anyons 293

is now that M reduces to a polynomial, which happens when [240]
E =2{(n+ aothe, n=0,1,2 ... (44)

The choice of eigenfunction in cquation (43) is dictated by the boundary
condition at # — 04, and there is an argument behind the choice of bound-
ary condition. The eigenvalue equation Hy = Ev, regarded as a second
order ordinary differcntial cquation,

od? o aRE 2\ .
(—Egp + oy + 1 mwgmz) i = B, (45)

has two independent solutions behaving asymptotically as ¥ in the limit
x —+ 0+, where

1 .

u::ui:E:!:(Zao-—l)A (46)
(The case cg = 1/2 is special, then the asymptotic form is either /x or
vzlog:x.) The gencral solution 4 = 1(z) has the asymptotic form (for

2] ?1: 1/2)‘
Wz} ~ epx’ + o {47}

for some constants ¢4, implying the asymptotic form of the probability
current density,

) L Rody 2h{2ag — 1)

jo =Rel#f'—— | ~ =" ~“ Im(cte,). 48

J ( mi d:v) " (cZer) (48)
The condition that the wave function must be square integrable requires
that ¢ =0 for v_ < —1/2, {.e. for ap > 1. but puts no restriction on the
coeflicients ¢4 when 0 < og < 1. One possible linear condition which will
make j, — 0 as r — 0+, is that

oo = ey, (49)

with # a real parameter. The superposition principle requires that o =
¢. /ey must be the same for all wave functions. The parameter 7 here is of
course related to the one intraduced earlier, equation {25} is in fact just the
special case ap = 1/4.

In the present case i can not vary continnously, however. The point is
that we want all three operators 4, B and ' to have a common domain of
definition, but C changes the asymptotic form of the eigenfunctions of A in
the limit x — 04, unless we impose one of the two conditions ¢ = 0 or
c_ =0. In fact,

Clepa™ +e_a¥) = l ((2vy + Veyz™ + (2 + 1)c.z""), (50)
41
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which means that C transforins % into

(2v_+1)e. 2w +1 _l—agn

= = 51
Qv + ey 20,117 ag (51)

ﬁ =
Which of the two conditions ¢, = 0 or ¢— = {} we impose, is only a matter
of convention, since we may interchange vy and v_ by replacing oy with
1 — ap. We choose the condition ¢— = 0, so that wave functions have
the asymptotic form z(2*9=3) as x — 0+, and this convention selects the
particular solution in equation (43).

There is a somewhat more physical way to understand why only the
values n = 0 or 7 = +oc are left invariant by the operator C. The reason is
that C is the infinitesimal generator of scaling transformations, it scales x
and hence 7, since 7 has the same dimension as gWr=v-) = 2201} Ty
see that  generates scaling of z, consider the transformed wave function
i = (I - 2ieCW), where % is a general wave function, I is the identity
operator and ¢ is an infinitesimal parameter. The functions 13 and 4 have
the same shape, but 1 is expanded by the factor 1+ ¢ = 1/{1 — ¢} as
compared to 4, since

TORTIORE (m’(x) + éw(x)) =(1-3)w(@-92). (52
The Heisenberg quantization for systems of more than two identical par-
ticles is an unsolved problem. However, if the two-particle Heisenberg
quantization in one dimension is regarded as a special kind of Schridinger
quantization, involving an inverse square statistics potential, then it can be
immediately generalized to the N-particle case [206]. The statistics poten-
tial becomes

Vilzy,z zn) § A2
si®1; X2, .. IN) = Y
L<ioheN mix; — o)
1 3
with A=4 (C];‘D — -i) ({_‘}jn - Z) . (53)
The general wave function ¥ = ¥{x1, s, ... ,zx) is defined for & > 3 >

... = xn and satisfies the boundary conditions
Wlar, e, .o an) ~ (@ - 2500)2 7 as
Cf..'j—a':j+1—>0+ (j-‘zl,?,..‘,N—l)‘ (54)

The N-particle problem of this kind is again exactly soluble, when there is
no external or interaction potential besides the statistics potential, or when
there is a harmonic oscillator potential which is either external or defines a
two-particle interaction [241-250].
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5 Schridinger quantization in dimension d > 2

The geometrical interpretation of the wave function is too trivial to be
meaningful in one dimension, but is non-trivial in higher dimensions, and
indeed necessary when we want a theory that can describe fermions as well
as bosons. Bosons are easy fto describe, becanse the wave functions of a
system of NV bosons are symmetric functions on Rd N and hence are single-
valued functions on the configuration apace R* / Sn. The fermionic wave
functions are also single-valued on RN , but their antisymmetry implies
that they are double-valued on R/ SN‘ Many-valued wave functions find
a natural place in the geometrical picture introduced by Weyl and Dirac
around 1930 [28,29]. The mathematical structures involved are called fibre
bundles in modern terminology [26,251- 256].

To be more precise, in our case the fibre bundle is a vector bundle. It
has the configuration space R /Sn as its base space, and at cvery point
z e RW /Sx there is located a fibre, which is a finite dimensional complex
Hilbert space hy. A wave function W is a cross-section of the fibre bundle,
that is, the function value ¥(x) at the point & € R* /Sy is a vector in
the local Hilbert space h,. Let us assume that the complex vector space
hy has dimoension r, independent of 2. Then we may choose, for cvery
2 € R¥ /Sy, a sct of basis vectors Xaz1r Xa2r - - » Xzr € o, 50 that we
may write

Z V() Xk (55)

where each component {2} is a complex number. Each 3% is a com-
. . N ., -

plex valued function defined on the configuration space R /Sp, it is one

component of an r-component wave function

= . (56)

Note that we use the term “wave function™ here for two different, related
objects. One is the cross-section ¥ of the fibre bundle, and the other is the
column matrix 4 of r complex valued functions. The set of basis vectors

{Xor |z €R™ /Sy, k=1,2. ... .7} (57)

may be called a gauge. It defines a translation between the language of
fibre bundles and the language of multi-component complex valued wave
functions.
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The wave function ¥ is assumed to be single-valued, in the sense that the
function value W(x) € h, at any given point & is unique. It is a geometrical
object which exists without any reference to local basis vectors, whereas the
r-component complex wave function ¥ is undefined until we have *chosen
a gauge”, i.e. defined a set of local basis vectors, Clearly ¢ is also single-
valued as long as we introduce a unique set of basis vectors at each point
®. However, we may sometimes want to use simultaneously two or more
different sets of local hasis vectors, with the result that ¥ becomes many-
valued. This is the natural way to introduce the double-valued fermion wave
functions, as we shall see.

5.1 Scalar wave functions

Let us examine the simplest case, when the particles have no spin or other
internal degrees of freedom. Then there is only one basis vector x, € hy,
and equation (55) simplifies to

V() = vlz)x, - (58)

A vector bundle with one-dimensional fibres is called a line bundle.
It is natural to impose the normalization condition |x,| = 1. This still
leaves us with the freedom to make a change of basis of the form

Xo ™ Xo =07 x, (59)

where o = a{®) is an z-dependent real phase {in addition it could be time
dependent}. Such a local change of basis is called a focal gauge transforma-
tion. The complex wave function ¥ must transform as follows,

() - w(x) = e i) (60)

since ¥ is gauge independent,
¥(x) = (T)Xy = P(®)Xa - (61)

In order to define gauge invariant differentiation we need a connection on
the fibre bundle, ié.e. a rule for parallel transport between the fibres along
continuous curves in the base space. The parallel transport along some curve
C’ from a point & to a point y must define a linear and unitary operator
FPely,z): he — hy. It is actually sufficient to define the infinitesimal
parallel displacement from z to € + dz, and we postulate the following rule,

Plz +de. ) x, = (14142 0;(%)) Xopaz - (62)

Here we denote the local coordinates in R4 /Sy by x¥,§=1,2, ... dN,
and we use the summation convention for repeated indices. ay,aa, ..., tqn
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are the components of a covariant vector field, a gauge pofential, which is
real in order to make P(@ + d&, x) unitary. The infinitesimal rule implies
the following rule for a finite curve C,

Po(w )% = exp (i [ 4o a5(2) ) - (63)
o4
The gauge invariant differentiation I}; with respect to 17 is defined by the
relation
¥(z + dx) = Pz + dz, z) (¥(x) + da’ [D;¥](x)) . (64)

By definition, both ¥{x) and [D, ®]{x} are vectors in the local Hilbert space
ha, whereas ¥({x + da) belongs to the neighbouring space hgidz. We need
the parallel displacement operator in order to compare the local vectors at
two different, neighbouring points. Note that this definition is explicitly
gauge independent, since it does not involve the local basis vectors.

Once we have chosen a gauge, which defines 0 as the component of ¥,
it is very natural to define 12;1 as the component of D, ¥,

(D, ¥)(z) = [D;0)(@)x - (65)
Comparing cquation (64) with another formula,
P(z +dx) = (T + de) Xgrae = (¥(2) + d2? [09](2)) Xosda-  (66)
in which 8; = 8/dx? is the ordinary partial derivative, we see that
Dy = 83 — iaz, (67)
which we write simply as
D =8y —duy . (68)

By definition, the local gauge transformation in eguation (5%} transforms
a; into a;, such that

Plx +de,2)Xp = (1 +ida’ &(2)) Xpix - (69)

It follows that
a; = uy — dio, {70

and hence that
Dy =8, —id; = Dy + id;a = =) D et (71)

This formula for the gauge transformation of the differentiation operator
D; implies that D)%) transforms in the same way as # under a gauge trans-
formation,

Dy s Dygp = 7@ Dy, (72)
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5.2 Homotopy

The commutator
fjk = J',[DJ,D_:J = Bjak — Bkaj (?3)

is invariant under local gauge transformations, and measures the non-
triviality, or curvature, of the conncction. It is the fleld strength corre-
sponding to the gauge potential 4, thus it corresponds to the magnetic Hux
density in electromagnetism (the electric field is included if we add time
components), or to the Riemann curvature tensor in geometry.

Here we want to discuss only the special case when fjr = 0 identically.
One way to justify this restriction might be to say that we do not want to dis-
cuss the kind of interactions represented by a non-vanishing field strength,
Another way might be to say that we want to study the ambiguity in the
gauge potential a; for a given field strength fir. In fact, if f};) = J(-?? with

1% = 050 - 0yl )
then the difference a; = a.;” — ag is a gauge potential having fi. = 0. See
however reference [257] for an example where the non-vanishing part of fjz
is also important.

The curvature, or fleld strength, f;i vanishes identically if and only if a;
is the gradient of some function «, in other words, if and only if there exists
a gauge transformation such that d; = a; — d;0 = 0 identically. The *if”
part of this statement is trivial, that f;; = 0 when a; = d;a, The “only if”
part is true with the important reservation that the function « is guaranteed
to be single-valued only when the space s simply connected. Let us see how
the relation between a; and « depends on the path connectivity.

If a; = 0, then o is obtained from @; by a line integral,

2)

afy) =a{x) + L dz? (=), (75)

where ' is an arbitrary curve from & to y. This equation proves that the line
integral is independent of C' whenever q; is the gradient of a single-valued
function «.

Conversely, when a; is given, we may always try to solve the equation
dia = a; for e by choosing one point &, fixing a{x} arbitrarily, and using
equation (75) to define a(y) for general y. I f;; = 0 identically, then the
value of the line integral is unchanged by a continuous deformation of the
curve (', and the function o defined by equation (75) has the desired gra-
dient @;. The invariance of the line integral under continuous deformation
means that equation (75) defines a unique value of a{y) for every homotopy
class of curves from x to y. In particular, if we restrict ourselves to a simply
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connected region 2, then by definition there exists exactly one homotopy
class of curves inside  from # to y, and equation (75) defines a function o
which is single-valued on §2. In a doubly connected region where f;; = 0, a
defined by equation (75) may become double-valued, and so on.

Let us summatize our discussion so far. We assume that the wave func-
tion ¥ = ¥(z) is single-valued, and that there exists a sct of local basis
vectors {x,} which is also single-valued (i.e., contains only one basis vector
at each point &), such that the connection is given by equation {62). We
assume further that the gauge potential a; is such that the curvature, or
field strength, fj. vanishes. With a single-valued basis the complex wave
function % = ¢{x) is also single-valued. We have shown how to introduce
a local gauge transformation, as defined in equation (59}, such that the
transformed gauge potential vanishes, i.e. @; = a; — ;@ = 0. Such a
gauge transformation is always single-valued in a simply connected regioh,
otherwise it may be many-valued. For example, it may be double-valued
in a doubly connected region. A many-valued gauge transformation will
transform the single-valued complex wave function i into a many-valued
complex wave function 2 = e7**qy,

Thus, if the fleld strength vanishes, f;x = 0. we may choose a gauge
such that the vector potential vanishes, ¢; = 0, but in a multiply connected
space this may imply that the complex valued wave function becomes many-
valued. On the other hand, we may always work with single-valued wave
function, but. then, if the space is multiply connected, we may have to live
with a vector potential which is not zero,

5.3 Interchange phases

If we put y = x in equation (63), then the basis vector X, is the same on
the two sides of the equality sign, so that the parallel transport operator
becomes just a gauge independent phase factor,

Polz,x) = exp(iﬁdxi aj(a:)) . (76)

Obviously, the paralle] transport around first one loop € and then another
loop €3 gives a phase factor which is the product of the two individual phase
factors,

FPoyoy(m,2) = Po, (1‘,‘, z)Fe, (z. ). (77)

Qur previous assumption that f;; = 0 implies that the line integral in
equation (76), and therefore the whole phase factor, is invariant under any
continuonus deformation of the loop €. We may deform the loop continnously
without moving the point 2 where it starts and ends, and such deformations
produce loops in the same homotopy class as the original loop €. Thus, all
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loops belonging to the same homotopy class have the same phase factor.
Howcever, the phase factor Po(z,2) is unchanged even if we deform the
loop € continuously in such a way that the point @ moves. In summary, we
have derived the following important result.

— A connection with zero curvature on a complex line bundle is uniquely
characterized by a one-dimensional unitary represeniation of the
SJundamental group.

We have seen that the fundamental group for the configuration space
R /Sy of N identical particles in dimension d is Sy if d > 3. The
symetric group Sy with N > 1 has exactly two one-dimensional represen-
tations: the completely symmetric representation defining bosons, and the
completely antisymmetric representation defining fermions.

We have also seen that the fundamental group in two dimensions is the
braid group By. Since Sy is a homomorphic image of By, any repre-
sentation of Sy defines a representation of By, but By has more general
one-dimensional representations in addition to the symmetric and antisym-
metric representations.

In particular, the braid group By for two particles is isomorphic to Z,
and its general representation by phase factors is characterized by one real
number, a phasc angle ¢, such that

Qi@ (78)

where @ is the winding number of the given homotopy class of loops. Obvi-
ously, this relation defines € only up 1o an arbitrary multiple of 27, since ¢}
is an integer. Two-dimensional identical particles characterized by a general
statistics ungle 8 are called anyons. Special cases arc bosons, with € = 0,
and fermions, with # = 7.

We sec that for two anyons there is a phase factor e associated with
a loop of winding number @ = 1. Let us introduce Cartesian cocrdinates
x,y and polar coordinates 7, ¢ such that the relative position of the two
particles is

if

x=2 — 3= {1,y) = (rcosg,rsing). (79

The relative angle ¢ increases by m when we go through a loop of winding
number one, and we symbolize this by saying that we go [rom the point
{r,o) to (r, 0 + ). The parallel transport around this loop takes the basis
vector X, ; at (7, ¢) into

Xv-,qz';-}-fr = e_mx-r,qf) . (80)

This corresponds to the following condition on the complex wave function
w4, in polar coordinates,

W, ¢ + ) = ey(r, ). (81)
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It is important to read this formula correctly. The implicit convention when
we write ¢» + , is that the angle ¢ is increased continuously by .

Note also that the phase factor e appears when we use parallel basis
vectors, so that the gauge potential a; vanishes. In every case, except for
bosons, local basis vectors that are parallel, have to be many-valued on
the relative configuration space R?/S;. For example, in the fermionic casc
e~ = —1, parallel basis vectors are double-valued.

5.4 The statistics vector potential

As we have scen, it is not necessary to use parallel many-valued basis vectors
and the corresponding many-valued complex wave functions. One alterna-
tive is to use single-valued basis vectors, with a non-vanishing gange po-
tential. The most general possibility, however, is to use many-valued basis
vectors and at the same time a non-vanishing gauge potential. Thus, let 3
denote the many-valued wave function relative to a parallel basis, satisfying
equation {81}, and let the wave function i, be defined by

?'-"ﬁi’ (T: GI)) = C_tvé"i{"(r! @) (82}

where v is some arbitrary constant. The new wave function satisfles the
following symmetry condition,

?11":":/('-"9 &+ TT) = ei(e_”)u"»‘u(?‘, Gb) (83)

The gauge invariant derivative is trivial in the “parallel” gauge, D, = &,
Dy = 84, but is non-trivial in the “o” gauge,

D?‘ = Bf, D¢ = 8¢ + fu. (84)

The corresponding formulae in Cartesian coordinates are,

in o .
D, = COSQ‘)D,- — S Dq-, = ()a- - y; .
T T
D, = sing D, + e Dy =08, + i”,,.%' (85)
T

Note that the gange potential in the general gauge,

i x
0y =V —, thy = — 1 —,
i r2 ¥ 72

(86)

is singular at + = 0 when v # 0. The reason is that the gauge transfor-
mation in equation (82) is singular, in the sense that the factor ¢=#% is
discontinuons at + = ().

We sce that the definition in equation (82), with the special choice

4

7

(87)

IV =vg
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gives a wave function v, = g which is single-valued, since it has the
bosonic symmectry

Ya(r, ¢+ ) =vp(r.¢) (88)
We may call this the bosonic gauge. The next simplest choice is the
fermionic gauge, with
4—=

v=pvp=vrg—1= e (89)

in which the wave function %, = ¢ir is double-valued, having the fermionic
symmetry

Yp{r, ¢+ 7) = —yr(r, ¢). (90

Remember that a, and @, given here are only the relative components of
the gange potential, 7.e. the components in the relative space RZ/S‘;}. If we
transform from the centre of mass and relative coordinates

XZ?T—];—'TZ‘ =1 — Xy,
g
Y=y12y2, Y =11 — Yo (91)

back to the particle coordinates xy, .22, %2, the gauge potential must
transform in the same way as the partial derivatives

9 10 4 8 _ 19 2
dr, 20X 8z’ dr, 20X dz’
3] 1 8 a ad 1 8 a
o 28Y+8y' Sy 28Y  Jy (02)

By assumption, the centre of mass components of the gauge potential vanish.
Hence, the gauge potential expressed in particle coordinates is, with r? =
(@1 — 222 + (1 — 12)",

p e Y2 — 4

Gl = e = T f Qzp = —Qz = V 72 )

aly:ayz—u%ﬂ, agy:—ay:—uszl- (93)
r T
A natural way to interpret equation {93) is that a particle at the position
z € R? experiences a certain vector potential A = A{x). It docs not
experience its own field, only the one generated by the other particle. Thus,
particle 1 at &, = (&, ) gencrates a vector potential at £ = {x,y) with
components

. ¥— i
A=) = T
Ay(z) = o (94)

—v , .
(z—21)? + (g —mn)?
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and particle 2 at @, experiences the vector potential a; = A(z3).
To the vector potential A corresponds the field strength, or flux density,

B=0,4, - 8,4, (95)

Green’s theorem gives the relation between B and A in integral form,

g . | 27y if 3 e,
/Qd © B = f;m dz - A = { 0 otherwise. (96)

where Q is a region with boundary 8§, and where the direction of the line
integral is anti-clockwise. This shows that the flux is located exactly at the
position of particle 1,

B(x) = ~27vé(x —x,). (97)

5.5  The N-particle case

The generalization to N particles is quite straightforward. As always, we
use a notation identical to or similar to the one introduced in equation (10}
and equation (11).

A closed loop in the coufiguration space RV /Sy, or in the relative space
R4N-1) /S, induces a permutation p € Sy of the N identical particles,
and is characterized by a winding number Q. If we work in the many-valued
parallel gange, where the gauge invariant differentiation is trivial, D; = &,
then an interchange path of winding number @ is accompanied by a phase
factor €’@? in the wave function.

If we work instead in the single-valued bosonic gauge, in the double-
valued fermionic gauge, or more generally in some many-valued “v” gauge
with a non-vanishing gauge potential, then the interchange phase factor in
the wave function is €*9®~¥7)_ In addition there is a gauge potential which
has the following components, as we can see by generalizing equation (93),

Yi — Uk
Fip — L ; .
. g (z; — wr)? + (y5 ~ ys)?
ay, = =y it AL : (98)

2 (5 = on)? o+ (s — we)?
It is worth noting that the components as defined in equation (98) are many-
valued, but they define a single-valued vector field on R /Sy. Like in
the two-particle case, the special choice v = v = /7 gives symmetric
(i.e. bosonic) wave functions, whereas v = vp = vg — 1 gives antisymmetric
{fermionic) wave functions.
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The N-particle Hamiltonian is

N
(p ﬁa)+v~—2 Z ~ha;)* + V. (99)

In our notation particle j has the position ®; = (x;,y;) and the canonical

maemaentium
h 0 !1 g 2.
L 100

P; i dz; (8;‘_, 5‘%) (100)

The statistics vector potential a; = (@4, @y ) is given by equation (98). The
potential V = V(2) = V(x, 22, ... ,&n)} may be the sum V = Vg + V7 of
an external, one-particle part

N
Ve =3 Vi), (101)

=1

and an internal or interaction, two-particle part

= Vala;, @), (102)

i<k

where V, is a symmetric function, Vo{y, 2} = Vale,y). There is usually
no need to include more complicated interactions involving three or more
particles, although it could of course easily be done. Note however that the
square of the statistics vector potential, a® = Y g a;“-’., contains three-body
terms.

Note that the N-anyon problem for N > 2 actually contains another
continuously variable parameter, in addition to the phase angle # [258-261].
The reason is that the eigenfunctions of the above Hamiltonian depend on
the boundary conditions in the limits |z; — x| = G for 1 < j <k < N,
Usually the condition of gnadratic integrability forbids singular solutions
and thereby fixes unignely the asyinptotic form of the wave function for
small distances, but there is some exception to this rule.

5.6 Chern-Simons theory

An equivalent point of view in the N-particle case is that particle j, at
x; € R?, experiences a vector potential a; = A{x;) which is generated by
all the other particles,

Ay = UZ ?{”yk'
k#j

(-2} + (v —y)?

T — I

Aule) = "Z(x—xk TR (103)
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It is easily secn by comparison with the equations (94, 95) and (97) that
the statistics gauge potential A defined here satisfies the field equation

Ay — 9yAys = —2nup, (104)

where p = p(a) is the particle density,

plx) =D 8z — x;). (105)

o

In a field theory we want to modify the source term p so that the particle
J itself is included, even though this leads to the usual problems with self-
interactions.

