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Against finitism. The induction axiom schema of Peano arithmetic P is usually
justified as follows. Assume the basis A¢(0) and the induction step Vx[A — Ax(Sx)]. For
any numeral d, a special case of the induction step is Ax(d) — Ax(Sd). Then we can prove
A (d), starting with the basis and using detachment (modus ponens) as many times as
there are occurrences of S in d.

This justification leaves much to be desired. The argument applies only to numerals,
and shows that there is no need at all to postulate induction for numerals. By an unspoken
conflation of the concrete concept of numeral with the formal concept of number, induction
is postulated for numbers.

Finitism is usually regarded as the most conservative standpoint for the foundations
of mathematics. Induction is justified by appeal to the finitary credo: for every number x
there exists a numeral d such that = is d. It is necessary to make this precise. We cannot
express it as a formula of arithmetic because “there exists” in “there exists a numeral d”
is a metamathematical existence assertion, not an arithmetical formula beginning with .

The finitary credo can be formulated precisely using the concept of the standard model
of arithmetic: for every element & of N there exists a numeral d such that it can be proved
that d is equal to the name of &, but this brings us into set theory. The finitary credo has
an infinitary foundation.

The use of induction goes far beyond the application to numerals. It is used to create
new kinds of numbers (exponential, superexponential, and so forth) in the belief that they
already exist in a completed infinity. If there were a completed infinity N consisting of all
numbers, then the axioms of P would be valid assertions about numbers and P would be
consistent.

It is not a priori obvious that P can express combinatorics, but this is well known
thanks to Godel’s great paper [G631] on incompleteness. As a consequence, exponentia-
tion T and superexponentiation {} can be defined in P so that we have

(1) z710=S0
(2) zTSy=z-(z1y)
3) z10=S0

4) zfSy=z1(zMy)
and similarly for primitive-recursive functions in general. For the schema of primitive
recursion to be coherent, it is necessary that the values of the functions always reduce to
numerals, since they are defined only for 0 and iterated successors of numbers for which
they have been previously defined.

Finitists believe that primitive recursions always terminate; for example, that applying
(1)-(4) (together with the open axioms of P) a sufficient number of times,
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reduces to a numeral. But the putative number of times these rules must be applied can
only be expressed by means of a superexponential expression—the argument is circular.

The problem is not simply that some primitive recursions are too long. The problem is
structural: there is a sharp division between two classes of primitive recursions. This results
from work of Bellantoni and Cook [BeCol; see also Bellantoni’s thesis [Be]. They indicate
that their work was strongly influenced by previous work of Leivant, who subsequently [Le]
gave a more elegant form to the characterization, and it is appropriate to call the result
the BCL theorem.

While a number is being constructed by recursion, it is only potential, and when the
recursion is complete, it is actual. What Bellantoni and Cook, and Leivant, do is restrict
recursions so that they occur only on actual numbers. Then the theorem is that the class
of functions computable in this way is precisely the class of polynomial-time functions.
This is an astonishing result, since the characterization is qualitative and conceptually
motivated, saying nothing whatever about polynomials.

Bellantoni, Cook, and Leivant have revealed a profound difference between polyno-
mial-time recursions and all other recursions. The recursions constructed by the BCL
schema enjoy a different ontological status from recursions in general. In the former,
recursions are performed only on objects that have already been constructed. In the
latter, for example in a superexponential recursion, one counts chickens before they are
hatched (and the chicks that they produce as well).

Not only is induction as a general axiom schema lacking any justification other than an
appeal to N as a completed infinity, but its application to specific variable-free primitive-
recursive terms lacks a cogent justification.

I shall exhibit a superexponential recursion and prove that it does not terminate, thus
disproving Church’s Thesis from below and demonstrating that finitism is untenable.

Relativization. Robinson’s theory [rRo] is the theory whose nonlogical axioms are
those of P without the induction axiom schema but with Robinson’s axiom

z # 0 — Jy[z = Sy

It may be reformulated as an open theory Qg (Robinson arithmetic) by introducing a unary
function symbol P (predecessor) and replacing Robinson’s axiom by

PO=0
x#0— x=SPx

The theory Qq is quite weak, but by relativization schemata of Solovay [Slv] (see
also [Ne]) it can be greatly strengthened by relativization. We construct a theory schema Q
that is locally relativizable in Qg and is such that we can use induction on bounded
formulas, where “bounded” means that there is a polynomial bound on the length. It
is striking that exponentiation lies just the other side of the BCL division of recursive
functions into two classes, and just the other side of the class of functions that can be
proved total by relativization.

