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Abstract

In the 1960s E. Calabi classified all minimal isometric immersions, from the 2-
sphere into higher dimensional spheres Sn, in terms of holomorphic maps. He showed
that such a map can be lifted to a horizontal holomorphic map from S2 ∼= CP 1 into
a twistor space over Sn. The construction also applies to harmonic maps from S2

to Sn. The main purpose of this work is to give a detailed presentation of Calabi’s
constructions and classification result for harmonic maps.

Throughout this work it has been my firm intention to give reference to the stated
results and credit to the work of others. All theorems, propositions, lemmas and
examples left unmarked are assumed to be too well known for a reference to be given.
A bracket [X] at the beginning of a proof means that the idea was obtained from
the reference. A proof left unmarked is written by me, although I make no claim of
originality.
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Chapter 1

Harmonic maps

1.1 Basic properties

In this section we present what is needed to define a harmonic map between Rie-
mannian manifolds. The main source for this chapter is [26].

Let (M, g) and (N, h) be smooth complete connected and orientable Riemannian
manifolds of dimension m and n, respectively. We denote the Levi-Civita connec-
tions on M and N by ∇M and ∇N .

Definition 1.1. Let φ : (M, g) → (N, h) be a C∞-map. We define the energy

density function e(φ) : M → R+ of φ by

e(φ)(x) =
1

2

m
∑

i=1

hφ(x)(dφx(Xi), dφx(Xi)),

where {Xi}
m
i=1 is any orthonormal basis of the tangent space TxM .

That e(φ) is independent of the choice of the local orthonormal frame is a conse-
quence of it being the trace of the tensor field

T (X, Y ) =
1

2
h(dφ(X), dφ(Y )).

The trace at a point x ∈M is defined as

trace(T ) =
m
∑

i=1

T (Xi, Xi),

where {Xi}
m
i=1 is any orthonormal basis for TxM . That this is independent of the

orthonormal basis can be seen by letting {Yj}
m
j=1 be another orthonormal basis for

TxM . Then there exist an orthogonal matrix {aij}
m
i,j=1 such that

Yj =

m
∑

i=1

aijXi.

Since T is bilinear we have
m
∑

j=1

T (Yj, Yj) =
m
∑

j=1

T (
m
∑

i=1

aijXi,
m
∑

k=1

akjXk)
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=

m
∑

j=1

m
∑

i=1

m
∑

k=1

aijakjT (Xi, Xk)

=
m
∑

i=1

m
∑

k=1

δikT (Xi, Xk)

=

m
∑

i=1

T (Xi, Xi).

Hence the trace does not depend on the choice of orthonormal basis.

Definition 1.2. Let φ : M → N be a C∞-map. Then a C∞-map

Φ : (−ǫ, ǫ) ×M → N

is said to be a smooth variation of φ if Φ(0, x) = φ(x). We write φt(x) for Φ(t, x).

We are now ready to give the definition of a harmonic map.

Definition 1.3. Let M be compact. Given a C∞-map φ : (M, g) → (N, h), the
integral

E(φ) =

∫

M

e(φ)vg

is called the energy functional of φ. The map φ is said to be a harmonic map

if it is a critical point of E, i.e.

d

dt
(E(φt))|t=0 = 0

for any smooth variation φt : (−ǫ, ǫ) ×M → N of φ.

1.2 The pull-back bundle

A C∞-map φ : M → N induces a vector bundle φ−1TN over M . In this section we
present the construction of this and show that there is a natural connection ∇φ on
φ−1TN which is compatible with a natural metric hφ on φ−1TN .

Given a smooth variation φt of φ : M → N we define the corresponding varia-

tional vector field V by

Vx =
d

dt
(φt(x))|t=0

for all x ∈M . Since for each x ∈ M , γ : t 7→ φt(x) is a curve in N with γ(0) = φ(x)
we have

Vx ∈ Tφ(x)N

for all x ∈M . For a function f ∈ C∞(N) we have

Vx(f) =
d

dt
(f ◦ φt(x))|t=0.

This is a smooth function in x ∈ M so V ∈ C∞(M,TN). Conversely, if V ∈
C∞(M,TN) satisfies

V : M ∋ x 7→ Vx ∈ Tφ(x)N
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we define
φt(x) = expφ(x)(tVx).

The definition makes sense since N is complete and φt(x) satisfies Vx = d
dt

(φt(x))|t=0.

Proposition 1.4. Let φ : M → N be a C∞-map. Define the set φ−1TN by

φ−1TN = {(x, u) | x ∈M, u ∈ Tφ(x)N}.

Then (φ−1TN,M, η), where η(x, u) = x, is a C∞-vector bundle. We call it the
pull-back bundle of φ over M .

Proof. We begin by showing that φ−1TN is a C∞-manifold. Let (TN,N, π) be the
tangent bundle for N . For (x, u) ∈ φ−1TN let (U,Ξ) be a chart around (φ(x), u)
with

Ξ(y, v) = (ξ(y), ζ(v)).

Let (Uα, xα) be a chart around x ∈M and set V = φ−1(π(U))∩Uα. If we let η−1(V )
define a basis for the topology on φ−1TN then

Π : η−1(V ) ∋ (x, u) → (xα, ζ(u)) ∈ R
m+n

is a homeomorphism. The transition maps are obviously diffeomorphism so φ−1TN
is a C∞-manifold.

The map η is obviously a projection. We show that for each x ∈ M the fiber is
a vector space and there exist a local bundle chart.

(i) The fiber
η−1(x) = {x} × Tφ(x)N

is a vector space.
(ii) Let (π−1(V ),Ψ) where φ(x) ∈ V be a bundle chart for TN with

Ψ : π−1(V ) ∋ (y, v) 7→ (y, ψ(v)) ∈ V × R
n

then U = φ−1(V ) is a neighborhood of x and Φ : η−1(U) → U × Rn defined by

Φ : (x, v) 7→ (x, ψ(v))

is bundle chart for φ−1TN since it is obviously a homeomorphism and its restriction
to a fiber obviously a vector space isomorphism. That the transition maps are
diffeomorphisms is also clear.

We see that the sections of φ−1TN are the maps of C∞(M,TN) that satisfy
Vx ∈ Tφ(x)N so they are exactly the variational vector fields. Examples of sections
of C∞(φ−1TN) are Z ◦ φ defined by

x 7→ Zφ(x)

for Z ∈ C∞(TN) and dφ(X) defined by

x 7→ dφx(Xx)

for X ∈ C∞(TM).
For a curve σ : (−ǫ, ǫ) → M on a Riemannian manifold (M, g) we denote by

PM
σ(t) : TxM → Tσ(t)M the parallel transport along σ from x = σ(0) to σ(t).
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Lemma 1.5. Let (M, g) be a Riemannian manifold and σ : (−ǫ, ǫ) →M be a curve
with σ(0) = x ∈ M . Then PM

σ(t) is a linear isometric isomorphism of (TxM, gx) to

(Tσ(t)M, gσ(t)).

Proof. It follows from the definition of parallel transport that it is a linear isomor-
phism. If Xx, Yx ∈ TxM then

d

dt
gσ(t)(P

M
σ(t)(Xx), P

M
σ(t)(Yx)) = 0.

Thus
gx(Xx, Yx) = gσ(t)(P

M
σ(t)(Xx), P

M
σ(t)(Yx)).

So PM
σ(t) isometric.

Lemma 1.6. Let (M, g) be a Riemannian manifold and X, Y ∈ C∞(TM). If σ :
(−ǫ, ǫ) →M is a curve with σ(0) = x ∈M and σ̇(0) = Xx then

∇M
X Y (x) =

d

dt
(PM

σ(t))
−1(Yσ(t))|t=0.

Proof. [25] Let Zx ∈ TxM . Then

gx

( d

dt
(PM

σ(t))
−1(Yσ(t))|t=0, Zx

)

=
d

dt
gx
(

(PM
σ(t))

−1(Yσ(t)), Zx
)

|t=0

=
d

dt
gσ(t)

(

Yσ(t), P
M
σ(t)(Zx)

)

|t=0

=gσ(t)

(D

dt
(Yσ(t)), P

M
σ(t)(Zx)

)

|t=0

+ gσ(t)

(

Yσ(t),
D

dt

(

PM
σ(t)(Zx)

)

)

|t=0

=gx(∇
M
X Y (x), Zx).

This proves the statement since Zx is arbitrary.

Definition 1.7. Let φ : (M, g) → (N, h) be a C∞-map, X ∈ C∞(TM) and V ∈
C∞(φ−1TN). Then we define the pull-back connection by

(∇φ
XV )(x) =

d

dt

(

(PN
φ◦σ(t))

−1(Vσ(t))
)

|t=0, x ∈M

where t 7→ σ(t) is a C1-curve in M satisfying σ(0) = x and σ̇(0) = Xx.

Let X ∈ C∞(TM), x ∈M and φ : (M, g) → (N, h) be a C∞-map. If σ is a curve
in M with σ(0) = x and σ̇(0) = Xx then γ = φ ◦ σ is a curve with γ(0) = φ(x) and
γ̇(0) = dφx(Xx). Thus given a section V of the pull-back bundle we have that

∇φ
XV (x) = 0 if dφx(Xx) = 0.

Otherwise there exist a open interval I of 0 such that γ : I → N is injective. Thus
there exist a vector field Z ∈ C∞(TN) such that Vσ(t) = Zφ◦σ(t) for all t ∈ I. This
implies that

∇φ
XV (x) =

d

dt

(

(PN
(φ◦σ)(t))

−1(Vσ(t))
)

|t=0
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=
d

dt

(

(PN
(φ◦σ)(t))

−1(Zφ◦σ(t))
)

|t=0

=(∇N
dφ(X)Z)(φ(x))

as vectors in Tφ(x)N . By abuse of notation we will write

(∇φ
XV )(x) = (∇N

dφ(X)V )(φ(x))

at a point x ∈M .

Proposition 1.8. Let φ : (M, g) → (N, h) be a C∞-map. Then ∇φ the pull-back
connection is a connection on the pull-back bundle φ−1TN .

Proof. [26] Let X ∈ C∞(TM) and V ∈ C∞(φ−1TN). We show that ∇φ
XV is ten-

sorial in the first argument and is additive and satisfies the product rule in the
second.

(i) It is obvious that the pull-back connection only depends on the value Xx of
X so it is tensorial in the first argument.

(ii) Now we show that the second argument is additive. Let σ be a curve with
σ(0) = x and σ̇(0) = Xx and W ∈ C∞(φ−1TN) then

∇φ
X(V +W )(x) =

d

dt

(

(PN
φ◦σ(t))

−1(Vσ(t) +Wσ(t))
)

|t=0

=
d

dt

(

(PN
φ◦σ(t))

−1V σ(t) + (PN
φ◦σ(t))

−1Wσ(t)

)

|t=0

=
d

dt

(

(PN
φ◦σ(t))

−1Vσ(t)

)

|t=0 +
d

dt

(

(PN
φ◦σ(t))

−1Wσ(t)

)

|t=0

= ∇φ
XV (x) + ∇φ

XW (x).

(iii) Finally we show that the second argument satisfies the product rule. Let
f ∈ C∞(M) then

∇φ
X(fV )(x) =

d

dt

(

(PN
φ◦σ(t))

−1(f(σ(t))Vσ(t))
)

|t=0

=
d

dt

(

f(σ(t))(PN
φ◦σ(t))

−1(Vσ(t))
)

|t=0

=
( d

dt
(f(σ(t))) (PN

σ(t))
−1(Vσ(t))

+ f(σ(t))
d

dt

(

(Pσ(t)N )−1(Vσ(t))
)

)

|t=0

=Xx(f)Vx + f(x)∇φ
XV (x).

The pull-back bundle φ−1TN has a natural metric hφ given by

hφx(Vx,Wx) = hφ(x)(Vx,Wx)

where V,W ∈ C∞(φ−1TN). The metric is well defined since Vx,Wx ∈ Tφ(x)N .

Proposition 1.9. Let φ : (M, g) → (N, h) be a C∞-map. Then the pull-back
connection ∇φ is compatible with the metric hφ on φ−1TN .
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Proof. [26] Let X ∈ C∞(TM) and V,W ∈ C∞(φ−1TN). At x ∈M let σ be a curve
such that σ(0) = x and σ̇(0) = Xx. Then

Xx(h
φ(V,W )) =

d

dt

(

hφσ(t)(Vσ(t),Wσ(t))
)

|t=0

=
d

dt

(

hφ◦σ(t)(Vσ(t),Wσ(t))
)

|t=0

=
d

dt

(

hφ(x)((P
N
φ◦σ(t))

−1(Vσ(t)), (P
N
φ◦σ(t))

−1(Wσ(t)))
)

|t=0

=hφx

(

d

dt

(

(PN
φ◦σ(t))

−1(Vσ(t))
)

|t=0,Wx

)

+ hφx

(

Vx,
d

dt

(

(PN
φ◦σ(t))

−1(Wσ(t))
)

|t=0

)

=hφx(∇
φ
XV (x),Wx) + hφx(Vx,∇

φ
XW (x)).