The field equation can be derived from a Lagrangian if we allow the
field components A, and A4, to become explicitly time dependent, and add
a third field component A°. It is convenient to introduce the relativistic
notation

H

(z% 2" 2% = (ct, 2, y), d, =
A¥ = (A% A) = (A" 4., 4,),  Au= (A% -A), j* = (ep,j).(106)

¢ I8 a constant velocity (the speed of light). Then we may add two field
equations to obtain the following relativistic form, where ¢ is antisymmetric
and 2 = 1,
LKA 2y s ft
e Ay = — i, {107)
¢

A necessary cousistency condition is that the current. §# is conserved, A" =
0. These equations are gauge invariant, so that if A, is a solution, then the
gauge transformed field

A, =4, - {(108)

is also a solution. There always exists a “radiation gauge” with Ag = 0,
therefore the introduction of Ay does not change the physics.
The field equations for A, follow from the Lagrangian density
he Lok A )

L= 1y © A0 AN — R4, . (109}
The first term is the Chern-Simons term, which exists only when space-time
is three-dimensional. £ is gauge invariant when the current j# is conserved,
inn the sense that it changes by a divergence under the gauge transformation
of equation (108),

ke

E =L - 8“ (M—UQEHNAanA)\ — ﬁ(}j‘u) . (110)
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It is well known that the 2 + 1-dimensional Maxwell theory with an ad-
ditional Chern Simons term describes massive photons. If an ordinary
Maxwell term is added to the Lagrangian density £ above, then the modified
theory describes auyons of finite size [262, 263).

When the matter fields that define the current j# are quantized, either
as bosons or fermions, relativistically or non-relativistically, the result is a
field theory of anyons [67-69]. We will not discuss these theories any turther
here.

6 The Feynman path integral for anyons

Laidlaw and DeWitt worked out the Feynman path integral treatment of
systerus of identical particles [1,49,66], inspired by earlier work of Schulman
on the path integral for configuration spaces that are not simply connected
[264,265]. We derive it here from the Schrodinger formalism, to show that
the two are equivalent. Closely related is the work by Wiegel and by and
Inomata and Singh on the entanglement of polymers, and by Gerry and
Singh on the path integral treatment of the Aharonov-Bohm effect [266-
269]. See also [211,237] for the path integral treatment of exclusion statistics
and parastatistics.

What we will derive is the path integral formula for the partition function
of the N-particle system,

Zn(B) = Tre 8N = 3~ =98Nk (111)
k=0

We have had little need so far to distinguish explicitly between operators and
numbers, but in the present section we will use a “hat” to denote operators,
in order to prevent unnecessary confision.

We assume that the patticles are confined by an external potential in
such a way that the Hamiltonian operator Hy has a discrete eigenvalue
spectrum, and the trace is well-defined. At least in principle, Zx as a
function of 3 determines the energy eigenvalues Eng € En1 = ... < Eng
< .... In statistical mechanics 3 = 1/kgT, where T is the temperature
and kg is Boltzmann’s constant, More formally, 3 may be thought of as
imaginary time, since the time evolution operator for a time interval ¢ =
—iRh{3 is, with H = Hy,

tH _ o= 0H (112)

e

e

The simplest derivation starts from the “bosonic™ description, in which the
N-particle wave functions are symmetric complex valued functions on R*Y.
The Hamiltonian operator is given by equation (99), and any deviation from
Bose—FEinstein statistics is described by a vector potential @ on R, as
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given in equation (98), with v = vg = 8/mw. The “fermionic™ description,
where the wave functions are antisymmetric, leads to the same end result,
but the derivation is complicated by an extra minus sign associated with
every odd permutation of the N particles. Therefore we prefer the hosonic
description.

6.1 Eigenstates for position and momentum

For distinguishable particles the general position eigenstate is |z}, where
x € R™. We have the orthonormality relation

{@|y) = d(x — ), (113)

and the completeness relation, also called the resolution of the identity
aperalor,

P= [t la)ial. (114)

The bosonic position eigenstates are symmetric under all permutations of
particle labels, and with the proper normalization they arc

)5 = m > Iple (115)

pESN

This definition implies that

stele = 7 Y Sp(@) —uw) = Y fr(e)—w),  (116)

PaESN rESN

where r = ¢~ !p. Note that the permutations p and ¢ here act on R as
linear operators of determinant +1, and therefore we may change variables
in the Dirae d-function without introducing an extra Jacobi determinant.
It foliows that if we restrict both @ and y to lie in the true configuration
space RN /Sx, then we have the standard orthonormality relation also for
the bosonic position eigenstates,

slely)p = 6(x — y). (117)
The identity aperator in the space of bosonic states is
s " y 1 N
e = j ST L LE NI /Rcuv Az |@)g plx|.  (118)

When regarded as an operator on the full Hilbert. space that includes states
of all symmetry classes, Ip is the projection operator onto the subspace of
symmetric states. The above definition of |@} g gives that

-~ 1 N |
I = oy > ]RM 4% |p(2)) {(gl=)l - (119)
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If we define y = p(x), z = g(x), r = gp~! and s = pg~!, then we get two

more forms of the above resolution of the bosonic identity operator,

=M Zf Ny lyHr(y \, > / o 4%z ]s(2)) (=] - (120)

FES N 5ES5n

The womentum eigenstates for distinguishable particles may be defined as

P} = (E;lr-ﬁ)ﬂ / PN Sk eh Py . (121)

They satisfy similar orthonormality and completeness relations as the posi-
tion eigenstates,

wla) =dp-a,  T= [ . (122)

6.2 The path integral

The trace in the definition of the partition function, equation (111}, is the
trace within the subspace of bosonic states, which we may obtain by imsert-
ing the projection operator Ig. Thus [66],

Zn(8) :Tr(e*ﬁﬁfs) = ;\]—. 3 f o 4 (pl)le iy, (123)
" pESN

where we have used equation (120) and the general formula Tr( A} {x|) =
(leﬁ?)- As remarked earlier, the formula would be the same in the
fermionic picture, except for a minus sign for every odd permutation, com-
pensated for by the use of » = vp = vg — 1 instead of # = vg in the statistics
vector potential.
We now expand as follows,

e‘BHfB:e wH Te —4H 7 fe'ﬁHfB. (124)
It is simpler to use the identity operator 7 of the full Hilbert space here
instead of the identity operator Ig of the bosonic subspace, which would
seem more logical. Actually the above formula is cqually valid if we replace
every 7 by 7, B8, because the Hamiltonian H and hence the exponential op-
erators in the formula are symmetric under interchange of particle labels,
so that they commute with Ig. It is essential to include Ip once, but once
is enough. Using the resolution of the identity, eqnation (114), we get the
following formula,

. _8
ZN(|13 j\” Z ] " d}\'w ddN . dsz dd;’\y (;U(;B)le = H|U>
PESN

(ule™ FH .2y zle” Sy (yle~ " F ) . (125)
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The only manifestation of the fact that the particles are identical, is that
we integrate over all paths * — y — 2 — ... —> u — p{x) starting at
z and ending st p(x), and we average over all permutations p. These are
precisely the closed paths in the configuration space R /Sn.

The desired path integral formula for the partition function is obtained in
the limit n — oo, when a suitable approximation is used for the propagator

Gly,zi7) = {yle * ¥ |a) - (126)
Here the real variable T = £3/n corresponds to the imaginary time interval
£ = —ir. The approximation must be sufficiently accurate in the limit
T — .

By complex conjugation of the definition of & follows the Hermitean
syminetry

Gly,z: 1) = Glae,y; 7). (127)

An approximation which respects this symmetry is the following,

Gly.z;r) =~ (yiexp(—% V- %%&2) exD(;Tn a-f;) exp(—z—)‘%af)‘z)
xexp(5p-a) cxp(——%f} - ;—iaz) ) (128)
= exp(~ o= (V(y) + V(@)
1 (2@ + la@)) ) Gy,
where
G (y.z;7) =yl exp(g?E a- ii) exp(—ag—m ff) fexp(%f)- a) ) (129)

Here we have inserted the identity operator between two of the exponentials,
and when we use equation (122}, we get that

. _ N, T2 L .
Gl(y.a:,'r%]Rde pexp( S )Gz(p,'y.r) Ga(p,x;7). (130)
with
Galp.@:7) = (plexp(5-5-8) [e) - (131)

Without. further justification we now introduce the following approximation
for G2, which is formally just a first order approximation for the exponential
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function,

Galpir) = (pl(T+ 5 P&l = (1+ 5-p-ala) (ple)

T i
exp(z—f;l- p-af{x)— PP ;c) . {132}

2

It leads to the following approximation for Gy,

2rhm

Gatair) = () exp( T (aty) + afa))” - 375 ()

+ L (afy) + al@)) - (y - a:)) 7

R | s

(133)

where the normalization factor comes from the Gaussian integral

/. d%exp( 3 (P 5 (@) + ae ))—?(y—m))z)

a5
_ (Q'J'Thm) s4)

T

And finally the desired approximation for &,

Glyair) = (22 ) 7 exp(~ 72ty —o)* = 72 (Vi) + Ve
+ (oly) + ae)) (v~ ). (135)

We have neglected the following terms in the exponent,

Th

— - (aly) - a(@)’ . (130)

because the Gaussian weight factor exp{—m(y — «)?/27h) makes the dis-
tance |y — x| small, of order /7.

In the limit 7 — oo the discrete path @ — 4y — 2z — ... — u — p{x)
approaches a continucus path &(r), with 0 < 7 < k3, while the product of
propagators diverges as follows,

13 , 53 3
(p(;t:)'u ?)"'G'(Z:y,?)G'( n)
AN

- (2”;'"”) T ekema, (3n)




J. Myrheim: Anyons 311

5 is the action in imaginary time, which we define here as

Ad
' Tre
S 2/ dr | —
0 ( 2

and @ is the winding number of the N-particle path, defined by the line
integral of the statistics vector potential along the path {7),

dz |2
dr

+ V(m)) , {138)

N
/da: calz) = Zfdmj ca;(x) = —mQ = —6Q. (139)
i=1

We define the path integral measure as

D(a(r)) = lim (Zwén’l) A¥Vp d?™y .. a?NzdMNy, (140
TL— 20 J

including the divergent normalization factor from the product of propaga-
tors. With these definitions,

Zn(8) = \,, > D(x(r)) e %199 (141)

pesy 7P

The domain of integration C{p) for a given permutation p € Sy consists of
all continuous paths &(7) with 0 < 7 < A3 and with z(#3} = p(x(0)).

Let C{p. Q) consist of those paths in C(p) that have the winding number
), and define

Jeip D120 e_j ~ (142)

fc(p)D(‘B(TD e

Thus, F,{Q.3) is the probability of the winding number @, given the per-
mutation p, and given that the particles are bosons. Define also the Fourier
transform of the probability distribution of winding numbers, which is called
the probability generating function,

Pol@Q.8) =

(0, 3) = Z Py, 8)e 9 (143)

QPD=—0c
Below we will usually write simply P,{Q)) and F,(#) instead of P,(Q, 3) and
Fyp(8,3), but one should remember that these quantities are temperature

dependent. These definitions enable us to isolate the dependence of the
partition function Zx on the statistics angle 8,

Zn(8 \l > ,,(9)/0(11)9(;:(?)) e (144)

pESy
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The fact that the probability F,(Q} is real implies that F,(8)" = F,(—#).
Furthermore, in the definition of F,{Q). both the action S and the path
integral measure D{x{7)) are invariant under the time reversal transforma-
tion

x{7) — (1) = 2(A8 - 7). (145)

If the path x(7) has the winding number ¢, then the time reversed path
z{7) has the winding number ~(). Hence time reversal invariance implics
that P,(—Q) = P,{Q)., which in turn implies that the probability generating
function is real,

Fp(8)" = Fp(~0) = Fy(6). (146)

The fact that F,(#) is real, is consistent with our path integral formula for
the partition function Zy, equation (144}, and with the fact that Zy is real
by definition.

6.3 Conjugation classes in Sy

By definition, a cycle of length L is a cyclic permutation i — d — ... —
iz, — iy of the L integers 4y,4y, ... ,ir, and it is denoted by (i1és ... ip).
It follows directly from the definition that, for example,

(iviz ... i) = (@2 ... ird1), (frdn ... i) = ip ... dgir).  (147)

A transposition is a cycle (142) of length 2, and the generators of Sy intro-
duced in Subscction 2.4 are the transpositions T; = (j,§ + 1). A cycle of
length L may be written as a product of transpositions, €.g. in the following
way,

(13 ... dp) = (i1de)(d23) - - - (dp—yiL ) (148)

Two cycles commute if they are disjoint. Ewvery permutation p € Sy can
be factored into a product of disjoint cycles, and the factorization is unique
apart from the order of the factors. Let v be the number of cyeles of length
L in the factorization of p. Then the sequence of non-negative integers
Vi, V2, ... Vg, ... is called a partition of N, because > ; Lvr = N. Let
v =3, v1 be the number of cycles in the deTOFIdelOH of p, then the sign
of pis

Sgn(p) Hp(Jj (k) H( 1 (L ljub_( 1)f\—u (149)
j<k

Two permutations p,q € Sy are congugate if ¢ = rpr~" for some r € Sx.
The conjugation class of p consists of all permutations that are conjugate
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to p. The mapping p — rpr—! preserves the group structure of Sy, i.e., it
is an automorphism of Sy.
The conjugate of a cycle is

pligip i)t = (r(i) (i) ... rlin)) {150)

It follows that two cycles are conjugate if and only if they have the same
length. And in gencral, two clements of $y are conjugate if and only if
they have the same cycle structure, in the sense that they define the same
partition of N when factorized into disjoint cycles. Thus the conjugation
classes in Sy are in one to one correspondence with the partitions of N. Let
P be the conjugation class in Sy corresponding to the partition >, Lyp =
N. Then the number of elements in P is

Nt

Np=— "~ . 151
P i e (151}
Let us now go back tc equation (123}. The integral there depends on the
permutation p, but it is the same for any permutation ¢ = rpr~! conjugate
to p. That is,
N 38 an —aH =
Joaw 0@ty = [ 0% ez (152)

To prove this equality, note that the operator e™? B permutation invariant,
which implies that

(e *Hly) = ¢~ Yaw))le e ()
= @ e e y)) - (153)

The substitution = r~!{y) completes the proof.

Therefore we need not sum over all permutations p € Sy in equa-
tion (123), it is enough to pick one arbitrary permutation p from each
conjugation class P in Sy. The sumn reduces to a sum over all conjuga-
tion classes, or equivalently, a sum over all partitions of IV,

1 ; i
Zn(3) = —_— d* {p(x)|e ) - 154
'\r( ) ;HL (VL!LUL) R‘IN (p( )| | } ( )
The path integral formula, equation {144}, is modified accordingly,

1
ZN(H) = ; m F’D(H) ./C('p) D(CC(T)) e n

The class C(P) of paths consists of all continuous paths inducing one arbi-
trary, but fixed, permutation p € P.

(155)
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ji=1 2 3
Fig. 5. Schematic representations of the three classes of closed threc-anyon paths
(7). The classes 1 + 1 + 1 (left) and 3 (middle) arc even, whereas 2 + 1 (right)
is odd.

The probability generating function Fp(f) depends implicitly both on
3 and on the potential V. The values at the boson point 8 = { and at the
fermion point & = & are known,

Fp(0) =Y Pp(Q) =1,
54

Pp(m) =3_ Pp(Q)(-1)? = sgn(P) = (-1)"¥ ", (156)
Q2

The fermion value follows because the winding number ) is always even
for all even permutations and always odd for all odd permntations. More
generally, it follows that

Fp(0 + ) = sgn(P) Fp(f). (157)

Take N = 3 as an example. The 3! = 6 permutations in Sy fall into three
conjugation classes, illustrated in Figure 5. The two classes, or partitions,
14+ 1+ 1 and 3 are even, and the class 2 4+ 1 is odd.

6.4 The non-interacting case

The N-boson path integral occurring in equation {155) can be simplified if
there is no interaction potential so that the particles are only influenced by
an external potential,

N
Viz) =) Vilz;). (158)
i=l

Then the factorization of the permntation p into disjoint cycles implies a
similar factorization of the path integral, so that

1 1 . vy
2w) = X Fi0) [ (1] Dla(r) ¢ ) )
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h3 +

0+

Fig. 6. A three-particle path ®{r) inducing a cyclic permutation, and the same
path represented as a closed one-particle path over three times the time interval.

where . is a class of L-particle paths which induce a fixed cyclic permuta-
tion of the L particles. But an L-particle path inducing a cyclic permutation
is equivalent to a one-particle path over a T-interval which is L times as long,
as illustrated for a three-cycle in Figure 6. Therefore the cyclic L-particle
path integral is related to the one-particle partition function, and it follows
that

zx6) = S P09 [T oy (252 (160)
P L

VL! L

6.5 Duality of Feynman and Schrédinger quantization

It 15 worthwhile observing that the expansion of the partition function given
in equation (160) is actually valid much more generally, if we interpret it in
a suitable way. The present discussion is partly based on reference [270].
In equation {160) we considered noninteracting anyons in two dimen-
sions, treating them as bosons with no other interactions than a statistics
interaction turning them into anyons. But we may consider more generally
bosons or fermions in any dimension, or even particles described by wave
functions of a more general symmetry class Y, with quite general exiernal
potentials and intcractions between the particles. We may always write

2o - re ]l (2F2) (161)
7 L

!/L!

interpreting the coeflicient Fj (3} as a general correction factor describing
the effect of all external and internal interactions, including statistics in-
teractions that might transmute the particle identity. For example, bosons
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(Y = B) might turn into anyons, as in equation {160}, and in particular
bosons might turn into fermions. Or fermions (Y = F) might turn into
anyons, and in this connection bosons count as anyons as well,

In the general expansion, equation {161), the supersecript Y identifies
the symmetry class of the wave functions nsed in computing the N-particle
partition function Z%{3), and we sum over conjugation classes in the sym-
metric group Sy, because the conjugation classes classify the paths going
into the Feynman path integral. Thus the formula relates two approaches
that are dual, in a certain sense: either solving the Schrodinger equation for
identical particles and classifying the solutions according to the symmetry
of the wave functious, or expanding the Feynman path integral as a sum
over permutations.

A symmetry class is the same as an irreducible representation of the
symmetric group Sy, which is identified by its Young tableau Y. Consider
the Hilbert space H of all wave functions, of arbitrary symmetry. Every
permutation p € Sy acts as a linear operator § on ‘H, and so does every
conjugation class P ¢ Sy, if we define

P=>"5. (162)
peEP

The projection operator projecting out the subspace Hy of the symnetry
class Y, is

B= 2 S PinB, (163
=)

where d{Y") is the dimension of the irreducible representation Y, and x(P: YY)
is the character in the representation Y of the permutations belonging to
the conjugation class P. The inverse relation is

= Np }: X(P Y (164)

Np is the number of elements in the conjugation class P, as given in equa-
tion (151).
By definition, the partition function Z}G(j) is the trace of the operator
e~ #H restricted to the subspace Hy,
Y —aHT, d(Y) -3HB
Z5(8) = "ﬁ(e Iy) =SS (P Y) Tr(e : :D) . (165)
NI =

The last equality follows from equation (163). Comparing with equa-
tion {161}, we see that we may define

= {H”L (7))

(Y)

x(P; Y)Tr( —ﬂ?ﬁ) . (166)
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On the other hand, equation (164) with equation (151) gives that

sazy M XPsY) Ly, »
Tr(e Jﬂp)_nL(an); o AN (167)

Thus we see that if we are able to calculate the partition function Z}G’(ﬁ}
for every svinmetry class Y, for example by solving the Schridinger equa-
tion for wave functions of arbitrary symmetry, then we may calculate every
coefficient Y from the formula

FE(8) = d(Y)x(P;Y) (H (Zl(;ia'))“!,) 5 XI(,;(JYS;/)!) Z¥(3) . (168)
, : —

Note that Ff}f depends on the symimetry class Y only through the represen-
tation dimension d(Y) and the character y(P:Y').

In particular, equation (160) refers to the case Y = B, for which (Y} =
d(B)=1and ¥x(P;Y) = x(P:B) = 1.

7 The harmonic oscillator

We can gain some general insight into the properties of anyons, and even
learn something about the gas of free anyons, by doing the barmeonic oscil-
lator problem.

For two anyons it can be solved analytically, and all the encrgy cigenval-
ues depend linearly on the statistics angle ¢, with a slope of fixed absolute
value, sometimes changing sign at the bosonic values ¢ = 2n7 for integer 7.
For three anyons, however, only about one third of the energy eigenvalues
have the simple linear # dependence and are known analytically.

7.1 The two-dimensional harmonic oscillator

Let us treat the one-particle problem in some detail, in order to have some
notation and results for tater use. The Hamiltonian for one particle of mass
i in a harmonic oscillator potential is
2
= 4 Emwzm"! , (169)
2 2

o s the postition, p the canonical mementum, and w the angular frequency,
which characterizes the strength of the potential. H is rotationally syrmet-
ric and commutes with the canonical angular momentum L = xpy — yp-.

In order to quantize H and L simultaneously, it is convenient to intro-
duce the characteristic length

A=+ —, (170)
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the dimensionless comnplex coordinate

T+ 3y
z= ,
A

(171)

and the differential operators
g A[ 8 8 a2 Afa 8
2L ;90 = 2L 2 g
=3 2((% 233})' =g 2((9w+?8y)' (172)

such that 8z = 8*z* = 1, #*z = 82* = 0. In this complex formalism = and
its complex conjugate z* are treated as independent variables, We have
that

L =h{z0-2"8"),

|2*

H = hw (—2 89 + —) . (173)

2

The following annihilation and creation operators,

a-=8+%-, al = —8° 3
oz f— _§ z_"‘ 174
b=+, b d+5 (174)

satisfy the canonical commutation relations
[a,af] = B,d1] =1,  [a.b] = |a,b'] = [}, 8] = [¢!.01] =0,  (175)
and allow us to write

L
H

h(a'a - b'8),
hw {aTa + b6+ 1). (176}

The non-normalized wave function

|22

o :exp(—?) (177)

is the unique solution of the equations atq = by = 0, and describes the
ground state of the Hamiltonian H. A complete orthonormal set. of simul-
taneous eigenfunctions of L and H are

. 1 e |
bik = = (") (B1)F vy (178)

with j,k =0,1,2, .... The statc ¥, ; has angular momentum £f = (j — k)&
and energy E = {j + k + Dhw.
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These one-particle energy levels give the following partition function,
with £ = Fhw,

e ¢ 1
ZyB) =Y e B = = : (179)
jzk (L=e™)?  4qmn?(§)

The repeated action of the creation operators ¢! and #" on +g produces
wave tunctions that are polynomials in z and z*, multiplied by ¢y, It is
natural to split off the Gaussian factor ¥y explicitly and write a general
wave function v as

o= =¥ CXD(" 2 ) - (180)

In cousequence, we replace a general operator A by A, defined such that
Ay = (&) vip . (181)

This gives in particular that

i=0. @l=-0"+z,
b=0", bt=-0+2, (182)
and hence,
L=nh (a*a —E*E}) —h(z0—29") =L
H = he (a‘a + BB+ 1) = hw(—200" + 20+ 28" + 1),  (183)

Thus, one possible approach to the simultaneous eigenvalue problem for L
and H is to look for polynomials ) that are eigenfunctions of L =1L andof
H. The homogeneons polynomial 27 (z )“_ for example, is a solution of the
eigenvalue equations

20272y = j2 (2N, oA () = k() (184)
It is not an eigenfunction of H, because
32 (") = kL)L, (185)

but we see that a unique eigenfunction of H and L can be constructed as a
linear combination

Yok =222+ a2 P 4 e T (186}
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with n = min(j, k). This is of course the same state as in equation {178).
In fact, starting with the ground state ¥y = 1, we have

bik = (@Y () o = (-8" +2)7(=0 + ')
= (=& +2Y )V =(-0 +20)F 7. (187)

The lowest order term in equation {186) is either 22 =% or (2*}*~7, depend-
ing on whether j > k or j < k. Thus the asymptotic form of the wave
function ¥ = ¥y as |z| — 0 is |z|¥l, where # = j — k, and £A is the
angular momentum. The quantum number n = min(j, k) describes radial
excitations.

