
Bishop-style constructive mathematics
in type theory — a tutorial

Erik Palmgren
Stockholm University

www.math.su.se

Constructive Mathematics: Foundations and Practice
Nǐs, June 24-28, 2013

1 / 98

Introduction

”Bishop-style constructive mathematics is mathematics based on
intuitionistic logic.” (D.S. Bridges, F. Richman and others)

”The difference, then, between constructive mathematics and
programming does not concern the primitive notions of the one or
the other, because they are essentially the same, but lies in the
programmer’s insistence that his programs be written in a formal
notation so that they can be read and executed by a machine,
whereas, in constructive mathematics as practised by Bishop
(1967), for example, the computational procedures (programs) are
normally left implicit in the proofs, so that considerable further
work is needed to bring them into a form which makes them fit for
mechanical execution.” (P. Martin-Löf, Constructive Mathematics
and Computer Programming1, 1979, pp. 156.)

1http://www.cs.tufts.edu/˜nr/cs257/archive/per-martin-lof/constructive-
math.pdf

2 / 98

Introduction - What is a set?

A naive notion of set (cf. Frege) is obtained by collecting all
objects or other sets, according to some selection criterion Q(x)

{x | Q(x)}

Frege’s “naive” set theory is inconsistent (Russell’s paradox).

The iterative notion of set (G. Cantor 1890, E. Zermelo 1930) is to
build up sets by stages in a cumulative hierarchy using transfinite
iterations of power sets. The power set is not well understood from
a constructive point of view.

Fortunately, it is possible to refine the iterative notion
constructively by using well-founded trees (Aczel 1978) and to
avoid power sets and ordinals.

3 / 98

Encoding of mathematical objects as iterative sets

All mathematical objects are built from the empty set (E. Zermelo
1930)

Natural numbers are for example usually encoded as

0 = ∅ 1 = 0 ∪ {0} = {∅} 2 = 1 ∪ {1} = {∅, {∅}} · · · .

Pairs of elements can be encoded as 〈a, b〉 = {{a}, {a, b}}.
Functions are certain sets of pairs objects ... etc.

Quotient structures are constructed by the method of equivalence
classes — only one notion of equality is necessary.

(J.Myhill and P.Aczel (1970s): constructive versions of ZF set
theory.)

4 / 98

What is a set? A more basic view

“A set is not an entity which has an ideal existence: a set exists
only when it has been defined. To define a set we prescribe, at
least implicitly, what we (the constructing intelligence) must do in
order to construct an element of the set, and what we must do to
show that two elements are equal” (Errett Bishop, Foundations of
Constructive Analysis, 1967.)

Martin-Löf’s constructive type theory conforms to this principle of
defining sets.

5 / 98

Abstraction levels

One may disregard the particular representations of set-theoretic
constructions, and describe their properties abstractly (in the spirit
of Bourbaki, or even category theory).

For instance, the cartesian product of two sets A and B may be
described as a set A× B together with two projection functions

π1 : A× B // A π2 : A× B // B,

such that for each a ∈ A and each b ∈ B there exists a unique
element c ∈ A× B with π1(c) = a and π2(c) = b. Thus πk picks
out the kth component of the abstract pair.

Reference to the particular encoding of pairs is avoided. This is a
good principle in mathematics as well as in program construction.

6 / 98

Bishop’s set theory

Errett Bishop introduced in his book Foundations of Constructive
Analysis from 1967 a set theory which is of a more type-theoretic
character as we shall see. Bishop-style constructive mathematics is
mathematics done in the way of this book. Some prominent works:

I D.S. Bridges (1979). Constructive Functional Analysis.
Pitman.

I E. Bishop and D.S. Bridges (1985). Constructive Analysis.
Springer-Verlag.

I D.S. Bridges and F. Richman (1987). Varieties of
Constructive Mathematics. London Mathematical Society
Lecture Notes, Vol. 97. Cambridge University Press.

I R. Mines, F. Richman and W. Ruitenburg (1988). A Course in
Constructive Algebra. Springer.

7 / 98

Plan of lectures

1. Introduction

2. Constructive interpretation of logic

3. Constructive type theory

4. Sets and equivalence relations

5. Choice sets and axiom of choice

6. Relations and subsets

7. Finite sets and relatives

8. Quotients

9. Universes and restricted power sets

10. Categories

11. Constructive set theory CZF as part of Bishop’s set theory

12. Relation to categorical logic

8 / 98

2. Constructive interpretation of logic

The logical rules that can be accompanied by mental constructions
constitute the so-called intuitionistic logic.

Here Heyting and Kolmogorov made crucial contributions towards
its formalisation. The Brouwer-Heyting-Kolmogorov (BHK)
interpretation of logic consists telling what constructions p
testifies, verifies or proves a certain proposition A.

p : A

It is not precisely said what these constructions are, but they are
general understood as being computable.

Kolmogorov calls A a problem and p a solution.

9 / 98

2.1 BHK-interpretation

We explain what it means that a construction p is a witness to the
truth of the proposition A by induction on the form of A. This will
be expressed more briefly as p is a witness to A, or that p testifies
A.

I ⊥ has no witnesses.

I p testifies s = t iff p = 0 and s and t are computed to the
same thing. (Here s and t are supposed to be natural
numbers, or some similar finitely given mathematical objects.)

I p testifies A ∧ B iff p is a pair 〈a, b〉 where a testifies A and b
testifies B.

I p testifies A // B iff p is a function which to each witness a
to A gives a witness p(a) to B.

10 / 98

I p testifies A ∨ B iff p has the form inl(a), in which case a
testifies A, or p has the form inr(b), in which case b testifies B

I p testifies (∀x ∈ S)A(x) iff p is a function which to each
element d ∈ S , provides a witness p(d) to A(d).

I p testifies (∃x ∈ S)A(x) iff p is a pair 〈d , q〉 consisting of
d ∈ S and a witness q to A(d).

11 / 98

A proposition A is valid under the BHK-interpretation, or is
constructively true, if there is a construction p such that p testifies
A.

Note that the use of the word “witness” extends its usage in
classical logic about existence statements. One may say that 2 is a
witness to (∃x) x2 = 4 being true.

NB The established standard terminology is rather to say that p is
a proof of A, and the construction p is called proof-object.
(However we want to avoid possible confusion with formal
derivations.)

12 / 98

Examples of BHK-interpretations

The lambda notation λx .a(x) is alternative notation for the
function x 7→ a(x).

Examples

1. p = λx .x is a witness to the truth of A // A. This is clear,
since p(a) = (λx .x)(a) = a and if a testifies A, then so does p(a).