1.3 The first variational formula

The variational formulation of a harmonic map is simple to understand but it is not
useful for calculations. When it comes to calculations we use the first variational
formula instead.

Definition 1.10. Given vector fields d
dt

and X on (−ǫ, ǫ) and M , respectively, we

define their canonical extensions, ∂
∂t

and (0, X), to the product (ǫ, ǫ) × M as
follows:

Let f ∈ C∞((−ǫ, ǫ) ×M) then

∂

∂t (t,x)
(f) =

d

ds
(f ◦ γ)|s=0

where γ : s 7→ (σ(s), x) ∈ (−ǫ, ǫ) ×M , σ(0) = t, σ̇(0) = ( d
dt

)t and

(0, X)(t,x)(f) =
d

ds
(f ◦ β)|s=0

where β : s 7→ (t, τ(s)) ∈ (−ǫ, ǫ) ×M , τ(0) = x, τ̇(0) = Xx.

Lemma 1.11. Let φ : M → N be a C∞-map. If Φ : (−ǫ, ǫ) ×M → N is a smooth
variation for φ then at x ∈M

dΦ(0,x)

(

∂

∂t (0,x)

)

= Vx,

where V is the variational vector field for φt.

Proof. Let f : N → R be a smooth function, then

Vx(f) =
d

dt
(φt(x))|t=0(f)

=
d

dt
(f ◦ Φ(t, x))|t=0

= (
∂

∂t
)(0,x)(f ◦ Φ)
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= dΦ(0,x)

(

∂

∂t (0,x)

)

(f).

Lemma 1.12. For any C∞-map φ : (M, g) → (N, h) and X, Y ∈ C∞(TM) the
pull-back connection ∇φ on the pull-back bundle φ−1TN satisfies

∇φ
X(dφ(Y )) −∇φ

Y (dφ(X)) − dφ([X, Y ]) = 0.

Proof. [26] Define T : C∞
2 (TM) → C∞(φ−1TN) by

T (X, Y ) = ∇φ
X(dφ(Y )) −∇φ

Y (dφ(X)) − dφ([X, Y ]).

Then for f, g ∈ C∞(M)

T (fX, gY ) =∇φ
fX(dφ(gY )) −∇φ

gY (dφ(fX))− dφ([fX, gY ])

=f∇φ
X(gdφ(Y )) − g∇φ

Y (fdφ(X))

− dφ(fg[X, Y ] + fX(g)Y − gY (f)X)

=fg∇φ
X(dφ(Y )) + fX(g)dφ(Y ) − fg∇φ

Y (dφ(X)) − gY (f)dφ(X)

− fgdφ([X, Y ]) − fX(g)dφ(Y ) + gY (f)dφ(X)

=fgT (X, Y ).

This means that T is tensorial so it is enough to show that

T

(

∂

∂xαi
,
∂

∂xαj

)

= 0

for charts (U, xα) and (V, yβ) around x ∈ M and φ(x) ∈ N , respectively. With the

notation φk = yβk ◦ φ and φki = ∂φk

∂xα
i

we obtain

T (
∂

∂xαi
,
∂

∂xαj
) =∇φ

∂
∂xα

i

(dφ( ∂
∂xα

j
)) −∇φ

∂
∂xα

j

(dφ( ∂
∂xα

i
))

=
m
∑

k=1

∇φ
∂

∂xα
i

φkj
∂

∂yβ
k

−
n
∑

k=1

∇φ
∂

∂xα
j

φki
∂

∂yβ
k

=
n
∑

k=1

(

φkji
∂

∂yβk
+ φkj∇

φ
∂

∂xα
i

∂

∂yβ
k

)

−
n
∑

k=1

(

φkij
∂

∂yβk
+ φki∇

φ
∂

∂xα
j

∂

∂yβ
k

)

=

n
∑

k=1

(

φkji − φkij
) ∂

∂yβk

+

n
∑

k=1

(

φkj∇
φ

∂
∂xα

i

∂

∂yβ
k

− φki∇
φ

∂
∂xα

j

∂

∂yβ
k

)

=

n
∑

k=1

(

φkj∇
φ

∂
∂xα

i

∂

∂yβ
k

− φki∇
φ

∂
∂xα

j

∂

∂yβ
k

)

7



since φkij = φkji. Finally since ∇N
∂

∂y
β
k

∂

∂yβ
l

= ∇N
∂

∂y
β
l

∂

∂yβ
k

we have

n
∑

k=1

(

φkj∇
φ

∂
∂xα

i

∂

∂yβ
k

− φki∇
φ

∂
∂xα

j

∂

∂yβ
k

)

=

n
∑

k=1

n
∑

l=1

(

φkjφ
l
i∇

N
∂

∂y
β
l

∂

∂yβ
k

− φki φ
l
j∇

N
∂

∂y
β
l

∂

∂yβ
k

)

=

n
∑

k=1

n
∑

l=1

(

φkjφ
l
i∇

N
∂

∂y
β
l

∂

∂yβ
k

− φliφ
k
j∇

N
∂

∂y
β
l

∂

∂yβ
k

)

=0.

Given a C∞-map φ : (M, g) → (N, h) we define a tensor field ∇̂dφ on C∞(TM)
by

∇̂dφ(X, Y ) = ∇φ
Xdφ(Y ) − dφ(∇M

X Y ),

whereX, Y ∈ C∞(TM). Using Lemma 1.12 we see that the tensor field is symmetric.

Definition 1.13. Let φ : (M, g) → (N, h) be a C∞-map. Then we define the
tension field τ(φ) of φ by

τ(φ)(x) = trace(∇̂dφ) =
m
∑

i=1

∇̂dφ(Xi, Xi)

where {Xi}
m
i=1 is an orthonormal basis for TxM .

Theorem 1.14 (The first variational formula [14, 11]). Let φ : (M, g) → (N, h) be
a C∞-map and suppose that M is compact. Then for any smooth variation φt of φ,
we have

d

dt
(E(φt))|t=0 = −

∫

M

hφ(V, τ(φ))vg,

where V is the variational vector field of φt. Thus φ is a harmonic map if and only
if τ(φ) ≡ 0 on M .

Proof. [26] Let x ∈M and {Xi} be a local orthonormal frame around x then

d

dt

(

hφ((dφt)x(Xi)x, (dφt)x(Xi)x)
)

=

(

∂

∂t

)

(t,x)

(

hΦ(dΦ(0, Xi), dΦ(0, Xi))
)

.

Now since [ ∂
∂t
, (0, Xi)] = 0 Lemma 1.12 tells us that

∇Φ
∂
∂t

dΦ(0, Xi) = ∇Φ
(0,Xi)

dΦ
(

∂
∂t

)

.

This implies that

∂

∂t

(

hΦ (dΦ(0, Xi), dΦ(0, Xi))
)

=2hΦ(∇Φ
∂
∂t

dΦ(0, Xi), dΦ(0, Xi))

=2hΦ(∇Φ
(0,Xi)

dΦ
(

∂
∂t

)

, dΦ(0, Xi))

=2(0, Xi)h
Φ

(

dΦ

(

∂

∂t

)

, dΦ(0, Xi)

)

− 2hΦ

(

dΦ

(

∂

∂t

)

,∇Φ
(0,Xi)

dΦ(0, Xi)

)

.
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Let Xt ∈ C∞(TM) be given by

g(Xt, Y ) = hΦ(dΦ

(

∂

∂t

)

, dΦ(0, Y ))

for all Y ∈ C∞(TM). Then

m
∑

i=1

(0, Xi)

(

hΦ

(

dΦ

(

∂

∂t

)

, dΦ(0, Xi)

))

=
m
∑

i=1

Xig(Xt, Xi)

=

m
∑

i=1

(

g(∇M
Xi
Xt, Xi) + g(Xt,∇

M
Xi
Xi)
)

=div(Xt)

+

m
∑

i=1

hΦ

(

dΦ

(

∂

∂t

)

, dΦ(0,∇M
Xi
Xi)

)

.

Now since
d

dt
(E(φt)) =

1

2

∫

M

m
∑

i=1

d

dt
hφ(dφt(Xi), dφt(Xi))vg

we get

d

dt
(E(φt))

=

∫

M

div(Xt)vg −

∫

M

hΦ

(

dΦ

(

∂

∂t

)

,
m
∑

i=1

(

∇Φ
(0,Xi)

dΦ(0, Xi) − dΦ(0,∇M
Xi
Xi)
)

)

vg.

The first term is zero by Stokes’ theorem, letting t = 0 we get

d

dt
(E(φt))|t=0

= −

∫

M

hΦ|t=0

(

dΦ

(

∂

∂t

)

|t=0,

m
∑

i=1

(

∇Φ
(0,Xi)

dΦ(0, Xi)|t=0 − dΦ(0,∇M
Xi
Xi)|t=0

)

)

vg.

From

Φ|t=0 = φ,

dΦ

(

∂

∂t

)

|t=0 = V,

∇Φ
(0,Xi)

dΦ(0, Xi)|t=0 = ∇φ
Xi
dφ(Xi) and

dΦ(0,∇M
Xi
Xi)|t=0 = dφ(∇M

Xi
Xi)

we have
d

dt
(E(φt))|t=0 = −

∫

M

hφ(V, τ(φ))vg.

The last part of the statement follows from the fact that Vx can be chosen arbitrary
using φt.
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The condition τ(φ) ≡ 0 does not depend onM being compact. Thus can τ(φ) ≡ 0
be used to define harmonic maps for non-compact Riemannian manifolds.

Some further properties of harmonic maps, whose proof are based on the theory
for partial differential equations are.

Theorem 1.15 ([11] p. 117). Let φ : (M, g) → (N, h) be a C2-map such that
τ(φ) ≡ 0. If M and N are real analytic manifolds then φ is real analytic.

Theorem 1.16 ([23] p. 216). Let φ : (M, g) → (N, h) be a harmonic map. If there
exist an open subset U of M such that the image φ(U) is contained in a complete
totally geodesic submanifold V of N then φ(M) ⊂ V .

1.4 Isometric immersions and Riemannian submersions

In this section we define isometric immersions and Riemannian submersions. We
show that a Riemannian submersion has some nice properties that will be important
in Chapter 3.

Definition 1.17. A C∞-map φ : (M, g) → (N, h) is said to be an isometric

immersion if for all x ∈M and all Xx, Yx ∈ TxM

(i) the tangent map dφx : TxM → Tφ(x)N is injective and

(ii) gx(Xx, Yx) = hφ(x)(dφx(Xx), dφx(Yx)).

For each x ∈M we have an orthogonal decomposition of the tangent space

Tφ(x)N = dφ(TxM) ⊕ (dφ(TxM))⊥

with respect to the metric hφ(x). Let U be a neighbourhood of x such that φ : U → N
is an embedding. Then for X ∈ C∞(TU)

dφ(X) : φ(U) ∋ φ(x) 7→ dφx(Xx) ∈ Tφ(x)N

will be a well-defined vector field in C∞(Tφ(U)) which we extend to C∞(TN). We
decompose

∇N
dφ(X)dφ(Y )(φ(x)) =

(

∇N
dφ(X)dφ(Y )(φ(x))

)T
+B(X, Y )(x)

according to the orthogonal decomposition of Tφ(X)N defined above. It is easy to
show that B is a symmetric tensor.

Definition 1.18. Let φ : (M, g) → (N, h) be an isometric immersion. Then we call
the map

B : TxM × TxM → (dφ(TxM))⊥

the second fundamental form of φ.

The fact that B is a tensor insures that the following definition makes sense.

Definition 1.19. An isometric immersion φ is said to be minimal if for all x ∈M

trace(B)(x) =
m
∑

i=1

B(Xi, Xi) = 0

for any orthonormal basis {Xi}
m
i=1 of TxM .

10



Proposition 1.20 ([11]). An isometric immersion φ : (M, g) → (N, h) is minimal
if and only if it is harmonic.

Proof. [2] Let x ∈M and let U be a neighbourhood such that φ : U → N is injective.
Also let X, Y ∈ C∞(TU). Then we have

∇φ
Xdφ(Y )(x) = ∇N

dφ(X)dφ(Y )(φ(x))

and since φ is an isometric immersion we have

dφx(∇
M
X Y (x)) =

(

∇N
dφ(X)dφ(Y )(φ(x))

)T
.

This implies that

B(X, Y )(x) =∇N
dφ(X)dφ(Y )(φ(x)) −

(

∇N
dφ(X)dφ(Y )(φ(x))

)T

=∇φ
Xdφ(Y )(x) − dφx(∇

M
X Y (x)) = ∇̂dφ(X, Y )(x).