A standard asymptotic analysis of the eigenvalue equations Hy = E%
and Ly = £k gives the same resuls. Let » and ¢ be polar coordinates, that
is, & = rcos ¢, y = rsin g, then we have

B2 (9 18 1 & 1
. LA A B 188

Zm, (87'3 7 or t = 8(&2) Ty (188)
An eigenfunction for L = —¢hd/d¢ has the form

wir, @) = flr)e? . (189)

Assuming that f(r) has the asymptotic form f{r) o ¥ as v — 0, and
inserting into the equation H¢r = FEi). we get asymptotically as r — (}
the equation 22 — ¢2 = 0. The minimum requircment is that ¢ must be
quadratically integrable, implying the inequality g > —1, but since there is
ne reason for 4 to be singular at r = (), we have to require that g = 0, and
hence g = |£].

7.2 Two anyons in a harmonic oscillator potential
The two-particle Hamiltonian is

g L

1
=5 ('pl2 + pzz) + 3 mw? (1% + 7). {190}

We introduce the anyon statistics by requiring an arbitrary wave function
¥ to be multivalued, with

(@2, 21) = € P(wy, 22) (191)
for an amticlockwise interchange of particle positions. The phase angle & is

defined modulo 27, and we will assume here that @ = v with 0 < p < 2.
Then v = (0 represents bosons, while v = 1 represenis fermions.



J. Myrheim: Anyons 321

The motion of the two particles can be decomposed into independent
motions of the centre of mass position X = (@ + x,)/2 and the relative po-
sition & = &1 —a2. The cancnically conjugate momenta are P = p, +p, and
p = (p, — p,}/2. This gives the following expression for the Hamiltonian,

2 2
H = L + B metx? oy l'rnu,!gc::2 . (192)
dm  m 4
Thus the centre of mass is represented as a “particle” of mass 2m, whereas
the relative coordinate describes a “particle” of the “reduced mass” m/2.

The anyonic symmetry condition atfects the relative motion only, and
takes the following form, still with the anticlockwisc convention for changing
T into —m,

»(X, ~x) =YX, ). (193)

This condition is singular at i = 0, whenever 4 is not an integer multiple of
w, and so forces the wave function to hehave singularly there, in the sense
that it goes to infinity or is not differentiable.

Let r and ¢ be the relative polar coordinates, then the relative motion
part of the wave function must have the following asymptotic form as r — 0,

Yralr, @) = r# e? (194)

with #x = 8 + 2kw for some integer k. Like in the one-particle case we get
from the encrgy eigenvalue equation, to leading order in r, that p? — €2 = 0.
We choose the solution g = |£], to make ¥ finite in the limit + — 0, even if it
should happen that |£] < 1 so that quadratic integrability allows the choice
¢ = —|€]. We have assumed here that 8 = vw and 0 < v < 2, hence there
are two classes of energy eigenstates: class (I) having g = v.v+2,v+4, ...,
and class (IT) having p =2 — v, 4 —v,6—v, ....

Let us introduce the complex coordinates 2, and z in the same way as
before, and define Z = {z; + 23)/2 and z = z; — #3. Then the Hamiltonian
15

2 — 9
Oz, D2y 2 Ozp D23 7 T 2
a? o7 [2]2
= hw|— —4 ZP2+ =L 195
( 5zoz° Yaras 1A (198)

H= = hw (- i & ImF leP)

and the total angular momentumn is

w2 2,2 *_9_)
,Z]azl 21 m Zn = o

- Z
Oz} 20z

a8 .8 & .o
E(ZBE—Z (r)Z'_'—ZE%‘-_z @) (196)

L

i
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Next we define annihilation and creation operators as foliows,

1 3 Z t 1 4 z*
= —= —= a'=———= +—=,
20z V2 V2 9Z 2
1 4 zZ* 1 & Z
b= —-——= + . e e — + — | 197
zZ A VRN 197
2, z d z*
c \/532"‘ + 53 c V2 " =
g z* d z
d=vV2— + : dt= V2 _—+
) 22 dz+ V2
The non-vanishing commutators among these operators are
[e,a'l = b.81) = [¢,cT) = [d,d'] = 1. (198)

With these definitions we obtain the following form of the total angular
momentum and Hamiltonian,

L
H

B

hi(ala — bTb+cle - d'd),
hw (ala + b6+ cle 4 dld +2). (199)

]

Two energy eigenstates having the correct symmetry under particle inter-
change, and belonging to the classcs (I) and (II) defined above, are

W) =2, ) = () o, (200)

with

2 2 2
o = exp(—'—zl—|—_l——]f-2|—) = exp(—-|Z[2 - ﬁ) : (201)
2 4

Thev h EU) _ (I} _

ey have energies 2+ v)w and By = (4 — v)hw

We may construct a complete set of energy eigensiates by starting from
these “ground states” and acting with the creation operators af, b1, ¢f and
dt, within certain restrictions. Because ¢! and d' are antisymmetric under
interchange, we have to use either (c')2, {(d")? or c'd! in order to preserve
the interchange symmetry of the wave functions. There are two further
restrictions, when 0 < v < 1 or 1 < v < 2, because the action of either (cf)?
on -z_f;(()l) or of (d")? on wéll) produces a singular wave function. However,
ctdl is always a “good” operator. Hence the general eigenstates are, with
4.k, {, m independent non-negativ intcgers,

W = (@1 (0 () (ah2m e
P = (@) (B1F (eTdh) (e o (202)
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Here 4, k are quantum numbers of centre of mass excitations, while {,m
describe excitations of the relative degrees of freedom. The corresponding
energy levels are

E_glk,f,m = 24+v+it+hk+242m)he,
B = —vtjrkt2lromihe. (203)

This gives the two-particle partition function, again with £ = #fiw,

e—-{2+u)§ + e—(4—u)£

Zz(.()’) = Z e BEikntm = — -
— e — o282
Skbm (1—e"8)2(1 —e~%)

_ cosh{{1 —»}{)
8 sinh? (%) sinh? £

(204)

7.3 More than two anyons

Although the complete solution of the N-anyon problem in a harmonic
potential can only be obtained numerically when N > 2, it is still possible
to find a number of exact energy eigenstates.

The N-particle Hamiltonian is a sum of N one-particle contributions,

1 2 2
H= Z(2m o+ 5wy ) (205)

The centre of mass motion can be separated from the relative motion, be-
cause the potential is separable by the identity

N 1 N 2 N k-1
Yot ol (Sa) 25 e nr . em
i=1 i=1 k 2 j=1

The centre of mass energy spectrum is identical to the one-particle spectrum,
that is, the encrgy levels are nhw with degeneracy n, for n = 1,2,
Hence the centre of mass motion contributes to the energy but not to the
degeneracy of the ground state.

The bosonic ground state has all N particles in the lowest one-particle
level, hence it is non-degencrate and has energy Nfiw, including the centre
of mass contribution, In the fermionic ground state the N onc-particle
states of lowest energy are filled. Thus there exist “magic numbers” N =
nin+1}/2 =1,3,6,10, ..., with n = 1,2, ..., such that the one-particle
levels up to and including nfw are completely filled. The total energy is
then

n(n+ 13(2n + 1) N+BN +1

E=(1+4+4+  +n®)hw= c b = ———— . (207)
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For these magic numbers the fermionic pround state is non-degenerate, but
for other values of N it is degenerate. Thus the degeneracy is 2 for N = 2,
Jfor N=4dand N=5,4for N=T7Tand N =9, 6 for N =8, and so on.

Like in the one-particle case we may introduce complex coordinates z;
as well as annibilation and creation operators a;. &;, aj-, b;r-._ in order to write
the Hamiltonian as

N N
= g Ly, g2 . t f
H= ﬁw; (—2djdj + 3 {21 ) = hw ; (ajaj +b3b; + 1) . (208)
and the total angular momentum as
JN'
L= hz (2305 — 238;) = b3 (ala; = blp;) - (200)
g=1

Assuming that all the operators G}(I-j and b}bj are non-negative, we derive

the following ineqnality relating the energy E and total angular momentum
£h,

E > (|6l + N)hw . (210)

The non-normalized wave function
g = exp| —

N
pE s (211)
i=1

is annihilated by all the operators a; and b;. Again we may split off the

LRl

Gaussian factor ¢p and write any wave function ¢ as 3 = t¢g, at the same
time as we replace any operator A by A, such that Ay = (A¢) 4. Then
we have, in the same way as before, that

a; = o, il =—a + 2,
by =8, bl=-8 +2. (212)

and,

|
=

uad]
il

N
(3, ~Blb;) =h Y (2,0, — 215))
j=1

(a G +bib; +1)

T
I

s,
Il

T

= huw Z (~28,8; + 2;0; + 28, +1}. (213)
J:

4
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The generalization of the exact two-anyon energy eigenstates of equation (200)
are the states

I _ AY iy Tff[l — {A )2 Vg (214)

where 4 is the lowest degree totally antisymmetric polynomial in the vari-
ables 21,22, ..., 2n§,

N k-1
A=[T1IG =) =TIt - =) (215)
=2 j=1 ek

Up to a sign, this is the Vandermonde determinant,

1 1
21 Zg N

A=+, . _ . . (216)
ZlN_l 32}\—1 Z'\.'N_l

Since A is a fumction of zy, 72, ... . 2w, but not of 2F, 23, ..., 2%, it follows
that A* is a function only of 2], 23, ..., 25. And since A is a homogeneous
polynomial, A¥ and (A*)?2~" are both homogeneous functions, of degrees
N{N-1)v/2 and N{N —1){2—1)/2, respectively. The homogeneity means
by definition that

N
Z‘ N(N —
z‘ja‘: AV = _.M L AU .
— " 2
=1
* ok ¥y 22— j\-"(ﬁf\.’ B ]) ‘ ¥y2—v
E z;07 ) (A7) =5 (2-v){A" ). (217)
Thus the total angular momentum of the states i, ,g and L,{l ) i
N-1 N(N -1 o
¢p = —(~2—) vh, V= _(—2—) (v — 2}, (218)

respectively, and the total cnergy is
N-1 N -1
BN = (T v+ 1) Nhw , B8V = (T (2-uv)+ 1) Nhw . (219)

In both cases E = (]¢| + N)hw, meaning that these are ground states for
those two values of the angular momentum. For » = 1, in particular, these
are fermion states constructed either from the one-particle states z7ty or
from the states {z*)74y, with j = 0,1, ..., N — 1. However, the encrgy
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is higher than the fermion ground state energy for every N > 2, and the
discrepancy increases with N, since the energy increases like N? for large
N, whereas the fermionic ground state energy increases like N+vN. The
ground state energy is not exactly known for anyons close to fermions, even
in the three-particle case.

We may act on these two states by creation operators, taking care to
preserve the interchange symmetry and avoid generating singular states. In
this way we get energy eigenstates that we may classify as type (1) or (II}.
Besides the fact that we do not get the fermion states of lowest cnergy,
another way to see that not all energy cigenstates are of either type (I) or
(II}, is by considering the asymptotic behaviour of the wave functions when
two particles approach each other. The states of class (I} will all have the
asymptotic form (z; — 2z} T2 as |z; — 2] — 0, whereas those of class (II)
will have the asymptotic form (2] — 27)7“**", with m and n nen-negative
integers. But there must exist more general states that somehow mix these
possibilities, an example is the three-fermion ground state,

Y= 2125 4 2223 + zaz] — Zpz] — Zady — A7 . (220)

Let us look more closely at the states of class (I}, They are of the form

wzf(zla--<32N3ZIsv--sZR')A“= (221)

where we have split off, as usnal, the Gaussian factor %, aud where f
is a polynomial in the 2N independent variables =1, ..., zn, 2], ... 2},
symmetric under interchange of particle labels. The “reduced” Hamiltonian
operator H, acting ou ¢, is given by equation (213),

As a starting point for constructing an energy eigenstate, assume that

f is a homogeneous polynomial, of degree J in 21,22, ..., 2n and degree
K in 27,23, ..., zy. Then we have that
H{fAYY (NN -1) i
== ! .. K
W 5 v+ N+J+ S

N k— latf 3;5

_QZa*aj-zuZZ p— (222)

If the last two terms here do not vanish, they add up to a homogeneous
function of degree (J — 1, K — 1}, which has to be compensated for by the
addition to the polynomial f of a “counterterm”, in fact the same homo-
geneous function multiplied by some constant coefficient. The counterterm
may need a second counterterm, of degree (JJ — 2, K — 2}, and so on, until
the variables z},25. ... .z} are eliminated and the process stops after K
steps.
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This construction of au cnergy eigenstate works smoothly and produces
a non-singular wave function as long as the counterterms arising are all
polynotials. We see from cquation (222) that the necessary and sufficient
condition is that the polynomial 87 f — & f must always be divisible by
zj ~ zx. This condition must hold when f is the homogencous polynomial
we start with, or any one of the counterterins that we construct successively.
Since we are working with symmetric functions, it is enough to impose
the single condition on f that 87 f — 83 f must be divisible by z; — 2s.
Equivalently, we must have 87 f — 85 f = 0 when 2z; = z3. Remember that
we treat z and z* as independent variables, so that z; = z3 does not imply
2] = z3. Explicitly written out the condition is that

(OY flz 2023, oo 2w, 2], 20, me o an) =
(05 F)z.2.23, ... c2n, 2 20, 200 o L Zn ) (223)

Let us call a symmetric polynomial f “good” if it satisfies this condition.
Since the condition is linear, any lincar combination of good polynomials is
a good polynomial. Almost as easy is it to see that any product of good
polynomials is again good.

Obviously, f is good if it does not depend on 2}, 25, ... ,2%. Let 9 be
the symmetrization operator,

1
S:mZp, (224)

pes,
Then the polynomials
o ey L Qf e IN L INo N Srtjattin

Cirgze i = Vi Jae wordn D217 22N TN gy ) (225)
where ji,js, ... ,jx are non-negative integers and 7y;, j,. .. j» are (unspec-
ified) normalization factors, form a basis for the vector space of symmetric
polynomials in 21,22, ..., zny. These basis polynomials are homogeneous
of degree ji + 2j2 + --- + Njy. By definition, the elementary symmetric
polynomial ¢; in 2y, 22, ..., zx is the basis polynomial for which j; = 1 and

Jr =0 when £ # {. Explicitly written out, we have for example,

e = z1+z+---F 2y,
Co = Ziza+ 2123+ -+ ZN_12N (226)
C3 = z22z3 + 718084 + o F IN_2ZN_12N .

The corresponding N-anyon energy levels of the harmonic oscillator are
therefore

NN -1 .
Bz, g = (1(—2—) v+ N+ +2+ -+ NJN) Pus . (227)
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In the system of charged anyons in a magnetic field, discussed in the next
section, the same wave functions are even more useful, since they describe
the degenerate ground state, the lowest Landau level “LLL".

This is not yet the full story. In fact, any symmetric polynomial which

is linear in 2§, 23, ... . z}%. is also “good”. It must be of the form
N
F=3 Flenza oo 2w) 2, (228)
i=1
with fi{z1.22, ... .25 .28} = filzjize, oo, 2z, ..., zy), and with

filzy, 22, .. .zx5) symmetric in the N — 1 last arguments. The condition
for f to be “good”,

Silz oz, 23, .. vzn) = falzoz 23, . L2n), {229)

is seen to hold antomatically. It follows that all sums and products of
syminetric polynomials linear in 27,23, ..., 2%, are good polynomials. The
tricky part of enumerating all such good polynomials is to avoid double
counting.

The enumeration can be done as follows. Let

N

N
sv= 2%, =Y zfz, (230)
i=1

Jj=1

and let G (“G" for “good™) be the set of all polynomials in sy, 82, ..., sN,
to,t1, ... ,tn—1. Then it can be shown that G contains every symmet-
ric polynomial we can generate by taking sums and products of symmet-
ric polynomials that are either independent of or linear in 27,23, ... .75
Moreover, because the 2N variables 51,52, ... ,85,%0,%1, ... .ix—1 are in-
dependent, the representation of a symmetric polynomial as a polynomial
in these particular variables is unique.

In order to see that we actually get cigenfunctions of the Hamiltonian,
we should start with the basis polynomial

F=stsg® st Rty P (231)

in which f1, 42, ... 3N, k1, ke, ..., kn are arbitrary non-negative integers,
and carry out the construction as cutlined above. The construction indeed
works, and we get an energy eigenvalue which is

(D) _ (N(N -1
2

E T P M v+ N+ +2f2+- 4+ Njn
¥k +2k2+»-<+NkN)hw. (232)
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The energy eigenfunctions are

U ke = (AP (AR (BhR (B A . (233)

when we write
N N
AL=>"(a)*, Bl =3 (a)l. (234)
i=1 J=1

A parallel construction can be carried out for the states of class (IT), leading
to the energy eigenvalues

NN -1 L g
ED i = (—(5__} (2-v)+ N+ j1+2j2+ -+ Njn

+ &k + 2k + 4+ f\r"k;\,') hw.
{235)

All of these energy eigenvalues depend linearly on the statistics parameter
v

The partition function obtained by summing over the “linear” energy
levels is then

N
ZL _ (}—““? U ve BNLATLEL Y (2—;»)&) —-NE
~B) { te 7 © nl:-[l (1 — e—mé)2

N

B 1 L {NN-1) B 1 _
= ___22:'\(—1 (,Obh(—2 (1 V)g) 7];_:[1 sinhQ (%ﬁ)

The above arguments left a number of leose ends that we should try to tie
up. Consider first the generating function for the elementary symmetric
polynomials e;, ... ,cn,

(236)

N N

glw) =1+ ch’wj = H(l + wz;) . (237}
i=1 =1

On the one hand we have that
o N k
4 _l)k—l : ) (312
Ingf{u) = (— ~a? = L S (- ST
g{w) kz::l - ;qw aw+ (cz 5 | w +

il

N o (_1);’:—1
Dol +wz) = — spu® | (238)
1=1 k=1
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and this gives every polynomial s, as a polynomial in ¢, ... ,cy. On the
other hand we have that

glw) = ﬁ pxp(ﬁskwﬂ
. - k
k=1
.‘312 3
=1+s5w+ —se+ o Jw +-e (239)

and this gives ¢;, ... ,cy as polynomials in 8. ..., sy. The fact that the
last product of exponentials is a polynomial of degree N gives relations that
can he used to express s; for cvery k > N as a polynomial in s1, ... \sn.

The values of 51,82, ....sx5 determine the values of ¢1,¢2, ... .cN,
which in turn determine the values of zy, 29, ... . 2n, In arbitrary order, as
the roots of the equation

,ZN+L’12N—1+"‘+CN=U- (240)

Next, given z1, ..., zn in a definite order, the values of £, ...ty deter-
mine uniquely z7, ..., z5. This shows that the 2N variables s1, ... sy, %0,
... ,tx—1 are independent, and that every symmetric function of z1, ...,
ZN, 2}, ... .z} must be functionally dependent on them. However, the
functional dependence need not be polynomial, and there do indeed exist
symmetric polynomials in zy, ... ,zy, 2], ..., 2y that are non-polynomial
functions of s;, ... .sn.t0, ... En—].

As already noted, s; for k > N is always a polynomial in 51, ..., sx5.
Another way to see this is to observe that

ij+812jk_l+“'+(’.N2jk_N:ﬂ (24])
for every k > N and 7 = 1,2, ... N, impiying the following recursion
relations,

Sk = —C18k—1— " T ONSKk-N
tr = —citgo1 — - — ONR-N - {242)

In general, we may write every symmetric polynomial in the 2}V variables
Zyy ... ZNy 2], -.. .2} @8 a linear combination of the symmetric polyno-
mials generated by the following generating function, where woo = 1,

N o oG
kol
glwio, woy, wao, Wi, -+ ) = H Zzwkizj Z5

j=1 \k=11=1
N _
=14 Z cw’ + ... {243}

=1
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By a similar reasoning as above we find that all such polynomials can in
turn be expressed as polynomials in the special symmetric polynomials

N

o DI (244)

F=1

which include the polynomials s and #; defined above.
Thus in particular, and as we already know, every symmetric polynomial

in z, independent of z*, is a polynomial in 8,82, ... sy. Furthermore,
every symmetric polynomial in z and z*, linear in z*, is a polynomial in
81y e o8Nt o ENZT, linear in tU,tl, A Y

Ome point we have not proved here is that our list of energy levels de-
pending linearly on v, is complete for states of class (1) when the polynomial
part of the wave function is guadratic, cubic or of higher degree in z*.

Another point worth noting is that there are three common operators in
the two sets of creation operators producing the excited states of class (1)
and (II}, they are

N N N
Al=Y"al,  BI=Ytl, BI=Ydlbl. (245)
i=1 =1

=1

Two are linear and one is quadratic in the a' and #" operators. The lin-
eal ones produce pure centre of mass excitations, whereas the quadratic
operator

~ 1 a 1 1
Bl =Bl — FAEBI =3 (a.} -5 AI) (b} -~ B{) (246)

i=1

produces excitations of the relative motion, which can be interpreted as
radial cxcitations.

The distinguishing property of the two classes of so called “linear” wave
functions s their asymptotic behaviour as two particles come together:
{(z; = 2)" T2 for class (I) and (2] ~ 252742k for class (I1), with k& = 0,
1, 2, ... But all wave functions, even the “non-linear” ones, must show one
or possibly both of these two asymptotic behaviours for one given pair of
particles. Since both asymptotic behaviours are “good” for the operators
AI, BI and B; it means that all wave functions belong to their domain of
definition. Therefore all energy eigenstates, both “linear” and “non-linear”,
come in so called “towers”, generated by the repeated action of B} on a
“bottom state”. Each tower has infinitely many states, with a constant
energy spacing of 2w,
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7.4 The three-anyon problem

The three-anyon problem is the simplest example going beyond the solv-
able two-anyon case. It has received much attention, and yet nobody has
succeeded in finding a set of coordinates making it completely solvable by
separation of variables. The best choice seems to be the coordinates de-
scribed below, for which the separation is almost complete. More precisely,
an anticlockwise cyclie interchange of the three particles gives a phase fac-
tor of e?* in the wave function, and this condition is compatible with the
separation of variables, The stumbling block is the condition due to the
interchange of two particles, which can in gencral ouly be satisfied by a
superposition of such separated wave functions.
We introduce the primitive cube root of unity

2i 1 3
W= exp(%) =-3 +4 —\é—_ . (247)

with the properties that 7° = —n — 1 = 5* = 1/n, and define the dimen-
sionless complex coordinates

1
Z = _— zZ + Z + z. 1
\/5,\( 1+ 22+ 23)
1 . .
Y3} (21 +m22 + 0723) | (248)
1
B = —— (21 + 'FI222 + 'T.’z::c) .

V3

Here A = /i/muw, as before. Z is the centre of mass coordinate, with a
slightly unusual normalization, while 1 and v are relative coordinates. The
inverse transformation is

71 = A (Z +u+v),

B

A
zy = 7 (Z +Pu+mr). (249)

(Z +mu+nt0).

