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1. Unitary bordism

Unitary bordism ring ΩU consists of complex bordism classes of stably
complex manifolds.
A stably complex manifold is a pair (M, cT ) consisting of a smooth
manifold M and a stably complex structure cT , determined by a choice of
an isomorphism

cT : TM ⊕ RN ∼=−→ ξ

between the stable tangent bundle of M and a complex vector bundle ξ.

Theorem (Milnor�Novikov)

Two stably complex manifolds M and N represent the same bordism
classes in ΩU i� their sets of Chern characteristic numbers coincide.

ΩU is a polynomial ring on generators in every even degree:

ΩU ∼= Z[a1, a2, . . . , ai , . . .], deg ai = 2i .
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Polynomial generators of ΩU can be detected using a special characteristic
class sn. It is the polynomial in the universal Chern classes c1, . . . , cn
obtained by expressing the symmetric polynomial xn1 + · · ·+ xnn via the
elementary symmetric functions σi (x1, . . . , xn) and replacing each σi by ci .

sn[M] = sn(TM)〈M〉: the corresponding characteristic number.

Theorem

The bordism class of a stably complex manifold M2i may be taken to be
the polynomial generator ai ∈ ΩU

2i i�

si [M
2i ] =

{
±1 if i + 1 6= ps for any prime p,

±p if i + 1 = ps for some prime p and integer s > 0.

Problem

Find nice geometric representatives in (unitary) bordism classes; e.g.,
smooth algebraic varieties and/or manifolds with large symmetry groups.

Taras Panov (Moscow University) A geometric view on SU-bordism 19�23 August 2019 3 / 26



3. Special unitary bordism

A stably complex manifold (M, cT ) is special unitary (an SU-manifold) if
c1(M) = 0. Bordism classes of SU-manifolds form the special unitary
bordism ring ΩSU .

The ring structure of ΩSU is more subtle than that of ΩU . Novikov
described ΩSU ⊗ Z[1

2
] (it is a polynomial ring). The 2-torsion was

described by Conner and Floyd. We shall need the following facts.

Theorem

The kernel of the forgetful map ΩSU → ΩU consists of torsion.

Every torsion element in ΩSU has order 2.

ΩSU ⊗ Z[1
2

] is a polynomial algebra on generators in every even
degree > 2:

ΩSU ⊗ Z[1
2

] ∼= Z[1
2

][yi : i > 1], deg yi = 2i .
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Let ∂ : ΩU
2n → ΩU

2n−2 be the homomorphism sending a bordism class [M2n]
to the bordism class [V 2n−2] of a submanifold V 2n−2 ⊂ M dual to c1(M).

Let W2n be the subgroup of ΩU
2n consisting of bordism classes [M2n] such

that every Chern number of M2n of which c21 is a factor vanishes.
The restriction of the boundary homomorphism ∂ : W2n →W2n−2 is
de�ned. It satis�es

∂(a · b) = a · ∂b + ∂a · b − [CP1] · ∂a · ∂b.

The direct sum W =
⊕

i>0W2i is not a subring of ΩU : one has
[CP1] ∈ W2, but c

2
1 [CP1 × CP1] = 8 6= 0, so [CP1]× [CP1] /∈ W4.

W is a commutative ring with respect to the twisted product

a ∗ b = a · b + 2[V 4] · ∂a · ∂b,
where · denotes the product in ΩU and V 4 is a stably complex manifold
with c21 [V 4] = −1, e.g. V 4 = CP1 × CP1 − CP2.
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Set

mi =

{
1 if i + 1 6= ps for any prime p,

p if i + 1 = ps for some prime p and integer s > 0,

so that [M2i ] ∈ ΩU
2i represents a polynomial generator i� si [M

2i ] = ±mi .

Theorem

W is a polynomial ring on generators in every even degree except 4:

W ∼= Z[x1, xi : i > 2], x1 = [CP1], deg xi = 2i ,

with si [xi ] = mimi−1 and the boundary operator ∂ : W →W, ∂2 = 0,
given by ∂x1 = 2, ∂x2i = x2i−1, and satisfying the identity
∂(a ∗ b) = a ∗ ∂b + ∂a ∗ b − x1 ∗ ∂a ∗ ∂b.

