Part II

The Regulator Map for Cyclotomic Fields

§1. The Main Theorem

Let F = Q(pN) v Hy the group of N-th roots of unity and
N >1 , and let X = Spec(F) . For r € My We have set

_ , X(cC)
L (g) = (""Ln(uc)"")a{F+€ € (C/R(n))"*7" ,
where oo k
o L (z) = 1 Z_
S k=1 kS

is the polylogarithm function (see Part I, §1). The purpose of
this part is to present Belllnson s proof of the follow1ng

theorem on the regulator map

1
rD: HA(XIQ(n)) - HD(XIR I]R(n))-

(1.1) Theorem: For every n > 1 we have a map of Gal(F/Q)-

“sets

€n+1: k\{1} - H (X Q(n+1))

'such that, for r € \{1},

rD(€n+1(c)) n+1<c) .

‘ This theorem may be seen as a complete and expllclt des—
Tcrlptleﬁiof the regulator'mép for X = Spec(@(uN)) in the
following sense. Let UN be the set of primitive N-th roots
of unity and consider the linear map

L : 0 = o D, > (¢/nz(n+1))x(¢)

CEUN
giveﬂxby Ty P n+1(C) . The Galois group G = Gal(F/Q) acts
on UN andn;X(C), and thus on both vector spaces, and Ln+1
is a G-homomorphism. Moreover, if ¢ denotes the involution
Ty (—1)n(C_1)* on the left hand side and on the right hand

side the involution given by complex conjugation on C/R (n+1)




and on X(C), then

Ln+1(cv) = an+1(v) .

We indicate by [ ]+ the fixed module of ¢ and obtain:

(1.2) Corollary: For n 1 we have a canonical G-isomorphism

| v

ux
N, +
]

LR

e i [0 Hy (X,0 (n+1))

n+1

such that the diagram

H1 X +1 i ! R (n+1
AXQ(n+1))  —— Hp(Xp R (n+1))

€n+1]\ =

u
[0

L
Nyt B e/R (nt1) (O F

is commutative.

Proof: We define the map

: Q" = 8,00, > H, (X,0(n+1)
reny

by xC* H €n+1(g) and have to show that its restriction to
[o"N1T  is an isomorphism. Tensoring the above diagram with R,

Iy becomes an isomorphism. It therefore suffices to show that

the map Ln+1 becomes also an isomorphism. Now
uy L
r N nti (C/R (n+1))X(C)

is a homomorphism of IR [G]l-modules of rank 1. We tensor this
map with € and then decompose it into a direct sum according
to the different characters X of G . Setting
e. = X X_1(T)T € c¢lG]
X 1eG
we have C[G] = © Cex and the components

X

u

: N X(C)
Livt,y? (€ ) > e ((C8C/R (n+1)) )
of Ln+1 are homomorphism of 1-dimensional C-vector spaces
and are given by
| _ -1
L, (O () =8y Ly g (8= Z X71(1) @ Loy (72)



It was shown in the proof of (5.1) in Part I that the right

hand side is nonzero if x(-1) = (-1)"  so that Ln+1 X is an
14

isomorphism in that case. But only those characters contribute

to the spaces in the diagram.

§2. Universal Symbols

In [17] Loday has constructed symbols in K-theory which
have a larger domain of definition than the Steinberg symbols.
Since we need in fact symbols only in absolute cohomology
([21] §3) we shall content ourselves with stating the results
in this language, especially since then the analogous con-
struction in Deligne cohomology becomes transparent. To stress
this fact we shall actually first state the results in Deligne
cohomology and then indicate how to translate them into the

other language.

Let An+1 be affine n+l1-space over Spec(IR), with coor-
dinate functions Xo,...,X . Let Y c Ap+1 be the divisor
Xo = 0 and let U:= An+1\ U (Xi=O) be the complement of

i=1
the union of the remaining n coordinate hyperplanes. Let

¢:= 1 - XO'...~Xn and let D be the smooth divisor ¢ = O.
We denote by a subscript U, resp. (¢), the intersection with
U, resp. with the complement of D. Note that Y(¢) =Y . We
consider the open immersion of closed pairs of schemes

N n+1
Wigy o) = Bgyr? -

For the definition of the (algebraic) Deligne cohomology of a
closed pair (which also can be considered as a simplicial
scheme; [7] §6.3) we refer to [3] §1 or [10] §5.

(2.1) Proposition: The restriction homomorphism

D a0+l o, p .
HD(A(d))’Y’ZZ (q)) -+ HD(U(¢) IYU;ZZ (q))

is an isomorphism for all p and g .
Proof: We shall use the connecting homomorphisms

p,n+1 p-1 _
HD(A(¢),Z (q)) =~ HD (D,Z (g-1)) and

p p-1 -

Ly




in the Gysin sequence ([14] 1.19). This is justified since D
is a smooth divisor in An+1 and in U . These homomorphisms

induce the oblique arrows in the following commutative diagram

i Y;Z (q))

(¢) —_
/

p
HD(A
WS~ (D, 2 (q-1))

p .
HD(U(¢) Yy Z (q))

We show that the vertical arrow is an isomorphism by proving
the oblique arrows to be isomorphisms. The proofs for both
arrows being virtually identical we limit ourselves to treating
the lower arrow. We use the following commutative diagram with
exact rows and columns. The rows are part of the relative co-
homology sequence and the columns come from the Gysin sequence;
the oblique arrows are defined by the commutativity require-
ment. For typographical simplicity we leave out the subscript

D and the coefficients.