A

23 = ——=

V3

This coordinate transformation is a discrete Fonvier rransformation, and it
transforms the cyclic interchange of particle positious.

(71,22, 23) — (F1, 22, 23) = (22- 23. 51 ) (250)
into the diagonal form

(Z,u,0) — (Z,5,7) = {Z.0°u.qe) . (251)
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The interchange of particles 2 and 3 is just an interchange of w and u.
These two permutations generate the whole symmetric group Sa. A similar
treatment of permutation symmetry has been used for some time in nuclear
physics [271,272].

Three particles in the plane define a triangle. The ratio

g= B2 (252)
3 —

is real when the triangle is degenerate so that the particles lic on a straight
line. We define the orientation of a non-degenerate triangle as positive
or negative depending on whether the imaginary part of g is positive or
negative. Thus the orientation is positive when the loop z; — 20 — 23 — =
is counterclockwise, and negutive when the loop is clockwise. We have that

L2
1 s+
uf st (253)
lel s+l
Hence |z| = || when the particles lic on a line, || < || when the orientation

of the triangle is positive, and [« = |#| when the orientation is negative.
The quantization of Lthe centre of mass motion is trivial, and the inter-
esting part of the prablem is the simultaneous diagonalization of the relative

Hamiltonian and angular momentum operators,

&2 9 > |vf?
Hrv. = fuw -2 - & - e n 12
. i ( O Pur v v + 2 i 2 )
¢l 5. o d
Loy = H{a< _ LA ‘ 254
° I (” Je " B *e g (')i,-'*) (254)

The three-particle contignuration is completely described by a total scale
factor r > 0. a relative scale factor ¢ > 1, and two angles ¢, and 2 such
that

ryeli re’dz

W= —— v —_—_—
V14?2

_ et (255)

VIt

These are the hyperspherieal coordinates of Kilpatrick and Larsen, except

that they used the angles =) + 2 instead of ) and y [273]. We now have
that

Hal 1 & ,d 1+¢1+¢23 8 1 9? N o? +r2

= 5o - g —— 5 Yo TS 5 T a5 3 a7

fiw 2t e i 2,4 q dq i dg 4% Bt Ope? 27

L (0 0
L (_f_+ ‘ ) . (256)

h D g

Assume that the wave luction of the relative motion is separable,

¢ = g f1p2) = F(r) glg) et Ueren) (257)
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Then the eigenvalue equation H,. ¥ = E4 separates into an angular eigen-
value equation,

1+¢°d d 42
{1+q2)(— Rl ‘—+—+k2)g=Ag, (258)
q dgq dc

with A as eigenvalue, and a radial equation,
1 3 A r? E
Ty I el - [ . 259
3770 =2 70+ (4 5 ) 10) = 4= 1) (259)

A general wave function can be written as a linear combination of such sep-
arated wave functions. As will be seen below, we need linear combinations,
where A and j + & arc constant but j — k varics, in order to satisfy the
anyonic boundary conditions.

The radial wave function must have the form f{r} = #* e T2 (%),
with f1 a polynomial of degree n, = 0,1,2, ..., and in the above radial
equation we have to choose

A=p{p+2), E=02+ 1+ 2n)hw. (260)

We must take g > 0 if we require the wave function to be finite as » — 0,
or p > —2 if we only require it to be normalizable.

Equation (258} has two asymptotic solutions ¢&7 in the limit ¢ — 0. We
exclude the singular solution (for j = @ the singularity is logarithmic). In
fact there is no reason for any singnlarity at ¢ = 0, where the configuration
is an equilateral triangle. The solution

9(g) = "' (1 + ¢*)* Fla, bic: —¢%) (261)
is unique up to normalization. The constant & may be chosen in one of two
WAaYS,

p i
K=o 1 or P 5 (262)

giving two different representations of the same solution. The constants

i+ |k i| - [&
:—-—|3|J2r||+n-._ b=—|‘7|2|]+n c=1+jl, (263)
define the hypergeometric series
(@) () =7 9@
Fla,biez) = E O _mT , (264)

'm—(]

where, e.g. {a)o = 1, (a)nt1 = (a)n (@ +n). The convergence radins for this
series is 1. A more convergent representation is, e.q.,

2
=gl 1+ @) Flac—be—2 ) : 265
@) = (14 @y F(acm b (265)
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We now need the boundary conditions in order to determine the allowed
values of the quantum numbers j, & and A = p{p + 2} in cquation (258).
For threc identical particles there is a six-fold identification of points in
the relative space. We will restrict the wave functions to the region 0 <
g < 1, which corresponds to all the positively oriented triangles, but is
still a three-fold covering of the true configuration space. The boundary
conditions defining the particles to be anyons are of two types, since there
are two classes of non-trivial permutations. The first class contains the
three-particle cyelic permutations, which leave ¢ invariant. The second class
contains the two-particle interchanges, which transform ¢ into 1/¢, and so
give boundary conditions at g = 1.

Consider first a continuous, counterclockwise and cyclic deformation of
the configuration, as defined in equation (250), with no extra overall rotation
of the triangle. It gives a phasc factor ¢®¥ in the wave function, where
# = vr is the statistics paramcter. We should kecp |u| < ju| all the time
during the deformation, that is, all the deformed configurations should be
positive triangles, since this is the region where we require the wave function
to be defined, and since ihis will ensure that no pair of particles wind around
each other separately. Then the phase of v Increases continuously from s to
wa + (27 /3), whereas the phase of u changes from 1 to ) — (27/3) + 2m'w,
where ' is any integor. Note that u = () represents a positively oriented
equilateral triangle, and by means of small deformations closc to u = 0
we may change the phase of 4 by an arbitrary multiple of 27, We can
not change the phase of ¢ similarly without rotating the whole triangle, or
deforming it so that its orientation becomes negative. The condition on the
wave function is, therefore,

. 2n 27 0 .
¥ ('r, ¢ 5t 2m'n, w2 + 3) = e (r.q,¢1,02) - (266)
That is,
2% 2
J (— 2 + 2':'n’?r) +k —SE =2(n' + v)w (267)

for some integer »'. Since m’ is an arbitrary integer, § must be an intcger.
Then

k=j4+3n+r), (268)

where n = v’ — jin/ is an arbitrary integer, and the eigenvalue of the relative
angular mowentiun Ly is A with

(=j+k=2/4+3n+v). (269)

These relations take care of the cyelic permutations of all three particles.
What remnins is only to take care of one of the three cases where two
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particles are interchanged, for example zz +— 23, or equivalently, « « w.
This is the same as ¢ +— 1/g and ¢ — a, if we define angles so that u = v
corresponds to ¢, = 2. To be more precise, we consider a continuous
interchange, with g = 1 at the beginning and end, and ¢ < 1 during the
interchange. The interchange should be anticlockwise, which means that we
start with 1 > 2, and end with ¢, < 2. There is one further restriction,
that 1 — gs| < (27/3) when ¢ = 1, meaning that the particle position z;
must not be encircled.
Thus, the boundary condition on ¥ at g =1 is

B(r, Lz, 1) = e 0(r, Lipr, o) (270)
for 0 < 1 — e < {27/3). It is a special case of the general condition

W(r 1/, 02,01) = e (r ¢, 01, 92) . (271)

Since the Schrédinger equation is second order in the g derivative, we need
boundary conditions at ¢ = 1 both for the wave function 4 and its normal
derivative ¥, = A /dg. The derivative condition is easily deduced,

Tf)q(""s 13{1‘923 ‘Pl) = _eig r{"-IIJIt}P(“"' 1! ©1, [19‘2) . (272)

The boundary conditions for 4 and %, can not in general be satisfied by
a wave function which is separable in ¢, @1 and 9. But we may quantize
the relative angular momentum £, and according to equation (269) £ — 3 =
27+3n is an integer, either even orodd. Let v’ = vifn=2mand v/ =v+1
it n = 2m + 1, with m integer. Then

. v £ v .
3—5—3(m+5), k—§+3(m+a)- {273}

Let gm(q) be the function g{q) as given by equation {261}. Introducing
¢ = (@1 + w2)/2 and £ = 3(y) — 2), and summing over m, incliding an
as vet undetermined cocflicient ~,,, for each m, we get the following angular
wave function,

a0
g, @1,02) = D T gmlg)e TR

TM=—00

0
=’ 37 gmgmla)e UM (1)

=20

It is natural to call & an anyonic spherical harmonic function, whenever
it satisfies the anyonic boundary conditions. The two boundary conditions
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that must hold for 0 < & < 27 are

oc 20 )

Z . gm(l}eamf — et(u?r—v &) Z . gm(l) e —imé ,
m=—oc m=—00

o oc

Y (e’ = —e TR T, gl (e (275)
nr=—20 L= — 20

Recall that g,,(1) and g),(1) depend on the three parameters p, £ and m.
For each given £, the parameter g, which determines the energy E, has to be
adjusted so that the above boundary conditions have non-trivial solutions
for the coefficients ~,,. For each £ there will be many solutions, possibly
more than one with the samce jz, and this procedure should give the complete
set. of anyonic spherical harmouics.

The left hand sides in equation (275) are two functions of £ with Fourier
components Y, ¢m(l) and ~p, ¢n, (1), respectively. They are periodic in £
with period 27, and may be regarded as functions on the interval [0, 27
There is a natural scalar product between any two functions ¢ = ¢(£) and
x = x(8), with Fourier components ¢, and xm,

2
@5 [ GO xO= 3 dn (216)

MmM=—0nc

Define the linear operator A by

[A¢](¢) = e D p(2r —¢) (277)

for 0 < £ < 2%n. Then A is Hermitean with respect to the natural scalar
product, and A? = ], the identity operator. Note that A is a somewhat
singular operator, unless v is an integer, since the factor e"'(”_”’@, extended
by periodicity outside the interval [0, 2«), is discontinuous at every integer
multiple of 27. This shows up in the slow asymptotic falloff of the matrix
elements of A with respect to the basis functions "™,
1 —imE ilem—u'E) in{2r—§) SiD(U?T)

Apn = Apun = o /0 dée e c e ———— (278)
The bosonic lmit ¢ — 3 is Apmp = b4y —p, and the fermionic limit v — 1 is
Amn = _51?1,—-”—1-

Define operators G and (&' that are diagonal in the Fourier representa-
tion, with matrix elements

G'm'n. = gna(l)(sm.n H ‘i‘nn = q-m(l)é‘mn . (279)

Then the above boundary conditions may be written as

(I-A)Gy=0, ({T+ACv=0. (280)
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Since A is a real symmetric matrix and 4% = I, the two vectors (7 —
A)Gy and (I + A)G'~ are orthogonal, and we may for example add the two
conditions to get one single, equivalent condition,

(G+G — AG -Gy =0. (281)

There exist nontrivial solutions for v whenever the operator G+ G — A(G —
G'} is singular. If we truncate the equation, the condition is that the deter-
minant must vanish. Since the determinant is real, and a small change in
v conld move a zero of the determinant, but not remove it, or introduce a
new zero (at least not without removing or adding a double zerc at once)
wa conclude, by continuity in #, that the anvonic solutions are in one to one
correspondence with the bosonic and fennionic solutions.

To find numerical solutions we must truncate to a finite number M of
coefficients. Remarkably enough, this mcthod is capable of giving many
energy levels with non-trivial accuracy even if we take M to be very small.
This is so when the low Fourier components dominate. On the other hand,
the convergence as M — ¢ is sometimes very slow. This is clearly related
to the fact that the wave functions for non-integer ¥ have non-integer power
behaviour at £ = 0, where two particles meet. Hence the approximation by
means of a finite Fourier series converges slowly.

An empirical rule is that the leading correction term for finite M is
of order M~2". Using two different M one may therefore extrapolate to
M = 0o, and this improves the convergence considerably. Another point to
note is that one may take advantage of the supersymmetry in order to get
more accurate energy levels.

8 The anyon gas

We will discuss in this section the cluster and virial expansions for the
anyon gas, which are by now fairly well understood. although not com-
pletely solved. The fact that these expansions exist for anyons. is iu itself
non-trivial.

Three complementary methads for computations, all with their own lim-
itations, are perturbation theory, non-perturbative munerical computation
of energy levels, and direct computation of partition functions by the Monte
Carlo method. All three methods rely on regularization techniques to ob-
tain the thermodynamic limit from finite systems. Pertinbation theory has
given important exact information, but will be mentioned only very hriefly
here. A fourth method is mean field theory, which should be covered in
other lectures.

The present discussion may seem like an evasion ol the most interest-
ing topic, which is the low temperature behaviowr of a svstem of anyons,
However, the low temperature problem is a hard nut to erack. and the high
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temperature side is one possible direction of approach. Attemts to under-
stand more directly the low temperature behaviour are usually based on
mean field theory.

8.1 The cluster and virial expansions

The virial expansion for the equation of state of a gas,

[o o
BP=p+> Anp™, (282)
n==2
is called so becanse it is related to the virial theoremmn, see e.g. [274]. Here
3 =1/kgT, kp is Boltzmann’s constant, T the temperature, P the pressure,
p the number density, and A,, = A, (T} is the n-th virial coefficient.
Another representation of the equation of state is the clusier expansion,

BP = ibnz“, p=2z 6 P) Z nb, 2 (283)
r=1

Any power series with a non-gero radius of convergence defines an analytic
function, which in general is well defined in a region in the complex plane
at least as large as the circle of convergence of the series. In fact the con-
vergence radius is the smallest distance from the origin to any singularity
of the analytic function. In general there need not be any direct relation
between the convergence radius of the virial expansion and the region where
the equation of state it represents, is physically valid. We will use the clus-
ter and virial expansions here without worrying too much about questions
of convergence.

Eliminating z in equation {283) gives equation (282), with the following
relations between the virial and cluster coefficients,

A? = _323
b
2bz  4b3
A3 = -?- + —ff, (284)
_ 3})4 18b5bg 20?)3
Ay = b4 + 5 b? :
and so on. Or inversely,
by = —bid,,
b3
by = -5 (Az — 443), {285)
bnl
by = 3 (A4 — 94345 + 16A: )
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and so on. Note that the coefficient by is not determined by the virial coef-
ficients, becanse the normalization of z is not fixed by the equations (282}
and (283). We may define z = e®, where p is the chemical potential. 7 is
usually called fugacity, although strictly speaking it is only proportional to
the fugacity, which has the dimension of pressure.

H the particles interact by a two-particle potential, then a necessary con-
dition for the existence of the virial expansion in the thermodynamic limit
of infinite volume and constant deusity, is that the potential has sufficiently
short range. For example, if it decreases as r~™ at large distance r, then
the condition is that n > d, the configuration space dimension. However,
this criterion does not apply to a vector potential, and the virial expansion
exists for non-interacting anyons, even though anyous are two-dimensional
and have a statistics interaction which may be represented by a vector po-
tential proportional to 1/r. One may argue that the interaction range is
short in the sense that the statistics flux is localized exactly at the particle
positions, and the statistics interaction is present only when the particles
are close enough to interchange positions or encircle cach other.

The first clear evidence was the finite and exact result for the second
virial coefficient of & gas of free anyons [66, 128]. Perturbation theory gave
finite results for the expansion of the higher virial coefficients to first and
second order around the boson and fermion points [102,129,130,134-141].
The third virial coefficient was proved to be finite for all #, and was calcu-
lated numerically [122,143-145)].

A general proof can be based on the path integral representation for the
N-particle partition function, which leads to a path integral representation
for the.cluster coefficients, valid quite generally for anyons in two dimen-
sions, as well as for bosons and fermions in any dimension, interacting by
general scalar and vector potentials. It follows from this representation that
the cluster coefficients are finite when the interaction range is “short” in a
well defined sense, although it does not follow at the same time that the
cluster expansion converges.

In particular, the cluster and virial coefficients of the gas of free anyons
are finite. What counts is the pointlike nature of the flux more than the 1/r
dependence of the vector potential. The range is ternperature dependent,
however, because the statistics interaction is effective when the particle
paths wind around each other, and each path in the path integral repre-
sents Brownian motion of a particle in the plane, covering an area inversely
proportional to the temperature.

8.2 First and second order perturbative resuits

An important source of exact information about the cluster and virial ex-
pansion for anvons is perturbation theory, to first and second order in 8 at
the hoson point @ = () and at the fermion point 8 = 7.
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The stralghtforward way to do perturbation theory is to work, not in
the parallel gauge we have used so far most of the time, but in the bosonic
gange, where all wave functious are symmetrie, or in the fermionic gauge,
where all wave functions are antisvmmetric. Then the statistics gauge po-
tential is treated as a perturbation of the bosonic or fermionic Hamiltonian.
Since this gauge potential is singular at those points where two particles
come together, it is not obvious that perturbation theory shouid work, es-
pecially in the bosonic gauge, where the unperturbed wave functions need
not vanish at coincidence points. Furthermore, those wave functions that
do not vanish at coincidence points, depend on |6} rather than # in their
asymptotic behaviour at such points. Thus it might be necessary to treat 8
and |#] as independent expansion parameters.

Note that @ is transformed into —8 by either a parity inversion or a time
reversal. Equivalently we might say that # — 1 is transformed into —{# —7),
since —# — 1 and —8 + 7 represent the same statistics. Thus, if either parity
invariance or time reversal invariance hold, implying in particular that there
is no external magnetic field to break these invariances, then the energy
spectrutn and the partition function (but not the energy eigenfunctions)
will depend ouly on |8, or equivalently, on |& - 7|.

On the other hand, at the fermion point # = 7 it must also be possible
to treat wavefunctions, energy eigenvalues and the partition function as
analytic functions of €. In fact, the source of the non-analyticity at the boson
point 8 = {} is the asympiotic behaviour of some energy eigenfunctions, that
|&; ~ 21" as la; — x;| — 0, with 4 = |8|/#. Tt is mathematically possible
to choose p = —|8|/7 for small enough |#|, but thai would make the wave
functions diverge in the limit j2; — a;| — 0, which is nsually considered a
physically unacceptable alternative.

From this argument we conclude that when we make perturbation ex-
pansions around the fermion point # = w, we have a free choice whether
we want to use # — 7w or |6 — x| as our expaunsion parameter. This means
that the expansion of the partition function will contain only even powers
of @ — .

To be specific, let us consider the transformation from the parallel gauge
to the hosonic gauge. Tt is most easily discussed in terms of dimensionless
complex variables z; = (z; + iy;)/ A, where A is some standard length. Like
before, we define 8; = 0/8%; and 9 = 8/92;. Then the kinetic energy
operator of particle § is, in the parallel gauge,

p? 2R,

dm . mA2 47 (286)

Let 9 be the symmetric wave function in the bosenic gauge, and let © be
some fixed muliivalued function, such that @4 is the multivalued wave func-
tion in the parallel gauge. The gauge independent (covariant} derivatives
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are d; and 8} in the parallel gauge, whereas in the bosonic gauge they are
8; —ia; and 87 —ia}, where by definition

i

I (®Y) = ®((9; ~day)b), T {(Py) =P8 —iaj)h) . (287)
Thus the “statistics vector potentials™ a; and 2] are

a; = i0;(In®) a; =i0;(In®) . {288)

The question remaining to be setiled is how to choose the gauge transfor-
mation factor ®. One possible choice is the pure phase factor

(@)@ e

where A = [, 4 ( z). One problem with this is that the unperturbed
wave functions w1ll have the wrong asymptotic behaviour as [z; — zx| — 0,
since the behaviour of the exact wave functions depends on v, for example
as |z; — zi|¥). Another problem is that the gauge potentials, which are

ag; = 10;(Indy) = z—zzj !
ay; = i0;(Indy) = —£~Z ra (290)
J
give rise to three-body terms in the Ha,mlltoman, of the type
02 20 291
foster = kzz(zj—zk)z = .
£i1#)

A better method is therefore to split off explicitly not only the phase factor
Do, but also the factor |Ajl¥l. Thus we define

@ = |81y = A (292)
The corresponding vector potentials are
_ I.‘/| + v 1
a; = i0;(In®) =i — Z Pl
k£}
X an el —v 1
o) = id](In®) =i ; p (293)

Note that a; = 0if » <0, and a] = 0if v = 0. This gives that

N
> (@ —ial)(8; —iay) Za*
=1

+ M N O — 0 (294)

2 25— z2f
ek 7 .

jvi + v o7 — o;

zj—zk

ik
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and there are no longer any three-body terms present. If we take v = 0, we
have v = |v|, and

)'\‘r

D> (8 ~ ia5)(3; ~ ia) Za*awuzf : (295)

i=1 i<k
If instead v < 0, we have v = —|v|, and the complex canjugate operator,
a d; —
3@ —ial) (8 — day) Zd*a + 7| Z ‘ (296)
i=1 i<k J

Multipyling with —2#2/{mA?), we have here suitable kinetic encrgy opera-
tors for doing perturbation theory. If parity invariance and/or time reversal
invariance hold, then the wave functions and energies can be expanded as
power series in |v], except that the wave function for v is the complex con-
jugate of the corresponding wave function for —v.

The gauge transformation ¥ — Py from the bosonic to the parallel
gange is unitary, since Py as defined in equation (289) is a pure phase
factor (we do not mind that it is multivalued and hence singular if v is
not an integer). The gauge factor ® defined in equation (292}, on the
other hand, is more than a pure phase factor, and hence defines a non-
untery “gauge transformation”. One result of the non-unitarity is that
the kinctic energy operator of either equation (295} or equation (296) is not
Hermitian in the standard scalar product of the bosonic Hilbert space, This
is one of the subtleties involved in the perturbation theoretic treatment of
the statistics vector potential [275]. To second order in |v{, Dasnidres de
Velgy and Ouvry have computed the following result, which does not look
particularly encouraging for anybody wanting to attempt third or fourth
order computations [138,276],

N = 1+£1 2
A ﬁP—ig—nz— = |yl =~ (In(1 ¥ 2))
ol z+2(1-(1/24))z
2(1F z)

2 j:z)s+t+u+v 1
Z Z s+tt+utv \(s+v)?
stz u,exl
N
(s +u)t+v)

(In{1 T 2))?

) Cls,t,u,v). {297)

The upper signs hold if ¥ = 0 is defined as Bose statistics, whereas the
lower signs hold if one instead defines ¥ = (0 to mean Fermi statistics.
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The coeflicient C is defined as

1 —ny
7

Cls,t.1.v) = (1 =0 )ne —s)(me +v) "

, +{n —n-). (298)
T+ — 7]-

with

Cost—ur /(s +u)(s + o)t +ut + ) ‘
B s+Ht+u+v

UES (299)

The first order term in || vanishes at the fermion point, as it should. The
cluster expansion to second order in v has the convergence radius |z} = 1.