2. A witness to A ∧ B // B ∧ A is given by the construction
f = λx .〈π2x , π1x〉. πk is the k-th projection.

3. Consider the proposition ⊥ // A. A witness to this is an
arbitrary function f such as f (x) = 42: Suppose that a is a witness
to ⊥. But according to the BHK-interpretation ⊥ has no witness,
so we have a contradiction. By the absurdity law, anything follows,
in particular that 42 is a witness to A.

13 / 98

Negation is defined as ¬A =def (A //⊥). To prove ¬A amounts
to proving that A leads to a contradiction.

Example

The contraposition law (A //B) // (¬B //¬A) is valid in under
the BHK-interpretation. Suppose that f testifies A //B. We wish
to find a witness to (¬B // ¬A), i.e. (B //⊥) // (A //⊥).
Suppose therefore that g testifies ¬B and a testifies A. Thereby
f (a) is a witness to B, and hence g(f (a)) is a witness to ⊥. The
construction λa.g(f (a)) thus testifies ¬A. Abstracting on g it is
clear that λg .λa.g(f (a)) testifies ¬B // ¬A. The construction

λf .λg .λa.g(f (a))

is finally the witness to the law of contraposition.

14 / 98

The Principle of Excluded Middle

The Principle of Excluded Middle (PEM)

A ∨ ¬A

is not obviously valid under the BHK-interpretation, since we
would need to find a method, which given the parameters in A,
decides whether A is valid or not. If we restrict the possible
constructions to computable functions, we may actually show that
PEM is not constructively true. It is known that there is a
primitive recursive function T such that T (e, x , t) = 1 in case t
describes a terminating computation (t is, so to say, the complete
“trace” of the computation) for the Turing machine e with input
x , and having the value T (e, x , t) = 0 otherwise. By a suitable
coding, the arguments to T may be regarded as natural numbers.

15 / 98

The halting problem for e and x may now be expressed by the
formula

H(e, x) =def (∃t ∈ N) T (e, x , t) = 1.

According to PEM

(∀e ∈ N)(∀x ∈ N) H(e, x) ∨ ¬H(e, x).

If this proposition were to have a computable witness, then we
could decide the halting problem, contrary to Turing’s well-known
result that this is algorithmically undecidable.
The principle of indirect proof, reductio ad absurdum (RAA)

¬¬A // A

can be shown to be equivalent to PEM within intuitionistic logic,
so it is not valid under the BHK-interpretation either.

16 / 98

2.2 Intuitionistic logic
Intuitionistic logic is best described by considering the derivation
rules for natural deduction and then remove the RAA rule
(principle of indirect proof):

Derivation rules:

A B

A ∧ B
(∧I)

A ∧ B

A
(∧E 1)

A ∧ B

B
(∧E 2)

A
h

...
B

A // B
(// I , h)

A // B A

B
(// E)

17 / 98

A

A ∨ B
(∨I 1)

B

A ∨ B
(∨I 2)

A
h1 B

h2

...
...

A ∨ B C C

C
(∨E , h1, h2)

⊥
A

(⊥E)

¬A
h

...
⊥
A (RAA, h)

18 / 98

A

(∀x)A
(∀I)

(∀x)A

A[t/x]
(∀E)

A[t/x]

(∃x)A
(∃I)

A
h

...
(∃x)A C

C
(∃E , h)

The rules for the quantifiers have familiar restrictions.

19 / 98

We can verify the validity of rules under BHK:

a : A b : B

〈a, b〉 : A ∧ B
(∧I)

c : A ∧ B

π1c : A
(∧E 1)

c : A ∧ B

π2c : B
(∧E 2)

x : A
h

...
b : B

λx .b : A // B
(// I , h)

c : A // B a : A

c(a) : B
(// E)

20 / 98

a : A[t/x]

〈t, a〉 : (∃x) A
(∃I)

y : A
h

...
c : (∃x)A d : C

d [π1c, π2c/x , y] : C
(∃E , h)

a : A

λx .a : (∀x) A
(∀I)

c : (∀x) A

c(t) : A[t/x]
(∀E)

We have

Theorem The rules for intuitionistic logic are valid under the
BHK-interpretation.

21 / 98

3. Constructive type theory

22 / 98

3.1 Curry-Howard correspondence

It was realized by H.B. Curry that there is a close correspondence
between

(1) The implicational fragment of intuitionistic propositional logic.

(2) Simply typed combinatory logic.

(2’) Simply typed λ-calculus.

23 / 98

The implicational fragment (1) is given by modus ponens rule and
the axiom schemes

A⇒ B ⇒ A,
(A⇒ B ⇒ C)⇒ (A⇒ B)⇒ A⇒ C .

(2) The types of the combinators K and S are

K : A→ B → A,
S : (A→ B → C)→ (A→ B)→ A→ C .

24 / 98

The modus ponens rule

A⇒ B A

B

coresponds to the type rule of application in combinatory logic: if
M : A // B and N : A then MN : B.

Indeed λ-expressions for the combinators

K = λx .λy .x
S = λx .λy .λz .x(z)(y(z))
are literally witnesses for the BHK-truth of, respectively,
A⇒ B ⇒ A and
(A⇒ B ⇒ C)⇒ (A⇒ B)⇒ A⇒ C .
[Check!]

25 / 98

There is a deeper connection:
Gentzen-Prawitz simplification rules in Natural Deduction

[A]
....
B

A⇒ B

....
A

B simplifies to

....
A....
B

β-rule of λ-calculus: (λx .b)(a) = b[a/x]

[x : A]
....

b : B
λx .b : A⇒ B

....
a : A

(λx .b)(a) : B simplifies to

....
a : A....

b[a/x] : B

26 / 98

3.2 Propositions as Types

W. Howard (1969) extended the correspondence to full first order
intuitionistic logic.
Thus the Curry-Howard correspondence or Curry-Howard
isomorphism.

It is based on the very general

Propositions-as-types principle:

A proposition is the type of its proofs (witnesses)

27 / 98

To achieve propositions-as-types we must introduce types
corresponding to propositions A(x) depending on a parameter x
which may range over some set (or type) S .

Thus we need dependent types.

Tx (x : S)

which we provisionally think of as families of sets.

(A fully formal treatment of dependent types is fairly complicated.)

28 / 98

The BHK-witnesses to (∀x : S)A(x) are constructions p so that
p(s) is a witness to A(s) for all s : S .

The corresponding type is the dependent product or Π-type

Πx∈STx = {p : S // ∪x∈S Tx | for all x : p(x) ∈ Tx}.