Theorem

There is an exact sequence of groups

0 −→ ΩSU

2n−1
θ−→ ΩSU

2n
α−→W2n

β−→ ΩSU

2n−2
θ−→ ΩSU

2n−1 −→ 0,

where θ is the multiplication by the generator θ ∈ ΩSU
1
∼= Z2, α is the

forgetful homomorphism, and αβ = −∂.
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We have

W ⊗ Z[1
2

] ∼= Z[1
2

][x1, x2k−1, 2x2k − x1x2k−1 : k > 1],

where x21 = x1 ∗ x1 is a ∂-cycle, and each x2k−1, 2x2k − x1x2k−1 is a ∂-cycle.

Theorem

There exist elements yi ∈ ΩSU

2i , i > 1, such that s2(y2) = −48 and

si (yi ) =

{
mimi−1 if i is odd,

2mimi−1 if i is even and i > 2.

These elements are mapped as follows under the forgetful homomorphism
α : ΩSU →W:

y2 7→ 2x21 , y2k−1 7→ x2k−1, y2k 7→ 2x2k − x1x2k−1, k > 1.

In particular, ΩSU ⊗Z[1
2

] embeds into W ⊗Z[1
2

] as the polynomial subring
generated by x21 , x2k−1 and 2x2k − x1x2k−1.
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4. (Quasi)toric manifolds

A toric variety is a normal complex algebraic variety V containing an
algebraic torus (C×)n as a Zariski open subset in such a way that the
natural action of (C×)n on itself extends to an action on V .

Toric varieties are classi�ed by convex-geometrical objects called rational
fans, and projective toric varieties correspond to convex lattice polytopes P .

A toric manifold is a complete (compact) nonsingular toric variety.

A quasitoric manifold is a smooth 2n-dimensional closed manifold M with a
locally standard action of a (compact) torus T n whose quotient M/T n is a
simple polytope P . An omniorientation of a quasitoric manifold provides it
with an intrinsic stably complex structure.
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Theorem (Danilov�Jurkiewicz, Davis�Januszkiewicz)

Let V be a (quasi)toric manifold of real dimension 2n. The cohomology
ring H∗(V ;Z) is generated by the degree-two classes vi dual to the
torus-invariant codimension-two submanifolds Vi , and is given by

H∗(V ;Z) ∼= Z[v1, . . . , vm]/I, deg vi = 2,

where I is the ideal generated by elements of the following two types:

vi1 · · · vik such that the facets i1, . . . , ik do not intersect in P ;
m∑
i=1

〈ai , x〉vi , for any vector x ∈ Hom(T n, S1) ∼= Zn.

Here ai ∈ Hom(S1,T n) ∼= Zn is the primitive vector de�ning the
one-parameter subgroup �xing Vi .
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It is convenient to consider the integer n ×m characteristic matrix

Λ =

a11 · · · a1m
...

. . .
...

an1 · · · anm


whose columns are the vectors ai written in the standard basis of Zn.
Then the n linear forms aj1v1 + · · ·+ ajmvm corresponding to the rows of Λ
vanish in H∗(V ;Z).

Theorem

There is the following isomorphism of complex vector bundles:

T V ⊕ Cm−n ∼= ρ1 ⊕ · · · ⊕ ρm,

where T V is the tangent bundle, Cm−n is the trivial (m − n)-plane bundle,
and ρi is the line bundle corresponding to Vi , with c1(ρi ) = vi .
In particular, the total Chern class of V is given by

c(V ) = (1 + v1) · · · (1 + vm).
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5. Toric representatives in unitary bordism classes

The classical family of generators for ΩU is formed by the Milnor
hypersufaces H(n1, n2).

H(n1, n2) is a hyperplane section of the Segre embedding
CPn1 × CPn2 → CP(n1+1)(n2+1)−1, given by the equation

z0w0 + · · ·+ zn1wn1 = 0

where [z0 : · · · : zn1 ] ∈ CPn1 , [w0 : · · · : wn2 ] ∈ CPn2 , n1 6 n2.