8.3 Regularization by periodic boundary conditions

We want to consider free particles in two ditnensions, but in order to keep
the partition functions finite we need some kind of regularization, by con-
finement of the particles inside a finite region. We may use a confining po-
tential, such as a harmonic oscillator potential, with soft walls, or a square
box, with hard walls, but the fastest comvergence to the limit of infinite
system size is obtained by using periodic boundary conditions so that there
are 1o edge effects due to the refleciing walls. The periodicity is then used
only for normalization, and when we speak about anyons in the path inte-
gral formalism, the only restriction is that the starting points of trajectorics
should be inside the given area. Otherwise the particles propagatc freely in
the plane and not on the torus.

The one-particle partition function is, with periodic boundary conditions
in a square hox of area A,

Z\(8) = l i exp(—””;"“g)r

2
A ad m2A .
-5 [1 + ZZeXp(— e )] < (300)
n=1

The last formula is a Poisson resummation, by Fourier expansion of

flo = 3 ewp( - LAY, (3ou)

Ti=— O

a periodic function of x [277]. A is the thermal de Broglic wave length,

A=h ,
T

(302)
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with m the particle mass. Below we will take

A

5. (303)

Z i (.'3 ) =
using only the leading term in the limit A — oc. The correction terms

for finite A are exponential in A. For comparisen, the hard wall boundary
conditions would give

s - [Som( 220}

n=1
. 2
A1 A b mn?A
— = —= —_ . 304
A2 |2 2\/ﬁ + ”gl exp( A2 )} ( )

with relative correction terms of order 1/\/1 which is the ratio between
circumference and area of the square box.

The formula (303) implies the following scaling relation, valid for one
free particle in two dimensions,

Zu(8)
i

The general relation in dimension d is, with V the d-dimensional volume,
- do v
218y = (VLY Zi(LB) = 55 (306)
It is convenient to introduce here the following notation. We defined a
partition of N as a sequence of non-negative integers, P = (11,19, ...),

with 3°72.. Lvg = N. Let Cy denote the set of all partitions of N, and let
C=Un_oCn and ¢’ = J5%_, Cxn. In this notation we have that

> = ZZ ZZ Z (307)
Pec =0PeCy  v1=0va= o=

We will frequently use also another notation, writing for example 311 for
the partition 5 = 3 + 1 + 1, which we would otherwise refer to as P =
(2,0,1,0, ...).

The grand canonical partition function is a function of the inverse tem-
perature 3 and the chernical potential j,

B, =1+ i 2N Za(3) (308)

N=1
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and the relation between quantum mechanics and statistical mechanics is
the equation

InE=ABP =AY byz". (309)

n=1

The area A enters in the two-dimensional case, but the formula is valid in
arbitrary dimension d when A is reptaced by the d-dimensional volume. An
immediate consequence is that

AbLz e

2= [] exp(Abnz™) =Y H (310}
n=1 Fel L=1
and hence,
Zn=3. H Ab" : (311)
PeCn L=1

We are more interested in the inverse relation, which follows from the ex-
pansion

= (Ee)
- > ute-n ] S 512

Here v = 3 7., vz is the total number of cycles in the partition P. This
gives the cluster coefficients in terms of the N-particle partition functions,

oo
Aby =p§N(—1)“—1(u— 1)!L];[l VLL! : (313)
In particular,
A = 2,
Aby = Zp - %ﬁ ; (314)
Abs = Z3 — Z2Z) + ZTIB

7z
Aby Zy— A3 ly — ——22—— + 22212 -



J. Myrheim: Anyons 347

Using these, we obtain the virial coefficients from equation (284),

Ag = A (1__2_§2)

2 Z2

A? Z: | Zs .
A3:?(1—6?+]2?— 53) {315}

A3 Z 22 22 ZB Z3ZQ Z4
A4_T(1-lzz—l+d4?—suﬁ—24? 72 75 —12? :

Clearly many cancellations of leading order terms are needed to produce
finite values for the cluster and virial coefficients in the free particle limit
A — 20,

Next we use our general expansion of the N-particle partition function
as a sum over partitions of N, equation (160), reading explicitly as follows,

1 1
Za(B) = 2P (8 + = Fz Z1{23),
2

Z3() = 3 Fun Zu6) + 5 B 21200 (8) + s BAGBH) . (316)
Zup) = 35 Fan H8)* + § Fay 20200280 + 3 Faa 202

1 1
+Eifhlzﬁ(3ﬁ)ZiUﬂ +:ifﬁ£ﬁ(4ﬁ)‘

We get then that

1 LB
Abnw = Za 4 --- —_ e
N Zn+ Z ( H 7 ( ) + )
Pelx L
1
= Z{3) — .
1(3) Z Gp H ] ( 3)) . (317)
PeCwn
in terms of a new set of coefficients,
Gp=(Fp+---)2,"". (318}
The “- .- in the last formula represents a sum of terms that are products of

HE coefﬁments The “G” coefficients are useful especially becanse they tend
to finite limits in the thermodynamic limit A — 20, when all interactions
have sufficiently short range, as we will prove below. G'p is the “connected
part” of Fp for any partition P. The concept of connectedness will also he
made more precise below.

We have explicitly that G; = F; = 1, Gy = Fy for N = 2,34,
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and

Gn = (Fn -1z,

Guy = (Fiin —3Fn +2)Z4%,

Goy = (Fn — F2)7y
Gy = (Fun — 4R — 3F0° + 12F, - 6)Z,°, (319)
Gat1 = (Fauy — 2Fn — FoFyy + 2F2) 2%

Goa = (Fr - B%)Z,

Ga1 = (Fz1 - Fy)Z, .

So far our formulae are dimension independent. From the specifically two-
dimensional equations {303} aud (305) we now get the equation

2 i .
AbN:ZGPHW, (320)
FPely L

in which all quantities are finite in the A -+ oc limit. In particular,

G G

AZpy = 1, T2

2 2 + 4 )

G G G

g, Gin 21 Gs

Aby = 5 +— 5 (321)
G G Gy Ga G

2, _ Gun 211 22 a3t Ga

M=+t "2t % T

8.4 Regularization by a harmonic oscilfator potential

Another useful regularization scheme is by means of an external potential
Vi = Vi(ee}. Assuming that V) varies slowly enough, we can simply take
the pressure, density and fugacity in equation (283} to be functions of the
position x. In particular, the local fugacity is

Blu-V1(m})

2x)=e = zye™ Vi@ (322)

with z5 = e independent of pos.ition. In this case we should replace
equation (309) by the following equation [131],

InZ = / A% P(x) = 111(1 +> z,‘)VZN) : (323)

N=1

To evaluate the integral in equation (323) explicitly, we use the local form
of equation {283}, with z = z(x) as given by cquation (322), and with an
external potential of the harmonic oscillator form,

1

Vilz) = §mw2|w|2. {324)
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Here m is the particle mass, and w the angular frequency of the oscillator.
We take w > 0 in order to get a discrete energy spectrumi, but in the end
we want to take the free particle limit « — . It is convenient to introduce
the dimensionless parameter £ = hw3. Then we have that

fd“‘a:ﬁp(:c Zb 28 / zo ﬂﬂ‘l(wbzbw (5\/_)4. (325)

Comparison of equation (325} with equation (323) gives the following for-
mulae for the cluster coefficients in terms of the partition functions, in
dimension d = 2,

A;fl = Z,

% _ ZZ_Z;_ (326)
%} = 23—2221+£;

%} = Z4 Z;ZJ-Z;-JFZZZ Z‘fA

Comparing with equation (314), we sce that we may adopt the mechanical
rule of substitution Ab, — AZb,/(né?).
From these equations and equation (284) follow the viria! coefficients,

AN Z:
2= (5) (1-23).

4
A Zg Zf Z'%
Ay =1 = - 10 =+16— -6 —=
! (5) (2 ZQ+ 6Zl zi)’

1] 3
Ay = (%) (5—422 +13822 —1602—2.

Z? 73 Z8
Zs 737, | Z .
—42 =2 : — 12 ==,
4275 +108 222 12 24) (327)

Note that Planck's constant cancels in the ratio A/€, but reappears in the
partition functions.

To obtain the virial coefficients for free particles we must take the limit
w — (). The existence of the limit is again a far from trivial issue, since the
cancellation of the singular factor (A/€)2("~1 x w=2"=7) in 4, depends on
the vanishing of the factor containing the partition functions to all orders
below w?"~1 That A; is finite as w — 0, for the gas of free anyons, was
proved in reference [145], by means of the path integral expression for Zs.
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The computation of the free particle Gp coefficients by means of the
harmouic oscillator regularization is slightly tricky, partly because the sub-
stitution Tule Ab, — A%b,/(nf?) involves a factor n, and partly because
the scaling relation for the harmonic oscillator partition function, equa-
tion (179), in the limit w — 0,

Z(3)
Lz

differs from the relation Z,(L3) = Z,(3)/L we assumed when writing equa-
tion (320). The correct limit for obtaining the frec particle Gp is

Zi{(L3) =

(328)

Gp = _l‘in}](Fp +--- )Zli’_l . (329)

n
[1 L+
8.5 Bosons and fermions

For bosons and fermions with no mutual interaction the probability gener-
ating functions can be factorized as

Fp=[]F", (330)

where Fr, = 1 for bosons and Ff, = (—I)L_' for fermions. The factorization
implies, by the equations (160) and ({308), that

= ;661;[ (.ﬂﬂ&@) =1;[exp(if‘_fvl%@). (331)

This is nothing but the standard expression for the logarithin of the grand
canonical partition function as a sum over the one-particle energy levels
Eik, for an ideal gas bosons or fermions,

n==7F Z In{l F ze %81} = Z Zlfo?) (332)
k=1 E=1
and it gives directly the cluster coefficients,
FHZ] (ﬂﬁ) .
=—*. 333
by = s (333)

Thus we have Gy = Fy = (£1)V! and Gp = 0 for every partition P
containing two or more cycles.

In two dimensions we get, using equation {303), and in particular the
scaling relation (305),

()t

b = nZA2

(334)



J. Myrheim: Anyons 351

Similarly we get in dimension d, using equation {306),

(:E]_)n+l
n(Avn)?

Note that the ideal gas cluster coefficients in any dimension are the same
for bosons and fermions, except that the even numbered coefficients ba, by,
etc. have the opposite sign. This means that we can formally transform
hosons inte fermions and vice verse by substituting simultaneously z — —z,
P — —Pand p — —p. It follows that the virial coeflicients possess the same
symmetry as the cluster coefficients,

by = (335)

AT = (<1148, (336)

with superseripts “B” for boson and “F” for fermion.
In particular, the density of the ideal gas of bosons or fermions in di-
mension d = 2 is

p= Z by 2™ = =¥z ln[ ). (337)

Ti=1

Hence the equation of state in two dimensions takes the form

o 1 = |1 - e:FAzp 1 . A2 .
HBP = ;bnzn = :t;.\_z ; L_TEZ—")_ = :’:F Liz (e:F\ p) ! (338)

where Liz is the dilogarithm function [240].

Bose-Einstein condensation gccurs in a three-dimensional ideal gas of
bosons: above a certain critical density the extra particles condense in
the lowest encrgy level and do not contribute to the pressure. The two-
dimensional ideal boson gas almost, but not quite, shows the same phe-
nomenon. In fact it has a finite pressure at infinite density,

Liz(0) v Tm

_ - — . 339
Peo BA2 T B3AT  12h2832 (339)

From equation (338) we get that

IBP) +A%p = B, .
5o =1 2w A (340)
N=0

where By, is the n-th Bernoulli number [240]. Thus,

Bu_i (£A3)"

A, =
1!

(341)
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The function g/ ((‘i“% — 1) is well behaved for all real values of p, but
has poles in the complex p plane at A%p = 2nri, for any non-zero integer
n. This means that equation (340) can be integrated to give P as a well
defined function of p anywhere on the real axis, while the virial expansion
converges for A%{p| < 27 but diverges for A%|p| > 2. Note that the sum in
equation (338) has different convergence properties, it converges for bosons
af any non-negative density p but for fermions only when A%p < In2.

The relation between the boson or fermion ideal gas virial coeflicients
in two dimensions, and the Bernoulli numbers, was derived by Sen and by
Viefers [134,147,278]. In particular, the even numbered virial coefficients
Ay, Ag, ete., all except Ag, vanish both for bosons and fermions. Since the
odd numbered coefficients are the same for bosons and fermions, the only
difference is the sign of A;. The lowest coefficients are

A2 A A® A%
A=Fp =g A= YT nrese

Ai=Ag=Ag= ...=0. (342)

It may be instructive to rederive the results for bosons and fermions using
the harmonic oscillator regularization. The one-particle partition function
for the harmonic oscillator in d dimensions is

d
9o [Seeth)) oL :
2= (S 0) an(3))" .

with £ = hwf, as before. We may use equation (333), and translate
from one regularization scheme to the other by the rule of substitution
Ab,, — {A/(/n€))*b,. This gives the same formula as before for the cluster
coeflicients of free bosons or formious,

b, = (f\/_) (£1) n+;Z; {n3) = % . (344)

8.6 Two anyons

The case of two anyons can be treated most siuply by means of the harmonic
oscillator regularization, since the energy spectrum is discrete and exactly
known.
Let us define the periodic sawtooth function
?
a(f + 2nw) = |—-—| for 19) < n=1{+1,£2, ... (345)
w

In terms of it the two-anyoun partition function in a harmonic oscillator
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potential is

cosh{{1 — a)&)
(zsinh(g))2 2sinh?e

where the factor Z;(J) = 1/{2sinh(£/2))? is due to the motion of the centre
of mass. Note that, in spite of the fact that the function & = a(f) is non-
differentiable both at the boson point # = 0 and the fermion point ¢ = m,
the partition function Zs, as a function of #, is non-analytic only at the
boson point.

From equation (346) and equation {327) we get the well-known result
for the second virial coefficient of the ideal gas of anyons, in the limit £ — 0,

Ay = A? G - il—_;—)z) - (347)

Za(8) = (346)

There are two partitions of two, one even, 1 +1 = 2, and one odd, 2 = 2.
According to equation (160) we may write Z3 as a sum over these partitions,

Z(8) = 5 Fa (D) (Z1(3)* + 3 Fo(9) Z1(26). (343)

By equation (157}, Fi1(¢ + 7) = F11{8) and F2(f + ) = —F2(8). The
substitution # — # + 7 is essentially the supersymmetry transformation
introduced by Sen [132,133], and it changes a into 1 — a. Hence, splitting
the partition function in equation (346) in two parts, one even and one odd
under the substitution & — 1 — @, we deduce that

Fll(ﬁ)z%, Fz(é‘):—%- (349)

From the probability generating functions Fy; and F3 we get the probability
distributions of the winding number ¢,

2¢ tanh{ &
Pu(Q) = ?:(N—((;% (Q even),
2¢ coth(§)
Q)= Z 1m0 (Q odd). (350)

Note that we have defined the winding number @ as twice the number of
windings around the origin, so that the probability distribution of even
winding numbers, P;{(}), is the same distribution as given by Wiegel and
by Ouvry (130, 266).
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If we do not distinguish between even and odd winding mumbers, then
we may write

cosh &
(2 sinh ( %) )2 2 sinh?¢ ,

where F'(f} is the total probability generating function for even and odd
winding numbers,

Zy{(3) = F(8)

FO = S P(@ee - i Z o))
Q=—=0

, (352)

cosh £

and P((}) is the probability of the winding number ¢},

£ tanh &
P = . 353
From the above expressions we also get the G coefficients of free anyons, by
equation (329),

Gll =2 limU(Fu — l)Zl = Cl’((‘.l’ — 1) R Gg = ]iII]OFz =1-2c. (354)

8.7 Three anyons

The harmonic oscillator regularization is useful also for three anyons, even
though the “non-linear” part of the energy spectrum has to be computed
mamerically. The third virial coefficient A3 has been calculated with high
precision by the direct. method of computing energy levels numerically and
summing to get the partition function [122,143,144).

In order to compute the virial coefficient from the spectrum, we should
incorporate all the exact knowledge we have. Therefore we subtract the
known bhosonic partition function Z;‘? and write the anyonic partition fune-
tion as &y = Z:? + AZs. Then we split the remainder further into contribu-
tions of energy levels that are linear and non-linear functions of the statistics
angle 8, writing AZz = AZY + AZE. The “linear” part is exactly known,

_ cosh(3{1 — a}f)
32sinb? (4 ) sinb?¢ sinb? (%)

Z3(8) (355)

and from Z¥ we get AZL by subtracting the value for & = 0. For the “non-
linear” part the best we can do is to split off the Z; contribution due to the
centre of mass, and the factor due to the tower structure of the spectrum,
writing

Zy

AZNL = = AZ . (356)
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All in all we then get

AN Zs 72 Z-;)
s a‘i“o(a) (2 Wz t192i- %%

This is an important simplification, since AZ has contributions only from
"non-linear” states that are “bottom”™ states of infinite towers. All the @
dependence of the third virial cocfficient is seen to come from these states.

One may calculate AZ numerically by calculating the lowest energy
levels, then summing over them and extrapolating to the infinite sum as
best one can. The most accurate calculation, including all bottom of tower
energy levels up to around 40hw, gave the result [122)

1 sin@ :
Az = A? (% t o T asm“ﬁ') , (358)

with a coefficient

1

= —(1.652 £+ (.01 0% ———— .
a (1.652 £ 0.012) x Iz

(359)

The first and second order perturbative calculations give the exact coeffi-
cient of the sin®d term, and it is a non-trivial consistency check that the
numerical calculation reproduces the exact result with high precision. The
coefficient of sin*# could in principle be caleulated exactly by fourth-order
perturbation theory, although this possibility seems rather remote.

At this point some general gbservations might be in order. All observable
properties of anyons must be periodic functions of # with period 2r. Energy
eigenvalues and eigenfunctions are analytic functions of 9, except that some
are non-analytic at 8 = (), varving like || rather than #. Hence the partition
functions and all thermodynamic quantities derivable from them will be
analytic functions of €, even at the fermion point 8 = m, but generaily not
at the boson point # = 0.

In the absence of an external magnetic field, the theory is both time
reversal and parity invariant if each of these transformations is defined so
as to include a change in sign of #. It follows that energy eigenvalues and
thermodynamic quantities, as functions of #, must be symmetric about # =
0, hence they are functions of the quantity e(#) defined in equation (345},
which is non-analytic in # at the boson and ferniion points. Any even
polynomial (or convergent power series) in « is analytic at the boson point,
and any even pelynomial in 1 — o is analytic at the fermion point. An
example is the cxact second virial coefficient, which is an even polynomial
inl-a.
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The third virial coefficient is analytic at the bosen as well as the fermion
point, because it is “supersymmetric”, ¢.e. symmetric under the substitution
a — 1 — a [132,133]. Being analytic everywhere, and periodic in € with
period m, it can not be polynomial in @, because periodic pelynomials do not
exist, except constants. But it should be expandable as a rapidly converging
power series in si1129, as the above formula indicates. In fact, this is one
possible way to represent a Fourier series with the desired properties.

The threc-anyon partition function may be written as a sum over three
partitions,

1 3 1 .

Z3(8) = 5 Fuua(6) (Z1(0))° + 3 Fs(6) Z1(38)
1

+ 5 Fu(6) 21(28) Z:(5) . (360)

The first two terms are even and the last term is odd under the supersym-

metry transformation of Sen, & — 8 + 7 [132,133]. As observed by Sen, the
odd part of Z¥, which is

cosh(3(1 — @)&) — cosh(3af)
32sinh? (%) sinh2£ sinh? (%) 1

Zg(8.a) - Z§(8,1 - o) = (361)

when taken at o = 0, completely accounts for the difference between the
bosgonic and the fermionic partition functions, which is simply Z,(25)2,(3).
Since the number of states does not vary with 6, it is therefore possible, and
indeed true according to Sen, that the odd part of Z; is identical to the odd
part of Z.%‘ also for intermediate values of §. We compute from this that

_sinh((a - 1)3¢) _
sinh(%g)

Note the similarity between the two-particle and three-particle funetions
FQ(G} and Fgl(e)

From F5; we get the exact (o1 coefficient of free anyons, by equa-
tion (329),

Fn(f) =

(362)

G =

[ 2=] =]

.limU(le - Fg)zl = 2(1 - 20.')05(('.8 - 1) =2F G“ . (363)

8.8 The Monte Carlo method

Although As has been calculated with very high precision from numerical
energy levels, it is useful to discuss here also how it can be calculated by
the Monte Carlo method. This method is less precise for three anyons [145],
but is 50 far the only one available for four anyons [146]. The Monte Carlo
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method as such is important heeause it is a very natural approach to path
integrals, and it leads to some general understanding of how they behave.

For a Monte Carlo caleulation we need a more explicit expression for the
propagator, as defined in equation (126). What we need here is only the
propagator for the harmonie oscillator in two dimensions,

Gly,@;7) = #&mexp( Ty (tanh( ) ly + |
+(‘0th( ) ly — x| )) {364)

since the many-particle paths we want, may be reinterpreted as consisting
of independent cyclic one-particle paths.

Consider one cyelic one-particle path from 7 = 0 to v = LA3. In the
path integral formula for the partition function 2y {Lh3) every point x(r)
on the path is integrated out. If we iutegrate out every point except onc,
say the point z(0) = x(LA3) = =z, then we get instead the propagator
G{z,z; Lh3). Tt follows that the probability density for the single point @
an the path is

Gz, x; Lhf ; L 1 L .
plze) = (Zml—(wﬂif_ifﬁ = % ta.nh(;) exp(—% tanh(—f) 19:|2) {365)

This is a two~dimensional normal probability distribution of mean zero and
standard deviation

hi L¢ 1 .
oy = \/Qmw coth(?) = (366)

Thus, looscly spoaking, the point & = ®(0) = @(Lk3) is located inside an
area proportional to 1/w? in the limit w — 0.

By a similar reasoning, if we specify three imaginary times =, <7 < 7
and the two points =(7,) = z, and (7} = &, on the path, then the
prebability density of the position {7} = & on the patl is proportional to
the product G{ay, 2; 7, — 7)G{z, &.: 7 — 7,) of two propagators. Again this
defines a normal distribution, of mean

_ sinh{w{n, — 7}} @, + sinh{w(r —7.)) @
. sinh(w{, — 7))

(367)
and standard deviation

o = \/hsinh(w(ﬁ, — 7)) sinh{w{T — 7)) . \/ﬁ-(rb - - 7). (368)

mw sinh(w(7my — 7)) m(7T, — 7,)

The fact that ¢, tends to a finite, non-zerc limit when w — 0, means that
the area covered by a single cyclic path tends to a finite linit.
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The asymptotic behaviour of ¢y and o, in the limit @ — 0 means that
the probability that two cycles overlap, tends to zero as w?. Furthermore,
the probability that three cycles overlap simultaneously, tends to zero as
w?. Hence the winding number distribution for the three distinet cycles
belonging to the partition 1 + 1+ 1 = 3 is determined by the two-particle
windings, up to correction terms of order w?. Which means that we may

write
Fi(®) = (Fu(@)* (1+ Fi{j0)¢* + 0(€). (369)
It also follows that the limit Féo)(ﬁ) = lim, g F3(0) is finite, so that

F3(8) = F{”(6) + 0(e). (370)

These results for the probability generating functions Fi11 and F3, together
with the exact result for F;, implies that the third virial coefficient is finite,

17 1N? 1 1! 2
As = A* (@+g(ar5) +5(a—§) - fi‘i(ﬁ)—gﬂi”)(e)) (371)

The supersymmetry of Sen is manifest in this formula for As.