The BHK-witnesses to (∃x : S)A(x) are constructions 〈d , q〉 so
that q is a witness to A(d).

The corresponding type is the disjoint union or Σ-type

Σx∈STx = {(x , q) | x ∈ S , q ∈ Tx}

(Common notation: (Πx : S)Tx respectively (Σx : S)Tx .)

29 / 98

3.3. Martin-Löf Type Theory

Constructive Type Theory or Martin-Löf Type Theory (MLTT) is a
formal system intended for the foundations of constructive
mathematics.

It uses systematically the Propositions-as-types principle: there is
no difference between propositions and types.

It exists in many variants, some of them have successfully been
implemented on computers (c.f. Alf, Agda, Coq, Epigram) to
exploit the possibility to execute proofs as programs.

30 / 98

There is a well-developed meaning theory for MLTT (see
Martin-Löf 1984, 1985, 1996) based on proof-theoretical semantics,
which makes it possible to see the correctness and computational
content in the rules and to further extend the theory.

A general principle (Martin-Löf 1984) is that to define a type A,
one must say

I what it means to be a canonical element of the type

I when two canonical elements are equal.

Example

Type of natural numbers: canonical elements

0 : N
b : N

s(b) : N
0 = 0 : N

b = c : N
s(b) = s(c) : N

31 / 98

• Two types A and B are equal (A = B) iff they have the same
canonical elements and the same equalities holds between
canonical elements.

• Meaning of b : A (b is an element of A):

An b element of type A is a method (or program) which when
executed gives a canonical element of type A.

Example

s(0) + s(0) is a non-canonical element of N which executes to the
canonical s(s(0)). Thus s(0) + s(0) : N.

• Meaning of b = c : A (b and c are equal elements of A):

when both executed, b and c give equal canonical elements.

32 / 98

This leads to the four basic judgement forms of MLTT

A type b : A b = c : A A = B

Each of judgement forms J comes in a hypothetical form

J (x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1))

• For n = 1 it means that

(1) J [d/x1] whenever d : A1,

(2) A[d/x1] = A[e/x1] whenever d = e : A1, in case J is ”A
type”,

and b[d/x1] = b[e/x1] : A whenever d = e : A1, in case J is
”b : A ”.

33 / 98

Π-types. Let B be a type depending on x : A. The introduction
rule for Π is this:

(x : A)
...

b : B

λx .b : (Πx : A)B
(ΠI)

The elimination rule is

f : (Πx : A)B a : A

f (a) : B[a/x]
(ΠE)

The associated computation rule is (λx .b)(a) = b[a/x] : B[a/x],
often called the β-rule.

34 / 98

The Π-types covers both universal quantifiers and implication:

I (∀x : S)B(x) = (Πx : S)B(x)

I B → C = (Πp : B)C

35 / 98

Σ-types. Let B be a type depending on x : A. The introduction
rule for Σ is

a : A b : B[a/x]

〈a, b〉 : (Σx : A)B
(ΣI)

If A is regarded as the quantification domain and B is regarded as
a proposition, we see that (ΣI) may be read as the rule (∃I).

In case B is independent of x , so that B[a/x] = B, we see that the
rule (ΣI) has the same shape as (∧I). (Set-theoretically it holds in
this case that: (Σx ∈ A)B = A× B.)

36 / 98

Σ-types

The elimination rule for Σ is the following, supposing that C type
(z : (Σx : A)B)

(x : A, y : B)
...

...
c : (Σx : A)B d : C [〈x , y〉/z]

split(c , λx .λy .d) : C [c/z]
(ΣE)

The associated computation rule is

split(〈a, b〉, g) = g(a)(b) : C [〈a, b〉/z].

37 / 98

Binary sums

Introduction rule:

a : A
inl(a) : A + B

b : B
inr(b) : A + B

For C type (z : A + B) we have the elimination rule

c : A + B

(x : A)
....

d : C [inl(x)]

(y : B)
....

e : C [inr(y)]

D(λx .d , λy .e, c) : C [c/z]

Computation rules:

D(λx .d , λy .e, inl(a)) = d [a/x] D(λx .d , λy .e, inr(b)) = e[b/y]

38 / 98

Empty type and unit type

The empty type N0 has no introduction rules.
For C type (z : N0) there is the elimination rule

c : N0

R0(c) : C [c/z]

The unit type N1 has one introduction rule: ? : N1. For C type
(z : N1) there is the elimination rule

c : N1 d : C [?/z]

R1(c , d) : C [c/z]

39 / 98

Inductive types: natural numbers

0 : N
a : N

s(a) : N

c : N d : C [0/z]

(x : N, y : C [x/z])
....

e : C [s(x)/z]

R(c , d , λx .λy .e) : C [c/z]

R(0, d , λx .λy .e) = d

R(s(a), d , λx .λy .e) = e[a,R(a, d , λx .λy .e)/x , y].

NB: Induction scheme is the type of the recursion operator

40 / 98

Identity types

The equality judgement
a = b : A

is not a type (i.e. proposition) it self and can not occur in
compound expression. Type theory therefore has a special type,
the identity type:

I (A, a, b)

to make equality a proposition. Two different axiomatisations:
Extensional identity types:

a = b : A
r : I (A, a, b)

r : I (A, a, b)

a = b : A

c : I (A, a, b)

c = r : I (A, a, b).

System not strongly normalising. Type checking undecidable.
Intensional identity types: type checking properties decidable.
I (A→ B, f , g) is not extensional equality.

41 / 98

Translation Table
A proposition may be regarded as a type according to the following
translation scheme

(∀x : A)P x (Πx : A)P x
(∃x : A)P x (Σx : A)P x
P ∧ Q P × Q
P ∨ Q P + Q
P ⇒ Q P // Q
> N1

⊥ N0

¬P (= P ⇒ ⊥) P //N0

The judgement
A is true

means that there is some p so that p : A.
42 / 98

3.4 Coq - an implementation of type theory

Coq2 is a proof assistant intended for building formal mathematical
proof and enabling the extraction of algorithms from constructive
proofs. It is based on the Calculus of Inductive Construction which
in turn uses the principles for Martin-Löf type theory:

I Types are either built as generalized function types or as
inductive types.

I The elimination rules are generated by the introduction rules.

However in Coq equality judgments are implicit when working with
the system and are embedded in the computation rules.

2Available from: coq.inria.fr
43 / 98

Basic Martin-Löf type theory can be defined very succinctly in Coq:

Definition Pi (A: Type)(B: A -> Type) :=

(forall x: A, B x).