The statement follows from the fact that

τ(φ) = trace(∇̂φ) = trace(B).

Given a C∞-map φ : (M, g) → N we define, at a point x ∈ M , the vertical

space
Vx = Ker(dφx) = {Xx ∈ TxM | dφx(Xx) = 0 }

and the horizontal space

Hx = {Xx ∈ TxM | g(Xx, Yx) = 0 for all Yx ∈ Vx }

as the orthogonal complement V⊥
x of Vx. This gives us an orthogonal decomposition

TxM = Vx ⊕Hx

of the tangent space TxM .

Definition 1.21. A surjective map φ : (M, g) → (N, h) is said to be a Riemannian

submersion if for all x ∈M

(i) dφx : TxM → Tφ(x)N is surjective and

(ii) dφx|Hx
is an isometric isomorphism of (Hx, gx) to (Tφ(x)N, hφ(x)).

Definition 1.22. Let φ : (M, g) → (N, h) be a Riemannian submersion. A vector

field X̂ ∈ C∞(TM) is said to be a horizontal lift of a vector field X ∈ C∞(TN) if

X̂x ∈ Hx

and X̂ and X are φ-related i.e.

dφx(X̂x) = Xφ(x).

It follows from the definition of a Riemannian submersion that

dφx|Hx
: Hx → Tφ(x)N

is an isomorphism so there exist a unique horizontal lift for each X ∈ C∞(TN).

11



Lemma 1.23 ([21]). Let φ : (M, g) → (N, h) be a Riemannian submersion and

X̂, Ŷ ∈ C∞(TM) be horizontal lifts of X, Y ∈ C∞(TN). Then we have

(i) gx(X̂x, Ŷx) = hφ(x)(Xφ(x), Yφ(x)),

(ii) dφ([X̂, Ŷ ]) = [X, Y ],

(iii) dφ(∇M
X̂
Ŷ ) = ∇N

XY .

Proof. [21] (i) The statement follows from the fact that dφx|Hx
is an isometry, i.e.

gx(X̂x, Ŷx) = hφ(x)(dφx(X̂x), dφx(X̂x)) = hφ(x)(Xφ(x), Yφ(x)).

(ii) This statement follows from the fact that X̂ and X are φ-related,

dφ([X̂, Ŷ ]) = [dφ(X̂), dφ(Ŷ )] = [X, Y ].

(iii) We show that for any vector field Z ∈ C∞(TN) we have

h(dφ(∇M
X̂
Ŷ ), Z) ◦ φ = h(∇N

XY , Z) ◦ φ.

For all Z1, Z2, Z3 ∈ C∞(TN) we have

(Ẑ1)x(g(Ẑ2, Ẑ3)) = (Ẑ1)x(h(Z2, Z3) ◦ φ) = (Z1)φ(x)(h(Z2, Z3))

g(Ẑ1, [Ẑ2, Ẑ3]) = g(Ẑ1, ̂[Z2, Z3]) = h(Z1, [Z2, Z3]) ◦ φ.

Hence we obtain

h(dφ(∇M
X̂
Ŷ ), Z) ◦ φ =h(dφ(∇M

X̂
Ŷ ), dφ(Ẑ)) ◦ φ

=g(∇M
X̂
Ŷ , Ẑ)

=
1

2

(

X̂
(

g(Ŷ , Ẑ)
)

+ Ŷ
(

g(Ẑ, X̂)
)

− Ẑg
(

(X̂, Ŷ )
)

+ g(Ẑ, [X̂, Ŷ ]) + g(Ŷ , [Ẑ, X̂]) − g(X̂, [Ŷ , Ẑ])
)

=
1

2

(

X
(

h(Y, Z)
)

+ Y
(

h(Z,X)
)

− Z
(

h(X, Y )
)

+ h(Z, [X, Y ]) + h(Y, [Z,X]) − h(X, [Y, Z])
)

◦ φ

=h(∇N
XY , Z) ◦ φ.

Definition 1.24. Let π : (Y, g′) → (N, h) be a Riemannian submersion. A C∞-map
ψ : (M, g) → (Y, g′) is said to be horizontal with respect to π if

dψx(TxM) ⊂ Hψ(x)

for all x ∈M where TyY = Hy ⊕ Vy for y ∈ Y .

Usually the composition of a harmonic map with another map does not give an
harmonic map, even in the case where both maps are harmonic. The next theorem
will give us a condition for a Riemannian submersion for preserve the harmonicity
under compositions.

12



Theorem 1.25 ([12]). Let π : (Y, g′) → (N, h) be a Riemannian submersion. If
ψ : (M, g) → (Y, g′) is a harmonic map which is horizontal with respect to π, then
the composition φ = π◦ψ : (M, g) → (N, h) is a harmonic map.

Proof. [26] Let {Xi}
m
i=1 be an orthonormal frame on (M, g). We have

τ(φ)(x) =
m
∑

i=1

(

∇φ
Xi
dφ(Xi)(x) − dφx

(

∇M
Xi
Xi(x)

)

)

=

m
∑

i=1

(

∇N
dπ(dψ(Xi))

dπ(dψ(Xi))(φ(x)) − dπψ(x)

(

dψx
(

∇M
Xi
Xi(x)

)))

.

Since dψx((Xi)x) ∈ Hψ(x) for all x ∈M , dψ(Xi) is horizontal lift of dπ(dψ(Xi)). By
Lemma 1.23 we have

∇N
dπ(dψ(Xi))

dπ(dψ(Xi)) = dπ(∇Y
dψ(Xi)

dψ(Xi)) = dπ(∇ψ
Xi
dψ(Xi)).

Using this for τ(φ) we get

τ(φ) = dπ

(

m
∑

i=1

(

∇ψ
Xi
dψ(Xi) − dψ(∇M

Xi
Xi)
)

)

= dπ(τ(ψ)) = 0

the last equality follows from the fact that ψ is harmonic.
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Chapter 2

Kähler manifolds

2.1 Basic properties

The concept of a Kähler manifold is an essential part of Calabi’s classification. To
define Kähler manifolds we need the notion of a complex manifold. We will show
some important formulas for Kähler manifolds and give a few examples. The pre-
sentation of the theory in this section builds on [3], [18] and [26].

We start with some motivations. Let V be a complex vector space then we define
a map J : V → V by

J(v) = iv

for v ∈ V . This satisfies J2 = −I. Now instead let V be a real vector space then a
map J : V → V is said to be a complex structure if

J2 = −I.

J turns V into a complex vector space by defining

(a+ ib)v = av + bJv.

This can only be done if the dimension of V is even.

Definition 2.1. Let M be a 2m-dimensional manifold. Then M is said to be a
complex manifold if there exist an atlas of complex charts

zα : Uα → C
m

such that the transition maps

zα ◦ (zβ)−1 : zβ(Uα ∩ Uβ) → C
m

are holomorphic.

Given a complex manifold the complex charts can be decomposed

zαk = xαk + iyαk

for k = 1, . . . , m. We define real charts by

(xα1 , . . . , x
α
m, y

α
1 , . . . , y

α
m).

15



Then at a point p ∈ M the set {Xi = ∂
∂xα

i
, Yi = ∂

∂yα
i
, | i = 1, . . . , m} is a basis for

TpM as a real manifold. We define Jp : TpM → TpM by

Jp(Xi) = Yi and Jp(Yi) = −Xi.

Then this satisfies J2
p = −Ip. This tensor field is independent of the choice of charts

and is called the complex structure of M .

Definition 2.2. Let M be a 2m-dimensional manifold. Then a tensor field J :
C∞(TM) → C∞(TM) is said to be an almost complex structure on M if

J2 = −I,

where I is the identity map on C∞(TM).

Given an almost complex structure J on a manifold M the Nijenhuis tensor

N of J is defined by

N(X, Y ) = 2([JX, JY ] − [X, Y ] − J [X, JY ] − J [JX, Y ]).

This tensor will let us determine when an almost complex manifold is a complex
manifold.

Theorem 2.3 ([20]). Let M be a 2m-dimensional manifold with almost complex
structure J . Then M is a complex manifold with complex structure J if and only if
the Nijenhuis tensor of J is zero.

The proof is complicated and is omitted here. See [18] for a proof in the real
analytic case.

We note that the covariant derivate ∇MJ : C∞
2 (TM) → C∞(TM) of J is defined

by

∇MJ(X, Y ) = ∇M
X (JY ) − J(∇M

X Y ).

Definition 2.4. Let M be a complex manifold with complex structure J . Then a
Riemannian metric g is said to be compatible with J if

g(JX, JY ) = g(X, Y )

for all X, Y ∈ C∞(TM). A complex manifold with a compatible metric is said to
be a Hermitian manifold.

Example 2.5. On Cm we have the Hermitian metric 〈·, ·〉
C

defined by

〈u, v〉
C

=

m
∑

i=1

uiv̄i.

Definition 2.6. Let (M,J, g) be a Hermitian manifold. The alternating 2-form

ω(X, Y ) = g(JX, Y )

is called the Kähler form of g. The metric g is said to be a Kähler metric if ω
is closed i.e. dω = 0.
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Lemma 2.7. Let (M,J, g) be a Hermitian manifold, with Levi-Civita connection
∇M . Then

dω(X, Y, Z) = g(∇MJ(X, Y ), Z) + g(∇MJ(Y, Z), X) + g(∇MJ(Z,X), Y )

2g(∇MJ(X, Y ), Z) = dω(X, Y, Z) − dω(X, JY, JZ)

for all X, Y, Z ∈ C∞(TM).

Proof. [3, 18] By the invariant formula for the exterior derivative of differential forms

dω(X, Y, Z) =X(ω(Y, Z)) + Y (ω(Z,X)) + Z(ω(X, Y ))

+ ω(Z, [X, Y ]) + ω(Y, [Z,X]) + ω(X, [Y, Z])

=X(g(JY, Z)) + Y (g(JZ,X)) + Z(g(JX, Y ))

+ g(JZ, [X, Y ]) + g(JY, [Z,X]) + g(JX, [Y, Z])

=
(

g(∇M
X JY , Z) + g(JY,∇M

XZ)
)

+
(

g(∇M
Y JZ,X) + g(JZ,∇M

Y X)
)

+
(

g(∇M
Z JX, Y ) + g(JX,∇M

Z Y )
)

+ g(JZ, [X, Y ]) + g(JY, [Z,X]) + g(JX, [Y, Z])

=
(

g(∇M
X JY , Z) + g(JZ,∇M

Y X) + g(JZ, [X, Y ])
)

+
(

g(∇M
Y JZ,X) + g(JX,∇M

Z Y ) + g(JX, [Y, Z])
)

+
(

g(∇M
Z JX, Y ) + g(JY,∇M

X Z) + g(JY, [Z,X])
)

=g(∇MJ(X, Y ), Z) + g(∇MJ(Y, Z), X) + g(∇MJ(Z,X), Y ).

Proving the first part. Further

dω(X, JY, JZ) =X(ω(JY, JZ)) + JY (ω(JZ,X)) + JZ(ω(X, JY ))

+ ω(JZ, [X, JY ]) + ω(JY, [JZ,X]) + ω(X, [JY, JZ])

=X(g(−Y, JZ)) + JY (g(−Z,X)) + JZ(g(JX, JY ))

+ g(−Z, [X, JY ]) + g(−Y, [JZ,X]) + g(JX, [JY, JZ]).

Which implies that

dω(X, Y, Z) − dω(X, JY, JZ) =

=
(

X(g(JY, Z)) + Y (g(JZ,X)) + Z(g(JX, Y ))

+ g(JZ, [X, Y ]) + g(JY, [Z,X]) + g(JX, [Y, Z])
)

−
(

X(g(−Y, JZ)) + JY (g(−Z,X)) + JZ(g(JX, JY ))

+ g(−Z, [X, JY ]) + g(−Y, [JZ,X]) + g(JX, [JY, JZ])
)

+
(

g(X, [JY, Z]) − g(X, [JY, Z])
)

+
(

g(X, [Y, JZ]) − g(X, [Y, JZ])
)

=
(

X(g(JY, Z)) + JY g(Z,X)− Zg(X, JY )

− g(X, [JY, Z]) + g(JY, [Z,X]) + g(Z, [X, JY ])
)

+
(

X(g(Y, JZ)) + Y (g(JZ,X))− JZ(g(X, Y ))

− g(X, [Y, JZ]) + g(Y, [JZ,X]) + g(JZ, [X, Y ])
)
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−
(

g(JX, [JY, JZ]) − g(JX, [Y, Z])

− g(JX, J [JY, Z]) − g(JX, J [Y, JZ])
)

=2g(∇M
X JY , Z) + 2g(∇M

X Y , JZ) −
1

2
g(JX,N(Y, Z)),

where N(Y, Z) is the Nijenhuis tensor. The Nijenhuis tensor is zero since J is a
complex structure so the theorem follows from the fact that

g(∇M
X Y , JZ) = −g(J∇M

X Y , Z).