The equations (366, 367) and (368) are all we need in order to make a
Monte Carlo sitnulation of the three-particle paths. The numerical results
[145] suggested the following simple formula for FBEU)(H), which has since
been proved to all orders in perturbation theory [270],

@%m=—%+g(ar92=u—&no—ga) (372)

This formula, together with an estimate of the fourth order term Fl(fi (a4,
then gave the sin?4 interpolation between the second order perturbative
results for bosons and fermions.

8.9 The path integral representation of the coefficients Gp

The coefficient Gp for a given partition P representing a conjugation class
in the symmetric group Sy, can be represented as a path integral over all
paths inducing one given permutation represented by P,

GpZi = Np /'D(fﬂl(ﬂ‘ 1;1:4\:(7‘))63(13(-—%) gr . (373)

Here @;(r) is the path of particle j, as a function of the imaginary time 7,
and § is the free particle action in imaginary time,
N hi 2
; m |dx;{7)
5= f dr — |[——| -

= (374)
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This representation is useful for numerical computation by the Monte Carlo
method, but can also be used in order to prove that the cluster coeflicients
are finite.

We include the Gaussian factor exp{—S/h) as part of the integration
measure, so that it is the integrand gp alone that represents the interac-
tion of the particles, and we include a normalization factor A’p so that
Gp = Z;*7'if gp = 1 identically. Note that Ap is then finite (i.e. A
independent}, since the path integral is proportional to Z;” when gp = 1.
Note also that this path integral representation is actually very general, and
can be applied to any N-particle system with (short range) interactions in
any dimension, not just to the N-anyon system considered here.

To see what the integrand gp looks like in our case, let us take the
partition 24141 of 4 as an example. A closed path in the four-particle
configuration space interchanges the positions of two particles, say particles
1 and 2, and takes the remaining two particles back to their starting points.
The total winding number @ is the sum of six pairwise winding numbers,

Q=G+ (@13 + Q) + (Qua + Qza) + Q34 - (375)

Note that {12 is an odd integer and (244 an even integer (remember that the
winding numbers are defined such that a complete revolution corresponds
to the winding number 2), whereas (Q1a, @23, Q14, (@24 are in general non-
integer, becanse particles 1 and 2 do not return to their starting positions.
However, the sums Q12)5 = (hs + Q23 and Q234 = Qiq + Q24 are even
integers. Hence €} is an odd integer. Let [ be any subscript, and introduce
the notation

er =1+ fr = exp(—i0Qy) . (376)

In order to compute the coefficient o171 21 = (Foyn — 2F5 — FoFy —1—21‘7'2)213
we take the integrand to be

9211 = €12 €(12)3 €(12)4 €34 — €12 €(12)3 — €12 €(12)4 — €12 €34 + 2612
= €12 (f(lz)s Fa2a fza + fazs fao
+faza faa + fla2)a Faa) - (877)

For example, we compute Fy1, Z;% by integrating
exp{—i0Q)) = e12 e(12)3 €(12)4 €34 » (378)

and we compute 2F3 21> by integrating

exp{—if(Q12 + Qazyz)) + exp(—iB{Q12 + Qi2)4))
=e1ze(2)z + e1zeana - (379)
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Equation (377) may be represented diagrammatically as

GannZy = g M +2 E (380)

The particles arc represented as points (filled circles). The two-cycle is
represented by 12 in the integrand and by a cirele (.01mecting; two particles
in the corresponding diagram. Each factor fi in the integrand is drawn as a
single straight line in the diagram. Note that we should draw labelied graphs
to represent the four terms in equation (377). But since the valuc of a graph
is independent of the labelling, it is more natural to draw unlabelled graphs
and include instead integer coefficients counting the number of ways each
graph can be labelled. Hence the factor 2 in front. of the last graph.
In a similar way we find the diagrammatic representation

4
Gung = % +6 IZI +12 IA +3 )
+4 |£ 112 | (381)

The coefficient in front of each diagram is again the number of inequivalent
ways of labelling the nodes of the graph, We may also write

ngZl = . G31 Z] = é (382)

We see that only connected diagrams contribute to the cluster coefficients. Tt
follows that the latter are finite in the limit A — oc. Indeed, any path gives
& non-zero contribution to the path integral represented by some diagram
only if for every line in the diagram, the corresponding winding number
is non-zero. The probability for this to happen for a connected diagram
goes to zero as {A?/A4)"~1 when A — o0, since every L-cycle path gives a
Gaussian distribution of points which essentially covers only a finite area,
proportional to A2, Here » is the number of cycles, and v—1 is the minimum
number of links in a connected graph with v nodes. The factor 4-v+1!
cancels exactly the divergence of the factor Z;"~! included in the definition
of G'p, equation (319).

The general meaning of the relations between the F and G coefficients
should now be cbvious. Fp is a sum of both connected and disconnected
diagrams, whereas Gp is the part of the sum including only the connected
diagrams. For example, the relation

Fon 20® = Gon1 Z1 + 261G 21% + GaG11 20 + G2Gi G Zi* . (383)
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which follows from (319), is represented as

.
o2, = % + M +2 g + 2 }D

- L —
G‘EIIZI 2G21G1212

(384)

G2G1121%  GoGhG1 2y

It is the last term that dominates in the thermodynamic limit, but it is Gy
only that contributes to the cluster coefficient. Thus, as usual, the grand
partition function is a sum of all diagrams but the thermodynamic potential
is & surn of connected diagrams [279].

The Monte Carlo method consists in generating random paths according
to the Gaussian distribution of paths valid for bosons. Each four-particle
path is closed over the imaginary time interval i3, in the sense that the final
configuration is identical to the initial one, but with the particle positions
interchanged by a permutation belonging to the class P © Sy. Consider
the partition 2 + 1 + 1 = 4, as in the example above. Then particles 1
and 2 should interchange positions, while particles 3 and 4 should return to
their starting points. We take, arbitrarily, the starting point for the path of
particle 1 to be at the origin, this is then also the ending point for particle
2. Equivalently, it is the ending point for particle 1 over the imaginary
time interval 2A3. The starting point for particle 2, equal to the position of
particle 1 after half the imaginary time interval 243, can then be generated
according to a Gaussian distribution around the origin. The starting and
ending point for particle 3 is generated according to a flat distribution inside
a square area A centered on the origin. Similarly for particle 4.

For each four-particle path gencrated we count. the winding numbers (@12,
Qu23 @z, @34 and increment a histogram n(@) in the following way.
We compnute the total winding number @ and add 1 to n(@), this takes care
of the integrand eis e(19)3 €10y €32. We subtract 1 from n{Qz + Quiayah
in order to take care of the integrand —eyye(y0)3. Similarly, we subtract
1 from n(Q12 + Q2)4) and from n{Q12 + Qa4), and we add 2 to n{Q)2).
Finally, (G217 is the Fourier transform of the histogram n{@), multiplied by
the normalization factor Z 12/ n, where n is the total number of four-particle
paths generated. The uet contribution to the histogram vanishes if more
than one of the three winding numbers @123, Q1234 and Qa4 is zero, and
this is what ensures a finite limit as A — oo for the computed Gyy;.
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8.10 Exact and approximate polynomials

The first cluster coefficient, with our definition, is &, = 1/A?. By the
harmonic oscillator regularization we found that

G“:Q(af—l)3 G2:F2=1—2C¥. (385)

(711 is even and (o is odd under the substitution &« — 1 — «, and together
they give the second cluster coefficient of free anyons,

G G 1 1
S Nl § T SN (P 386
Ay =2+ 2= S —a) - g (386)
We also obtained the exact result
G =2 G) . (387)
The third virial coefficient,
2
A3:—2b—3‘3+4£2-3, (388)
by by

is even under &« — 1—a, since the odd part of —253/b13, which is —A%Ga,/2,
cancels the odd part of 4b22/b14, which is A*G11G5.

One further result [280), which is exact according to the perturbative
calculation of reference [270], is

Fp = ﬁl (1 - -i—“) » (389)

k=1

Various Monte Carlo simulations for single cycles of different lengths are
consistent with this formula.

Note that only harmonic oscillator energy levels depending linearly on o
contribute to the three quantities Gz = F,, G11 and Ga;. The computation
of Gy = Fp for L > 2 by perturbation theory is mueh more non-trivial,
because also states with non-linear o dependence contribute. This is essen-
tially the ouly exact result known for the non-linear energy levels.

This is about as far as one can get with exact results. However, in the
diagrammatic expansions shown above, one may argue quite generally that
the tree graphs are expected to dominate, because every additional line in
a diagram represents another factor of the type fi = exp(—i0@1) — 1 in
the integrand, with ¢J( an even integer. This factor vanishes when {1 =0,
which will happen with a certain probability which is definitely non-zero,
and even if it does not vanish it will often have an absolute value smaller
than 1. Furthermore, one may argue that the path integral represented by a
tree graph should approximately factorize in the same way as its integrand.
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These two assurnptions, of trec diagram dominance and factorization, lead
in a not entirely trivial way to the following polynomial approximation for
the general cocfficient Gp,

Gp~Gp =N"2G," 7" [J(LFL) . (390)
L

There is a factor Fy for every cycle of length L, a factor L,L3;G4, for
every single line connecting two different cycles of lengths Ly and Ly {each
L-factor counts the number of ways the linc can be connceted to the cycle),
and there is a sum over all #¥~2 possible ways to conmect the cycles into
a trec graph. It is perhaps not obvious how this leads to equation {390),
but a simple way to understand the connection is by locking at low order
examples: consider the case of 3 cycles of lengths L1, L2, and Lz. They can
be connected to a tree graph in 3 possible ways, This gives a coefficient

Fy P, Fr, (L1 LaGyy LoLaGuy + Lo LaGuy B3Iy Gny (391)
3

+L3L1G11 L1 L2Ghy) = (D 4 Ly + La) G4° H LiFy, (392)
i=1

which agrees with equation (390) since L, + Ly + Lz = N. We should point
ont that eguation (390) was first derived empirically as an approximate
representation of the Monte Carlo results.

Special cases where these polynomial formulae are exact, as already men-
tioned, are the cyclic coeflicients Gy = Fp, as well as Gy and Ggy =
2F3 (G11. In the three-particle case there is one approximate polynomial,

G = 3612, (393)
The four-particle approximate polynomials are:
G =16G%,  Gony =8RGy ?
Gy = 4Fy%Ghy ., Ga = 3F3G) - (394)

The polynomial approximations for the G coefficients imply the following
polynomial approximations for the cluster coefficients,

N1 _ N1 _
vy _ (CDY N -ap) 1 Ng\ o
.\bN——FZ——kIHIl 1_—k__-_ -—ﬁg IF—k— . (390)

which imply that the virial coefficients are independent of the statistics,
except for the second coefficient,

AQ:A?G - (1—‘2—‘1)-2-) :A‘é(—}rg)‘ (396)
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The parameter ¢ is defined here by
g=1-(1-a). (397)

One nice property of these polynomials is that they are analytic functions
of 8 at the fermion point, as the exact cluster coefficients must be. However,
thev do not give the correct second derivatives at the boson and fermion
puints, known from perturbation theory, although they do give the correct
first derivatives. An alternative way to introduce the same polynomials is
to postulate that the second virial coefficient is given by eguation {396},
while all higher virial coefficients are independent of &. That is, these are
just cluster coefficients for two-dimensional exclusion statistics [236G], with
the statistics paramcter given by (397). The corresponding second order
diagrams were identified in reference [138].

This correspondence with exclusion statisties is of course only approxi-
mate, and it is well known from perturbation theory that the higher virial
coefficients of anyons all have a second order variation with 8 at the bo-
son and fermion points. Nevertheless it might be interesting to understand
better the deeper reasons behind, if any.

8.11 The fourth virial coefficient of anyons

Since the third virial coefficient is analytic in @ everywhere, in contrast
to the cluster coefficients, which are all non-analytic at the boson point,
one may be bold enocugh to conjecture that all virial coeflicients, with the
exception of Aj, are analytic functions of 8. If A4 is analytic, then it must
have the form
il
Ay = A8 sin"f (L ln(\/‘_d+ 2) + cosﬁ)
1672 \ /3

+ sin*0 (cq + dy cos8) + - } (398)

where the coefficients of the lowest order terms are fixed by perturbation
theory at the boson and fermion points. A Monte Carlo calculation of Ay
gave indeed a result which was fitted to this form with no more than two
parameters [146],

eq = —0.0053 £ 0.0003 , dy = —0.0048 = 0.0009 . (399)

This fit is shown in Figure 13.

It is rather remarkahble how ncarly constant the computed A, is, that is,
how close 1o zero it is for all values of #. In fact, it is closer to zero than the
minimal Fourier scrics with ¢y = dy = ¢y = dg = ... = 0. This is one partic-
ular example of how well the anyon system realizes approximately Haldane’s
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Fig. 7. G111 — 16{afa — 1))? as a function of a. The imaginary part is plotted
to indicate the statistical uncertainty of the real part of the Monte Carlo data.
Only the interval 0 < o < 1/2 is plotted, because of the {antl)symmetry about
e = 1/2. The curve marked “fit” is given in equation (400). From [146].

so-called exclusion statistics [227], characterized by a continuously variable
parameter g, for which only the second virial coefficient depends on g, in
two dimensions [236].

The computed G cocfficients are plotted in Figures 7 to 11, as funetions
of a.

In each case we subtract the polynomial approximation, which is the
main contribution. and plot only the difference, marked by *Re(MC) —
polynomial” in the figures. Because of the statistical errors, the Monte Carlo
generated curve has also a non-zero imaginary part, marked “Tin{(MC)",
which is useful because it indicates the statistical errors in the real part.
Since the real part is even about o = 1/2 and the imaginary part is odd,
or vice versa, depending on whether the partition is even or odd, only the
interval 0 € & < 1/2 is plotted in all figures.

Figure 7 shows the computed G117 with the polynomial 16G1,° =
16{nx(cv — 1)) subtracted. The curve marked “fit” is mostly cmpirical, and
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Fig. 8. Guir — 8(1 — 2a){a{e — 1))? versus . The curve marked “fit” is given in
equation (401}. From [146].

is given by
fit = 3 i 400
t——ﬁa(a—l)snﬁ(aﬁ). {400)
The figure shows that this is a perfect fit to the Monte Carlo curve, within
the statistical nncertainty as indicated by the imaginary part.

Figure 8 shows the computed Gsiy with the polynomial 8FpG 1_12 =
8(1—2a}{a(a —1))? subtracted. The curve marked “fit” is partly empirical,
but with a coefficient which is chosen so as to produce the correct second
order derivative at @ = 0 [270]. The formula is:

fit = 1 — 2a) sin¥ar) . (401}

2
—3

Figurc 9 shows the computed Gy with 4/°G; = 4(1 — 2a)%ala — 1)
subtracted. The “fit” here is

fit = In(v/3 + 2) sin¥am) cos¥ o) . {402)

2
V3
Figure 10 shows the computed G3, with 3F3G1; = 3(1 — 3a)(1 — (3/2)a)e
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Fig. 9. G2z —4{1 —20)%a{c—1) versus ce. The “fit” here is given in equation {402).
From [146],

(& — 1) subtracted. Here we have chosen

fit = 4—? In(V/3 + 2) sin¥(o) cos{am) . (403)

Figure 11 shows the computed G4 = F, with the polynomial (1 — 4a)
(1 — 2a)(1 — (4/3)a) subtracted. The figure supports the claim that the
polynomial is exact. Fignre 12 shows the computed cluster coefficient, A2b,
with the polynomial A%b4 of equation (395) subtracted. The parabolas given
by the second order perturbation theory at @ = 0 and a = 1 are shown.

Figure 13 shows the computed virial cocfficient, 44/A®%. The parabolas
given by the second order perturbation theory at & = 0 and & = 1 are
shown. Also plotted are two Fourier series, as given in equation (398).
The curve marked *Fourier 17 is a minimal Fourier series having only the two
terins vequired by perturbation theory, ie. ¢y = dy = ... = 0. The curve
marked “Fourier 2” is a least squares fit with the coefficients ¢y = —0.0053
and dy = —0.0048. The minimal Fourier series is seen to be inconsistent
with the Monte Carlo curve, unless there are important systematical errors
that dominate over the statistical errors.
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Fig. 10. G531 — 3(1 — 3a}(1 — (3/2a)a(a — 1) versus o. The “fit” is given in
equation {403}. From [146].

8.12 Two polynomial theorems

As a mathematical appendix to the present Section we will prove the result
that the polynomial approximation (395) for the cluster coefficients is equiv-
alent to a virial expansion which is the same as for the two-dimensional free
non-relativistic Bose gas, except that the second virial coefficient is mod-
ified according to equation (396). We will also prove that the polynomial
approximation (390} for Gp implies equation (395).

For simplicity we fix the temperature and choose units such that 3 =
A =1. Thus, e.g., the fugacity is z = e*. We make use of the expansions

2 EZiNbNZN:

dye =
de _ l@%=l£=if\rm¥p‘”—2. (404)
dp pdudp pdp L=

We also define

N=1 k=1
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Fig. 11. Fi — (1 — 4a}{1 - 2a){1 — (4/3)a) versus a. From [146].

z), or

o

which is the density corresponding to the cluster coefficients by of equa-

tion (395). For the Bose gas, with ¢ = 0, we have p = —Infl — z),

equivalently, 1t = Inz = In(1 — e~ #). Shifting the second virial coefficient by
(406)

an amount AAg; = g/2 then gives
p=In(l—e*)+gp.

For every ¢ > 0 and every u, or for ¢ = 0 and every p < 0, this equation
clearly has a unique solution p > (0. We want to prove that the solution is

p = pgli).
For this purpose we rewrite equation (406) as
R h
= —In(l-ze9) =% Z_ e 407
o n(l- ze %) ﬂz_:l € : (407)

and apply the following theoremn due to Lagrange (see Vol. 1, pp. 404-405
of [281], or [282]): The equation ¢ = f(p) has the solution

N A S
f’=zm($) oM

A=

(408)

r={}
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Fig. 12. The fourth cluster coefficient minus the polynomial of equation {395),

AZ(by ~54), as a function of a. Also shown are the parabolas given by the second
order perturbation theory at & = 0 and & = 1. From [146].

This gives

o0 =+ =0 M-1
1 z‘ﬂ1+---+nM d
= — = —(r1t - Frarter
P Y (D)

=0

o0 N
= > VNS (-NgM T O (409)

where

Cn.pm = Ml Z Z S man X (410)

-
ny=1 =1 M

What we need to show is that

N _3N=1 /ar
Z (-NgM ™ Oy = (—'l\),—q— (‘?\f) . (411)

M=1 e
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Fig. 13. The fourth virial coefficient, A4/A%, as a funetion of a. Also piotted are
the parabolas given by the second order perturbation theory at a =0 and e =1,
and two different Fourier series, as given in equation {398). The curve marked
“Fourier 1™ has ¢4 = dg = ... = (, whereas "Fourier 27 is the least squares fit
with cg = —0.0053, d4 = ~0.0048. From [146], reprinted with permission.

It is straightforward to show that

o N b
Z s Z QMCN,JW = o-9in(l—2) _q _ Z(_Z)N ( N.?) ._ {412)

N=1  M=1 Nl

and hence,

N ;
Z gﬁvI—l CN,M’ — (_";)A (“Q) ] (413)

N
M=1

Substituting g — —Ng we get equation (411), completing the proof.
We next turn to the cluster coefficients

F Y
b:\,' — Z ] r—2 Gl_l.r/—l H __L___ \ (414)

vpl Lyr
Pelx o vl

given by the polyromial approximation in equation (390}, We want, to prove
that (‘J’:\, =by.
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Fig. 14. d{In [1)/dp® as a function of p. This quantity measures the charge ratio
q1/€, see equation (527). The curves are for N = 2, 3,4, 5 electrons, the leftmost
peak for N = 2 and the rightmost peak for ¥ = 5. The dashed line is 1/3.

We may rewrite the above formula as

}V = Z N Gll Z Z 51-11—1— S N H ?13 . (415)

=1 ny=1 n,=1

To evaluate p = 3 v_; Nbj, 2"V we insert equation (415), interchange the
summation order of N and v and use the relations N¥~1zV = (d/dg)* 2"V
and 2?;1 2" Fo/n = po (). We find

p= i Gllvj_l (i)v_l (palp))”

w=1 d'u'
=] 1 d r—1 y

->a(5)  Galroum) (416)
p=1 r=0

By the Lagrange theorem, equation (416} is the solufion to the equation
£ = palpt + Gr1p), which, as we saw above, is equivalent to

p+Gup=mn{l-e}+ap. (417)

This is precisely equation (406 with ¢ = o« — G11 = 1 — (1 ~ &)?, which
means that by = by with by as given in equation (395).
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Fig. 15. The quasi-hole charge 91 /e, equation (527}, as a function of g, the quasi-
hole distance from the origin. The curves are, from left to right, for 20, 50, 75,
160 and 200 electrons. The horizontal line is 1/3. From [286), reprinted with
permission.

9 Charged particles in a constant magnetic field

The quasi-particle excitations in the fractional quantum Hall system is
so far the best (and maybe the only) experimental realization of anyons.
The electrons of the two-dimensional electron gas, as well as the anyon-like
quasi-particles, are electrically charged and therefore strongly influenced by
the magnetic field. If the field is sufficiently strong, it effectively “freezes
out” one degree of freedom, so that in a certain well defined sense the system
becomes one-dimensional.

The guantization problem for charged particles in a constant magnetic
field reduces to the simultaneous quantization of energy and total angu-
lar momentum in a harmonic oscillator potential, discussed at length in
Section 7 above. In the present context we want to discuss also one more
topic, the coherent states, which are interesting because they are maximally
localized ground states in the one-particle system. In particular, coherent
states of anyons are supposed to be models of localized quasi-particles in
the fractional quantum Hall system.
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9.1 One particle in a magnetic field

The Hamiltonian for one particle of mass m and charge g in a constant
magnetic field, in two dimensions, is
PRI e

- = = L 418
H 2 m (418)

where # = p — qA is the kinematical and p = —¢hV the cononical mo-
mentum. The vector potential A = A(x) depends on the gauge. When
the magnetic flux density B is constant, a conveuient choice is the circular
gauge, in which

A=(A4;,4,)= i;i(—'!.t,&,:;f:) . {419)

In this gauge we have A? = B%2%/4, and p- A = A - p = BL/2, where
L = xp, — yp: is the canonical angular momentun. Hence,

1 1 1
H:——(p qA)? = —p +§ﬂ’!w’$ F @l (420)

The last sign is — or + depending on whether the product ¢B is positive or
negative, since we define the cyclotron frequency w to be positive,

= @ (421)
Kt
The commutator
frre, 7] = thgB {(422)

is gauge independent, and implics that H is formally just the Hamiltonian
of a one-dimensional harmonic oscillator. We may define

+ |G’B| lgB]
=py k= — ﬁ_ ,
Te P 2 y= 8 2 y
+ lgB| IqBI
S+ __ a8 423
Ty v F 5 = ﬁay == , ( )

sothat m =t if gB > 0 and ® = w~ if ¢B < 0. The four operators
7 and ¥ are a complete set of observables in the four-dimensional phase
space, and they commute, except that

[mz . my) = ~{r; .7, ] = ihigB] . (424)

Since only one degree of freedom contributes to the energy, the second degree
of freedom contributes only to the degeneracy of the energy levels, which
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are called Landau levels. Every level is infinitely degenerate, assuming of
course that the system is infinite in extent.