Inductive Sigma (A: Type) (B: A -> Type) :=

pair { prj1: A; prj2: B prj1 }.

Inductive BinSum (A: Type)(B: Type) : Type :=

inl (a: A) | inr (b: B).

Inductive Id (A: Type)(x: A) : A -> Type :=

refl : Id A x x.

Inductive Nat: Type := zero | S (n:Nat).

Inductive Empty: Type :=.

44 / 98

Example Proof script for decidability of equality on Nat

Definition P (x:Nat) :=

∀ y , (Id Nat x y) ∨ ¬ (Id Nat x y).

Theorem DecideEquality: ∀ x , P x.

Proof.

induction x. unfold P. induction y. apply inl. apply refl.

apply inr. apply Peano4a.

unfold P. induction y. apply inr. apply Peano4b.

assert (Id Nat x y ∨ ¬ Id Nat x y).

apply IHx. elim H. intro K. induction K. apply inl. apply

refl.

intro K. apply inr. intro L. assert (Id Nat x y) as M.

apply Peano3. apply L. apply K. apply M.

Defined.

45 / 98

Decide whether 1 is equal to 2 using the proof.

Eval compute in (DecideEquality (S zero) (S (S zero))).

= inr (Id Nat (S zero) (S (S zero))) (¬ Id Nat (S zero)

(S (S zero)))

(fun L : Id Nat (S zero) (S (S zero)) =>

Peano4a zero (Peano3 zero (S zero) L))

: Id Nat (S zero) (S (S zero)) ∨ ¬ Id Nat (S zero) (S

(S zero))

46 / 98

4. Sets and equivalence relations

Relations and predicates on types:
A predicate P on a type X is a family of propositions P x (x : X).

A relation R between types X and Y is a family of propositions
R x y (x : X , y : Y). If X = Y , we say that R is a binary relation
on X .

A binary relation R on X is an equivalence relation if there are
functions ref , sym and tra with

ref a : R a a (a : X),

sym a b p : R b a (a : X , b : X , p : R a b),

tra a b c p q : R a c (a, b, c : X , p : R a b, q : R b c).

47 / 98

We may suppress the proof objects and simply write, for instance
in the last line

R a c true (a, b, c : X ,R a b true,R b c true),

which is equivalent to

(∀a : X)(∀b : X)(∀c : X)(R a b ∧ R b c ⇒ R a c) true.

48 / 98

Sets

Definition A set X is a type |X | together with an equivalence
relation =X on |X |. Write this as

X = (|X |,=X).

We shall also write x ∈ X for x : |X |.

Remark
In Greeneleaf (1981) |X | is called a preset, rather than a type. A
completely presented set seems to be the terminology of Bishop.

In the type theory community X = (|X |,=X) is often known as a
setoid.

49 / 98

Examples Let N be the type of natural numbers. Define
equivalence relations

x =N y iff Tr (eqN x y)

(Here eqN : N // N // Bool is the equality tester for N and
Tr tt = > and Tr ff = ⊥)

x =n y iff x − y is divisble by n

Then

I N = (N,=N) is the set of natural numbers

I Zn = (N,=n) is the set of integers modulo n.

50 / 98

Examples (cont.) N×N denotes the type of pairs of natural
numbers. Define an equivalence relation

(x , y) =Z (x ′, y ′) iff x + y ′ =N x ′ + y

Then N = (N×N,=Z) is the set of integers.

N×N×N denotes the type of triples of natural numbers. Define
an equivalence relation

(x , y , z) =Q (x ′, y , z ′) iff (z ′ + 1)(x + y ′) =N (z + 1)(x ′ + y)

Then Q = (N×N×N,=Q) is the set of rational numbers.

These are direct constructions. It is possible to construct them
more algebraically using abstract constructions.

51 / 98

Functions vs operations

What is usually called functions in type theory, we call here
operations.

Definition. A function f from the set X to the set Y is a pair
(|f |, extf) where |f | : |X | // |Y | is an operation so that

(extf a b p) : |f | a =Y |f | b (a, b : |X |, p : a =X b).

To conform with usual mathematical notation, function application
will be written

f (a) =def |f | a

Two functions f , g : X // Y are extensionally equal,
f =[X // Y] g , if there is e with

e a : f (a) =Y g(a) (a ∈ X).

52 / 98

Set constructions

The product of sets A and B is a set P = (|P|,=P) where
|P| = |A| × |B| (cartesian product as types) and the equality is
defined by

(x , y) =P (u, v) iff x =A u and y =B v .

Standard notation for this P is A× B. Projection function are
π1(x , y) = x and π1(x , y) = y . This construction can be verified
to satisfy the abstract property (page 5). (It can as well be
expressed by the categorical universal property for products.)

The disjoint union A ∪̇ B (or A + B) is definied by considering the
corresponding type construction.

53 / 98

The functions from A to B form a set BA defined to be the type

(Σf : |A| // |B|)(∀x , y : |A|)[x =A y // f x =B f y],

together with the equivalence relation

(f , p) =BA (g , q)⇐⇒def (∀x : |A|) f x =B g x .

The evaluation function evA,B : BA × A // B is given by

evA,B((f , p), a) = f a

Proposition. Let A, B and X be sets. For every function
h : X × A // B there is a unique function ĥ : X // BA with

evA,B(ĥ(x), y) = h(x , y) (x ∈ X , y ∈ A).

54 / 98

A set X is called discrete, if for all x , y ∈ X

(x =X y) ∨ ¬ (x =X y).

In classical set theory all sets are discrete. This is not so
constructively, but we have

Proposition. The unit set 1 and the set of natural numbers N are
both discrete. If X and Y are discrete sets, then X × Y and
X + Y are discrete too.

However, the assumption that NN is discrete implies a
nonconstructive principle (WLPO):

(∀n ∈ N)f (n) = 0 ∨ ¬(∀n ∈ N)f (n) = 0

55 / 98

Coarser and finer equivalences

An equivalence relation ∼ is finer than another equivalence relation
≈ on a type |A| if for all x , y : A

x ∼ y =⇒ x ≈ y .

It is easy to prove by induction that =N is the finest equivalence
relation on N.

If there is a finest equivalence relation =A on a type |A|, the set
A = (|A|,=A) has the substitutivity property

x =A y =⇒ (P x ⇔ P y)

for any predicate P on the type |A|.

56 / 98

Sets are rarely substitutive, and the notion is not preseved by
isomorphisms. Zn as constructed above is not substitutive; an
isomorphic construction yields substitutivity.