P~ T (u) P (u)
N OO
p-1 P~ 1 (x) .p L P 4 HP
HY (U gy )20 () 50 BE(U ) p %) > BE(U ) > HE (%)
v . v
: 2 P (p)
vo(*)
Hp+1(U)
¥ \
p+1 L Pt
BE S (Ugy) 20T (X))

We note that the closed immersion Yb - U 1is isomorphic to
GE - A1 x G; . By homotopy invariance all solid oblique arrows
are isomorphisms. Therefore all starrcd arrows are zero. It
follows that the-dotted oblique arrow is an isomorphism as

asserted. g.e.d.

We now are in a position to define the Loday symbol in De-

ligne cohomology. We consider the cohomology classes




. 1 .
{9} € HD(U(¢),YU,ZZ (1)) and

1 )
{x1’},...,{xn} € HD(U(¢),ZZ (1)) ;

here we have used the identifications ([10] 2.12)

(9)
YU;ZZ (1)) = kexr (0(U

1 _ X
HD(U(¢),ZZ(1)) = 0(U alg and

(¢)’

We form the cup-product

1 X > X
H)) (U () a1g 7 O A P

n+1 .
{¢} v {x1}u...u{xn} € Hy (U(¢),YU,22 (n+1)).

The inverse image of this element under the restriction

isomorphismof (2.1) is the Loday symbol in Deligne cohomology

0.% X by € mpt @Y v (e )

We denote by the same symbol also its image in

H3+1(A?$;,Y;R(n+1)) for any subring R in IR.

(2.2) Corollary (of the proof of (2.1)): The image of the Lo-
day symbol {¢'X1""’xn}D under the isomorphism

n+1 n+1
Hp By »

is equal to the cup-product {X1}U...U{Xn} of the elements
{x;} € my(D,Z (1)).
Proof: We have denoted here by the same symbol {Xi} the coho-

Y;Z (n+1)) > Hy(D,Z (n))

mology class of the algebraic function Xi on D (which is
invertible). The result follows from the fact that the Gysin
sequence for D + U 1is a sequence of Hﬁ(U,Z (*))-modules un-
der the cup-product (reference lacking) and the fact that the

connecting homomorphism in the Gysin sequence
1 o
[ ora, |

maps. {¢}|U(¢) to 1 ([14] 3.1.1).

0 alg

We now wish to define the Loday svmbol in absolute cohomo-

logy




n+1 n+1 _
{q;,x1,...,xn}A € HA (A(¢),Y,Q(n+1)) .

Here An+1 is the affine space over Spec(@) and the other

schemes, too, are taken over Spec(Q). In fact, both (2.1) and
(2.2) transpose to absolute cohomology since the only facts
about D—cohomology that we used were 1. functoriality, 2. the
extension of the cohomology theory together with the cup-pro-
duct to affine simplicial schemes, 3. the existence of the Gy-
sin sequence, 4. the homotopy invariance, and 5. the proper-
ties of the Gysin sequence used in the proof of (2.2). As for
the corresponding facts about absolute cohomology, 1. is ob-
vious, 2. is achieved using the homotopy limit ([3] 2.2.1; com-
pare also [26]), 3. is proved in [23] Thm. 9 or [24]15.2, 4. is
a well-known theorem of Quillen ([19] p. 114), and for 5. we
refer to [11] 7.14 and [19] § 7.5.16.

(2.3) Corollary: The regulator map ([21] §4)

n+1 n+1 _ . n+1, n+1 .
rp: Hy (A(¢),Y,Q(n+1)) > Hy (A(cb)]R ,Y]R ,Q(p+1))

maps {¢,X1,...,Xn}A to {¢,X1,...,Xn}v .

It is clear that, having handled the universai case, we
can extend the domain of definition of the Loday symbol. To
fix ideas we consider the case of D-cohomology. Let X =
Spec (A) Dbe an affine scheme over Spec(R) and S < X be
a closed subscheme defined by the ideal I in A . Let
f,a1,...,an € A be elements such that f is a unit, that the
ai are not zero divisors, and finally that

a_: = 1-f
o ajr...tay
lies in I < A . We obtain a morphism of pairs of schemes over

Spec (R )
n+1

defined by h*(Xi)= a; for i =0,...,n . We put
f,ay,oa b= h*(L9,X 000 X Y el (x5 (ne1)) .

This notation is justified since when in addition the

a4r---,a  are all units in A the symbol {f,a1,...,an}v




reduces to the Steinberg symbol (in relative cohomology), i.e.,
to the cup-product {f} U'{a1}U...U{an} .