Another point of view is that H in the circular gauge is the Hamiltonian
of a two-dimensional harmonic oscillator of angular frequency w/2. plus an
angular momentum term, and the large degeneracy is due to cancellations
between the two contributions. One wsually defines the magnetic length as

h h
A= f—— =/ —. 425
|g B M (425)

In terms of the dimensionless complex coordinate

_xtiy

2=
V2 A

and the corresponding differential operators @ = /92 and 8* = 3/8z*, we
have

(426)

b~
Il

h(z0 — 2*8%) ,
2
H = ’%‘"’ (—zaa* + % T (28 - z*c’)*)) : (427)

We define anunihilation and creation operators, in the same way as before,

a = a+_=ﬂ( Ty i)
at = ‘3*+'§‘:'%g( aT —iny) (428)
b= 8*+%=—:\ﬁ(—w;+aw;) )
o= =0+ T = (o i)
such that [a,af] = [b,d'} = 1 and [a,b] = ... = 0. Then the canonical an-

gular momentum is
L=h{c'a—0), (429)
and the Hamiltonian is

H= % {ala + b5+ 1 F (a'a - b'b))

ho(bh+ 3} if ¢B>0,
Fuw a.*a+%) if gB <.

(430)
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For simplicity, we will mostly assume from now on that ¢B > 0, the case
gB < 0 is entirely analoguous.
The normalized wave function

Xo = —= exp(—[—”f—) (431)

is annihilated by both operators ¢ and b, and is one of the infinitely many
ground states of the one-particle system. When ¢B > 0, a complete or-
thonormal set of wave functions in the lowest Landau level are

|2?

1 1
= e— 1’1’1 = " — o= 4 -
Xn 7 (&M xo0 — z exp( 5 ), n=201,2 ... (432)

The wave function xq is distinguished by being maximally localized near
the origin. However, the system is completely translation invariant, in fact
the operators 77 and m; are generators of translation that commute with
the Hamiltonian, when ¢B > 0. Therefore we may obtain a wave function
of the lowest Landau level which is maximally localized near any arbitrary
pomnt z = (, simply by translating x4. The translated wave function is

1 2+ 2
X¢=—= exp(—————————|z| €l + C*z)

VT 2
Ha o & 2
= \/1?? exp(g-:—z-—g—-) exp(—l—zgl—) . (433)

In the last expression the first exponential gives the phase and the last
exponential the magnitude of the wave function. Thus x. is complex, except
when ¢ = 0. It is a coherent state in the sense that it is an eigenstate of the
annihilation operator a 64,283,

G,X§ = C*XC . (434)
For later use, let us define the non-normalized wave function
. lz1* .
P¢ = exp _T+C z), (435)
and compute the overlap integral for two such wave functions,
/d2z (e, (21 e, (2) = fdgz eI THE el (436)

Perhaps the most direct way to obtain this answer is to integrate separately
over the real and imaginary parts of z, writing

N
~|z + a2 + = — (Rez— CL:;&)

.y 2
— (Imz—i_gaT—i_Cb) +€aC; . (437)
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The one-particle Hamiltonian in a constant magnetic field and in an external
oscillator potential of angular frequency wy is
2,2 L

1 1
H=—"(p— 20 Z o -
2m (P—qA)"+ 2?]%0 v QmP

1 .
+ 3 m{w? + 4w’ F %wL . (438}

We introduce the external potential here for the purpose of regularization,
thus we want to take the limit wy — 0 at the end of our calculations. The
oscillator frequency is changed from w/2 to yw/2, with

4w0 2

5 (439}

v=4/1+
)

As a consequence, if we do not modify the definition of z, we should substi-
tute everywhere ,/vz for z.
By quantizing L and H simultanecusly, we find the energy eigenvalues

1 1
Eijr= (j + §) Fuwy + (k + 5) Hws | (440)

with 7,k =0,1,2, ..., and with

1/ —
wh = § (\.-"w‘z + dun? +|'.d) .
1
w = 3 (\/wﬁ + du? — w) : (441)

We see that w; — w and ws — 0 as wy — 0. so that fAiwy is the modified
energy difference between Landau levels, whereas fiws is the energy splitting
within one Landau level due to the external potential. We see also that both
w1 — wy and wa — wy in the limit of zero magnetic field, w — 0.

These one-particle energy levels give the partition function

— L Ahiw +uwz)
_BE. e 2
Zl _ Ze BE;x — — —F .
= (1 — e~ Pher)({] - e~ Fhws)

(442)

9.2 Two anvons in a magnetic field

The problem of many particles in a magnetic fleld falls into the class of
problems with gquadratic Hamiltonian which are exactly solvable for bosons
or fermions, but not for anyons, except in a few special cases. Among those
special cases is the problem of two anyons in a magnetic field, and this is still
solvable if we add a harmonic oscillator interaction potential or an external
harmonic oscillator potential, or both.
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The two-particle Hamiltonian, including an external potential, is

1 1 .
H=- ((py — ¢A1)* + (P2 — qA2)*) + 3 miog” (1% + @2%) . (443)
We introduce the anyon statistics by requiring an arbitrary wave function
7 to be multivalued, with

Wlwe, x1) = ¥ ¥z, 22) (444)

for an anticlockwise interchange of particle positions. Thus there is no
contribution to the vector potentials from the statistics interaction. We
assume that @ = vr with ¢ < v < 2.

The motion of the two particles can again be decomposed into indepen-
dent motions of the centre of mass position X = {(z1+z2)/2 and the relative
position & = @&, — &9, with canonically conjugate momenta P = p, + ps
and p = {p, — p;)/2. Let us introduce a similar notation for the vector
potentials, writing

A]+A2

A= D) N ﬂ:Al_AQ‘ (445)

This gives the following expression for the Hamiltonian,

1 . 1 2 1
H=-"—(P-2¢A) + — (p ¢ a) + mwo? X2 + = mwelx® . (446)
drn m 2 4

The centre of mass is a “particle” of mass 2m and charge 2¢, whereas the
relative coordinate describes a “particle” having a “reduced mass” of m /2
and a *reduced charge” of ¢/2. The ratio of charge to mass is the same for
both, so that they have the same cyclotron frequency w = |qf3}/m.

We introduce the complex coordinates z; and zz by the same definition
as before, equation {426}, with the same magnetic length A. Then we define,
quite naturally, Z = (z1+22}/2 and z = 2,4+ 2. However, we modify slightly
the definitions of annihilation and creation operators, including the scaling

factor v = /1 + (dwp?/w?),

= mam it = martY
bz%(?z”j— 1z, b*:—%é‘%+ 277, (#47)
c= %fjﬁ*\/g? o= %aaﬂ/%_i
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The non-vanishing commutators among these operators are
[a,al) = [b,b1) = [e,cl) = [d.dT} = 1. (448)
When ¢ > (} we obtain the following form of the Hamiltonian,
H = hwy (Wb+dtd + 1) + hws (ala + e+ 1) {449)

with the angnlar frequencies wy and wo given by equation (441). Two encrgy
eigenstates having the correct symmetry under particle interchange arc

2
= 2 EXP(_'}' (IZi2 + %)) ;

|2[?

o = o= (12 + ) (450)

They have energies E}gl} = hwy + (1 + v)Hwe and Ef()m = {3 — v)hun + R,
A complete set of energy cigenstates are, with j, k,{, m independent non-
negativ integers,

e . o .
Pk = @) G () (@
P = (@Y OO (! (P (ao1)

and the corresponding energy levels are

EN i = GHI+ D oy + (k+1+2m+ 1+ 0) by,
ER) = GHlrm+3—v)hn+ (k+1+ 1)k, (452)

This gives the two-particle partition function

e—ﬁ.ﬁ(wt-i—u;g)
(1 — o— 3k )(l _ e—ﬁﬁwg)(l _ e—ﬁh(wl+w2))

e—vﬂh.wg e—(z-v),@ﬁwl
(1 — o203 + 1 — e— 2830w ) '

Ly =

(453)

The above calculation was done under the assumption that ¢8 > 0. Chang-
ing the sign of ¢3 is the same as interchanging «w; and w;. The same effect
is ubtained by substituting 2 — v for v, or even simpler by the naive trick
of switching the sign of w.

By definition, the lowest Landau level for 4B > 0 consists of the energy
levels

Elg{}c,ﬂ,m = hwy + (k +2m+1+ V) A (454)
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They lie lower than the lowest energy level of type (1), E,gm = {3—v)fin +
huws, as long as k and 7 are small, and wy is small so that wy << wy. At
least this is true in the bosonic limit v — 07, In the other bosonic limit,
¥ — 27, we see that the Landau levels are no longer clearly separated. For
gB < 0, on the other hand, it is in the limit v — 27, and not as v — 07,
that it has meaning to speak of separated Landau levels.

9.3 The anyon gas in a magnetic field

We are now in a position to compute the second virial coefficient of a gas
of charged anyons in a magnetic field, neglecting the Coulomb interaction.
Using equation (327) we get [102,284)

. AN Zy
J;%o(ﬁﬁwa) (1—22“12)

AQ e(u~l),8ﬁw 1 ﬂﬁw
LS (VPN I N SR R 455
e (” Y= Gabny T3 @ ‘( 5 )) (455)

Ag

H

In the limit of zero magnetic field we recover the well known result, equa-
tien {347),

_ 1 (v—1)?
:12 _—— . 41.'
tim e = (- ) 5

More interesting are the next terms in the expansion around B = 0,

d4A, g 0A; 2 ¢ viv—1)(v-2)
OB g, m Ow|,_, h 6 ' 457)
and
92 Ay 6 ran21— 2w ~2)?
—_— = . - —_— ! 4
9B |,_, =" (+) 24 (458)

The first derivative at B = 0 vanishes for bosons, ¥ = (0 and v = 2, and
for fermions, ¥ = 1, but for no other types of anyons. This means that
a gas of charged anyons that are not bosons or fermions, should develop
a spontaneous magnetization even in the absence of an external magnetic
field.

The N-anyon problem in a magnetic field can only be solved mimerically
when N > 2, but it is still possible to treat exactly the limiting case when
the field is strong enough, or the temperature low enough, that all energy
levels not belonging to the lowest Landau level can be neglected. As already
noted, in order to speak meaningfully of separated Landau levels, we have
to exclude the bosonic limits ¥ — 27 when ¢B > 0, and v — 07 when
gB <.



J. Myrheim: Auvons 381

The N-particle Hamiltonian is

A 1 1
H= —p. 2+ - mw? FdweDet T wl ). 459
j_l(z,mpj S + ) F L wl (159)
Using our resuits for the harmonic oscillator we can immediately write down
a complete non-orthogonal set of wave functions in the lowest Landau level,

N
4LLL 1o F i R 2
Wil dze ondn 917 s’ s AT exp —E Z |zj| : (460)
=1
with j1,J2, ... .fny non-negative integers, s, = ijl zj-k and A = quk

(2; — 2z}, and the energies,

N . . .
BYE =N+ (31 s Vi

N NN -
+E+—(—2-—1)-U)ﬁw2. (461)

Hence the N-anyon partition function of the lowest Landau level is

=& Bl o~ (1N ~1)0) BRws
e” 2 ez

ZLLL _

= : 462
N (1 — e=#Rw2)(] — g~2Bhwzy ... (1 — e~ NBhwa) (462)

Special cases are bosons, v = 0, and fermions, i = 1, which can be derived
from the grand canonical partition functions

(=3

= =1 1
- 0 i— ze—% .ﬁﬁ(w1+w2)e—j;’ihw2 ’
J‘:

0
) (BT (463

F=0

i
!

In order to compute the cluster coeflicients we use equation (326), substi-
tuting £ = 3huwyp. In the free particle limit wy — 0 we then get

(-2, (169

where pr is the surface density of quantum states in the lowest Landau
level,

_ B )¢B] 1

PLE3T = T oo’ (465)
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Note the close resemblance of equation (464) with equation (395), the only
significant difference is the factor 1/n in one formula wersus 1/n? in the
other.,

Similarly, we may compute the virial coeffictents using equation {327).
The general result 1s

VP (1 — 1)

A, = ] (466)
npL"tT
In particular, the second virial coefficient
A, = L (u - 3) (467)
PL 2

is the same as we get from the exact equation (455) in the strong field limit,
or more precisely, when Shw is large. The difference between (467) and
{455) should be a useful measure of the error we make by neglecting the
higher Landau levels.

An explicit proof that the virial coefficients (466} follow from equa-
tion (464), can be given by means of the results from Subsection 8.12. It
follows from those results that the equation

oo o0 (Z’)n’ n—1 ny
BP=3 b =p > ST (1-5). (168)
n=1 n=1 k=1
with 2’ = ze~#8% ig equivalent to the equation
3P 8P
z’:exp(v f__) —exp((v~1)'——) : (469)
L AL

Operating on this equation with 2/(9/0z'), and using that z'(9{3P)/d2") =
P, we get that

M= (vexp(v ?—E) ~ (- l)exp((u—- 1)@)) £ (470)

gL AL PL

Equating these two formulae for z* we obtain the equation of state

-1
AP =pp ln(w) , (471)
pL—vp

which is equivalent to equation (466).

We see that the pressure diverges when the density p approaches the
maximum value py /. This result for anyous is a direct generalization of
the fact that the maximum density of fermions in one Landau level is py,.
The divergence is clearly unphysical, and weuld have been avoided if we
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had been able to include the higher Landau levels. At some density before
the first Landau level is full, the particles should start filling the next level.

It was assumed in the above that ¢B > (0. In the opposite case, gB < 0,
the same equation of state holds with the substitution v — 2 — ». That is,
we have

ap _ pr —(1-v)py
B8P =p;, ln(ﬂL - V)p) (472)

10 Interchange phases and geometric phases

In this final Section we will discuss the relation between quantum mechanical
phases of somewhat different origins, the interchange phases in systems
of identical particies, and the geometric phases, also called Berry phases,
associated with cyclic evolution of quantum systems. This relation may be
used for studying the statistics of particles or of particle-like excitations in
a physical system.

10.1 Introduction to geometric phases

The two-level time dependent Hamiltonian

_ cos(2a) sin(2a) e =25t ,
H{t) = hw ( sin(2a) ¥ — cos(20) ’ (473)

with w, o« and  real constants, illustrates well the phenomenon of the
geometric phase, or Berry phase [15,57-61]. The instantaneous eigenvectors
of H(t), with eigenvalues Lhw, are

)= (G ). = _me ) )

Sin cv e — COS (%

The exact solution of the time dependent Sehrédinger equation

L dy
= H 475
ih - Ha {(475)
is of the form #{(¢) = U {£) (0}, with
Uty = o™ (cos(wit) — iy sinfwn 1)) —id et sin{w, t)
i —ige P sin(wt) e'P* (cos(wit) + dysin(wit)} )’
(476)
and with
weos(2o) —
wy = Vw? + 3% = 2 cos(2a) , v = ﬂjﬂ——}(i,
1
5o wsina) (477)

Wi
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In the adiabatic limit when 3 is very small, but the product 3t is not
necessarily small, we may put

wit 22 wt — Jtcos(2a) | v = cos{2ar) & == sin(2a} . (478)

With these approximations the time evolution of the eigenvectors x4 (0} of
H(0) is that

U(t) Xt(ﬂ) o e:}:i(wl—i—ﬁ)t X:I:(t) P eq:iwt eq:-jﬁt(l—cos(?a)) Xj:(t) ] (479)

In other words, an eigenvector of H{0) evolves approximately into an eigen-
vector of H{t). The phase Fwt in equation (479) is readily understood as
dire to the time evolution of states with energies thAw. But there is an
additional phase,

H(t) = D (t) = TAL(1 — cos(2a)) , (480)

which can be interpreted as an effect of the geometry of the Hilbert space
of spinors to which the eigenvectors x4 {t) belong.

In fact, given x(#) = x+ () or x_ (%), normalized such that |x]? = x'x =
1, let us ask for the time dependent real phase *t) such that the curve
(t) = e} (1) in the Hilbert space has minimal length. The length is,
with the time derivative d/d¢ denoted by a dot,

[Jattit = [avin+xi= [ty - ook -xio. sy

To minimize the integral we must minimize the integrand, i.e. choose ¥{¢}
such that

i b .. . gL
9= (M%) = —Im (x'x) = ix'x. (482)

The last equality follows because x is normalized, so that

Re(x'x) = % (e + X% = 5 = (x'x) =0. (483)

If x = Cxg. where xg is unnormalized and C is a positive normalization
factor such that y is normalized, then equation {482) takes the form

#=-Im(x'%) = —Im (CXI_, (C)'m + Ox(,)) = —C*Im (Xg;m) . (484)

For the phases J(¢) = 94(t) corresponding to x(t) = x+(t} we get the two
equations

¥y = i(x) vy = —28sin’a = —3(1 — cos(2a)) ,
do = i(x=) %- = 3(1 - cos(20)) . (485)
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which are the same as equation (480) if we take 91 (0) = 0.
The time dependence of H(t) is periodic with period T' = =/#3, and the
eigenvectors x4 (0) of H(0) evolve over one whole period T into

U(T) xa(0) = 7T eFirlimeos(Za 3., () (486)

The additional phase over one complete cycle of the variation of H{t} is the
Berry phase

399 = Fr (1 — cos(2a)) . (487)

The superscript “0O" indicates that it has to do with a closed loop. It is
independent. of the period T, it depends only on the sequence of eigenstates
x=+{t) gone through and not on the specific parametrization of the curve.
Hence it makes sense to speak of a geometric phase associated with any
closed loop in the space of state vectors, irrespective of whether the loop is
a physical time evolution due to the adiabatic deformation of 2 Hamiltonian.

In fact, the Berry phase #€ is unchanged if the eigenvector x(t} is mul-
tiplied by an arbitrary #-dependent phase factor, as long as x{T) = x{0).
Thus it depends only on the sequence of physical states gone through. Re-
member that a physical state is represented in quantum mechanics not by
one unique vector in the Hilbert space, but rather by a one-dimensional
subspace. That is, two unit vectors in the Hilbert space represent. the same
physical state if they differ only by a phase factor.

10.2  One particle in a magnetic field

As an example of the geometric phase, or generalized Berry phase, let us
calculate the phase induced when a charged particle is moved around a
loop in a magnetic field. Both the one- and two-particle cases have been
discussed by Leinaas [153]. See also [64]. The original derivation of the
Berry phase applied to a non-degenerate energy level of a Hamiltonian which
was time dependent, although varying slowly. The present example is of a
diametrically opposite kind, since the Hamiltonian is time independent and
all energy levels are infinitely degenerate.

Assume that the localized guantum state x, equation (433}, is moved
once around the circle [{] = p, in the anticlockwise direction. That is, we
parametrize { = pe'™ and let the angle a increase from 0 to 2m. Note that,
by equation (426}, the dimensionless radius p corresponds to a dimensioned
radius » = /22 + 4 = v/2Ap. In principle, the circular motion could be
induced by a weak central electric field, since a charged particle in erossed
electric and magnetic fields drifts perpendicularly to both fields. By direct
generalization from equation (482) we define a geometric phase ¥ such that

dd
=i

Oy
2 * ¢ I 2 2 — 2 — 2 4
i [ e = [t =0k = (488)
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where we have used that

Ox¢ _ 8¢ Oxe | 94" Ox¢
da  Ha O de OC*

LOx¢
ac

Ix¢ _
a

Integrated over o from (4 to 27 this gives the generalized Berry phase, which
is independent of the phase convention for the localized states x.,

=i i =" = i . (489)

leB)

97 = 27p% =
ey 7

(490)
Note that we get ¥ > 0 because we assumed that gB > 0. The case
gB < 0 corresponds to the complex conjugate wave function, which will
give ?¢ < 0. Thus we may drop the absolute value sign in equation {490)
and write

g¢B i

99 = 22 1p? =21 — 491

5 o, (491}
where ® = Brr? is the magnetic flux encircled, @9 = h/q is the flux quan-
tum, and both ® and ®p may have either sign.

There is an alternative way to compute the samec Berry phase, using the

non-normalized coherent state wave function ¢ defined in equation (435).
By generalization from equation (484}, we have that

1 , c‘wc)
= - _ pppuini. By By 492
o J!,Im(/dzu,c e ) (492)

where [ is the one-particle normalization integral, which by rotation invari-
ance is independent of «,

I=1(p)= f Q% |2 = me (493)

The point now is that 4 depends on « enly through ¢ = pet?, and is an
analytic function of ¢*, so that

d¢ 1 aI 1 /.81 ., 01
=1 (e ) = (S5 %)
= p? dd nI{p) =p*. (494)

Here we have used that
a a d g acr o . 0
Y L N
8p? )p dp ¢ dp ¢ a¢ a¢
We have assumed here that ¢B > 0. As already mentioned, if ¢B < 0
instead, we have to use the complex conjugate wave function. Because

(495)
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it depends analytically on ¢ instead of (*, there is a change of sign in
equation (494), so that we get

d g d 2
R il = —p¢ . 4
i p 7 InI{p) i (496)

10.3  Two particles in a magnetic field

In the case of two bosons or fermions in & magnetic field, in the lowest
Landau level, the one-particle coherent states may he used to construct
two-particle states where both particles are maximally localized. Simply
take the product of the one-particle wave functions localized at ¢, and (p,
and symmetrize if the particles are bosons, or antisymmetrize if they are
fermions. A continuous variation of the parameters ¢, and ¢ induces a
deformation of the two-particle wave function, and if ¢, is changed continu-
ously into ¢, and vice versa, this deformation is a closed loop starting and
ending with the same physical state. It is in effect an interchange of the
particles, and not unexpectedly, the corresponding Berry phase turns out
to be related to the symmetry or antisymmetry of the wave function.
For two bosons we define the non-normalized wave function

Yo o {210 22) = Po (21) 9¢, (22) + e, (22) W, (21) {497}

with 3¢ as defined in equation (435). For two fermions we define

oz = el el gelnbatn), (498)
a b

dividing by an extra factor ¢ — ¢; which serves two purposes. Since the

wave functions @-:'.!gmcb and 1_-';F. _ represcnt the same physical state, we want

them to be completely identical and not just identical up to a sign. Also, it

is nice to have wgm o, well defined in the limit |{, — ¢| — 0. The boson and

fermion wave functions are both analytic functions of ¢} and ;.