Remarkably, Qy proves the quasitautological consistency of its arithmetization, as was
proved in [Ne|. That is,
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(5)  Fgqr "Qois quasitautologically consistent
0
which is equivalent, using the terminology and notation of [Sh §4.3], to

(6) Fqr —3s[s encodes a special sequence in Ag("Qo )]
0

The Hilbert-Ackermann consistency theorem. This theorem states that a qua-
sitautologically consistent open theory is consistent. As the proof is presented in [Sh §4.3],
it is an algorithm for elimination of special constants in a special sequence. Call a special
sequence in A(T), where T is an open theory, a (p, A\, k)-special sequence in case the max-
imal rank of the special constants in it is at most p, their maximal level is at most A, and
the maximal level of those special constants of rank p is at most x (so £ < A), and call it
a (p, A)-special sequence in case it is a (p, A, k)-special sequence for some k. The key step
in the proof of the consistency theorem is Lemma 2 of [Sh §4.3]. This lemma eliminates
one special constant of maximal level x among those of maximal rank, but the proof goes
through unchanged if all such special constants are eliminated together. The result is that
a (p, \, k)-special sequence with k > 0 can be replaced by a (p,2 - A — Kk, k — 1)-special
sequence, with a quadratic bound on the increase in length of the special sequence. This
result can be arithmetized as a theorem (*) of Qg. The full proof of the consistency theo-

rem involves iterating Shoenfield’s Lemma 2 & times, leading to a (p — 1, A2 , >\2A)—special
sequence, and then iterating this p times. This cannot be arithmetized in Q.

But suppose that p and A are given specific numbers. Let us see what follows by fini-
tary reasoning. It must be emphasized that we are not adjoining any finitary assumptions
to Qp; we are only seeing what finitary reasoning says about what can be proved in Q.

Refer to Lemma 1 of [Sh §4.3] and call 7 a (p, \)-proof of A in T in case 7 is a sequence
of formula in A(T) in which the maximal rank of the special constants is at most p and
their maximal level is at most A, and the closure of A is a tautological consequence of
them. Let & be the numeral S...S0 with & occurrences of S. According to finitism, for any
p and A

(7)  Fq* —~3plp encodes a (p, A)-proof of "0 # 07]
0

ie.,

(8) Fq* —ds[s encodes a (p, A)-special sequence in "Qq ]

0

For suppose that there is such an encoded special sequence. It is an encoded (p, A, &)-special
sequence for some k with k < A, so by the arithmetized theorem (*), it is a theorem of Q;
that there is an encoded (), 2-A—&, & —1)-special sequence. Applying this theorem & times,
conclude that Q; proves that there is an encoded (p — 1, A1, A1 )-special sequence, where
A = A2, Now apply this result p times, and conclude (by finitary reasoning) that Qg
proves that there is an encoded special sequence in Ag("Qq "), contradicting (6).

Incompleteness without diagonalization. The Kolmogorov complexity of a num-
ber £, denoted by KC(§), is the length (number of bits in the program) of the shortest Turing
machine that halts and outputs {. The notion was introduced by Solomonoff [Slm| and
then independently by Kolmogorov [Ko].
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The most important theorem in the subject was proved by Chaitin [Ch]. Let T be a
theory capable of arithmetizing itself and expressing combinatorics, such as P or Qg. Let
K be the arithmetization of K. Choose a number A and construct a machine as follows. It
systematically searches through strings, ordered first by length and then lexicographically.
If it finds one that is a proof in T of K(£) > A, it outputs ¢ and halts. Now A can be
referred to by a term of T of length logarithmic in A\ , so for A large enough the machine
is itself of length less than A. Fix such a A and denote it by ¢. Call the corresponding
machine the Chaitin machine for T.

We have

(9) if K(€) <4, there is a 7 such that 7 Fp K(£) < £

simply by verifying that the steps of the Turing machine in question are followed. Chaitin’s
theorem is

(10) if T is consistent, there do not exist £ and 7 such that 7 Fp K(

) >0
Otherwise, the Chaitin machine would find a proof in T of some K(7) > ¢ (where 1 may
or may not be the same as &) and output 7. Then we would have K(n) < ¢ by the
definition of Kolmogorov complexity, giving a contradiction in T by (9). Godel’s first
incompleteness theorem is a consequence. There is no diagonalization or self-reference in
this proof; Chaitin remarks that it is a version of the Berry paradox.

Kritchman and Raz [KrRa] have given a stunning proof without diagonalization or
self-reference of Godel’s second incompleteness theorem.