Theorem. To any type |A|, the identity type construction Id
assigns a finest equivalence Id |A|. The resulting set, also denoted
|A|, is substitutive.

Remark. Substitutive sets are however very convenient for direct
formalisation in e.g. Agda or Coq, as extensionality proofs can be
avoided.

57 / 98

5. Choice sets and axiom of choice

A set S is a choice set, if for any surjective function f : X // S ,
there is right inverse g : S // X , i.e.

f (g(s)) = s (s ∈ S).

Theorem. Every substitutive set is a choice set.

(Zermelo’s) Axiom of Choice may be phrased thus:
Every set is a choice set.

Theorem. Zermelo’s AC implies the law of excluded middle.

58 / 98

Though Zermelo’s AC is incompatible with constructivism, there is
related axiom (theorem of type theory) freely used in Bishop
constructivism.

Theorem. For any set A there is a choice set |A| and surjective
function p : |A| // A. (In categorical logic often referred to as
“existence of enough projectives”.)
As a consequence, Dependent Choice is valid (see notes, p. 76).

Theorem. If A and B are choice sets, then so are A× B and
A + B.

59 / 98

6. Relations and subsets

Definition A (extensional) property P of the set X is a family of
propositions P x (x ∈ X) with

x =X y ,P x =⇒ P y .

We also say that P is a predicate on X .

A relation R between sets X and Y is a family of propositions
R x y (x ∈ X , y ∈ Y) such that

x =X x ′, y =Y y ′,R x y =⇒ R x ′ y ′.

The relation is univalent if y =Y y ′, whenever R x y and R x y ′.

Write P(x), R(x , y) etc. in the extensional situation.

60 / 98

Restatement of choice principles for relations.

The following is the theorem of unique choice.

Thm. Let R be a univalent relation between the sets X and Y . It
is total if, and only if, there exists a function f : X // Y , called a
selection function, such that

R(x , f (x)) (x ∈ X).

(This function is necessarily unique if it exists.)

An alternative characterisation of choice sets is

Thm. A set X is a choice set iff for every set Y , each total relation
R between X and Y has a selection function g : X // Y so that

R(x , g(x)) (x ∈ X).

61 / 98

Dependent choice

Dependent choice. Let A be a set which is the surjective image
of a choice set. Let R be a binary relation on A such that

(∀x ∈ A)(∃y ∈ A)R(x , y).

Then for each a ∈ A, there exists a function f : N // A with
f (0) = a and

R(f (n), f (n + 1)) (n ∈ N).

Proof. Let p : P // A be surjective, where P is a choice set. By
surjectivity, we have

(∀u ∈ P)(∃v ∈ P)R(p(u), p(v)).

62 / 98

Since P is a choice set we find h : P // P with R(p(u), p(h(u)))
for all u ∈ P.

For a ∈ A, there is b0 ∈ P with a = p(b0).

Define by recursion g(0) = b0 and g(n + 1) = h(g(n)), and let
f (n) = p(g(n)). Thus R(p(g(n)), p(g(n + 1))), so f is indeed the
desired choice function.

Remark Thus we have proved the general dependent choice
theorem in type theory with identity types. We also get another
proof of countable choice, without requiring a particular
subsititutive construction of natural numbers.

63 / 98

Subsets as injective functions

Let X be a set. A subset of X is a pair S = (∂S , ιS) where ∂S is
a set and ιS : ∂S // X is an injective function.

An element a ∈ X is a member of S (written a ∈X S) if there
exists d ∈ ∂S with a =X ιS(d).

Inclusion ⊆X and equality ≡X of subsets of X can be defined in
the usual logical way.

Prop. For subsets A and B of X , the inclusion A ⊆X B holds iff
there is a function f : ∂A // ∂B with ιB ◦ f = ιA. (Such f are
unique and injective.)

The subsets are equal iff f is a bijection.

64 / 98

Separation of subsets

For a property P on a set X , the subset

{x ∈ X | P(x)} =
(
{x ∈ X : P(x)}, ι

)
is defined by the data:

|{x ∈ X : P(x)}| =def (Σx ∈ X)P(x)

and
〈x , p〉 ={x∈X : P(x)} 〈y , q〉 ⇐⇒def x =X y

and ι(〈x , p〉) =def x .

(Note the careful syntactic distinction of “:” and “|”.)

65 / 98

Note that

a ∈X {x ∈ X | P(x)} ⇔ (∃d ∈ {x ∈ X : P(x)}) a = ι(d)

⇔ (∃x ∈ X)(∃p : |P| x) a = ι(〈x , p〉)
⇔ |P| a

⇔ P(a)

The usual set-theoretic operations ∩, ∪, () can now be defined
“logically” for subsets.

A subset S of X is decidable, or detachable, if for all a ∈ X

a ∈X S ∨ ¬(a ∈X S).

66 / 98

Union of subsets: logical definition.

Let A = (∂A, ιA) and B = (∂B, ιB) be subsets of X .
Their union is the following subset of X

A ∪ B = {z ∈ X | z ∈X A or z ∈X B}.

Taking U = A ∪ B apart as U = (∂U, ιU) we see that |∂U| is

(Σz : |X |)(z ∈X A or z ∈X B) = (Σz : |X |)((z ∈X A) + (z ∈X B)).

whereas ιU(z , p) = z .

67 / 98

Complement

The complement of the subset A of X is defined as

A = {z ∈ X | ¬z ∈X A}.

For A = (∂C , ιC) we have

|∂C | = (Σz : |X |)((z ∈X A) //⊥).

That A is a decidable subset of X can be expressed as A ∪ A = X .

The decidable subsets form a boolean algebra.

68 / 98

Partial functions

A partial function f from A to B consists of a subset (Df , df) of
A, its domain of definition (denoted dom f) and a function
mf : Df

// B. We write this with a special arrow symbol as
f : A ⇁ B.

Such f : A ⇁ B is total if its domain of definition equals A as a
subset, or equivalently, if df is an isomorphism.

Another partial function g : A ⇁ B extends f , writing
f ⊆ g : A ⇁ B, if for each s ∈ Df there exists t ∈ Dg with
df (s) = dg (t) and mf (s) = mg (t). If both f ⊆ g and g ⊆ f , we
define f and g to be equal as partial functions.

69 / 98

Example. Let F = (F , ·,+, 0, 1) be a field, and let

U = {x ∈ F | (∃y ∈ F)x · y = 1}

be the subset of invertible elements. Define a function
mr : ∂U // F to be mr (x) = y , where y is unique such that
x · y = 1. Thus the reciprocal is a partial function
r = (·)−1 : F ⇁ F .