We shall need to "calculate" the Loday symbol in 0-coho-
mology explicitly. To this end Beilinson formulates a lemma
(7.0.2 in [3]) whose proof he leaves as an exercise. We were
unable to even understand the assertion in the generality it
is stated; and even in the special case where the assertion
makes perfect sense and which would be sufficient for our pur-
poses here we were unable to prove it. This situation is highly
unsatisfactory since this lemma is absolutely crucial to the
proof of theorem (1.1). We shall first state the lemma in the

special case and then comment on it.

(2.4) Crucial lemma: We use the notation introduced after

(2.3) and assume in addition that X is smooth of dimension
<n . Let . be a relative singular Cw—homology n-cycle on
X(C) modulo S(C). We make the assumption that there is a
branch log f of the logarithm of f which is single valued
in a neighbourhood of the support |Z| of Z and vanishes
at every point =z € |Z| such that =z € S(C) or
a1(z)-...-an(z) = 0 (because a, €1 these are points
where £(z) = 1). Then the following equality of numbers in
€/Q(n+1) holds: |

<Z,{f,a1,...,an}v> = {logfdloga.lz\.../\dlogan .

Here on the left side we have used the isomorphism

HE (X, /8,7 % (1)) 5 B (X(€©),5(0);€/Z (n+1))

([3] 1.1), valid since dim X < n , to evaluate the D-cohomo-

logy class on a relative homology n-cycle. On the right

side there is the integral of a differential form which is re-
gular in a neighbourhood of |[|Z| , as follows easily from the

assumption on the branch logf and the fact that a, €I

Note that the right side is independent of the choice of

the branch of the logarithm. To see this we may assume the



support |Z| to be connected. If there is a z € |Z| such that
z € S(C) or a1(z) ce an(z) = O then the branch is unique.

Otherwise the functions ayr...,a are all non-vanishing on
[Z|. Consider the morphism a = (a1,...,an):X\ U{ai=0}» Gg .
Denoting by dlogT1,...,dlong the standard geﬁerators of the

de Rham cohomology of G; we have

[ dloga,A...ndloga_ = [  dlogT,A...adlogT € 7 (n)
7 1 n ay (2) 1 n

The assertion follows easily.

Using the fact that the differential form on the right
side is regular even in a neighbourhood of |Z|US(Q)U q{ai=0}
and vanishes on S(€) and using the assumption dim i <n
together with Stokes' theorem one also can show that the inte-
gral only depends on the relative homology class of 7 .

Let us consider the case n = 1 and where X is of di-
mension 1 and S is empty. Also assume that both f and a,
are invertible functions on X . Then Beilinson states the
following formula for the evaluation of the cup-product
{£f} v {a1} = {f,a1}D on a 1-cycle [v] represented by a
loop Y based on s, € X (see [3] 1.3.1 resp. [2]):

<[Y],{f,a1}v > = [ logfdloga, - loga, (s_) - [ dlogf
Y

are branches of the logarithm which are

1

Here 1logf and loga1
continuous on vy outside So - If we assume, as in the state-
ment of the lemma, that logf is continuous on Y then the

second summand disappears which is the assertion of ﬁhe lemma.

As the next example keep all assumptions as before but take

S = {so,...,sr} non—empty.rThen we may represent a relative
1-cycle as [y] = [y. 1] + £ n_[y.] where Y. are curves

o j=q ¥ 1 i
joining So to Sy - The corresponding formula appears to be

(put n,:= 1)

>=In, ( f logfdloga, - 1oga1(so)-f dlogf)

D i Y. Y.

<[Y],{f,a1}
. 1 1




If log £ 1is continuous on the Y5 and in addition satisfies
the vanishing condition 1log f(si) = 0. for O0<i<r then the
second sum vanishes and we obtain the formula of the lemma.
The only approach we can see to a proof of this lemma is
to reduce to the universal situation. However, then the dimen-
sion hypothesis is not satisfied. Still, an evaluation as in
the statement of the lemma, i.e., of a D-cohomology class on
a (relative) homology cycle (which would in general not vanish
on a boundary) should exist even without this hypothesis.
Working with coefficients IR(n+1) which would suffice for our
purposes this can be seen to be the case by using the "real
version" of the D-cohomology, representing a class by c™-
differential forms of degree n (compare [3]1.2.5 or [10]2.16).
The general case may possibly have something to do with Bei-

linson's evaluation map ([3]1.1.2).

§3. Special Symbols

We now apply the constructions of the preceding section.

We wish to construct elements in some relative absolute coho-

mology group H2+1(A?,S.;Q(n+1)) ; this will be done in the

following sections. Here we shall construct these elements on
a big open subset. Let F be a number field and let =z €F ,

z %1 , have absolute value 1 under all embeddings of F in
¢ . We consider a rational function £ = fa b(z) EFWtW""’tn)

4

of the following form. Let a = (aij) , b = (bij) , i=1,...,n ,

be matrices of positive integers and set
a. .
1—Z'gtilj
£ap(2) = [[ —25— .
) qez.me, ]
i1

n
We let A(f)n

pf f on AF
the intersection of A?f) with

denote the complement of the zeroes and poles

= Spec(F[t1,...,tn]) . We also let S denote

(£)

S = {Uti(ti—n = 0} .
1




In the language of §2 we wish to consider the element

n+1 . n
{fa,b(z)’t1"“’tn}A € Hy (A(f),Q(n+1)) ; but we have to make
sure that for a suitable choice of a and b the hypotheses of

§2 are met. We use the following elementary lemma.