There are strictly fewer than 2¢*! Turing machines with at most ¢ bits, so by the
pigeonhole principle there is at least one & with ¢ < 271 such that K(£) > £. Let u be the
number of such &, so

(11) w>0

There are 2/*1 days left in the course and the teacher announces that there will be an
examination on one of those days, but it will come as a surprise. Think of i as being the
number of days remaining after the surprise examination. The examination is not given
on the last day, by (11). Now suppose that p = 1 (the surprise examination occurs on the
penultimate day of classes). Then there is a unique ¢ with ¢ < 2+ such that k(&) > ¢,
and T proves K(77) < £ for every other n with n < 2%, by (9). Hence if 4 = 1, T proves
K(£) > £, which is impossible if T is consistent, by Chaitin’s theorem. Consequently, if T
proves the consistency of its arithmetization then T proves i > 2. Now suppose that y = 2
and argue in the same way, and continue up to p = 2¢+1. In this way, if T proves the
consistency of its arithmetization, it proves a contradiction, since p < 2°*1. This yields
Godel’s second incompleteness theorem.

This proof is radically different from Godel’s self-referential proof. The latter derives
a contradiction from the consideration of proofs of an entirely unrestricted kind, whereas
the former derives a contradiction from the consideration of proofs of quite specific kinds,
of bounded complexity. We shall exploit this difference.

A contradiction in finitism. Let us examine what finitism says about what Q; can
prove concerning the Kritchman-Raz proof. Consider the proofs 7 of (9). The formulas
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are all of rank at most pg for a specific pg, and even though the 7 may be immensely long,
there is a fixed bound A\g on the level. This is because each proof operates on the given
record of the working of the Turing machine, repeatedly citing the same theorems to verify
that each step of the computation accords with the machine’s program. The proofs of the
arithmetizations of (10) and (11) are of a certain specific rank and level, so for certain
specific p; and \;

Fqri=1— Jp[p encodes a (py, A1 )-proof of "0 # 07]
0
By finitary reasoning, from (7) we have

The proofs of i > 3, ..., i > {1, where ¢; = 21 4+ 1, increase in rank and level, but
in a manner that can be bounded explicitly. The upshot is that finitism proves that Q,
and hence Q, is inconsistent. But there is a well-known finitary argument, based on the
Hilbert-Ackermann consistency theorem, showing that Qg is consistent. Hence finitary
reasoning leads to a contradiction.

Peano arithmetic expresses finitary reasoning and so it is inconsistent. In fact, we
have a contradiction in a small fragment of primitive-recursive arithmetic (PRA). How
small such a fragment can be will be investigated.

Qea. If this were normal science, the proof that P is inconsistent could be writ-
ten up rather quickly. But since this work calls for a paradigm shift in mathemat-
ics, it is essential that all details be developed fully. At present, I have written just
over 100 pages beginning this. The current version is posted as a work in progress at
http://www.math.princeton.edu/ nelson/books.html, and the book will be updated from
time to time. The proofs are automatically checked by a program I devised called qea (for
quod est absurdum, since all the proofs are indirect). Most proof checkers require one to
trust that the program is correct, something that is notoriously difficult to verify. But qea,
from a very concise input, prints out full proofs that a mathematician can quickly check
simply by inspection. To date there are 733 axioms, definitions, and theorems, and qea
checked the work in 93 seconds of user time, writing to files 23 megabytes of full proofs
that are available from hyperlinks in the book.

Consistency of Qq. Since finitary methods are no longer available, the consistency
of Qo becomes an open question.

It is hopeless, and unnecessary, to try to prove the consistency of arithmetized Qg
within a theory, due to the obstacle of Godel’s second theorem. What we can hope to do
is grade the proofs in Qg by complexity and for each grade prove, in a system we trust,
that there is no proof of a contradiction in Qg of the given grade. For the trusted system,
I take a quantifier-free system with polynomial-time functions, as in the BCL theorem. I
shall investigate whether something even simpler will suffice.

The classical Qq is equiconsistent with its intuitionistic version, by Godel’s short paper
[G633]. The logical operators that present a problem are V and the intuitionistic —. The
intuitionistic semantics of these operators is infinitary. I shall explore a recursive notion
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of “verifiability”, somewhat similar to Kleene’s realizability [Kl §82], and attempt to show
that for each grade of complexity nothing verifies 0 # 0.

Modern mathematics. To demonstrate that sophisticated modern mathematics
can be done in so primitive a theory as Q; is an open-ended project, and I plan to make
a bare beginning in the book. It may result that one can prove in Q; that exponentiation
is not total, but as already pointed out in [Ne] it is consistent to adjoin this assumption.
This is not so restrictive as it may seem. One can construct iterated relativizations of QS,
leading to worlds of arbitrary depth 9§, such that exponentiation is well defined from each
depth § + 1 to 6. (And superexponentiation rarely occurs in mainstream mathematics.)
A number that is not exponentiable is like a nonstandard number in Abraham Robinson’s
nonstandard analysis [aRo|. The material on probability theory in [Ne2] is an example of
what can be done in this way, in a kind of (Raphael + Abraham) Robinson mathematics.
I plan to develop others.
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