Theorem 2.8. Let (M,J, g) be a Hermitian manifold with Levi-Civita connection
∇M . Then the metric g is Kähler if and only if the complex structure is parallel i.e.
∇MJ = 0.

Proof. [3] Assume that g is Kähler i.e. the Kähler form ω satisfies dω = 0. Then by
Lemma 2.7

g(∇MJ(X, Y ), Z) = 0

for all X, Y, Z ∈ C∞(TM) so ∇MJ = 0.
Now we assume instead that ∇MJ = 0 which by Lemma 2.7 implies that

dω(X, Y, Z) = 0

for all X, Y, Z ∈ C∞(TM). Hence the Kähler form is closed.

Corollary 2.9. Let (M,J, g) be a Kähler manifold, then

∇M
X (JY ) = J(∇M

X Y )

for all X, Y ∈ C∞(TM).

Proof. The statement follows from the definition of ∇MJ and Theorem 2.8.

Definition 2.10. A map φ : M → N between complex manifolds is said to be
holomorphic if JN ◦ dφ = dφ ◦ JM .

Proposition 2.11 ([11]). Any holomorphic map φ : M → N between two Kähler
manifolds is harmonic.

Proof. [26] Let JM and JN be the complex structures on M and N , respectively,
and {Xi, Yi}

m
i=1 be a local orthonormal frame for C∞(TM) with JMXi = Yi and

JMYi = −Xi. Then

∇φ
Yi
dφ(Yi) − dφ(∇M

Yi
Yi) =∇φ

JMXi
dφ(JMXi) − dφ(∇M

JMXi
JMXi)

=∇φ

JMXi
JNdφ(Xi) − dφ(JM∇M

JMXi
Xi)

=JN∇φ

JMXi
dφ(Xi) − JNdφ(∇M

JMXi
Xi)

=JN(∇φ

JMXi
dφ(Xi) − dφ(∇M

JMXi
Xi))

=JN(∇φ
Xi
dφ(JMXi) + dφ([JMXi, Xi])

− dφ(∇M
Xi
JMXi + [JMXi, Xi]))

=JN(JN∇φ
Xi
dφ(Xi) − JNdφ(∇M

Xi
Xi))

= −∇φ
Xi
dφ(Xi) + dφ(∇M

Xi
Xi).
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From this we see that

τ(φ) =
m
∑

i=1

(∇φ
Yi
dφ(Yi) − dφ(∇M

Yi
Yi) + ∇φ

Xi
dφ(Xi) − dφ(∇M

Xi
Xi)) = 0.

Example 2.12. Let V be a vector space. We define an equivalence relation R on
V \{0} by

R(u, v) if and only if there exists a non-zero scalar λ such that u = λv.

The quotient space V/R is called the projective space of V and is denoted by
P(V ). We define the projection

πP : V \{0} ∋ u 7→ R(u) ∈ P(V ).

The n-dimensional complex projective space CP
n is defined by CP

n = P(Cn+1).
CP

n can be shown to be a compact complex manifold. On CP
n there is a standard

Kähler metric called the Fubini-Study metric defined to be the unique metric
such that the projection πP : Cn+1\{0} → CP

n restricted to S2n+1 ⊂ Cn+1 is a
Riemannian submersion.

Definition 2.13. For Cn we define the k-wedge product
∧k

Cn by

k
∧

C
n = {

l<∞
∑

j=1

aj1 ∧ · · · ∧ ajk | a
j
i ∈ C

n i = 1, . . . , k },

where

(i) (· ∧ · · · ∧ ·) is multi-linear,

(ii) a1 ∧ · · · ∧ ak 6= 0 if a1, . . . , ak are linearly independent, and

(iii) aσ(1) ∧ · · · ∧ aσ(k) = sgn(σ)(a1 ∧ · · · ∧ ak) for any permutation σ of {1, . . . , k}.

Proposition 2.14. The wedge product
∧k

Cn has the following properties.

(i) The vectors a1, . . . , ak ∈ Cn are linearly dependent if and only if a1∧· · ·∧ak = 0.

(ii)
∧k

Cn is an
(

n
k

)

-dimensional complex vector space.

Proof. (i) Suppose that the vectors are linearly dependent. Then for some j ∈
{1, . . . , k} we have

aj =

k
∑

i=1, i6=j

λiai.

So it is enough to show that a1 ∧ · · · ∧ ak = 0 if ai = aj for some i 6= j. Let σ be the
permutation such that σ(i) = j, σ(j) = i and all other integers are left fixed. Then
sgn(σ) = −1 and

A =a1 ∧ · · · ∧ ai ∧ · · · ∧ aj ∧ · · · ∧ ak

= − a1 ∧ · · · ∧ aσ(i) ∧ · · · ∧ aσ(j) ∧ · · · ∧ ak

= − a1 ∧ · · · ∧ aj ∧ · · · ∧ ai ∧ · · · ∧ ak

= − a1 ∧ · · · ∧ ai ∧ · · · ∧ aj ∧ · · · ∧ ak
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= − A.

This implies that 2A = 0.
Suppose instead that a1 ∧ · · · ∧ ak = 0 then by definition a1, . . . , ak are linearly

dependent.
(ii) Let {ei}

n
i=1 be a basis for Cn, if the same basis vector appears more than once

in a wedge product the product is zero, and any permutation of a wedge product be
linearly dependent with the original so the basis vectors for

∧k
Cn can be chosen in

(

n
k

)

ways.

An element of A ∈
∧k

Cn is said to be decomposable if A = a1 ∧ · · · ∧ an for

vectors a1, . . . , an ∈ Cn. On the decomposable elements of
∧k(Cn) we define a scalar

product by
〈A,B〉 = det

(

[〈ai, bj〉C
]ki,j=1

)

where A = a1 ∧ · · · ∧ ak and B = b1 ∧ · · · ∧ bk. Since
∧k

Cn is an
(

n
k

)

-dimensional
complex vector space we can identify

P(
k
∧

C
n) ∼= CP

N−1,

where N =
(

n
k

)

.

Example 2.15. The set

Gk(C
n) = {V ⊂ C

n| V is a k-dimensional subspace}

is called the Grassmannian of k-planes in Cn. It is known the Grassmannian can
be equipped with a compact complex manifold structure. It is also known that the
tangent space of Gk(C

n) at a point V is equal to the space of complex linear maps
HomC(V, V ⊥).

Let {ai}
k
i=1 and {bj}

k
j=1 be two different bases for V ∈ Gk(C

n) then

a1 ∧ · · · ∧ ak = λb1 ∧ · · · ∧ bk

for some λ ∈ C\0 so they generate the same line in
∧k

Cn, thus the map pl :
Gk(C

n) → CP
N−1, where N =

(

n
k

)

, defined by

pl(V ) = πP(a1 ∧ · · · ∧ ak)

is a well defined injective map.
The map pl can be shown to be a embedding see [13] and is called the Plücker

embedding.

2.2 Homogeneous spaces

A particularly easy type of manifolds are the homogeneous spaces. On a homoge-
neous space we define G-invariant structures they are determined by their behavior
at a single point of the manifold. We present methods to construct G-invariant
metrics and almost complex structures, and to determine when an almost complex
structure has a vanishing Nijenhuis tensor. The main sources are [1], [18] and [28].
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Throughout this section we identify the Lie algebra g of a Lie group G and its
tangent space TeG at the identity element e without reference.

Let G be a group and K be a subgroup. Define the quotient space G/K by

G/K = { gK | g ∈ G }.

The map defined by
π : G ∋ g 7→ gK ∈ G/K

is called the natural projection.

Theorem 2.16. Let G be a Lie group and K a closed Lie subgroup, then the quotient
G/K has a unique manifold structure such that

(i) the natural projection π is a C∞-map,

(ii) for all gK ∈ G/K there is a neighbourhoodW of gK and a C∞-map σ : W → G
such that π ◦ σ = idG/K.

See [27] for a proof. On each of the neighbourhoods W we have π ◦ σ = idG/K
which implies that

dπg ◦ dσgK = idTgKG/K

this shows that dπg : TgG → TgKG/K is surjective so π is a submersion. The
manifold G/K is said to be a homogeneous space.

Definition 2.17. Let G be a group, M be a set. Let oM be an element of M . Then
an action G×M →M is said to be transitive if M = {g · oM |g ∈ G}. The set

K = { g ∈ G | g · oM = oM }

is called the isotropy subgroup of G at the origin oM .

Theorem 2.18. Let G be a Lie group and G×M →M be a transitive C∞-action
on a manifold M . If K is the isotropy subgroup at oM then the map β : G/K →M
defined by

β(gK) = g · oM

is a diffeomorphism.

Again see [27] for a proof.

Definition 2.19. Let G be a Lie group and K be a subgroup of G. Then for g ∈ G
we define the translation τg : G/K → G/K by

τg(hK) = (gh)K

for hK ∈ G/K.

The map τg is a diffeomorphism and if we denote left translation in G by Lg then
we have the following commutative diagrams

G

π
��

Lg
// G

π
��

G/K τg
// G/K

ThG

(dπ)h

��

(dLg)h
// TghG

(dπ)gh

��
ThK(G/K)

(dτg)hK

// TghK(G/K)

for all g, h ∈ G.

21



Definition 2.20. Let M = G/K be a homogeneous space and x = hK ∈ G/K.
Then

(i) a metric g on M is said to be G-invariant if

gτg(x)((dτg)xXx, (dτg)xYx) = gx(Xx, Yx)

and

(ii) an almost complex structure J on M is said to be G-invariant if

(Jτg(x) ◦ (dτg)x)(Xx) = ((dτg)x ◦ Jx)(Xx)

for all g ∈ G and all Xx, Yx ∈ TxM .

It should be noted that this implies that τg is an isometry for all g ∈ G. Further if
G/K is equipped with anG-invariant almost complex structure then the translations
τg are holomorphic for all g ∈ G.

For the homogeneous space M = G/K we have the natural projection π : G →
G/K with π(e) = K ∼= oM . Let exp(tX) be a one-parameter subgroup of G where
X ∈ g. Then

d

dt
(exp(tX))|t=0 = X

and dπe : g → ToM is given by

dπe(X) =
d

dt
(π(exp(tX)))|t=0 =

d

dt
(exp(tX)K)|t=0.

If X ∈ k then exp(tX) ∈ K so dπe(k) = 0. The map π is a submersion so the
quotient space g/k is isomorphic to the tangent space ToM at o.

Definition 2.21. Let G be a Lie group and Ig : G→ G be defined by

Ig(h) = ghg−1.

Then the map defined by

Ad(g) = (dIg)e : g → g

is called the adjoint representation of G.

There is another operator ad(X) : g → g defined by

ad(X) = (dAd)e(X).

It can be shown that ad(X)Y = [X, Y ].

Definition 2.22. Let G be a Lie group and K a closed subgroup. We say that the
homogeneous space G/K is reductive if there exist a subspace m of g such that
g = k ⊕ m and Ad(K)m ⊂ m. With respect to this decomposition we write X ∈ g

as

X = Xk +Xm,

where Xk ∈ k and Xm ∈ m.
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For a reductive homogeneous space we have that dπe|m is an isomorphism from
m to ToM . The condition Ad(K)m ⊂ m implies ad(k)m ⊂ m and if K is connected
they are equivalent.

It is easy to show, see [27], that if φ : G→ K is a Lie group homomorphism then
dφe is a Lie algebra homomorphism and

φ(exp(X)) = exp(dφe(X))

for X ∈ g.

Lemma 2.23. Let M = G/K be a reductive homogeneous space with Ad(K)-
invariant decomposition g = k ⊕ m. Then

dπe(Ad(k)X) = (dτk)o(dπe(X))

for all k ∈ K and all X ∈ m.

Proof. [1] The curve exp(tAd(k)X) is a one parameter subgroup of G with

Ad(k)X =
d

dt
(exp(tAd(k)X))|t=0

so

dπe(Ad(k)X) =
d

dt
(π(exp(tAd(k)X))) |t=0

=
d

dt
(π(exp((dIk)etX))) |t=0

=
d

dt
(π(Ik(exp(tX)))) |t=0

=
d

dt

(

k exp(tX)k−1K
)

|t=0

=
d

dt
(τk(exp(tX)K)) |t=0

=(dτk)o(dπe(X)).

Theorem 2.24. Let M = G/K be a reductive homogeneous space. Then there is a
natural bijection between the G-invariant metrics on G/K and the Ad(K)-invariant
scalar products on m i.e. those satisfying

〈Ad(k)X,Ad(k)Y 〉 = 〈X, Y 〉

for all k ∈ K and all X, Y ∈ m.