To simplify, let us take the one-particle cohcrent states to be localized
symmetrically about the origin, with ¢, = —(, = { = pe*®. Then, since the
wave function is analytic in ¢*, the Berry phase is related to the normaliza-
tion integral in the same way as in the one-particle case above. The boson
and fermion normalization integrals are, respectively,

I®(p)

/ %y d%; (W8 _ (21, 22)|? = 27 (" +e72),

e (82‘02 — 27"y _

o (499)

IF{p) = fd% d%; [ (21, 22) =
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Keeping the radius p fixed and increasing the angle ¢« from 0 to 7 corre-
sponds to an anticlockwise interchange. The Berry phase is, for two bosons,

d9®
By .y _ — 2 B\ _ 2 2
e (n) =T E =TT 55 Inf (ﬁ) = 2?Tp tanh(?p ) . (500)
And, for two fermions,
F dg¥ d F
Win)=mn o= 7o a7 ——InI"{p} = 7 (2p° coth(2p%) — 1) . (501)

The asymptotic limit as p — o is 2mp? in both cases. This we recognize as
the one-particle contribution, due to the displacement of each of the two one-
particle coherent states around a half circle. Subtracting this one-particle
contribution, we are left with the genuine two-particle Berry phases,

9B = 72 (101D (o) — 2 1,(p)) = 2P (canh(26%) — 1) |

dg?
d
0F = <1 (I () — 2 o)
= 7 (2p*(coth(2p®) — 1) — 1) . (502)

Here I){p) is the one-particle and I3{g) the two-particle normalization in-
tegral. We will refer to 95 as the statistics Berry phase. The asymptotic
values (} for bosons and —m for fermions, when p — oc, justify the termi-
nology. Since we define 9, to depend on the distance p, it is not surprising
that there is a deviation from the asymptotic values (t and —m when p is so
small that the two one-particle coherent states overlap significantly.

Note that for ¢, = —( = ¢, the boson and fermion two-particle coherent
states defined in equations {497) and (498) have a common form, apart from
constant factors,

)2&

a(u) 2k+w 503
Z[‘(2k+v+1)z v (503)
with
2 2 2
o = exp(—!—z—li-ig—lﬂ) = exp(—IZl2 - %—) . (504)

and with Z = (z1 + 22)/2, z = 2z, — z2. The boson state has v = 0 and
the fermion state = 1. Note however that in equation {503) we could
take for example v = 0,2.4, ... and get infinitely many different hosonic
two-particle coherent states, with different asymptotic behaviour as z — 0.
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The basis states 22%+4)y for fixed v arc orthogonal, and they are nor-
malizable whenever 2k + v > —1. The normalization integral for ¢ is,
again apart from constant factors,

) (2,0 9k
= 505
Zﬂ P2k +v+1) (505)

We could generalize from bosons and fermions to various two-anyon states
that localize each of the particles more or less well. The most obvious gen-
eralization is simply to allow v in equation {503) to take any real value,
with the only restriction that v > —1, for normalizability. This can be
interpreted as the anyon coordinate eigenstate projected onto the lowest
Landau level [285]. Another two-anyon state which has also been proposed
as a natural generalization is the coherent state of a particutar su(1,1) al-
gebra [64,285),

o Y 2h
) — ) 22 (506)
k=0 260 [RIT(k + v+ D)T(2%k + v + 1)

W

The normalization integral for this is given by a modified Besscl function
L.

i 2y2k I, 1 2052
I S ) 50
= F(k + v+ §) £
The statistics Berry phase
9§ = mp? (1 I {(p) — 2In I (p)) (508)

has the asymptotic value of —wvw for both these two-anyon states, but there
is a differcuce between them for small p. Note that 3 — ¢ for p —
G, independent of ». This does not mean that the hosons, fermions or
anyons are not peintlike particles, what it means is that they are not sharply
localized. Sharp localization is impossible as long as we admit only states
belonging to the lowest Landan level.

We may now turn the whole argument around and use the Berry phase
to define a distance dependent “anyon parameter”

, d y
Veerey = =" 5 (0137 (p) — 21n 13 (p)) (509)

which is then asymptotically equal to the actual statistics parameter v at
large distances.
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In the discussion so far we have assumed that ¢B > 0. The only ditfer-
ence in the case gB < 0 is that we have to take the complex conjugates of
the wave functions *) and 9, defined in equations (503) and (506}, but
when we change 7 into z*, we have to change =¥ into ()™, in order to
preserve the meaning of the anyon parameter v. Thus the anyon states of
negative charge are

oG 2
) = _C—_ A Zhow 510
iy kZ_DF{Qk"V%’]-)(Z) o, ( )
and
) =N ¢ T -
Pl = z i . (511)

i=h 28 JRID(k — v + T2k — v +1)

These states are well defined for v < 1, and are singular as |2] — 0 if
0<v <l

The complex conjugate wave functions depend analytically on ¢ instead
of ¢*, which implies an opposite sign in the relation between the Berry phase
and the normalization integral. Thus, for ¢B < 0, equation (509) is replaced
by

d v
Yoy = 97 75 (I 37 (p) — 2In 1)) (512)

10.4 Interchange of two anyons in potential wells

The results just derived for two particles in a magnetic field indicate a
general relation between the geometric phase, or Berry phase, and the in-
terchange phase in a system of identical particles. The existense of such a
relation is not entirely trivial, since the two phases are conceptually rather
different. One phase has to do with the geotnetry, or more precisely the met-
ric, in the Hilbert space of quantum state vectors, the other has to do with
the topology of the configuration space. One phase arises when the whole
wave function is changed continuously, the other arises when the argument
of one single wave function is changed.

As another example, we may imagine two identical particles in two di-
mensions trapped inside two separate deep potential wells, and interchange
the particle positions by interchanging the wells [63]. If only one potential
well is present at the origin, let % denote its ground state wave function, of
energy Fy. For simplicity we assume that the well is rotationally syminetric,
so that by has angular momentum zero. Let 1%, be the wave function
translated to the position a. that is,

Yal@) =z —a) . (513)
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Table 1. The appreximate energies, with the exact and approximate wave func-
tions for twe bosons or two fermions in the double well. Normalization constants
are ignored.
Energy I Bason wave function Fermion wave function ]

2By +e | do(m)_{@2)

= Ya{®1)¥al{®2) + Yu(Z1)¥s(z2)
—a(®1Jn(z) — tp{@1)bales)
2By | do(@mi)alme) + o @)y (m2) | oo (m)¥s (®a) — Yy {@1)¥—(22)
= Y (X1 )pal®2) ~ oz J¥a(z2) | = Yaler}ibn(ms) — ¥n{x1)Ya(22)
2Ep ~ € | ) (w1 )0y (22)

A2 wa(ml)wa(mz) + Yz, Yiip{Ea)
Fal{z1)ynlza) 4+ o @ )tha(ma)

Then if the two wells are located at @ and at b, and if the overlap between
the two wave functions #, and ¥ is small, the one-particle ground state is
nearly degenerate, since there are two energy eigenstates

thy & the £ Yy (514)

The energies are Ey F /2, and the cnergy splitting ¢ is small.

The lowest energies and the corresponding wave functions for two par-
ticles in the two wells are tabulated in Table 1, for the bason and fermion
cases. Note that the single fermionic energy cigenstate has essentially only
one particle in each well, but in all three of the bosonic energy eigenstates
the probability of finding both particles in the same well is either 50% or
100%, approximately. It follows by interpolation to the anyon case that
there is in general no anyonic cnergy eigenstate with the two particles in
separate wells. On the other hand, if the energy splitting ¢ is very small,
then there surely exists an approximate energy eigenstate with two anyons
in separate wells, and the transition probability from this statc to other
states iz small, It is this particular state we are inierested in here. Call its
normalized wave function yg.

It is convenient to introduce polar coordinates, (R, ®) for the centre of
mass position and (r, ¢) for the rclative position, and to work in what we
have called the parallel gange, so that the statistics vector potential vanishes
and every wave function v satisfies the following periodicity condition,

(R, .7, ¢+ 1) = (R, D,1. ) . (515)

Assume now that the positions of the two wells are @ and b = —a, and that
they are interchanged simply by a rotation an angle 7 about the origin.
Define a set of wave functions x,.., depending on the real parameter «, such
that

X&(R:(I)':'r:qﬁ) ___eiUCxXO(R’(I)_a’T’@')_a) L] (516)
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with v = #/n. The phase factor e*® is introduced in order that . = xo.
Apart from that, the wave function y is just xo rotated anticlockwisc by an
angle v, in other words it is the approximate eigenstate for the Hamiltonian
where the two wells have been rotated into new positions.

The geometric phase # associated with a change in « is determined by
the equation

do e MXa {L} .
o= .*,/{R dR)® (r dr)de x;, Do -V + (517)
{L} is the expectation value in the state y, of the angular momentum
operator

L0 d

Since we have assumed that the two wells are so far separated that there
is negligible overlap of the two ground state wave functions 1, and ¥_g,
it can not matter for the expectation value {L) whether the particles are
bosons, fermions or anyons. Hence we conclude that (L) = 0 always, as is
the case for bosons. Consequently, the geometric phase associated with an
interchange by rotation an angle 7 is the negative of the anyonic statistics
angle 8,
dd

ﬂozwd—:—wrz—ﬁ" (519)
o

10.5 laughlin’s theory of the fractional guantum Hall effect

Arovas ef al. used the concept of the geometric phase in order to calculate
the charge and statistics of the elementary excitations in Laughlin’s theory
of the fractional quantum Hall effect [62,175]. Although the original idea of
Laughlin was very simple and elegant, it applicd only to the simple fractions
1/3,1/5, ete., and the hierarchical extensions of the theory needed for other
fractions become rather complicated [171,172]. As our final example, we
will discuss the caleulation of Arovas, Schrieffer and Wilezek for sufficiently
small number of electrons that it can be done either exactly or numerically
[285,286).

Since we want to discuss both particles of positive and of negative charge,
we will assume throughout that the magnetic field is positive, B > (. Then
since electrons have negative charge ¢ = —e, we will have ¢B < 0 for the
electrons. The canonical unit. of length is the magnetic length for electrons,

Do =1/ — . (520)
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and the one-particle basis states are the complex conjugates of the wave
functions y, in equation {432). In the state y,, the particle is located
approximately at a distance |z| = y/n from the origin, since that is where
the probability density |x,|? is maximal. Hence, if we put an upper limit
on n, say 1 < M, this means that we have an approximate description of a
system of finite radins r = A|z| < AV M.

If we now distribnte N electrons among the M first one-particle states
in the lowest Landau level, the filling fraction is ¢ = N/M. The particles
may be electrons, and we may make the (somewhat dubious) assumption
that the electron spin is completely polarized in the magnetic field, so that
the N-electron system is described by a wave function which is a totally
antisymmetric function of the particle positions zy, z2, ..., zx. For a filling
fraction vy = 1/p. where it is an odd integer, the non-normalized wave
function proposed by Laughlin is

N

_ . 1

v = H (25 — z)" exp ) Z 12 - (521)
i<k i=1

It is antisyrumetric when i is odd, and is obviously a ground state of
a system of non-interacting electrons, built from the one-particle states
XE: XT« o -.XF\,{-l; Where

M=pu(N—-1)+1~uN. (522)

Due to the factor (z;* — zj)#*, the wave function w[ﬁ‘ minimizes very well, if
not perfectly, the probability of finding two particles 7 and k close together,
so that it is still an approximate ground state of the system when we take
into account the Coulomb repulsion between the electrons.

The simplest excitation of the system is a vortex at an arbitrary position
z = ¢, described by the wave function

N
v =1 (- ¢y wty (523)
=1

The vortex represents a “quasihole” | since it repels the electrons and thereby
creates an excess of positive background charge at { (we assume that the
total electron charge is neutralized by a uniform background density of
positive charge). Note that it takes j vortices at the same position to
create a positive excess charge equal in magnitude to the electron charge,
thus we expect naively that the charge of the vortex is 1/u {(or rather —1/u)
of the electron charge.

We now ask for the geometric phase @, arising when the vortex is moved
around the circle |{| = p. That is, we parametrize { = pe’® and let a increase
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from { to 2m. The total phase is
27 3
o7 = / dov v = 2:a'i'—d’l - . (524)
0 & '

Since 1 depends on o only through { = pe*®, and is an analytic function
of *, we have, by a similar reasoning as before, that

N

d'l.?l 1 2 L 871151 2 d =054
P fim /Hd ViGa )= ga e, 62)

where I, (p) is the normalization integral,

/Hdz,r f [*
= szk/hdZZj lew—e(zfs o 2R Plh? . (526)
k=0

i=1

Lip)

Here ¢ are the elementary symmetric polynomials encountered earlier, see
equations (226) and {237).

We may try to interpret the phase 9¢ as due to the motion of a charge
g1 in the magnetic field, and then the vortex charge ¢ is related in the
following way to the absolute value of the electron charge, |g| = €. According
to equation (491), dd, /da is proportional to the charge ¢;, and according
to equation (483) we have d¥/da = p? for a positive charge e. Hence,

il = 12 (iliil = df}z Infi{p). (527}
In particular, we conclude immediately that ¢, is positive.

The normalization integral | (p) is tabulated in Table 2 for g4 = 3 and up
to 5 electrons. Based on this table, the quantity d{lnI1(p)}/dp? is plotted
in Figure 14 as a function of g. Although N = 5 is a very small number,
the plot already suggests that q1/¢ = 1/3 for large N. This is confirmed
by the results of Monte Carlo integrations with N = 20, 50, 75, 100 and
200, as shown in Figure 15 [286]. Note that the wave function # describes
essentially a system of finite radius py = /p{N — 1)+ 1 (which is 3.6
for £ = 3 and N = 5, and 24.5 for N = 200), and that d{ln I, (p))/dp?
approaches N/p? for p > pw. One should therefore consider only the region
P < pN.

The wave function for a state with two vortices, at the positions ¢ and

N N
do =[G -¢) (& +¢) w6 =TT ()2 - €)?) w6 (528)
i=l1 3=1
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Table 2. The one-vortex normalization integral I; for g =3 and for N =2,3,4,5
particles.
N I, ]
8-3 (11+4p° + 2p%)
64.-81-5 (2.761+2-3-Tlp*+3-31p" + 315"}

27537577 (8.625 41 +4-11-1200p° +4-3-5-157p° + 4353 p% + 353 p%)

2% 3T TER T (4. 122297213 + 4 - 364044177 + 2.5 7187 - 2711 6°
4227478175 +3.5-109- 179 6% 4+ 3109179 p'%)

[ N R

Fig. 16. The distance dependent statistics paramecter —p*(d/dp?)(In s — 21n fy)
as a function of p. The curves are for N = 2,3,4, 5 electrons, the leftmost peak
for N = 2 and the rightmost peak for N = 5. The dashed line i3 1/3.

If the two vortices are interchanged by an anticlockwise circular motion an
angle 7, this again gives rise to a geometric phase

T 9.
99 = f dov % = w% : (529)
0}

By the same derivation as above, we have that

ds , d
d_a? = p° 37 In I {p) , {530)



396 Topological Aspects of Low Dimensional Systems

where I3(p} is the normalization integral for 1z,

N
iio) = [ T1 % loal’
j=1
N N .
=t [TL % lensl@P o GRPPIEE . (531
E=0 =1

It is tabulated in Table 3 for 4 = 3 and up to 5 particles.

Subtracting the one-vortex contribution 29, fromn the two-vortex phase
2, we would like to interpret the remaining phase as due to the quantum
statistics of the vortices. More precisely, we use the definition {509) of the
distance dependent anyon parameter,

d
VBamy = ~p" 5 (infa(p) = 2In 11(p)) . (532)

This is plotted as a function of g in Figure 16. It clearly depends on the
distance between the vortices, at least for small distances. We should in fact
expect the vortex statistics to depend on distance, for small distances, since
the vortices are not point particles, but have a finite size. More remarkably,
the plot indicates that when the vortices are well separated, then there is
an approximately constant part of the Berry phase, giving

PRerry & % . (533)
This is again confirmed by Monte Carlo integrations, with N from 20 and
up to 200, as shown in Figure 17.

In order to compare with the statistics phases of the anyon states given
in equations {503) and (506), we have to remember that our present length
scale is the eleciron magnetic length )., corresponding to the elementary
charge e, whereas the vortices that we want to describe as anyons have
charge e/, with & = 3 in our numerical example, so that the “vortex mag-
netic length” is A = ,/fiA.. This stretching of the length scale must be
compensated for by dividing the dimensionless length in the anyon systemn
by /¢ in every formula we use. The comparison is shown in Figure 18, it in-
dicates that the anyon model with ¥ = 1/3 is a reasonably good description
of the Laughlin quasi-hole states for the filling fraction vy = 1/3.

Laughlin alse proposed wave functions representing quasi-electron ex-
citations, in which the electron density is increased locally. These quasi-
electron states were examined in reference [284], and within the approxi-
mations used. the results iinply that the charge and statistics parameter
should have the values —e/u and +1/p, respectively, for a filling fraction of
1/p with g odd.
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Table 3. The two-vortex normalization integral Iz for g = 3 and for ¥ = 2,3,4,5
particles.

N I

2 16-3 (644211 p7+ %)

3 64-81-5 (16-47-223+8.3-1007p°+2-3-11-235° +31p1)
4 | 255.3%.57.7 (128 517 26561+ 64700 839pY +64-3-47-181p°

+32-7-11-13p'2 4+ 353 ')

5 2%, 303 . 55777 (25625 13- 235670473 + 64 - 7 - 467 - 6931193 p*
+8-5-1030094323p% + 4-3- 72197057 p'?
+2-9.13.61.593p'% +3-100.179 %Y%)

Fig. 17. The quasi-hole statistics parameter vpoyry, equation (532), as a function
of p, balf the distance between the two quasi-holes. The curves are, from left to
right, for 20, 50, 75, 100 and 200 electrons, and the horizontal line is 1/3. From
[286].

The proposed wave function for one quasi-electron located at the position
¢ is the following polynomial in ¢,

N
o (H(a;‘ - c)) (am), (534)

=1

i
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N

0.3+

Fig. 18. Comparison of the distance dependent statistics parameter for two
Laughlin quasi-holes, and for localized states in the system of two anyons. The
lowest lving curve is for 75 clectrons, then follows a common curve for the three
cases of 20, 50 and 100 electrons, and the third curve is for 200 electrons. Some-
what higher lies the Berry phase curve calculated [rom the anyon pusition eigen-
state projected onto the lowest Landau level, and even higher the one calculated
from the coherent state of the S{7{1, 1) algebra. From [286].

with A = H(Zj — zx) and 3y = exp _%Z|Zji2
J<k 7
The normalization integral may be rewritten by partial integration as

‘NI'

R K e | (BRT R (535)
k=1

It is again a polynomisl in p = |{|, due to rotational invariance. The
difference from the quasi-hele normalization integral is the extra —1 in each
factor |zx — ¢|* = 1. Without this —1, the quasi-electron and guasi-hole
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Fig. 19. The quasi-electron charge q| /e, equation (536), as a function of p, the
quasi-electron distance from the origin. The curves are, from left to right, for 20,
50 and 75 electrons. The horizontal line is —1/3. From [286].

integrals would be identical, and the charge of the quasi-electron,

f
ho_ dig Inf(p), (536)
would be the same as that of the quasi-hole, just with an opposite sign,
because the quasi-electron wave function depends on ¢ and the quasi-hole
wave function on {*. This approximation seems hard to justify, nevertheless
it may be valid asyptotically for large N, as the results of Monte Carlo
integrations shown in Figure 19 scem to indicate.

Two quasi-electrons at { and —¢ are described, according to Laughlin,
by the wave function

N
¥ = o (H(a: ~)r + o) (A%, (537)
i=1

which yields, by partial integration, the normalization integral

N
Ié _ /dQNz .'::,;‘02 |A|2_u. H (Jzk2 _ C2|2 _ 4|zki2 + 2) ] (538)

E=1
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Fig. 20. The distance dependent statistics parameter for quasi-electrons, equa-
tion (539), versus p, hall the distance between the quasi-electrons. The lowest
lying curve is for 20 electrons. Next are curves for 50 and 75 electrons. The
100 electron curve is cut at p = 8 and the 200 electron curve at p = 6, to avoid
numerical problems. The horizontal line is 1/3. From [286].

Comparing with the quasi-hole integral in equation (531), we see that for
two quasi-electrons there are correction terms, like in the case of a single
quasi-electron.

The distance dependent statistics parameter is now

‘ d t ' e
VBerry = pQ a;E (]Il I2(p) —2In Jr1 (P)) . (939)

This quantity, as computed by Monte Carlo integration, is plotied in
Figure 20. It is found to be positive, although one can hardly justify the
conclusion that the asymptotic value is 1/3, as one might want it to be.

In Figure 21 the Monte Carlo data are compared with the curves for
anyons of negative charge —e/3 and with the anyon parameter » = 1/3.
Note that these two-anyon states are actually singular where the anvon
coordinates coincide. It is seen that the small distance behaviour is well
represented by the anyon model, but the behaviour at larger distances is
not at all well represented. It may be that the calculations were done with
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0.5

Fig. 21. The distance dependent statistics parameter for Laughlin quasi-electrons,
compared to the two-anyon states. The five curves for 20, 50, 75, 100 and 200
electrons coincide for small p. The 200 electron curve overshoots the horizontal
tine 1/3 at p & 3. The curve lying lowest for small p represents an anyon eigenstate
projected onto the lowest Landau level, whereas the curve going highest for large
p represents the coherent state of the SU(1, 1) algebra. From [286].

too few electrons, but at least one may conclude that there is a marked
difference between the quality of the anyon description for the Laughlin
quasi-hole states versus the quasi-electron states.

In these calculations the anyon model was compared with the Laughlin
wave functions, A more interesting question is perhaps how it compares
with experiment, or if not directly with experiment, at least with some less
idealized theoretical model. One such model calculation for the quantum
Hall system is that of reference [238], which did not rely on any specific trial
wave function, but rather on state counting based on numerical simulations
for interacting electrons on a sphere. The value of the one-dimensional
exclusion statistics parameter [227] was found to be 1/3 in the case of
quasi-holes, and 2 — 1/3 for the quasi-electrons, near to the magic filling
fraction 1/3.

The exclusion statistics parameter is in principle the same parameter
as one reads from the Berry phase, although with an opposite sign for
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the quasi-electrons, because their charge is negative, Thus the predictions
for the anyon parameter, based on the numerical results for the exclu-
sion statistics parameter, would be 1/3 for quasi-holes and —2 + 1/3 for
guasi-electrons. The values 1/3 and —2 + 1/3 for the anyon parameter de-
fine of course the same particle statistics, but we distinguish between them
here in the way we define the correspondence between quasi-particles and
anyons. Thus, in the case of quasi-electrons, 1/3 and —2 + 1/3 would rep-
resent the samce species of anyons, but different anyon states, the 1/3 state
singular and the —2 + 1/3 state non-singular.

It is interesting to note that the numerical results for the exclusion statis-
tics parameter of realistic quasi-lioles and quasi-electrons are easily inter-
preted in terms of anyons of positive and negative charge, respectively, with
non-singular wave functions, and with the same statistics in the two cases.
That quasi-holes and guasi-electrons should have the same statistics, is also
what onc would expect if one regards them as antiparticles of each other.

I want to thank my coauthors .M. Leinaas, A. Kriskoffersen, S, Mashkevich, K. Olaussen
and H. Kjensherg, as well as the publisher, World Scientific, for their permission to reprint
some figures, Figure 4 is reprinted from [208]. Figures 7 to 13 are from [146]. Figures 15
and 17 are reprinted from [286].
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