In fact, for any univalent relation R between sets X and Y there is
partial function fR = (D, d ,m) given by

∂D = {u ∈ X × Y : R(π1(u), π2(u))}

d = π1 ◦ ιD and m = π2 ◦ ιD .

70 / 98

Example For any pair of subsets A and B of X that are disjoint
A ∩ B = ∅, we may define a partial characteristic function

χ : X ⇁ {0, 1}

satisfying

χ(z) = 0 iff z ∈X A,

χ(z) = 1 iff z ∈X B,

by considering the univalent relation R(z , n):

(z ∈X A ∧ n = 0) ∨ (z ∈X B ∧ n = 1).

Caution The collection of partial functions A ⇁ B does in general
not form a set in constructive type/set theory, even in the case
A = B = {0}.

71 / 98

Partial functions are composed in the following manner: if
f : A ⇁ B and g : B ⇁ C , define the composition
h = g ◦ f : A ⇁ C by

Dh = {(s, t) ∈ Df ×Dg : mf (s) = dg (t)}

The function dh : Dh
// A given by composing the projection to

Df with dd is injective. The function mh : Dh
// C is defined by

the composition of the projection to Dg and dg .

72 / 98

Example (Bishop and Bridges 1985, p. 222)
A real-valued integrable function f on [0, 1] is a partial function
[0, 1] ⇁ R which is strongly extensional, i.e. f (x) 6= f (y) implies
x 6= y , and for which there exists a sequence fn : [0, 1] // R of
uniformly continuous functions where

∞∑
n=1

∫ 1

0
|fn(x)|dx

converges and where

f (x) =
∞∑
n=1

fn(x)

whenever
∑∞

n=1 |fn(x)| converges.

A ⊆ [0, 1] is full if is included in domain of an integrable function as
above. (Constructive counterpart of the complement of a null set.)

73 / 98

7. Finite sets and their relatives

The canonical n-element set is

Nn = {k ∈ N : k < n} ↪→ N.

Any set X isomorphic to such a set is called finite. It may be
written

{x0, . . . , xn−1}

where k 7→ xk : Nn
// X is the isomorphism.

Since xj = xk iff j = k, we can always decide whether two elements
of a finite set are equal by comparison of indices.

74 / 98

A related notion is more liberal:

A set X is called subfinite, or finitely enumerable, if there is, for
some n ∈ N, a surjection x : Nn

// X .

Here we are only required to enumerate the elements, not tell them
apart.

We can always tell whether a subfinite set is empty by checking if
n = 0.

Remark. A subset of a finite set need not be finite, or even
subfinite. Consider

{0 ∈ N1 : P}

where P is some undecided proposition.

75 / 98

Some basic properties

Let X and Y be sets. Then:

(i) X finite ⇐⇒ X subfinite and discrete

(ii) X subfinite, f : X // Y surjective =⇒ Y subfinite

(iii) Y discrete, f : X // Y injective =⇒ X discrete

(iv) Y discrete, X ↪→ Y =⇒ X discrete

(v) Y finite, X ↪→ Y decidable =⇒ X finite.

76 / 98

8. Quotients

Let X = (|X |,=X) be a set and let ∼ be a relation on this set.
Then by the extensionality of the relation

x =X y =⇒ x ∼ y . (1)

Thus if ∼ is an equivalence relation on X

X/∼ = (|X |,∼)

is a set, and q : X // X/∼ defined by q(x) = x is a surjective
function.

77 / 98

We have the following extension property. If f : X // Y is a
function with

x ∼ y =⇒ f (x) =Y f (y), (2)

then there is a unique function f : X/∼ // Y (up to extensional
equality) with

f (i(x)) =Y f (x) (x ∈ X).

We have constructed the quotient of X with respect to ∼:
q : X // X/∼

Remark. Every set is a quotient of a choice set. Namely, X is the
quotient of |X | w.r.t. =X .

Proposition. A set is subfinite iff it is the quotient of a finite set.

78 / 98

9. Universes and restricted powersets

A general problem with (or feature of) predicative theories like
Martin-Löf type theory is their inability to define a set of all
subsets of a given set. It is, though, often sufficient to consider
certain restricted classes of subsets in a certain situation.

A set-indexed family F = (F , I) of subsets of a given set X
consists of an index set I = (|I |,=I) and a subset Fi of X for each
i : |I |, which are such that if i =I j then Fi and Fj are equal as
subsets of X .

A subset S of X belongs to the family F , written S ∈ F , if S = Fi

(as subsets of X) for some i ∈ I .

79 / 98

Consider any family of types U = (T ,U), where T i is a type for
each i : U. It represents a collection of sets, the U-sets, as follows.

First, a U-representation of a set is a pair r = (i0, e) where i0 : I
and e : T i0 × T i0 // U is an operation so that

a =r b ⇔def T (e a b)

defines an equivalence relation on the type T i0. Then this is a set

r̂ = (T i0,=r).

A set X is U-representable, or simply a U-set, if it is in bijection
with r̂ for some U-representation r . The U-sets defines, in fact, a
full subcategory of the category of sets, equivalent to a small
category.

Example For U = N and T n = Nn, the (N,N(−))-sets are the
finite sets.

80 / 98

Restricted power sets

For any set X and any family of types U , define the family RU (X)
of subsets of X as follows.

I Its index set I consists of triples (r ,m, p) where r is a
U-representation, m : r̂ // X is a function and p is a proof
that m is injective.

I Two such triples (r ,m, p) and (s, n, q) are equivalent, if (r̂ ,m)
and (ŝ, n) are equal as subsets.

I For index (r ,m, p) ∈ I , the corresponsing subset of X is
F(r ,m,p) = (r̂ ,m).

Proposition A subset S = (∂S , ιS) of X belongs to RU (X) iff ∂S
is a U-set.

81 / 98

Unless U has some closure properties, RU (X) will not be closed
under usual set-theoretic operations. We review some common
such properties below. Suppose that U is a type-theoretic universe.

I If U is closed under Σ, then RU (X) is closed under binary ∩,
and

⋃
i∈I indexed by U-sets I .

I If U is closed under Π, then RU (X) is closed under
⋂

i∈I
indexed by U-sets I , and the binary set operation

(A⇒ B) = {x ∈ X : x ∈ A⇒ x ∈ B}.

I If U is closed under +, then RU (X) is closed under binary ∪.

I If U contains an empty type, then RU (X) contains ∅.

82 / 98

Standard Martin-Löf type universes U (see Martin-Löf 1984)
satisfies indeed the conditions above.