Also, H(n1, n2) can be identi�ed with the projectivisation CP(ζ) of a
certain n2-plane bundle over CPn1 . The bundle ζ is not a sum of line
bundles when n1 > 1, so H(n1, n2) is not a toric manifold in this case.
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Buchstaber and Ray introduced a family B(n1, n2) of toric generators
of ΩU . Each B(n1, n2) is the projectivisation of a sum of n2 line bundles
over the bounded �ag manifold BF n1 . Then B(n1, n2) is a toric manifold,
because BF n1 is toric and the projectivisation of a sum of line bundles over
a toric manifold is toric.

We have H(0, n2) = B(0, n2) = CPn2−1, so
sn2−1[H(0, n2)] = sn2−1[B(0, n2)] = n2. Furthermore,

sn1+n2−1[H(n1, n2)] = sn1+n2−1[B(n1, n2)] = −
(
n1 + n2

n1

)
for n1 > 1.

The fact that each of the families {[H(n1, n2)]} and {[B(n1, n2)]}
generates the unitary bordism ring ΩU follows from the well-known identity

gcd

{(
n

i

)
, 0 < i < n

}
=

{
1 if n 6= ps for any prime p,

p if n = ps for a prime p and s > 0.

Taras Panov (Moscow University) A geometric view on SU-bordism 19�23 August 2019 12 / 26



We proceed to describing another family of toric generators for ΩU .

Given two nonnegative integers n1, n2, de�ne

L(n1, n2) = CP(η ⊕ Cn2),

where η is the tautological line bundle over CPn1 .
It is a projective toric manifold with

Λ =



n1︷ ︸︸ ︷
1 0 0 −1

0
. . . 0

... 0
0 0 1 −1

1 1 0 0 −1

0 0 0
. . . 0

...
0 0 0 1 −1︸ ︷︷ ︸

n2


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The cohomology ring is given by

H∗
(
L(n1, n2)

) ∼= Z[u, v ]
/(

un1+1, vn2+1 − uvn2
)

with un1vn2〈L(n1, n2)〉 = 1.

There is an isomorphism of complex bundles

T L(n1, n2)⊕ C2 ∼= p∗η̄ ⊕ · · · ⊕ p∗η̄︸ ︷︷ ︸
n1+1

⊕(γ̄ ⊗ p∗η)⊕ γ̄ ⊕ · · · ⊕ γ̄︸ ︷︷ ︸
n2

,

where γ is the tautological line bundle over L(n1, n2) = CP(η ⊕ Cn2).

The total Chern class is

c
(
L(n1, n2)

)
= (1 + u)n1+1(1 + v − u)(1 + v)n2

with u = c1(p∗η̄) and v = c1(γ̄).
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Lemma

For n2 > 0, we have

sn1+n2

[
L(n1, n2)

]
=
(n1+n2

0

)
−
(n1+n2

1

)
+ · · ·+ (−1)n1

(n1+n2
n1

)
+ n2.

Theorem (Lu-P.)

The bordism classes [L(n1, n2)] ∈ ΩU
2(n1+n2)

generate the ring ΩU .

Proof. sn1+n2

[
L(n1, n2)− 2L(n1 − 1, n2 + 1) + L(n1 − 2, n2 + 2)

]
= (−1)n1−1

(n1+n2
n1−1

)
+(−1)n1

(n1+n2
n1

)
−2(−1)n1−1

(n1+n2
n1−1

)
= (−1)n1

(n1+n2+1
n1

)
It follows that any unitary bordism class can be represented by a disjoint
union of products of projective toric manifolds. Products of toric manifolds
are toric, but disjoint unions are not, as toric manifolds are connected.
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A disjoint union may be replaced by a connected sum, representing the
same bordism class. However, connected sum is not an algebraic operation,
and a connected sum of two algebraic varieties is rarely algebraic.