(3.1) Lemma: Let F be any field of characteristic zero.

For every n>1 there are matrices of integers a = (aij)
and b = (bij) of size nx2" ' such that:
(i) aij’bij > 2 for all i and 3 ;
(ii) for every i there is a permutation 0==oi_€Z such

2n—1

that akj = bko(j) for all k#i and all 3J ;

s _ -1 _ -1
(iii) Ca,b := ;(Tjéij TTbij) +0 .
j i i
Proof: We proceed by induction. For n=1 put (e.g.)
a(1) := 2 and b(1) := 3 .

For n>1 define

a(n) ==<a(n‘” b(n-1) )and b (n)

(X}

ne.. n n+l...n+1 n+l...n+1 n... n

=< a(n-1) b(n-1)

It is easy to see that (i) and (ii) hold. The number C in
1 1 1
s ML m ro.
i=2

a,b
(iii) is equal to

(3.2) Corollary: For any choice of a and b satisfying the con-

ditions of the previous lemma the rational function

1-fa,b(z)
t1.....tn
n

is regular on A(f) , £ = fa b(z) , and lies in the ideal
14

(TTe; (£5-1))
1

Proof: Condition (i) of (3.1) ensures that the rational func-
tion 1-f vanishes of order >2 on the intersection of A?f)
with the coordinate hyperplanes t; =0 . Using condition (ii)

we have for any 1

N0

)



a, . a. . a. .
—(z kj, . 1] - ij
1-(z kgi tk ) ti 1-c.,.t.

t=1 b b =1 5 (
J ko(3j),,, " i0(3) _ io(3)
1=z 0 & )ty T=cj4%4
so that 1-f also vanishes on the intersection of m?f) with
the hyperplanes ti.=1 .
Fixing matrices a and b as in (3.1) we put £ := fa,b(z)

and C := Ca b ¥ O . We may now form the symbol

-1 n+l, . n .
1a,b(z) ‘=Ca,b'{fa,b(z) vty ...,tn}A EHA (A(f) ,s(f) :Q(n+1)) .

By the same symbol we shall denote the inverse image in

n+1, n - .
HA (A(f),s(f).,Q(n+1)) . Here S(f). , resp. S. , is the

simplicial scheme over A?f) , resp. al , obtained "by resolu-

F
tion of singularities of the divisor with normal crossings"
. n . n
S(f)A in mxf) , resp. S in AF : We have

&—
- —
S. : 80221 S1 <._.Sz e

where
So := normalization of S and
Sp := SO XooaoX SO
oA Al
F F

and similarly for S(f). . We shall see in the next section that
la,b(z) is independent of the choice of a and b, in a sense to
be made precise.

We now wish to apply the crucial lemma (2.4). In that formu-
la we shall take as relative n-cycle

Z :={0<t; <1 for all i}

To see that this is legitimate we have to convince ourselves that
for any embedding a: F - € the relative cycle Z actually lies
in Ag(af) . It is here that the assumptions on 2z are used.

Indeed, assume by way of contradiction that there is a t € 2Z with

af(t) = O . (The case where af(t) = » is similar.) Then there
is a j with




R -1
TTt., ™3 = oz
AL
i
from which we conclude that

a. .
| TTtiljl = Joz V1 =1, i.e., t, =1 for all i
i

so that z =1 , contrary to our hypothesis z % 1
We observe that since Z is simply connected and since
the restriction of of to the boundary of Z is identically
1 we may choose a branch of the logarithm 1logaf which satis-
fies the hypothesis of (2.4). We therefore obtain the follow-

ing formula.

(3.3) Lemma: The image of 1, 1 (z) wunder the regulator map
r

g+l .n . Lgitl an .

has the property that, for any embedding o: F » € ,

_~—1
<Z,och(la b(z))>—ca,b {log fa’bdlogt1/\.../\d10gtn

4

=Ln+1(az) € ¢/IR (n+1)

Proof: Only the last identity has to be checked. The changes
a k] K] . .
of variables ti b tilj and ti b tilj show that

C_1~flogafdlogt1A...Adlogt =[log(1-0(z)t, e... t_)
7 n i 1 n

dlogt A...Adlogtn .

1
The right hand side is the classical integral representation
of the polylogarithm function Ln+1(az) (which may be proved

by induction on n).

§4. Reduction to the Main Lemma

The second crucial result whose proof will be the

content of the last two sections is the following fact.

(4.1) Main lemma: If ¢ # 1 is a root of unity then the

symbols la,b(g) are contained in the image of the restrict-

ion map




n+1 n . res .n+1, n .
Hy (AF,S.,Q(n+1)) ST Hy (A(f),s(f).,Q(n+1))

In fact, taking this for granted it is not difficult to actu-
ally view our symbols la b(g) as elements of the absolute co-
4

homology group Hl(X,Q(n+1)) where X:= Spec(F) (viewed as an
affine @Q-scheme).