N̂ : U T N̂ = N

N̂0 : U T N̂0 = N0

N̂1 : U T N̂1 = N1

(+̂) : U // U // U T (a+̂b) = T a + T b

Σ̂ : T (Σ̂ a b) = Σ (T a) (λx .T (bx))

Π̂ : T (Π̂ a b) = Π (T a) (λx .T (bx))
...

...

83 / 98

10. Categories

We first use a definition of category where no equality relation
between objects is assumed, as introduced in type theory by P.
Aczel 1993, P. Dybjer and V. Gaspes 1993. Such categories are
adequate for developing large parts of elementary category theory
inside type theory (Huet and Saibi 2000).

A small E-category C consists of a type Ob of objects (no
equivalence relation between objects is assumed) and for all
A,B : Ob there is a set Hom(A,B) of morphisms from A to B.
There is a identity morphism idA ∈ Hom(A,A) for each A : Ob.
There is a composition function
◦ : Hom(B,C)×Hom(A,B) //Hom(A,C). These data satisfy
the equations id ◦ f = f , g ◦ id = g and f ◦ (g ◦ h) = (f ◦ g) ◦ h.

For a locally small E-category we allow Ob to be a sort.

84 / 98

Example. The category of sets, Sets, has as objects sets. The set
of functions from A to B is denoted Hom(A,B). The category
Sets is locally small, but not small.

Example. The discrete category given by a set A = (|A|,=A). The
objects of the category are the elements of |A|. Define Hom(a, b)
as the type (of proofs of) a =A b. Any two elements of this type
are considered equal. (The proofs of reflexivity and transitivity
provide id and ◦ respectively. Also the proof of symmetry, gives
that two objects a and b are isomorphic if, and only if, a =A b.)
Denote the discrete category by A#. This is a small category.

85 / 98

10.2 Categories with equality on objects

Families of sets have more structure than in set theory.

A family F of sets indexed by a set I is a functor F : I# // Sets.

Explication:
For each element a of I , F (a) is a set.

For any proof object p : a =I b, F (p) is function from F (a) to
F (b), a so-called transporter function.

Moreover, since any two morphisms p and q from a to b in I# are
identified, we have F (p) = F (q). The functoriality conditions thus
degenerate to the following:

86 / 98

(a) F (p) = idF (a) for any p : a =I a.

(b) F (q) ◦ F (p) = F (r) for all p : a =I b, q : b =I c , r : a =I c .

Note that each F (p) is indeed an isomorphism, and that F (q) is
the inverse of F (p) as soon as p : a =I b and q : b =I a.

Remark. If each set in the family F is a subset of a fixed set X ,
i.e. ia : F (a) ↪→ X and so that ia ◦ F (r) = ib for r : a =I b, then
(F (a), ia) = (F (b), ib) as subsets of X , if a =I b.

Remark. Families of sets are treated in essentially this way in
(Bishop and Bridges 1985, Exercise 3.2).

87 / 98

Two constructions of categories
A family F of sets over a set I gives rise to a category of sets
C = C(I ,F) as follows. The objects are given by the index set
C0 = I , and are thus equipped with equality, and the set of arrows
C1 is

((Σi , j : |I |)Ext(F (i),F (j)),∼)

which, thus, consists of triples (i , j , f) where f : F (i) // F (j) is an
extensional function, and where two arrows are equal
(i , j , f) ∼ (i ′, j ′, f ′) if, and only if, there are proof objects p : i =I i ′

and q : j =I j ′ such that the diagram

F (i ′) F (j ′)
f ′
//

F (i)

F (i ′)

F (p)

��

F (i) F (j)
f // F (j)

F (j ′)

F (q)

��

(3)

commutes.
88 / 98

The second construction is as follows. Define a category S(I ,F)
whose set of objects is I , and whose arrows3 are triples (i , j ,R)
where R is functional binary relation on S = Σ(I ,F) with
dom(R) =̇ F (i) and ran(R) ⊆̇ F (j). Two arrows (i , j ,R) and
(i ′, j ′,R ′) are equal when i =I i ′, j =I j ′ and R =̇ R ′. The domain
and codomain of (i , j ,R) are i and j respectively. The composition
of (i , j ,R) and (j ′, k ,Q) is (i , k ,Q ◦ R) when j =I j ′. Here Q ◦ R
denotes the relational composition.

Theorem. (P. 2013) S(I ,F) ∼= C(I ,F)

3The triples actually form a set since they can be represented by graphs of
functions, as the isomorphism theorem shows later.

89 / 98

11. Constructive set theory CZF as part of Bishop’s set
theory

Aczel’s standard model of CZF: for a universe U,T (·), the
set-theoretic universe V is inductively defined by the rules

a : U f : T (a) // V

sup(a, f) : V
.

The equality =V is the smallest relation satisfying the two rules

∀x : T (a).∃y : T (b).f (x) =V g(y) ∀y : T (b).∃x : T (a).f (x) =V g(y)

sup(a, f) =V sup(b, g)

Now V = (V ,=V) is a set (setoid!)
The membership relation is defined by

u ∈V sup(a, f)⇐⇒ ∃x : T (a).u =V f (x)

90 / 98

For u : V define the set

B(u) = (|B(u)|,=B(u))

of elements of V belonging to u by letting

|B(u)| = Σz : V .z ∈V u

and
(z , p) =B(u) (z ′, p′)⇐⇒ z =V z ′. (4)

Note that for a set u = sup(a, f), it holds that

B(sup(a, f)) ∼= (T (a),∼f)

where
x ∼f x ′ ⇐⇒ f (x) =V f (x ′).

We define therefore

R(sup(a, f)) = (T (a),∼f).

A set A is V -representable iff there is some u : V and a bijection
φ : A ∼= R(u).

91 / 98

Let u = sup(a, f) and v = sup(b, g). If we examine

Ext(R(u),R(v)),

the standard construction of the set of functions from R(u) to
R(v), it has the underlying type

Σh : T (a) // T (b).(∀x , y : T (a)(fx =V fy ⇒ h(gx) =V h(gy)))
(5)

and equality ∼ defined by

(h, p) ∼ (h′, p′) iff ∀x : T (a).h(gx) =V h′(gx).

Let Fu,v denote the type in (5). Define

γ(h, p) = sup(a, λx .〈fx , h(gx)〉)

which gives the graph of the function h, when (h, p) : Fu,v .
Suppose that the type Fu,v has a code ϕu,v in U so that
Fu,v = T (ϕu,v).