One can form equivariant connected sum of quasitoric manifolds, but the
resulting invariant stably complex structure does not represent the
cobordism sum of the two original manifolds. A more intricate connected
sum construction is needed, as described in [Buchstaber, P. and Ray].

The conclusion, which can be derived from the above construction and any
of the toric generating sets {B(n1, n2)} or {L(n1, n2)} for ΩU , is as follows:

Theorem (Buchstaber-P.-Ray)

In dimensions > 2, every unitary bordism class contains a quasitoric
manifold, necessarily connected, whose stably complex structure is induced
by an omniorientation, and is therefore compatible with the torus action.
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6. Toric generators of the SU-bordism ring

Proposition

An omnioriented quasitoric manifold M has c1(M) = 0 if and only if there
exists a linear function ϕ : Zn → Z such that ϕ(ai ) = 1 for i = 1, . . . ,m.
Here the ai are the columns of characteristic matrix.
In particular, if some n vectors of a1, . . . , am form the standard basis
e1, . . . , en, then M is SU i� the column sums of Λ are all equal to 1.

Corollary

A toric manifold V cannot be SU.

Proof. If ϕ(ai ) = 1 for all i , then the vectors ai lie in the positive halfspace
of ϕ, so they cannot span a complete fan.

Theorem (Buchstaber-P.-Ray)

A quasitoric SU-manifold M2n represents 0 in ΩU
2n whenever n < 5.
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Example

Assume that n1 = 2k1 is positive even and n2 = 2k2 + 1 is positive odd,
and consider the manifold L(n1, n2) = CP(η ⊕ Cn2). We change its stably
complex structure to the following:

T L(n1, n2)⊕ R4

∼= p∗η̄ ⊕ p∗η ⊕ · · · ⊕ p∗η̄ ⊕ p∗η︸ ︷︷ ︸
2k1

⊕p∗η̄⊕(γ̄⊗p∗η)⊕γ̄ ⊕ γ ⊕ · · · ⊕ γ̄ ⊕ γ︸ ︷︷ ︸
2k2

⊕γ

and denote the resulting stably complex manifold by L̃(n1, n2). It has

c
(
L̃(n1, n2)

)
= (1− u2)k1(1 + u)(1 + v − u)(1− v2)k2(1− v),

so L̃(n1, n2) is an SU-manifold of dimension 2(n1 + n2) = 4(k1 + k2) + 2.
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Example (continued)

L̃(n1, n2) is an omnioriented quasitoric manifold over ∆n1 ×∆n2

corresponding to the matrix

Λ =



n1=2k1︷ ︸︸ ︷
1 0 0 · · · 0 1
0 1 0 · · · 0 −1
...

. . .
. . .

. . .
...

... 0
0 0 0 1 0 1
0 0 0 0 1 −1

1 1 0 · · · 0 1
0 1 · · · 0 −1

0
...

. . .
. . . 0

...
0 0 0 1 1︸ ︷︷ ︸

n2=2k2+1


The columns sum of this matrix are 1 by inspection.
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Lemma

For k > 1, there is a linear combination y2k+1 of SU-bordism classes
[L̃(n1, n2)] with n1 +n2 = 2k +1 such that s2k+1(y2k+1) = m2k+1m2k .

For k > 2, there is a linear combination y2k of SU-bordism classes
[Ñ(n1, n2)] with n1 + n2 + 1 = 2k such that s2k(y2k) = 2m2km2k−1.

Theorem (Lu-P.)

There exist quasitoric SU-manifolds M2i , i > 5, with si (M
2i ) = mimi−1 if

i is odd and si (M
2i ) = 2mimi−1 if i is even. These quasitoric manifolds

represent polynomial generators of ΩSU ⊗ Z[1
2

].
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7. Calabi�Yau hypersurfaces and SU-bordism

A Calabi�Yau manifold is a compact K�ahler manifold M with c1(M) = 0.
By de�nition, a Calabi�Yau manifold is an SU-manifold.