Proof. [28] Let T = dπe|m : m → ToM and 〈·, ·〉 be Ad(K)-invariant. If XgK , YgK ∈
TgKM then since τg is a diffeomorphism

XgK = (dτg)o(Xo) and YgK = (dτg)o(Yo)

for unique vectors Xo, Yo ∈ ToM . Define the metric g on M by

ggK((dτg)o(Xo), (dτg)o(Yo)) =
〈

T−1(Xo), T
−1(Yo)

〉

.

We show that this is well defined. Let h ∈ G be such that gK = hK then there
exist k ∈ K such that h = gk. So τh = τg ◦ τk and therefore

ghK((dτh)o(Xo), (dτh)o(Yo)) =ghK(((dτg)o ◦ (dτk)o)(Xo), ((dτg)o ◦ (dτk)o)(Xo))
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=
〈

T−1((dτk)o(Xo)), T
−1((dτk)o(Yo))

〉

=
〈

Ad(k)T−1(Xo),Ad(k)T−1(Yo)
〉

=
〈

T−1(Xo), T
−1(Yo)

〉

=ggK((dτg)o(Xo), (dτg)o(Yo)).

This shows that g is well defined and it follows by definition that g is G-invariant.
Suppose instead that we have a G-invariant metric g and put

〈X, Y 〉 = go(T (X), T (Y )).

Then

〈Ad(k)X,Ad(k)Y 〉 =go(T (Ad(k)X), T (Ad(k)Y ))

=go((dτk)o(T (X)), (dτk)o(T (Y )))

=go(T (X), T (Y ))

= 〈X, Y 〉 .

If the subgroup K of G is connected then the Ad(K)-invariance is equivalent to

〈ad(X)Y, Z〉 + 〈Y, ad(X)Z〉 = 0

for all X ∈ k and all Y, Z ∈ m.

Proposition 2.25. Let G/K be a homogeneous space where g admits an Ad(G)-
invariant scalar product 〈·, ·〉 i.e.

〈Ad(g)X,Ad(g)Y 〉 = 〈X, Y 〉

for all g ∈ G. Then G/K is reductive with respect to the decomposition g = k ⊕ m,
where

m = {X ∈ g| 〈X, Y 〉 = 0 for all Y ∈ k}

and the restriction 〈·, ·〉o = 〈·, ·〉 |m defines an Ad(K)-invariant scalar product on m.

Proof. [28] Let k ∈ K and X ∈ m. Then since Ad(k) is an automorphism of k we
have that for all Y ∈ k there exist a Z ∈ k such that Ad(k)Z = Y and

〈Ad(k)X, Y 〉 = 〈X,Z〉 = 0

so Ad(k)X ∈ m. The rest of the statement is obvious.

If we have a linear endomorphism L on m then

Ad(k) ◦ L = L ◦ Ad(k)

for all k ∈ K implies
ad(X) ◦ L = L ◦ ad(X)

for all X ∈ k. And if K is connected they are equivalent. We now state an important
result from [18] (p. 219).

Theorem 2.26. Let G be a Lie group, K be a closed Lie subgroup and M = G/K
be a reductive homogeneous space with decomposition g = k ⊕ m. Then
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(i) there is a natural bijection between the set of G-invariant almost complex struc-
ture on G/K and the set of linear endomorphisms J̃ on m satisfying

J̃2 = −I and J̃ ◦ Ad(k) = Ad(k) ◦ J̃

for every k ∈ K.

(ii) A G-invariant almost complex structure J is a complex structure if and only if
the corresponding linear endomorphism J̃ satisfies

[J̃X, J̃Y ]m − [X, Y ]m − J̃ [X, J̃Y ]m − J̃ [J̃X, Y ]m = 0

for all X, Y ∈ m.

Proof. We denote by T the isomorphism T = dπe|m : m → ToM .
(i) [28] Given an almost complex structure J on M we define J̃ on m by

J̃ = T−1 ◦ Jo ◦ T.

Then obviously J̃2 = −I and

Ad(k)J̃(X) =Ad(k)(T−1 ◦ Jo ◦ T )(X)

=(T−1 ◦ (dτk)o ◦ Jo ◦ T )(X)

=(T−1 ◦ Jo ◦ (dτk)o ◦ T )(X)

=(T−1 ◦ Jo ◦ T )(Ad(k)X)

=J̃(Ad(k)X).

So J̃ ◦ Ad(k) = Ad(k) ◦ J̃ for all k ∈ K.
On the other hand assume that J̃ on m satisfies Ad(k) ◦ J̃ = J̃ ◦ Ad(k) for all

k ∈ K. Let x = gK and define Jx on TxM by

Jx(Xx) =
(

(dτg)o ◦ T ◦ J̃ ◦ T−1
)

(Xo)

where Xx = (dτg)o(Xo). We show that this is well defined. Let h ∈ G be such
that gK = hK then h = gk for some k ∈ K. If Yo ∈ ToM is the vector such that
Xx = (dτh)o(Yo) then Xo = (dτk)o(Yo) so

(

(dτh)o ◦ T ◦ J̃ ◦ T−1
)

(Yo) =
(

(dτg)o ◦ (dτk)o ◦ T ◦ J̃ ◦ T−1
)

(Yo)

=
(

(dτg)o ◦ T ◦ J̃ ◦ T−1
)

((dτk)o(Yo))

=
(

(dτg)o ◦ T ◦ J̃ ◦ T−1
)

(Xo).

So Jx it is well defined and it is obvious that J2
x = −I and that J is G-invariant.

(ii) [18] Extend J̃ on m to g by

J̃(X) = J̃(Xm),

where X = Xk +Xm. Define the set B(G) by

B(G) = {X̂ ∈ C∞(TG) | dπx(X̂x) = Xπ(x) for some X ∈ C∞(TM)}.
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Then B(G) is a Lie subalgebra of C∞(TG) and dπ : B(G) → C∞(TM) is a surjec-

tive Lie algebra homomorphism. Let Û ∈ C∞(TG) and define the tensor field Ĵ on
TG by

Ĵg(Ûg) = ((dLg)e ◦ J̃ ◦ (dLg)
−1
e )(Ûg).

There is no ambiguity in the definition and it is obvious that Ĵ is left-invariant i.e.

dLg ◦ Ĵ = Ĵ ◦ dLg

for all g ∈ G.
We show that if X̂ ∈ B(G) then Ĵ(X̂) ∈ B(G). Since Ĵ is a tensor field it

is enough to show that J(dπg(X̂g)) = dπg(Ĵg(X̂g)) for X̂g ∈ TgG. So let Ŷe =

(dLg)
−1
e (X̂g) then

dπg(Ĵg(X̂g)) =(dπg ◦ (dLg)e)(J̃(Ŷe))

=((dτg)o ◦ dπe)(J̃(Ŷe))

=((dτg)o ◦ J)(dπe(Ŷe))

=(J ◦ (dτg)e)(dπe(Ŷe))

=J((dπg ◦ (dLg)e)(Ŷe))

=J(dπg(X̂g)).

Define a tensor field S on C∞(TG) by

S(Û , V̂ ) = [Ĵ(Û), Ĵ(V̂ )] + Ĵ2([Û , V̂ ]) − Ĵ([Û , Ĵ(V̂ )]) − Ĵ([Ĵ(Û), V̂ ]).

If X̂, Ŷ ∈ B(G) then S(X̂, Ŷ ) ∈ B(G) and

dπ(S(X̂, Ŷ )) =
1

2
N(dπ(X̂), dπ(Ŷ )),

where N is the Nijenhuis tensor on G/K. Because dπ : B(G) → C∞(TM) is
surjective we have that N = 0 if and only if

S(X̂, Ŷ )g ∈ ker(dπg)

for all g ∈ G. But S is left-invariant so this is equivalent to

S(X, Y ) ∈ k

for all X, Y ∈ g. By the Ad(K) invariance of J̃ and the remarks prior to the theorem
we have ad(Y ) ◦ J̃ = J̃ ◦ ad(Y ) for Y ∈ k i.e.

[J̃X, Y ] = J̃ [X, Y ]

where X ∈ m and Y ∈ k. If we decompose X ∈ g as Xk +Xm and use the relations

[k, k] ⊂ k and J̃ [Xm, Yk]m = [J̃Xm, Yk]m

we get

S(X, Y ) =[J̃(Xm), J̃(Ym)]k + [J̃(Xm), J̃(Ym)]m

+ J̃2([Xk +Xm, Yk + Ym]m) − J̃([Xk +Xm, J̃(Ym)]m)

26



− J̃([J̃(Xm), Yk + Ym]m)

=[J̃(Xm), J̃(Ym)]k + [J̃(Xm), J̃(Ym)]m

− [Xk +Xm, Yk + Ym]m − J̃([Xk +Xm, J̃(Ym)]m)

− J̃([J̃(Xm), Yk + Ym]m)

=[J̃Xm, J̃Ym]k + [J̃Xm, J̃Ym]m

− [Xk, Ym]m − [Xm, Yk]m − [Xm, Ym]m

− J̃ [Xk, J̃Ym]m − J̃ [Xm, J̃Ym]m

− J̃ [J̃Xm, Yk]m − J̃ [J̃Xm, Ym]m

=[J̃Xm, J̃Ym]k + [J̃Xm, J̃Ym]m

− [Xk, Ym]m − [Xm, Yk]m − [Xm, Ym]m

− [Xk, J̃
2Ym]m − J̃ [Xm, J̃Ym]m

− [J̃2Xm, Yk]m − J̃ [J̃Xm, Ym]m

=[J̃Xm, J̃Ym]k + [J̃Xm, J̃Ym]m

− [Xk, Ym]m − [Xm, Yk]m − [Xm, Ym]m

+ [Xk, Ym]m − J̃ [Xm, J̃Ym]m

+ [Xm, Yk]m − J̃ [J̃Xm, Ym]m

=[J̃Xm, J̃Ym]k + [J̃Xm, J̃Ym]m − [Xm, Ym]m

− J̃ [Xm, J̃Ym]m − J̃ [J̃Xm, Ym]m.

So we see that S(X, Y ) ∈ k if and only if

[J̃Xm, J̃Ym]m − [Xm, Ym]m − J̃ [Xm, J̃Ym]m − J̃ [J̃Xm, Ym]m = 0

for all Xm, Ym ∈ m.

2.3 The isotropic m-space Im

This section is devoted to the construction of the Kähler manifold Im. Im together
with a Riemannian submersion will act as a twistor space over the 2m-dimensional
sphere S2m in Chapter 3. A twistor space for a Riemannian manifold (N, h) is an
almost complex manifold (Z, J, g) together with submersion π : Z → N such that if
M is a cosympletic (see [2]) manifold and ψ : M → Z is holomorphic then φ = π ◦ψ
is harmonic. The sources for this section are [19] and [26].

We extend the standard Euclidean scalar product 〈·, ·〉
R

on R2m+1 to a complex
bilinear one (·, ·) on C2m+1.

Definition 2.27. A subspace V of C2m+1 is said to be isotropic if (v, w) = 0 for all
v, w ∈ V . The subset Im of the complex Grassmannian Gm(C2m+1) consisting of all
m-dimensional isotropic subspaces of C2m+1 is called the isotropic m-space. We
define the manifold structure on Im to be the one of a submanifold of Gm(C2m+1).

Note that the standard Hermitian scalar product 〈u, v〉
C

on Cn satisfies

〈u, v〉
C

= (u, v̄).
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Lemma 2.28. If V ∈ Im then there exists a unit vector Z ∈ R2m+1 such that
C2m+1 = V ⊕ V̄ ⊕ spanC{Z} is an orthogonal decomposition of C2m+1 with respect
to 〈·, ·〉

C
.

Proof. [26] For an element V ∈ Im we can choose an orthonormal basis {Zk}
m
k=1 for

V with respect to 〈·, ·〉
C
. If W ∈ V̄ and W =

∑m
j=1 ajZj, then

〈

Zk,W
〉

C
=

m
∑

j=1

aj(Zk, Zj) = 0

for all k = 1, . . . , m so V and V̄ are orthogonal. Now decompose the basis as
Zk = Xk + iYk with Xk, Yk ∈ R2m+1, then

0 =(Zk, Zj)

=(〈Xk, Xj〉R
− 〈Yk, Yj〉R

)

+ i(〈Xk, Yj〉R
+ 〈Yk, Xj〉R

)

δkj = 〈Zk, Zj〉C

=(Zk, Zj)

=(〈Xk, Xj〉R
+ 〈Yk, Yj〉R

)

+ i(−〈Xk, Yj〉R
+ 〈Yk, Xj〉R

)

adding and subtracting the two equalities we obtain

δkj =
1

2
〈Xk, Xj〉R

=
1

2
〈Yk, Yj〉R

0 = 〈Xk, Yj〉R
.