92 / 98

Now we can form
vu = sup(ϕu,v , γ),

which is the set all of functions from u to v . Indeed we have

z ∈V vu iff z is a total and functional relation from u to v ,

where the latter can be formally expressed as the conjunction of
the following statements

(∀t ∈ V)(t ∈V z ⇒ (∃x , y ∈ V)(x ∈V u ∧ y ∈V v ∧ t =V 〈x , y〉)),

(∀x ∈ V)(x ∈V u ⇒ (∃y ∈ V)(y ∈V v ∧ 〈x , y〉 ∈V z)),

(∀x , y , y ′ ∈ V)(〈x , y〉 ∈V z ∧ 〈x , y ′〉 ∈V z ⇒ y =V y ′).

We have the following bijective correspondence
For any u = sup(a, f), v = sup(b, g) ∈ V , there is a bijection

ψ : R(vu) // Ext(R(u),R(v))

given by ψ(h, p) = (h, p).
93 / 98

The internal category of sets in V may be described as follows.
Define the category V to have as objects V0 the setoid
V = (V ,=V). The arrows V1 has as underlying type

Σu ∈ V .Isarrow(u)

where Isarrow(u) is the predicate

∃a, b, f ∈ V .u =V 〈〈a, b〉, f 〉∧ f is a total and functional relation from a to b.

Equality (u, p) =V1 (u′, p′) is defined to be u =V u′. The setoid V2
of composable arrows has for underlying type

Σw ∈ V .Σu, v ∈ V1.w =V 〈π1(u), π1(v)〉 ∧ cod u =v dom v

and its equality is given by (w , p) ∼ (w ′, p′) iff w =V w ′.
Composition cmp of arrows is obtained by composition of relations
in the usual set-theoretic way.

Theorem
V is a category.

94 / 98

A different category is constructed using the method above. We
extend R(·) to a family of sets R̄ over the set V = (V ,=V).

Lemma R̄ is a family of sets over (V ,=V).

From the family (V , R̄), we may construct the category
C = C(V , R̄), and, then compare it to the category V above. The
objects of the two categories are give by the same set. Let
F0 : C0 // V0 be the identity map. There is a bijection C1 // V1
given by

(a, b, f) 7→ 〈〈a, b〉, γ(|f |, extf)〉.

Further, this yields a bijection F2 : C2 // V2 by letting F1 act on
the two component arrows. It is then straightforward to verify that
F0, F1 and F2 form a functor which is an isomorphism. We have

Theorem
The categories C(V , R̄) and V are isomorphic.

95 / 98

Conclusion:

1) V-representable sets constitute a good category.

2) We may use proofs in CZF+REA+RDC via the model V to
prove results about V -representable sets in Coq.

3) There are predicatively acceptable axioms such sREA which
seems to require stronger type theories than Coq.

96 / 98

12. Relation to categorical logic

Category theory provides an abstract way of defining the essential
mathematical proporties of sets, in terms of universal constructions.

An elementary topos is a category with properties similar to the
sets, though neither classical logic (discreteness of sets), or axioms
of choice are assumed among these properties.

C. McLarty: Elementary Categories, Elementary Toposes. Oxford
University Press 1992.

J. Lambek and P.J. Scott: Introduction to Higher-Order
Categorical Logic. Cambridge University Press 1986.

97 / 98

Also predicative versions of toposes have been developed

I. Moerdijk and E. Palmgren: Type Theories, Toposes and
Constructive Set Theory, Annals of Pure and Applied Logic
114(2002).

A constructive, predicative version of Lawvere’s ETCS is available:

E. Palmgren: Constructivist and Structuralist Foundations:
Bishop’s and Lawvere’s Theories of Sets. Annals of Pure and
Applied Logic 163(2012). (Preprint version: arXiv:1201.6272v1).

98 / 98

References

P. Aczel and M. Rathjen (2001).Notes on Constructive Set
Theory, Report No. 40, Stockholm: Institut Mittag-Leffler,
Royal Swedish Academy of Sciences.

P. Aczel and M. Rathjen (forthcoming). Constructive Set
Theory.

Y. Bertot, Coq in a Hurry.
http://cel.archives-ouvertes.fr/inria-00001173

E. Bishop and D.S. Bridges (1985). Constructive Analysis.
Springer.

E. Bishop (1967). Foundations of Constructive Analysis.
McGraw-Hill.

D.S. Bridges and F. Richman (1987). Varieties of Constructive
Mathematics. London Mathematical Society Lecture Notes,
Vol. 97. Cambridge University Press.

The Coq Proof Assistant. http://coq.inria.fr

98 / 98

T. Coquand, P. Dybjer, E. Palmgren and A. Setzer.
Type-theoretic foundation of constructive mathematics. Notes
distributed at TYPES Summer School, Göteborg, August
2005.

N. Greenleaf (1981). Liberal Constructive Set Theory. In: F.
Richman (ed.), Constructive Mathematics, Proceedings of the
Conference Held at Las Cruces, New Mexico, August 11–15,
1980, Lecture Notes in Mathematics, vol. 873, Springer.

H. Lombardi and C. Quitté (2011). Algèbre Commutative.
Méthodes constructives. Calvage et Mounet.

M.E. Maietti. Modular correspondence between dependent
type theories and categories including pretopoi and topoi.
Mathematical Structures in Computer Science 15(2005), 1089
–1149.

P. Martin-Löf (1984). Intuitionistic Type Theory. Notes by
Giovanni Sambin of a series of lectures given in Padua, June
1980. Bibliopolis.

98 / 98

P. Martin-Löf (2006). 100 years of Zermelo’s axiom of choice:
what was the problem with it? The Computer Journal (2006)
49 (3): 345–350.

R. Mines, F. Richman, and W. Ruitenburg (1988), A Course in
Constructive Algebra, Universitext, Heidelberg: Springer
Verlag.

J. Myhill (1973). Some Properties of Intuitionistic
Zermelo-Fraenkel Set Theory, in Cambridge Summer School in
Mathematical Logic, A. Mathias and H. Rogers (eds.),
Lecture Notes in Mathematics, 337, Heidelberg: Springer
Verlag, 206–231.

B. Nordström, K. Peterson and J.M. Smith (1990).
Programming in Martin-Löf ’s Type Theory. Oxford University
Press. (Also available at URL:
www.cse.chalmers.se/research/group/logic/book/)

98 / 98

E. Palmgren and O. Wilander (2013). Constructing categories
and setoids of setoids in type theory. Preprint.
http://people.su.se/˜epalm/

E. Palmgren (2013).Yet another category of setoids with
equality on objects. Preprint. http://people.su.se/˜epalm/

98 / 98

	Inductive types