(4.2) Proposition: We have a canonical isomorphism

Hy(x,eme1) ¥ ET AR s 0men)) |

Proof: We first consider the standard spectral sequence

P9 _ 4 pt+q
EJ HA(SP,Q(n+1)) = Hy “(5.,0(n+1))
of the simplicial scheme S. . Every Sp is a disjoint union
of affine spaces A; so that, by homotopy invariance, we have
™

(s.)
g9 = 4 o p
HA(S)) = H3(X)
where, for notational simplicity, we omit the coefficients in
the following. Therefore, Eiq is the complex
T (S ) 3 T (S.) 93 T _(S,) 93
Hi(x) © % B © ! J}HE(X) ° 2 5 .
which clearly is the standard cochain complex with coefficients
in HE(X) for the boundary 3Z of the n-cube Z , i.e., for

the (n-1)-sphere Zn-1 . We consequently obtain
5 = v (2" x))= J ux) for n>1 and p=0,n-1
HE(X) ® HI(X) for n=1 and p=0,
0] otherwise.

We furthermore take into account that
HE(X) =0 for q % 1
(compare Part I §1). Both facts together obviously imply
Hy(S.) = | H}(X) if ono> 1,
1 1 . _
HA(X) ® HA(X) if n =1

Onrfhe other hand, if we apply the second fact together with
the homotopy invariance to the relative cohomology

A3




cee o HR(S.) ->Hn+1(A ,S.) ->Hn+1(A ) - ...

we obtain

HY (S.) =Hn+1(A ) if n>1 ,

resp. the exact sequence
0o - H1(X) - H1 (s.) - H2(A1 S.) » O
A . AVRITS )

Combining both results gives in either case the required cano-

nical isomorphism. g.e.d.

Exactly the same argument works in Deligne cohomology so that
we also get a canonical isomorphism

1 ~ _n+l, n . .
HD(XIR,]R(n-H)) = HD (AFIR' R’ R(n+1)) .

The key diagram which we have to study now is the following:

S.

r S )
(X Q(n+1)) -—-D—>H (Xm,]R(n+1)) A e 'I;['Gl/]R (n+1)
=l r ' ,:
Hy ' (an,S.e(nt) —2u3t @l s, Rnt1))
res r res
gt1 D .0+l A
r —
+1 D n+1 Z,.>
Hy (A(f),s(f),QCnﬂ))‘—’H (A(f)m,s(f)m,m(n+1))< TTo:/m(n+1)

The right lower vertical arrow is an isomorphism by the very
definition of Deligne cohomology (via smooth simplicial re-
solutions). All the left rectangles are commutative by the
general functorial properties of the regulator map ry -

(4.3) Lemma: The right rectangle in the above diagram is commu-

tative.

Proof: This is a statement purely about the Betti cohomology
of schemes over Spec(IR) . We can assume, for the purposes

of fhis broof, that F=1IR and we then have to show the commu-
tativity.oﬁ the diagram




[

H® (X (C) ,RR(n)) ——— R(n)

(*d

1 (s. (@), R(n) =" (5(0), R(n) = N (S(R), R(n)) 2Le=2 R(n)
2" @™ (e),s.(€); R(n)) = B2 (A" (€),S(C);;}R(n)) <1;-2, R(n)

where the starred arrow is constructed as in the proof of (4.2).
The commutativity of the lower rectangle is a formal property
of the connecting homomorphism 3 . On the other hand, 3Z is
a fundamental cycle for S(IR) so that the map <38Z,.> is the
usual trace map. If we go back to the proof of (4.2) we easily
see that (*) by construction is a section of the.trace map.

(4.4) Lemma: The two restriction maps in the above diagram are

injective.

Proof: By Borel's theorem ((1.3) in Part I) the regulator map
) in the two upper rows of the diagram are injective. There-
fore it suffices to prove the assertion for the 0D-cohomology

where it is an immediate consequence of (4.3).

Now let u(F) denote the subset of roots of unity in F . The
above discussion shows that, for g € u(F)~{1} , our symbol
la'b(;) - has a unique preimage Ta’b(c) € Hl(X,Q(n+1)) . Further-
more, the above commutative diagram together with (3.3) implies
that

arD(Ta'b(r,) = Lppq(@2) € €/ R(n+1) .

Since the regulator map rp is injective by Borel we see that

 the element Ta b(i;) does not depend on the particular choice
,b'>

of the matrices a and b . By setting

W(E)N1} > Hy(X,0(n+1))

z » €n+1(C) 2= la,b(C)

€n+1:

we.the}eﬁore get a natural map such that
aFv(en+1(C)) = L 4q(0g) for any a: F > C .

Hence“Theofem (1.1) will be established once we have proved (4.1).

(VA T




§5. Proof of the Main Lemma for n =1

In this case the proof is very simple. For n=1 , S con-
sists of two points and therefore S. is the constant simpli-

cial scheme, so that

HY(BL,S;0(+)) = HE(AL,S.;0() .