Thus X1, . . . , Xm, Y1, . . . , Ym are 2m orthogonal vectors in R2m+1 so there exists a
Z ∈ R2m+1 such that Z is orthogonal to all Xk and all Yk. Thus

0 = 〈Zk, Z〉C
=
〈

Zk, Z
〉

C

and V ⊕ V̄ ⊕ CZ is a orthogonal decomposition of C2m+1.

We define the origin in Im to be the element o given by

o = spanC{ej + iej+m}
m
j=1,

where {ej}
2m+1
i=1 is the standard basis for R2m+1.

Lemma 2.29. There exists a natural transitive C∞-action of SO(2m + 1) on Im
with isotropy subgroup U(m). So Im is diffeomorphic to the homogeneous space
SO(2m+ 1)/U(m).

Proof. [26] For an element V ∈ Im let {X1, . . . , Xm, Y1, . . . , Ym, Z} be a positively
oriented basis for R2m+1 such that

V = spanC{Xi + iYi}
m
j=1.

Then
h = [X1, . . . , Xm, Y1, . . . , Ym, Z] ∈ SO(2m+ 1)
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and
gh = [gX1, . . . , gXm, gY1, . . . , gYm, gZ] ∈ SO(2m+ 1)

for g ∈ SO(2m+ 1). We define an action of SO(2m+ 1) on Im by

g · V = spanC{gXj + igYj}
m
j=1.

Now we show that the action is transitive. Let V ∈ Im and g ∈ SO(2m+ 1) be
such that

[X1, . . . , Xm, Y1, . . . , Ym, Z] = g[e1, . . . , e2m+1]

then
V = spanC{Xj + iYj}

m
j=1 = spanC{gej + igem+j}

m
j=1 = g · o

so the action is transitive.
Finally we determine the isotropy subgroup of the action. Let g ∈ SO(2m+ 1)

be such that g · o = o, then

spanC{gej + igem+j}
m
j=1 = spanC{ej + iem+j}

m
j=1

and ge2m+1 = e2m+1. Form this we get that

gej + igej+m =

m
∑

k=1

((akj + ibkj)(ek + iek+m))

ge2m+1 =e2m+1

with akj, bkj ∈ R. Hence

2 = |gej + igej+m|
2 =2(

m
∑

k=1

(a2
kj + b2kj))

gej =
m
∑

k=1

(akjek − bkjek+m)

gej+m =

m
∑

k=1

(bkjek + akjek+m)

ge2m+1 =e2m+1.

This shows that g must be of the form

g =





a b 0
−b a 0
0t 0t 1



 .

By the inclusion U(m) ⊂ SO(2m+ 1) given by

a+ ib 7→





a b 0
−b a 0
0t 0t 1





we have g ∈ U(m).

Lemma 2.30. The homogeneous space Im ∼= SO(2m+1)/U(m) has an SO(2m+1)-
invariant metric g′.
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Proof. We define a scalar product 〈·, ·〉 on the Lie algebra so(2m+ 1) by

〈X, Y 〉 = trace(X tY ).

This scalar product is Ad(SO(2m+ 1))-invariant. So following Proposition 2.25 it
induces an SO(2m+ 1)-invariant metric on Im.

The Lie algebra so(2m+1) has a reductive decomposition so(2m+1) = u(m)⊕m.
Since m is isomorphic to so(2m+1)/u(m) they have the same dimension so we need

to find a subspace of so(2m+ 1) of dimension (2m+1)2m
2

−m2 = m(m+ 1) such that

〈X, Y 〉 = 0

for all X ∈ m and Y ∈ u(m). We can embed the Lie algebra u(m) for U(m) into
so(2m+ 1) by

u(m) =











A B 0
−B A 0
0t 0t 0



 |A,B ∈ R
m×m and At = −A,Bt = B







.

We see that m is given by

m =











X Y U
Y −X V

−U t −V t 0



 |X, Y ∈ R
m×m, U, V ∈ R

m and X t = −X, Y t = −Y







.

The decomposition so(2m+ 1) = u(m) ⊕ m can be made explicitly by




X1 Y1 U
−Y t

1 X2 V
−U t −V t 0



 =
1

2





X1 +X2 Y t
1 + Y1 0

−Y t
1 − Y1 X1 +X2 0
0 0 0





+
1

2





X1 −X2 Y1 − Y t
1 2U

Y1 − Y t
1 X2 −X1 2V

−2U t −2V t 0



 ,

where X1, X2, Y1 ∈ Rm×m with X t
1 = −X1, X

t
2 = −X2 and U, V ∈ Rm.

The sphere S2m in R2m+1 is diffeomorphic to SO(2m+ 1)/SO(2m). If the origin
in S2m is given by e2m+1 then so(2m+ 1) = so(2m) ⊕ p where

p =











0 0 U
0 0 V

−U t −V t 0



 |U, V ∈ R
m







.

The scalar product on p is
〈X, Y 〉 = trace(X tY )

which gives a SO(2m+ 1)-invariant metric on S2m. This metric coincides with the
ordinary metric on S2m.

Lemma 2.31. The natural projection

π : (Im, g
′) → (S2m, gS2m)

given by

Im ∋ g · o ∼= gU(m) 7→ gSO(2m) ∼= g · e2m+1 ∈ S2m,

is a Riemannian submersion.
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Proof. First of all we notice that π(o) = e2m+1 and dπo is given by

dπo





X Y U
Y −X V

−U t −V t 0



 =





0 0 U
0 0 V

−U t −V t 0





so we see that π is surjective at o. If we denote the translation by g ∈ SO(2m+ 1)
in S2m by θg we have

π(τg(o)) = θg(π(o))

from which we obtain at x = gU(m)

(dπ)x = (dθg)π(o) ◦ dπo ◦ ((dτg)o)
−1

so since both τg and θg are diffeomorphisms and (dπ)o is onto dπ is surjective ev-
erywhere and π is a submersion.

It is obvious that dπo is an isometric isomorphism from the horizontal space to
Tπ(o)S

2m. Since the metrics on Im and S2m are SO(2m+1)-invariant it follows that
π is a Riemannian submersion.

Since Im ⊂ Gk(C
2m+1) and the tangent space at V ∈ Gk(C

2m+1) is given by

HomC(V, V ⊥)

the horizontal space at V ∈ Im must be a subset of this. The elements of o =
spanC{ej + iej+m}

m
j=1 are all of the form

v =





A+ iB
−B + iA

0



 ∈ C
2m+1,

where A,B ∈ Rm.
The linear map L defined by

L : V ∋ v 7→





0 0 U
0 0 V

−U t −V t 0



 v ∈ C
2m+1

satisfies




0 0 U
0 0 V

−U t −V t 0









A+ iB
−B + iA

0





=





0
0

(−U tA+ V tB) + i(−U tB − V tA)



 ∈ spanC{e2m+1}

So L ∈ HomC(o, spanC{e2m+1}). Since the real dimension of HomC(o, spanC{e2m+1})
is 2m we have

HoIm = HomC(o, spanC{e2m+1}).

As Im is a homogeneous space and g′ is G-invariant Hg·oIm = HomC(g · o, spanC{g ·
e2m+1}.
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Lemma 2.32. There exists a complex structure on Im which turns it into a Her-
mitian manifold with metric g′.

Proof. Define an endomorphism J̃ : m → m by

J̃





X Y U
Y −X V

−U t −V t 0



 =





−Y X −V
X Y U
V t −U t 0





We shall show that this linear endomorphism satisfies the necessary requirements
of Theorem 2.26.

(i) The first condition translates into

J̃([W,Z]) − [W, J̃(Z)] = 0, for all W ∈ u(m) and Z ∈ m.

For W ∈ u(m) and Z ∈ m we have

W =





A B 0
−B A 0
0t 0t 0



 and Z =





X Y U
Y −X V

−U t −V t 0





with At = −A, Bt = B and X t = −X, Y t = −Y so

[W,Z] =





AX −XA +BY + Y B AY − Y A−BX −XB AU +BV
AY − Y A−BX −XB XA− AX −BY − Y B −BU + AV

U tA− V tB U tB + V tA 0



 .

Applying J̃ to this we get




Y A− AY +BX +XB AX −XA+BY + Y B BU − AV
AX −XA+BY + Y B AY − Y A− BX −XB AU +BV

−U tB − V tA U tA− V tB 0



 .

A similar calculation of [W, J̃(Z)] shows that this is equal to J̃([W,Z]). Hence there
is an almost complex structure on G/K corresponding to J̃ .

(ii) Let Z1, Z2 ∈ m with

Z1 =





X1 Y1 U1

Y1 −X1 V1

−U t
1 −V t

1 0



 and Z2 =





X2 Y2 U2

Y2 −X2 V2

−U t
2 −V t

2 0



 .

Then [J̃Z1, J̃Z2]m is given by

1

2





U1U
t
2 − U2U

t
1 U1V

t
2 − V2U

t
1 2(X1U2 −X2U1)

U1V
t
2 − V2U

t
1 U2U

t
1 − U1U

t
2 2(Y1U2 − Y2U1)

2(−U t
1X2 + U t

2X1) 2(−U t
1Y2 + U t

2Y1) 0





+
1

2





−V1V
t
2 + V2V

t
1 V1U

t
2 − U2V

t
1 2(Y1V2 − Y2V1)

V1U
t
2 − U2V

t
1 V1V

t
2 − V2V

t
1 2(X2V1 −X1V2)

2(−V t
1Y2 + V t

2Y1) 2(V t
1X2 − V t

2X1) 0



 ,

[Z1, Z2]m is given by

1

2





U2U
t
1 − U1U

t
2 U2V

t
1 − V1U

t
2 2(X1U2 −X2U1)

U2V
t
1 − V1U

t
2 U1U

t
2 − U2U

t
1 2(Y1U2 − Y2U1)

2(−U t
1X2 + U t

2X1) 2(−U t
1Y2 + U t

2Y1) 0




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+
1

2





V1V
t
2 − V2V

t
1 V2U

t
1 − U1V

t
2 2(Y1V2 − Y2V1)

V2U
t
1 − U1V

t
2 V2V

t
1 − V1V

t
2 2(X2V1 −X1V2)

2(−V t
1Y2 + V t

2Y1) 2(V t
1X2 − V t

2X1) 0



 ,

J̃ [Z1, J̃Z2]m is given by

1

2





U1U
t
2 − U2U

t
1 U1V

t
2 − V2U

t
1 2(Y1V2 + Y2V1)

U1V
t
2 − V2U

t
1 U2U

t
1 − U1U

t
2 2(Y1U2 + Y2U1)

2(U t
1X2 + U t

2X1) 2(U t
1Y2 + U t

2Y1) 0





+
1

2





V2V
t
1 − V1V

t
2 V1U

t
2 − U2V

t
1 2(X1U2 +X2U1)

V1U
t
2 − U2V

t
1 V1V

t
2 − V2V

t
1 2(−X1V2 −X2V1)

2(V t
1Y2 + V t

2Y1) 2(−V t
1X2 − V t

2X1) 0



 ,

and finally J̃ [J̃Z1, Z2]m is given by

1

2





U1U
t
2 − U2U

t
1 U1V

t
2 − V2U

t
1 2(−Y1V2 − Y2V1)

U1V
t
2 − V2U

t
1 U2U

t
1 − U1U

t
2 2(X1V1 +X2V1)

2(−U t
1X2 − U t

2X1) 2(V t
1X2 + V t

2X1) 0





+
1

2





V2V
t
1 − V1V

t
2 V1U

t
2 − U2V

t
1 2(−X1U2 −X2U1)

V1U
t
2 − U2V

t
1 V1V

t
2 − V2V

t
1 2(−Y1U2 − Y2U1)

2(−V t
1Y2 − V t

2Y1) 2(−U t
1Y2 − U t

2Y1) 0



 .

We see that [J̃Z1, J̃Z2]m−[Z1, Z2]m−J̃ [Z1, J̃Z2]m−J̃ [J̃Z1, Z2]m = 0 for all Z1, Z2 ∈ m

so the almost complex structure J corresponding to J̃ is a complex structure on Im.
Finally we show that g′ is compatible with J . Since g′ is SO(2m+ 1)-invariant

it is enough to show that it is compatible at o ∈ M . Let Z1, Z2 ∈ m be as in (ii).
Then using Zt

1 = −Z1 we have

〈Z1, Z2〉 = − trace(Z1Z2)

=trace(X1X2 + Y1Y2 − U1U
t
2)

+ trace(Y1Y2 +X1X2 − V1V
t
2 )

+ trace(−U t
1U2 − V t

1V2)

and
〈

J̃Z1, J̃Z2

〉

= − trace(J̃Z1J̃Z2)

=trace(Y1Y2 +X1X2 − V1V
t
2 )

+ trace(X1X2 + Y1Y2 − U1U
t
2)

+ trace(−V t
1V2 − U t

1U2)

so 〈Z1, Z2〉 =
〈

J̃Z1, J̃Z2

〉

and g′ is compatible.