A toric manifold V is Fano if its anticanonical class V1 + · · ·+ Vm

(representing c1(V )) is ample. In geometric terms, the projective
embedding V ↪→ CPs corresponding to V1 + · · ·+ Vm comes from a lattice
polytope P in which the lattice distance from 0 to each hyperplane
containing a facet is 1. Such a lattice polytope P is called re�exive; its
polar polytope P∗ is also a lattice polytope.

The submanifold N dual to c1(V ) is given by the hyperplane section of the
embedding V ↪→ CPs de�ned by V1 + · · ·+ Vm. Therefore, N ⊂ V is a
smooth algebraic hypersurface in V , so N is a Calabi�Yau manifold of
complex dimension n − 1.

Taras Panov (Moscow University) A geometric view on SU-bordism 19�23 August 2019 21 / 26



Lemma

The s-number of the Calabi�Yau manifold N is given by

sn−1(N) =
〈
(vn−11 + · · ·+ vn−1m )(v1 + · · ·+ vm)− (v1 + · · ·+ vm)n, [V ]

〉
.

Example

Consider the Calabi�Yau hypersurface N3 in V = CP3.

We have c1(T CP3) = 4u, where u ∈ H2(CP3;Z) is the canonical
generator dual to a hyperplane section.

Therefore, N3 can be given by a generic quartic equation in homogeneous
coordinates on CP3.

The standard example is the quartic given by z40 + z41 + z42 + z43 = 0, which
is a K3-surface. Lemma above gives

s3(N3) = 〈4u2 · 4u − (4u)3, [CP3]〉 = −48,

so N3 represents the generator −y2 ∈ ΩSU
4 .
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σ = (σ1, . . . , σk) an unordered partition of n, σ1 + · · ·+ σk = n
∆σi the standard re�exive simplex of dimension σi .
Pσ = ∆σ1 × · · · ×∆σk is a re�exive polytope with the corresponding toric
Fano manifold Vσ = CPσ1 × · · · × CPσk .
Nσ the canonical Calabi�Yau hypersurface in Vσ.

Theorem (Limonchenko-Lu-P.)

The SU-bordism classes of the canonical Calabi�Yau hypersurfaces Nσ in
CPσ1 × · · · × CPσk multiplicatively generate the SU-bordism ring ΩSU [1

2
].
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Idea of proof.

Denote by P̂(n) the set of all partitions σ with parts of size at most n − 2:

P̂(n) := {σ = (σ1, . . . , σk) : σ1 + · · ·+ σk = n, σ 6= (n), (1, n − 1).}
For each σ we have the multinomial coe�cient

(n
σ

)
= n!

σ1!···σk !
and de�ne

α(σ) :=

(
n

σ

)
(σ1 + 1)σ1 · · · (σk + 1)σk .

Then for for any σ ∈ P̂(n) we have

sn−1(Nσ) = −α(σ).
Then we prove that

gcd
σ∈P̂(n)

α(σ) =


2mn−1mn−2 if n > 3 is odd;

mn−1mn−2 if n > 3 is even;

48 if n = 3.

Therefore, there is a linear combination of the bordism classes
[Nσ] ∈ ΩSU

2n−2 whose s-number satis�es the condition for a polynomial
generator yn−1 of ΩSU [1

2
].
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Question

Which bordism classes in ΩSU can be represented by Calabi�Yau manifolds?

This question is an SU-analogue of the following well-known problem of
Hirzebruch: which bordism classes in ΩU contain connected (i. e.,
irreducible) non-singular algebraic varieties?

If one drops the connectedness assumption, then any U-bordism class of
positive dimension can be represented by an algebraic variety. Since a
product and a positive integral linear combination of algebraic classes is an
algebraic class (possibly, disconnected), one only needs to �nd in each
dimension i algebraic varieties M and N with si (M) = mi and
si (N) = −mi . This was done by Milnor in 1960.

For SU-bordism, the situation is di�erent: if a class a ∈ ΩSU can be
represented by a Calabi�Yau manifold, then −a does not necessarily have
this property. Therefore, the �rst step towards the answering the question
above is whether yi and −yi can be simultaneously represented by
Calabi�Yau manifolds.
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