We have to show that la b(c) lies in the image of the restric-
14

tion map
2,1 . 2,1 ,

Using the Gysin sequence this amounts to the statement that

the image of la b(c) under the connecting homomorphism
14 .
2,1 1
HA(A(f) Is(f)lQ(z)) - & HA(YIQ(1))

is zero; here y ranges over the zeros and poles of f and we
have made use of the fact that S 1is disjoint from the support
of the divisor of f . Recall that

a
£= 1ot with a,b>2 and a+b
1-t¢t
where we have abbreviated t1 to t . We will see that already
the restriction of la'b(g) to A}f)\s(f) is zero. Both f
and t are invertible on A(f)\s(f) and therefore this

restriction simply is the Steinberg symbol
1 _ - 2.1 .
Ly p () |88 gy = {E1 ULt} ={£,t} €H (B () 8 £ i0(2)) .
If 77 =1 we compute using the Steinberg relation

{£,t} = %{1 -zt2,t%) —%{1 - ctb,tb}

- %{1 - Ctarc} + %{1 "C.tbrl;}

1 a 1 b -
- ﬁgh—ct '1}+1'\1'B{1"Ct ,1} =0 .

§6. Proof of the Main Lemma for n > 2

Curiously enough the proof will proceed by reducing our

purely K-theoretic assertion to a certain assertion about



Deligne cohomology which then is established via Hodge theore-

tic arguments.

First step: We introduce the following notations. Let
-.{(t-ll'to’t) :—[Tti#:O}

be the torus which is the open complement of the coordinate

Tn

hyperplanes in Ag - As already in previous sections we denote

by an index the intersection with an open subset, as e.g. in
S; :=snT" . Also note that for clarity's sake we use an index

n  to indicate in which affine space we are working.

(6.1) Lemma: To prove the main lemma it is sufficient to prove

that the restriction homomorphism

n+1 n n+1
(A(f) 14

(f)-rQ(n+1)) hed HA (T (f) IST(f)'IQ(n+1))

maps a b(Z;) to zero.
’
Proof: Since the support of the divisor of f is contained in

™ we have AF = A(f) T . The corresponding Mayer-Vietoris
sequence has the form
n+1 n+1 gn n+1, . n .n

n+1

which shows that

n+1 n n+1

ker(H (A(f),s(f).;Q(n+1))~->HA (T(f),ST(f).,Q(n+1)))
n+1 n+1

< 1m(H (AF,S.,Q(n+1)) -»HA (A(f),S(f).,Q(n+1))) .

From this the claim follows.

Second step: The restriction of 1 b(t;) in
I

n+1 .
Hy (T (f)rST(f)o,Q(n+1)) may be described as follows. Let

n-1 _ n_ n n-1 . .
T, := T rw{ti-1} » SO that s, = uoT - Since t, is
invertible on T® and equal to 1 on T?_1 it defines an

element
{t;) € my r®, T Yo

and the cup-product



S

n n,rh S Hi(T",50;0(n))

Hy (17,10 e(1) xL ok mL(ER, TR 0 (1))

yields an element {t1""’tn} € Hﬁ(Tn,Sg.;Q(n)) . Restricting

n n : .
{t1""'tn} to (T(f),s(f).) and cupping with

1, n
{f} € HA(T(f),Q(1))

we obtain that restriction as a sum of Steinberg symbols

n

=1
T(f).) = C {f,t.],...,tn}

-1 a:
c -§{1 -z '[;l_ti”,t1,...,tn}

n

]

b..
-C 1-z.{1—c I tilj,t1,...,tn} )
Consider J 1
"n-1 n
T = (g, .ea0t) s ?;-I;rti=1}§_T
and let U% := pPNpR1

(6.2) Lemma: It suffices to prove that the Steinberg symbol

n+l,.n .n _
{1-¢ 'I;rti,t1,...,tn} € Hy  (U7,Sy.;Q(n+1))

is zero.

Proof: Each of the summands above,
-1 %15 _ -1 -1 35 .25 ®nj
c {1-ﬂi'|'ti ityreeait b =C TiTaij“'CErti vt e M)
is (up to a rational factor) the inverse image under the morphism

n n n

a--
given by ti b tilJ of the Steinberg symbol in the assertion.

Third step: We now reduce to the corresponding assertion in
Deligne cohomology.

(6.3) Lemma: It suffices to prove that the corresponding symbol

n+1,.n n .
{1 _C’-Ij—-'-tilt‘ll"'Itn} € HD (UIR ,SU.]R:IR(I'I+1))

in Deligne cohomology is zero.

* .. This is an immediate consequence of the following result.
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(6.4) Proposition: The regulator map

n

S s T R o .

is injective,
The proof requires some preparation.

(6.5) Lemma: The regulator map Iy induces isomorphisms

n

el &N e L .,mn .
HA(T ,ST.,Q(*)) ®IR - HD(T]R ’ST'IR’ R(x)) .