We also have the following proposition ([26] p. 205).

Proposition 2.33. (Im, g
′) is a Kähler manifold.

And by restricting the Plücker embedding pl : Gm(C2m+1) → CP
N−1 where

N =
(

2m+1
m

)

to Im we get an holomorphic embedding of Im in CP
N−1.
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2.4 Riemann surfaces

In Chapter 3 the sphere S2 will be important. S2 can aside form being a Riemannian
manifold also be seen as a Riemann surface. A Riemann surface is a complex
manifold and it will therefore be possible to define holomorphic maps on them. The
references for this section are [2], [16], [17] and [28].

Definition 2.34. Let (M, g) be a 2-dimensional Riemannian manifold. Then a
chart (x, y) : U → R2 is said to be isothermal if

g(
∂

∂x
,
∂

∂y
) = 0 and g(

∂

∂x
,
∂

∂x
) = g(

∂

∂y
,
∂

∂y
).

Theorem 2.35. Any 2-dimensional Riemannian manifold has an atlas of isothermal
charts.

For a proof of this theorem see [24].

Proposition 2.36. Let (M, g) be a 2-dimensional Riemannian manifold. If (x, y)
is a isothermal chart then

∇M
XX + ∇M

Y Y = 0,

where X = ∂
∂x

and Y = ∂
∂y

.

Proof. From the definition of the Christoffel symbol, we have

∇M
XX + ∇M

Y Y =(Γ1
11X + Γ2

11Y ) + (Γ1
22X + Γ2

22Y )

=(Γ1
11 + Γ1

22)X + (Γ2
11 + Γ2

22)Y.

We calculate the Christoffel symbols using g11 = g22 and g12 = g21 = 0 and get

Γ1
11 =

1

2
g11

(

∂g11

∂x
+
∂g11

∂x
−
∂g11

∂x

)

=
g11

2

∂g11

∂x

and

Γ1
22 =

1

2
g11

(

∂g12

∂y
+
∂g12

∂y
−
∂g22

∂x

)

= −
g11

2

∂g11

∂x
= −Γ1

11.

In the same way Γ2
11 = −Γ2

22.

A 1-dimensional complex manifold is said to be a Riemann surface. Let (U, z =
x+iy) be a chart on a Riemann surface Σ with compatible metric g. The for X = ∂

∂x

and Y = ∂
∂y

we have JX = Y and JY = −X. Thus we obtain

g(X,X) = g(JX, JX) = g(Y, Y )

and

g(X, Y ) = g(X, JX) = g(JX,−X) = −g(Y,X)

so the chart is isothermal. Since the real dimension of a Riemann surface is 2 any
alternating 2-form must be closed. Therefore any compatible metric on a Riemann
surface is a Kähler metric.
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Definition 2.37. Let Σ be a Riemann surface and z : U → C be a local chart.
Then for a holomorphic function f : U → C

fdzk

is said to be a holomorphic k-differential. The dzk means that if w is another
chart then

(
dz

dw
)kf(z(w))dwk = f(z)dzk.

We denote the set of all holomorphic k-differentials on Σ by H(Σ,Ωk).

The next lemma shows that the topology of a Riemann surface of genus zero
imposes severe restrictions on the holomorphic k-differentials. It is known that
there exist only Riemann surface of genus zero up to a conformal diffeomorphism.
That is the complex projective line CP

1 which is equivalent to the sphere S2 and to
the Riemann sphere Ĉ = C ∪ {∞}.

Proposition 2.38. Let CP
1 be a Riemann surface of genus zero. Then all holo-

morphic k-differentials, k ≥ 1, are zero.

Proof. [16] Let fdzk ∈ H(CP
1,Ωk) and w : Ĉ\{0} → C be the chart z 7→ w = 1

z
on

the Riemann sphere. Then

f(z)dzk = f(z(w))

(

dz

dw

)k

dwk = f(z(w))
1

w2k
dwk

now Liouville’s theorem tells us that fdzk = 0.

Proposition 2.39. Let Σ be a compact Riemann surface and F : Σ → Cn+1\{0} be
a meromorphic map with poles at R. Then f = πP ◦F : Σ\R → CP

n is holomorphic

and there exist a unique holomorphic map f̂ : Σ → CP
n such that f̂ |Σ\R = f .

Proof. [28] Let p ∈ R and (U, z) be chart around p with z(p) = 0. Since F is
meromorphic there exist a k ∈ N such that z(x)kF (x) is nonzero and holomorphic
in U . Further

πP(F (x)) = πP(z(x)
kF (x))

for all x ∈ U\p. Applying the same process to all poles we get the extension to all
of Σ.
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Chapter 3

Calabi’s classification

This chapter is devoted to the proof of Calabi’s classification theorem. Calabi’s
theorem is a partial converse to Theorem 3.1. Calabi’s theorem will be proved in a
series of lemmas. But prior to the proof we will need the notion of a map being full.
The presentation of the proof will follow [19] closely.

Theorem 3.1. Let Σ be a compact Riemann surface. Then for any holomorphic
map ψ : Σ → Im which is horizontal with respect to the submersion π : Im → S2m,
the map φ = π ◦ ψ is harmonic.

Proof. [19] By Theorem 2.11 the holomorphic map ψ is harmonic. Now since ψ is
horizontal with respect to π Theorem 1.25 implies that φ is harmonic.

Definition 3.2. A C∞-map f : M → (N, h) is said to be locally full if there
exists no non-empty open subset U of M such that the image f(U) is contained in
a complete totally geodesic submanifold of N of lower dimension.

Definition 3.3. A C∞-map f : M → (N, h) is said to be full if the image φ(M) is
not contained in a complete totally geodesic submanifold of N of lower dimension.

It is obvious that locally full is a stronger condition than full. In [15] full maps
are instead said to be nondegenerate. To give the reader an understanding of the
notion we state the following proposition. It uses the fact that the complete totally
geodesic submanifolds of Rn are the affine subspaces.

Proposition 3.4. Let γ : (−ǫ, ǫ) → Rn be a locally full C∞-curve then the vectors

dγ

dt
(t), . . . ,

dnγ

dtn
(t)

are linearly dependent except for isolated points of (−ǫ, ǫ).

Proof. Suppose to the contrary that there exists a set S with a limit point where
the vectors are linearly dependent. Since the derivatives vary continuously and the
domain is in R the set S must contain an open set U . Let U ⊂ (−ǫ, ǫ) be such

an open set. Let k be the largest integer in {1, . . . , n} such that dkγ
dtk

is a linear
combination of the other derivatives in U . Then

dkγ

dtn
(t) =

k−1
∑

i=1

a(t)
diγ

dti
(t)
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for all t ∈ U . This is a linear ODE and it has a unique solution given initial
conditions

γ(t0) and
diγ

dti
(t0) = bi

where bi ∈ Rn for i = 1, . . . , k − 1. The vectors bi for i = 1, . . . , k − 1 span an
affine subspace V of Rn of at most dimension k− 1 containing γ(t0). Hence γ(U) is
contained in V so γ i not locally full.

Proposition 3.5. Let φ : (M, g) → (N, h) be a harmonic map. Then φ is full if
and only if it is locally full.

Proof. If φ is locally full then obviously it is also full.
To prove the converse suppose that φ is full but not locally full. Since φ is not

locally full there exist an open subset U of M such that φ(U) is contained in a
complete totally geodesic submanifold V . By Theorem 1.16 we have φ(M) ⊂ V
which is a contradiction since φ is full.

In a local chart (U, z = x+ iy) of CP
1 we define the operators

D =
∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
) and D̄ =

∂

∂z̄
=

1

2
(
∂

∂x
+ i

∂

∂y
)

which satisfy DD̄ = D̄D and Dφ = D̄φ if φ maps to Rn+1. We will consider
φ : CP

1 → Sn ⊂ Rn+2 as a map to both Sn and Rn+1 and will use the same symbol
in either case.

It is well known that the complete totally geodesic submanifolds of Sn are the
intersections of Sn with a linear subspace of Rn+1 i.e. the spheres of lower dimension.

Lemma 3.6. Let φ : CP
1 → Sn ⊂ Rn+1 be a full harmonic map. Then

spanC{φ, D̄
kDlφ}1≤k+l, 0≤k,l = C

n+1

in at least one point.

Proof. [12] Suppose to the contrary that there exist no such point. Then for all
z ∈ CP

1

spanC{φ, D̄
kDlφ(z)}1≤k+l, 0≤k,l = Vz

which is a proper subspace of Cn+1. Since both CP
1 and Sn are real analytic φ is real

analytic by Theorem 1.15. So for all points p ∈ CP
1 there exist a neighbourhood U

of p such that for all z ∈ U we have a convergent series

φ(z) =

∞
∑

i=0

∞
∑

j=0

Ai,j(z − p)i(z̄ − p̄)j ,

where Ai,j are constants. Taking derivatives we see that

Ai,j =
DiD̄jφ(p)

i!j!

thus Ai,j and DiD̄jφ(p) for 0 ≤ i, j have the same span Vp. But since Ai,j are
constants we have φ(U) ⊂ V . So φ can not be full since it is not locally full.
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It is well known that the dimension of

spanC{φ, D̄
kDlφ}1≤k+l,0≤k,l

can be less that n+ 1 only at isolated points.
The next theorem is the main theorem of this thesis. It classifies all harmonic

maps from S2 to Sn. In order for us to be able to study one dimension at the time
we will assume that φ is full. The fact that φ is full is not very restrictive, since the
complete totally geodesic submanifolds of Sn are the spheres of lower dimension. If
we are given a harmonic map φ : S2 → Sn then there exist an m ≤ n such that
φ : S2 → Sm is full.

Theorem 3.7 (Calabi’s Theorem [6, 7]). Let φ : CP
1 → (Sn, gSn) be a full harmonic

map. Then

(i) n = 2m for some m ∈ Z+, and

(ii) there exists a holomorphic map ψ : CP
1 → (Im, g

′) which is horizontal with
respect to the natural projection π : (Im, g

′) → (S2m, gS2m) and the diagram

Im

π

��

CP
1

ψ
<<

x
x

x
x

x
x

x
x

φ
// S2m

commutes.

In local coordinates the condition τ(φ) = 0 is a semi-linear (second order) elliptic
partial differential equation. Calabi’s theorem tells us that for harmonic maps φ :
CP

1 → S2m the differential equation for φ can be transformed into a first order
complex equation for ψ : CP

1 → Im.
Of course the theorem would be pointless if there did not exist any such harmonic

maps. The following theorem together with the fact that Sn is its own universal
covering space if n > 1 proves that they exist.

Theorem 3.8 ([22] p. 1034). Let (N, h) be a Riemannian manifold and suppose that
the universal covering space of N is not contractible. Then there exists a non-trivial
harmonic map φ : S2 → (N, h).

The next theorem is the first in a series of lemmas that will be used to prove
Calabi’s Theorem.

Lemma 3.9. Let φ : CP
1 → Sn ⊂ Rn+1 be a full harmonic map. Then the following

conditions are satisfied

(i) (φ, φ) = 〈φ, φ〉
R

= 1,

(ii) DD̄φ = −(Dφ, D̄φ)φ

(iii) (Dφ,Dφ) = 0 and (Dφ, D̄φ) ≥ 0 where the zeros are isolated.

Proof. (i) The statement is obvious.
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(ii) For all complex charts (U, z) we write z = x+ iy. Then (x, y) is a isothermal
chart for CP

1. So {X = ∂
∂x
, Y = ∂

∂y
} is orthogonal basis for T(x,y)CP

1. The vectors

are mapped to

dφ(x,y)(X) =
∂φ

∂x
∈ R

n+1 and dφ(x,y)(Y ) =
∂φ

∂y
∈ R

n+1.

Since φ(CP
1) is contained in Sn they are orthogonal to φ(x, y). We have

∇φ
Xdφ(X) =∇Sn

dφ(X)dφ(X)

=∇Rn+1

dφ(X)dφ(X) −
〈

∇Rn+1

dφ(X)dφ(X), φ
〉

R

φ

=
∂2φ

∂x2
+ λxφ,

∇φ
Y dφ(Y ) =∇Sn

dφ(Y )dφ(Y )

=∇Rn+1

dφ(Y )dφ(Y ) −
〈

∇Rn+1

dφ(Y )dφ(Y ), φ
〉

R

φ

=
∂2φ

∂y2
+ λyφ.

This implies that

0 =τ(φ)

=

(

∂2φ

∂x2
+ λxφ− dφ(∇CP

1

X X)

)

+

(

∂2φ

∂y2
+ λyφ− dφ(∇CP

1

Y Y )

)

=

(

∂2φ

∂x2
+
∂2φ

∂y2
+ (λx + λy)φ

)

− dφ(∇CP
1

X X + ∇CP
1

Y Y )

=4DD̄φ+ 4λφ

where λ = 1
4
(λx + λy) is a real valued function. This must satisfy λ = (Dφ, D̄φ),

since

0 = DD̄(1)

= DD̄(φ, φ)

= 2(DD̄φ, φ) + 2(Dφ, D̄φ)

= −2λ(φ, φ) + 2(Dφ, D̄φ).