Proof: The regulator map Iy induces a morphism between the
spectral sequences for a simplicial scheme
. d,en p+q,.n
HA(STP’Q(*)) R —» HA (ST'IQ(*)) ® R
o \Lrv
q . p+q,.n
Hp (Spom @ B(¥)) = BE (sp. o IR (%))

as well as a morphism between the relative cohomology sequences

{ v

r
HE(Tn,Sg.;Q(*)) ® R —B Hq(T ;m, R(+))
l T J/

i, 0(x) e R —5 HI(T2 , R(%))

v r L

q.gh . D, 49.sP
HA(ST.,Q(*)) @ R —>HD(ST.]R, R(x)) .
Since each STp as well as T" is a disjoint union of tori

G; over F we are therefore reduced to proving that the regu-

lator map ) induces isomorphisms

~

Hi(6,,0(x) @R > Hi(6L_, R(») .

This is a consequence of Borel's theorem ((1.3) in Part I) once
we show that the A- , resp. 0D- , cohomology of the torus G;
can be expressed completely in terms of the respective cohomo-
logy of the base field in a way which is compatible with the

regulator map. Since the argument in both cases is the same we

only treat the 0?U-cohomology. Let X be a smooth scheme of



finite type over IR and let j: GmX 4-A; be the complement
of the zero section X e-A; . From homotopy invariance we con-

clude that the map
. . 1 j * .
Hy(X, R(x)) = Hy(Ay, R(x)) L HI (6 ., R(x))

is canonically split. Therefore the Gysin sequence for the

zero section X a,A; gives canonical isomorphisms

HY (€, R(x)) = Hy(X, R(¥)) 0 H™' (X, R(x-1)) .
The compatibility of the regulator map with that decomposition
is a consequence of the Riemann-Roch theorem without denomina-
tors ([23],[24]1,[14]1,[11]). Our claim then is achieved in-
ductively. g.e.d.

1

We note that T™ is the image of the closed immersion

>i : Tn—1 > 0
D B € L P ¢ - i]I t) ) .

Put

xn-1 __ .n-1 *n-2

ST .= ST urmT .
Then in induces an isomorphism

n-1 ~n-1 = +n-1 2n-1 n

(T ,ST ) > (T ,T n ST) .

Furthermore the intersection is transversal, and §¥_1 is a
n-1

divisor with normal crossings in T and in fact the union

of the smooth divisors {ti=1} for i=1,...,n-1 whose union

14
is Sn-1 and of the smooth divisor Tn—z . We therefore are

T
entitled to form the simplicial resolution §¥T1/Tn !

pare §3, after (3.2)).

(com-

(6.6) Lemma: The regulator map rp induces isomorphisms

e ;=1 an-1 =
HA(T ISTo IQ(*)) ®IR

Proof: This will be proved by induction on n . For n=1 it

e ;=1 n-1_
HD(T rsT- ’ ]R(*)) .

{

is Borel's theorem. So assume it to be true for n-1 . We con-
sider the commutative diagram (for simplicity we leave out the

coefficients)



LA

\ !

g-1,,n=-1 ~n-1 D g-1,,n=-1 on-1
Hy (T 1Spe ) R — Hy (TR rSpeg)
q n‘£n D g, l/~n
HL(T",S \Ln .) @R ——% g3 (o2 J/sn )
D'V"IR'T"IR

where the columns are obtained from the relative cohomology

sequence and the isomorphism

-1 n-1 +n-1 *n-1
(" ,s;. ) (', ™ n s ).

The lower horizontal arrow is an 1somorphlsm by (6. 5) and the
upper one by assumption. The five lemma then implies that the

middle horizontal arrow is an isomorphism, too. g.e.d.

Our proposition (6.4) now is easily established: By the Riemann-
Roch theorem without denominators the regulator map Iy is
compatible with the Gysin map for the smooth divisor Tn—1 in
i + 1.e., we have a commutative diagram (again we leave out

the coefficients)

b . \
g+l ,.n n D g+1 n
HA (T ,ST.) ® R _— HD (TTR’ST‘IR)

\/

r
g+1,.n _n D g+1 gh
Hy (U Sye) OR —— Hp (U Sye R
v 4/
q,.n—1 on-1 q -1
Hi (T ,55.7) @R ——e Hj (T IR) .

b J/

Now apply the two lemmas above together with the five lemma.

Last step: Here we finally show that

“ _ : n+tl, . n . n
{1-C:f;|_ti,t1,...,tn} =0 in Hpy (Up,Sj.gpiR(n+1)) .

We make a careful study of the maps in the commutative exact




diagram
iz 1 ~n-1
n n n n n-— ~
Hp(TR +Sp-g # R(n)) >HD(TJR Speg i R(N))

o 1

(U 'S

(™ Tsn ; R(n+1))
R'"T"IR’

n+1
D

n

H U'RR

R(n+1)) —>Hn+1 (U2, R(n+1)

n+1

Hp

where the column is obtained from the Gysin sequence and the
n-1 ~n—1) n-1 :»n-1

isomorphism (T ’ST’ (T ,T n Sg.) .

(6.7) Lemma: Hq(Tn(m),S;.(C);Q) = Q(;n) (as a mixed Hodge
structure) for g=n and is zero otherwise. .