(iii)[19] We see from

D̄(Dφ,Dφ) =2(D̄Dφ,Dφ)

=2(−λφ,Dφ)

=0

that (Dφ,Dφ) is holomorphic. Further if w = w(z) is another chart then (Dwφ,Dwφ) =
(

dz
dw

)2
(Dzφ,Dzφ). Thus (Dφ,Dφ)dz2 ∈ H(CP

1,Ω2) so it must vanish.
Since

(Dφ, D̄φ) = 〈Dφ,Dφ〉
C

it is obviously non-negative. The zeros are isolated since it is real analytic and must
be nonzero at some point since φ is full.
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Lemma 3.10 ([7]). Let φ : CP
1 → Sn be a full harmonic map then

(Djφ,Dkφ) = 0

for all j + k ≥ 1 where j, k ≥ 0.

Proof. [19] Differentiating (φ, φ) = 1 yields (φ,Dφ) = 0 which corresponds to j+k =
1. In the same way from (ii) we have (Dφ,Dφ) = 0 now using

0 = D(φ,Dφ) = (Dφ,Dφ) + (φ,D2φ)

we get (φ,D2φ) = 0 proving the lemma for j + k = 2. But (Dφ,Dφ) = 0 implies
(Dφ,D2φ) = 0 so

0 = D(φ,D2φ) = (Dφ,D2φ) + (φ,D3φ)

gives us (φ,D3φ) = 0 and we have proved the lemma for j + k = 3 .
Suppose now that (Djφ,Dkφ) = 0 for 1 ≤ j + k ≤ 2p− 1 we show that it must

hold for 1 ≤ j + k ≤ 2p+ 1 and the lemma follows by induction. By changing local
coordinates z to w(z) we have

(Dp
wφ,D

p
wφ) =

(

dz

dw

)2p

(Dp
zφ,D

p
zφ).

We also have

D̄(Dpφ,Dpφ) =2(Dpφ, D̄Dpφ)

=2(Dpφ,Dp−1(DD̄φ))

=2(Dpφ,Dp−1(−λφ))

= − 2(Dpφ,

p−1
∑

l=0

((

p− 1

l

)

(Dlλ)(Dp−1−lφ)

)

)

= − 2

p−1
∑

l=0

((

p− 1

l

)

(Dlλ)(Dpφ,Dp−1−l)

)

=0.

This implies that ω2p = (Dpφ,Dpφ)dz2p ∈ H(CP
1,Ω2p). So according to Proposition

2.38 we have ω2p = 0. All in all we get

(Dpφ,Dpφ) = 0 and (Dp+1φ,Dpφ) = 0

which we use with

0 = D(Djφ,Dkφ) = (Dj+1φ,Dkφ) + (Djφ,Dk+1φ)

to obtain (Djφ,Dkφ) = 0 for 1 ≤ j + k ≤ 2p+ 1.

Lemma 3.11 ([6]). Let φ : CP
1 → Sn be a full harmonic map and (U, z) be any

local chart. Define the maps

Φp = D̄φ ∧ D̄2φ ∧ · · · ∧ D̄pφ : U →

p
∧

C
n+1.

Then the uniquely determined m ∈ N such that Φm 6= 0 and Φm+1 = 0 must satisfy
n = 2m.
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Proof. [6, 19] We define the map F = φ ∧ Φm ∧ Φm. It satisfies

|F| =det([〈Fi,Fj〉C
]2m+1
i,j=1 )

=det





〈φ, φ〉
C

0 0
0 [

〈

D̄iφ, D̄jφ
〉

C
]mi,j=1 0

0 0 [〈Diφ,Djφ〉
C
]mi,j=1





=det

(

[
〈

D̄iφ, D̄jφ
〉

C
]mi,j=1 0

0 [〈Diφ,Djφ〉
C
]mi,j=1

)

=|Φm|
2.

In Cn+1 the wedge product of n+2 vectors must be zero. And since there are points
such that |Φm| 6= 0, F which is the wedge product of 2m+ 1 vector is non-zero, we
must have 2m+ 1 < n+ 2, i.e 2m ≤ n.

Since Φm+1 = 0, Dm+1φ must be a linear combination of the lower derivatives,
i.e

Dm+1φ = b1Dφ+ · · ·+ bmD
mφ

where bi are smooth for i = 1, . . . , m. By applying D we see that Dnφ is a linear
combination of Dφ, . . . , Dmφ for all n. By conjugating we see that D̄nφ is a linear
combination of D̄φ, . . . , D̄mφ for all n. Now since DD̄φ = −λφ we have if, k ≤ l
that

D̄kDlφ =Dl−k(DD̄)kφ

=Dl−k((−λ)kφ)

=a0φ+ a1Dφ+ · · ·+ al−kD
l−kφ,

where aj are smooth for j = 1, . . . , (l−k). Conjugating we get a similar relation for
k ≥ l. Thus we obtain

spanC{φ,Dφ, . . . , D
mφ, D̄φ, . . . , D̄mφ} = spanC{φ, D̄

kDlφ}1≤k+l.

Since φ is full

spanC{φ, D̄
kDlφ}1≤k+l = C

n+1

in at least some point. So we must have 2m+1 ≥ n+1. The two inequalities imply
n = 2m.

Lemma 3.12 ([7]). Let φ : CP
1 → S2m be a full harmonic map and π : Im → S2m

be the natural Riemannian submersion. Then there exist a holomorphic map

ψ : CP
1 → P(

m
∧

C
2m+1)

such that ψ(CP
1) ⊂ Im, ψ is horizontal with respect to π and φ = π◦ψ : CP

1 → S2m.

Proof. [19] Let Φm and F be as in Lemma 3.11. Then

D̄Φm =D̄(D̄φ ∧ · · · ∧ D̄mφ)

=
(

D̄1+1φ ∧ D̄2φ ∧ D̄3φ ∧ · · · ∧ D̄mφ
)
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+

m−1
∑

j=2

(

D̄φ ∧ · · · ∧ D̄j+1φ ∧ · · · ∧ D̄mφ
)

+
(

D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄m+1φ
)

=D̄φ ∧ · · · ∧ D̄m−1φ ∧ (b1D̄φ+ · · · + bmD̄
mφ) = bmΦm

and

D̄F =D̄(φ ∧ D̄φ ∧ · · · ∧ D̄mφ ∧Dφ ∧ · · · ∧Dmφ)

=
(

D̄φ ∧ D̄φ ∧ D̄2φ ∧ · · · ∧ D̄mφ ∧Dφ ∧ · · · ∧Dmφ
)

+

m−1
∑

j=1

(

φ ∧ D̄φ ∧ · · · ∧ D̄j+1φ ∧ · · · ∧ D̄mφ ∧Dφ ∧ · · · ∧Dmφ
)

+
(

φ ∧ D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄m+1φ ∧Dφ ∧ · · · ∧Dmφ
)

+
(

φ ∧ D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄mφ ∧ D̄Dφ ∧ · · · ∧Dmφ
)

+
m−1
∑

j=2

(φ ∧ D̄φ ∧ · · · ∧ D̄mφ ∧Dφ ∧ · · · ∧ D̄Djφ ∧ · · · ∧Dmφ)

+
(

φ ∧ D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄mφ ∧Dφ ∧ · · · ∧ D̄Dmφ
)

=
(

φ ∧ D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄m+1φ ∧Dφ ∧ · · · ∧Dmφ
)

+
(

φ ∧ D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄mφ ∧ (−λφ) ∧ · · · ∧Dmφ
)

+
m−1
∑

j=2

(φ ∧ D̄φ ∧ · · · ∧ D̄mφ ∧Dφ ∧ · · · ∧Dj−1(−λφ) ∧ · · · ∧Dmφ)

+
(

φ ∧ D̄φ ∧ · · · ∧ D̄m−1φ ∧ D̄mφ ∧Dφ ∧ · · · ∧Dm−1(−λφ)
)

=bmF

where the bi are as in Lemma 3.11.
Denote by R the set of zeros for Φm

R = {x ∈ CP
1|Φm(x) = 0}.

Since
∧2m+1

C2m+1 is one dimensional F is in fact a function from CP
1 to C. Thus

in CP
1\R we can calculate

D̄(ΦmF
−1) = D̄(Φm)F−1 − ΦmF

−2D̄(F)

= bmΦmF
−1 − ΦmbmFF−2 = 0.

So Ψ = ΦmF
−1 is holomorphic in CP

1\R. The points in R are isolated so the
singularities of Ψ are poles so it is meromorphic. We define the map

ψ = πP ◦ Ψ : CP
1\R → P(

m
∧

C
2m+1).

The map is well defined since if (U, z) and (V, w) are charts then

D̄wφ ∧ · · · ∧ D̄m
w φ =

(

dz

dw

)m(m+1)/2

D̄zφ ∧ · · · ∧ D̄m
z φ.
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The vectors D̄φ, . . . , D̄mφ are orthogonal to φ,Dφ, . . . , Dmφ since
〈

Djφ, D̄kφ
〉

= (Djφ,Dkφ).

Thus Φm = D̄φ ∧ · · · ∧ D̄mφ is the Plücker coordinate of an isotropic m-plane in
C2m+1, so

ψ(CP
1\R) ⊂ Im.

By Proposition 2.39 there is a unique holomorphic extension of ψ to all of CP
1, we

denote this extension by ψ also. Since Im is compact and hence closed, we have
ψ(CP

1) ⊂ Im. Also since φ is orthogonal to all Djφ, D̄jφ for j = 1, . . . , m we have

π ◦ ψ = φ.

Finally we show that ψ is horizontal with respect to π. Let p ∈ CP
1. The map

ψ could also be given as

ψ(p) = spanC{D̄φ(p), . . . , D̄mφ(p)}.

Now the differential at p is a map

dψp : TpCP
1 → Tψ(p)Im ⊂ HomC(ψ(p), ψ(p)⊥).

We calculate dψp as

ψ(p) ∋ (c1D̄φ(p) + · · ·+ cmD̄
mφ(p)) 7→ D(c1D̄φ+ · · · + cmD̄

mφ)(p)

≡ −
(

c1λ+ · · · + cm(D̄m−1λ)
)

φ
(

mod ψ(p)
)

.

Thus dψp(D) is the linear homomorphism that maps the basis element D̄kφ(p) for
ψ(p) according to

dψp(D) : ψ(p) ∋ D̄kφ 7→ (D̄k−1λ)φ ∈ spanC{φ(p)}.

That is
dψp : TpCP

1 → HomC(ψ(p), spanC{φ(p)}) = Hψ(p)Im

so ψ is horizontal.

Proof of Calabi’s theorem. (i) This is a direct consequence of Lemma 3.11.
(ii) The statement follows from Lemma 3.12.

There exist a generalization of Calabi’s theorem that use the twistor construction
to deals with all harmonic maps φ : CP

1 → CP
n. Both Sn and CP

n are compact
symmetric spaces so it is natural to ask if it is possible to use the twistor con-
struction to classify all harmonic maps CP

1 → G/K where G/K is some compact
symmetric space. The answer is negative (see [5]), the twistor construction classifies
all harmonic maps only in the cases Sn and CP

n.
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[8] J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10, (1978), 1-68.

[9] J. Eells, L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conf. 50, AMS,
1983.

[10] J. Eells, L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20, (1988),
385-524.

[11] J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86,
(1964), 109-160.

[12] J. Eells, J.C. Wood, Harmonic Maps from Surfaces to Complex Projective Spaces, Adv. in
Math. 49, (1983), 217-263.

[13] K. Fritzsche, H. Grauert, From Holomorphic Functions to Complex Manifolds, Graduate
Texts in Mathematics 213, Springer-Verlag, 2002.

[14] F.B. Fuller, Harmonic mappings, Proc. Nat. Acad. Sci. U.S.A., 40, 987-991.

[15] P. Griffiths, J. Harris, Principles of algebraic geometry Reprint of the 1978 original, Wiley
Classics Library, John Wiley and Sons, 1994.

[16] J. Jost, Compact Riemann Surfaces. An introduction to contemporary mathematics Third
edition, Universitext, Springer-Verlag, 2006.

[17] J. Jost, Riemannian Geometry and Geometric Analysis Third edition, Universitext, Springer-
Verlag, 2002.

[18] S. Kobayashi, K. Nomitzu, Foundations of Differential Geometry vol. II, Interscience Tracts
in Pure and Applied Mathematics 15, Interscience Publishers John Wiley and Sons, 1969.

45



[19] H. Lawson, Surfaces minimales et la construction de Calabi-Penrose, Séminaire Bourbaki,
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