Proof: Since (Tn,sg) = (Gm,{1})n is the n-fold fibre product
the Kiinneth formula reduces the proof to the case n=1 which

is clear.

(6.8) Lemma: The restriction map

n+1
D

is injective.

r R@+)) - 53wl

n

(T S

R(n+1))

Proof: Since the dimension of the varieties involved is <n
the U-cohomology groups may be identified with the correspon-
ding Betti cohomology groups (in degree and twist one less).
Fixing an (arbitrary) embedding a: F » € we therefore have
to show that the map '

B (T7(€),Sp. (€) R (n)) - H (U™ (@), R (n))

is injective. We consider the commutative exact diagram of
mixed Hodge structures
-2 -
T @ ,e0-1) - BN M@, - '@,

| T

" (t"(q), S . (T) ;)

where the row is obtained from the Gysin sequence. Using the
“Kiinneth formula as in the proof of (6.7) we see that on the
one hand the vertical arrow is an isomorphism of mixed Hodge
structﬁres both isomorphic to @(-n) and that on the other
hand H" 2(r""(€),@(-1)) £ @(1-n)e...8Q(1-n). The oblique

arrow consequently is injective.

o




(6.9) Lemma: The map

n

-1 o4n-1
T R :

iR (n)) —>H (T 'S ;IR (n))

i;: H (T T IR
is the zero map.
Proof: We equivalently have to show that the connecting homo-
morphism

HO (e ERT L iR () 3 3T (rR BB SR ()
in the corresponding relative cohomology sequence is injective.

For that we use the commutative exact diagram

pn=1 an-1 -3 n+1
HD( R ’ST IRIIR(n)) "—$ HD ( ’ST IRl]R(n))
n-1 n- 1T_n 1 aBett‘ n n nT
- Pl 1 ~ .
Hpetti (T rSprg i¢/R (n)) ———3Hy ... (T ;5. 1 7€/IR (n))

Tn

nn( ,S

FH

pR‘'TR ) i

T°'IR

here the columns are part of the long exact sequence which
connects D-cohomology with Betti and deRham cohomology (com-
pare [10] 2.10 ¢)). Since in the left column the dimension
of the varieties is <«n we have an isomorphism there. By

(6.7), 9 clearly is injective. It remains to show that

Betti

im aBetti N im m = 0 .

We will use Hodge theory. If o: F > C is any fixed em-
bedding, it follows by‘induction from (6.7) and the relative

cohomology sequences

oo » g3 (Tn_1(ﬂl),'§ @©;e) ~ 583 (t™(©),5. () ;)

- 141 (e), s (C);) » ...

that the factors in the weight filtration of
n-1

H (" (¢) S (¢) @) are @(-j) for O < j <n-1 (and
s1m11arly for H (™ (€),S,.(C);®)). We already see that in
g™ (" (€¢), S .(G@);C) we have im 9 n F'a" = 0 . In order

Betti
to guarantee that this remains true in H"(T" (c), S .(C);¢/R(n))

we have to establish that the n-th step F'  of the Hodge
filtration is defined over IR (even over @ as we actually will

show) .
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A generator of F? is the differential form
(2m/=1)" " dlogt,A...adlogt

and it suffices to prove that its periods over rational cycles
are rational. Recall af = exp(2n/-1 a/N) with 1 < a < N.
Consider the unit cube in IR" and subdivide it into n+1 pie-
ces by the hyperplanes Ix; = j - % y J=1,...,n . It is

easy to see that the images of these pieces under the map

t; = exp(2ﬂ/:T‘xi) form a basis of Hn(Tn(¢),§;(¢);Q). The
integral of our form over such a piece is just the volume of

the piece - which is rational.

Remark: The above proof actually shows that
Hq(Tn(c),gg.(c);Q) =0 e @(-1) ©...6 0(-n) (as mixed Hodge

structures) for g

n and is zero otherwise.

We now go back to our diagram. Since o7

T™ by the equation 1 - ¢ Tﬂ’ti = O we obtain from the

is defined inside

usual property of the Gysin sequence (compare the proof of
(2.2))

t1,...'tn}

8{1 - C”ti’t.‘,'c.,tn} = ir*],{
i

and consequently, by (6.9),
{1 - ¢ TTti,t1,...,tn} =0 .
i ,

If we show that the restriction of {1_CTITti't1""'tn} to
U%{ is zero, too, then (6.8) implies that {1—cTI[ti,t1,4.,tJ
itself is zero. But that restriction is the cup-product of
the invertible functions 1 - ng'ti v tyreee,t on the
affine scheme U , also to be denoted by {1—cTIfti,t1,...,tn}.
It is zero since

{1—;Tg'ti,t1,...,tn} = {1-(Ct1)t2...tdct1,t2,...,tn}

- =gt byt s Tty et )

%{a,QN,b,...} = %{a,1,b,...} = 0 and

{1—x1...xn,x1,...,xn} = 0 . The last equality follows imme-

and {a,c,b,...} =

diately from the Steinberg identity {1-x,x} = 0 and from
{x,x} =0.
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