
Linear G-structures by examples

In differential geometry, the ”central objects” are manifolds and the relevant
maps are ”the smooth maps”. Smoothness is actually the key word here- that
is precisely what we can talk about when dealing with manifolds. And nothing
more; e.g. we cannot talk about ”length”,”volume”, ”slope”, ”rational slope”,
etc etc on a general manifolds. But these are concepts of geometric nature, so
one should be able to talk about/study them in differential geometry. That can
be done, but not on a bare manifold. What one needs is a manifold endowed with
an extra-structure. The extra-structure is dictated by the concept one would like
to make sense of/study. For instance: to talk about length (of tangent vectors,
and then of curves) on a manifold M , then one needs the extra-structure of M
called ”Riemannian metric”. Hence:

• one has to consider geometric structures on manifolds.

• the geometric structure one considers depends on the concept/aspect one
would like to make sense of and study.

But what is the meaning of ”geometric structure” on a manifold M? Intu-
itively it is rather clear; moreover, in each example of a geometric structure, one
can handle it directly, following the intuition. The theory of G-structures gives
a general framework that allows us to treat (the basic properties of) geometric
structures in a conceptual, unified manner.

There are several intuitive ideas behind. To get a first feeling of what is
going on, let us mention here some rough principles.

• G denotes here a group (a subgroup of the group GLn(R) of all invertible
matrices with real entries); it plays the role of ”the symmetry group” of the
geometric structure one models. Concentrating on G corresponds to an
old idea (originating in Klein’s Erlangen program) of studying geometric
objects via their symmetry group.

• the notion of G-structure makes use of the ”infinitesimal philosophy” of
differential geometry. The key concept here is that of ”tangent space
TxM” of a manifold M at an arbitrary point x ∈ M , together with the
intuition that TxM is the ”infinitesimal (or linear) approximation of M
around x”.

• hence we first have to make sense of the notion of ”linear G-structure on a
vector space V ” (to be applied to V = TxM with x varying inside M). The
key remark here is that, given a geometric structure on a vector space V ,
one can then talk about bases of V (frames) ”which are compatible with
the structure”. For instance, for a metric (inner product) on V , one looks
at orthonormal bases. The key idea then is to encode/define geometric
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structures via the associated ”set of special frames” (hence a G-structure
will be precisely the choice of ”special frames”, satisfying the appropriate
axioms).

• according to the ”infinitesimal philosophy”, a global G(eometric) structure
on M is to be defined as a collection of ”linear G(eometric) structures”,
one on each TxM , varying smoothly with respect to x.

Accordingly, we will first discuss linear G-structures (on vector spaces), and
then apply them to tangent spaces of manifolds.

1 Part 1: Geometric structures on vector spaces

In this section, V is assumed to be a general n-dimensional real vector space.

1.1 Frames, matrices

Let us start by fixing some terminology and notations.

Matrices: Here we restrict to invertible matrices. Recall the interpretation(s)
of matrices

A = (Ai,j) ∈ GLn(R)

as linear isomorphisms acting on Rn. Since this can be done in two ways, it is
good to fix the notations. We have:

• first of all, one can think as vectors as row matrices (without making a
distinction in the notation); with this we obtain an action of GLn(R) on
Rn from the right:

Rn ×GLn(R)→ Rn, (v,A) 7→ v ·A.

In coordinates,

(
(v ·A)1 . . . (v ·A)n

)
=
(
v1 . . . vn

)A1,1 . . . A1,n

. . . . . . . . .
An,1 . . . An,n


In this way any A ∈ GLn(R) may be interpreted as a liner map

Â : Rn → Rn, Â(v) = v ·A.

This is not the “standard” way of interpreting matrices as linear maps
(for that reason we use the notation Â instead of simply A) but, in many
cases, it is more “conceptual” (or “natural”).

• one can also represent vectors by column matrices; for v ∈ Rn we denote by
tv the resulting column matrix; with this we obtain an action of GLn(R)
on Rn from the left:

GLn(R)× Rn → Rn, (A, v) 7→ A · v

determined by the matrix condition

t(A · v) = A t(v).
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In coordinates, (A · v)1

. . .
(A · v)n

 =

A1,1 . . . A1,n

. . . . . . . . .
An,1 . . . An,n

v1

. . .
vn


In this way any A ∈ GLn(R) may be interpreted as a liner map

A : Rn → Rn, A(v) = A · v.

This is the standard way of viewing a matrix as a linear map. The relation
with Â is simply Â =t A (as linear maps).

Frames: First of all, by frame of V we mean any ordered basis of V

φ = (φ1, . . . , φn) (hence φi ∈ V ).

We denote by Fr(V ) the set of all frames of V . Any such frame determines a
linear isomorphism

φ̂ : Rn → V

by sending the element ei of the standard basis of Rn to φi ∈ V . Conversely,
any isomorphism arises in this way, and we will actually identify (at least in our

mind) φ with φ̂. In other words, we think of a frame on V as an isomorphism
of V and the “standard model” Rn.

Action of matrices on frames: There is a canonical right action of GLn(R)
on Fr(V ), i.e. an operation

Fr(V )×GLn(R)→ Fr(V ), (φ,A) 7→ φ ·A.

It is given by the explicit formula:

(φ ·A)i =
∑
j

Ai,jφj ,

but it is better to think in terms of the linear maps φ̂ and Â associated to φ
and A- and then the operation φ ·A becomes simply composition of maps:

Exercise 1.1. Show that φ̂ ·A = φ̂ ◦ Â.

“Division” of frames: Another simple remark is that, for any two frames φ
and φ′ of V , one can form the linear isomorphism

(φ̂′)−1 ◦ φ̂ : Rn → Rn

hence we obtain a matrix, denoted

(1) [φ : φ′] ∈ GLn(R),

uniquely determined by
φ = φ′ · [φ : φ′].

This is precisely the matrix of coordinate changes from φ to φ′ (given a frame φ
on V , vectors v ∈ V are determined by its coordinates with respect to the frame-
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which are organized in a line matrix denoted [v]φ; choosing another frame φ′,
the resulting [v]φ′ can then be computed from [v]φ by [v]φ′ = [v]φ · [φ : φ′]).

Geometric structures: steps to follow. We now move to geometric struc-
tures. Here we start by looking at examples in which the situations is pretty
clear. However, to understand the general framework, it is important that in
each such example, after we specify the structure:

S1: we specify the corresponding notion of isomorphism.

S2: we specify the standard model (on Rn).

S3: we specify the symmetry group of the standard model.

S4: we specify the ”special frames” on V associated to the structure (read:
the frames of V that are compatible with the geometric structure; a bit
more precise, one may think of the ”special frames” as those frames φ
with the property that the associated isomorphism φ̂ is an isomorphism
between the standard model and V preserving the structure).

The very last point is the key point for the notion of G-structure. Indeed, in
each example we will look at, the ”special frames” will be clear. Passing to
the general theory, specifying a G-structure will simply mean specifying which
frames are ”special”. Ok, this gets too vague, so let’s look at examples, where
everything is pretty clear (however, I do advise you that, after you look at some
examples, you do return to the discussion above, and see how it all makes more
sense).

1.2 Metrics

Recall that a linear metric (inner product) on the vector space V is a symmetric
bilinear map

g : V × V → R

with the property that g(v, v) ≥ 0 for all v ∈ V , with equality only for v = 0.
This is the first geometric structure we look at. For this:

S1: Given two vector spaces endowed with inner products, (V, g), (V ′, g′), it
is clear what an isomorphism between them should be: any linear isomorphism
A : V → V ′ with the property that

g′(A(u), A(v)) = g(u, v) ∀ u, v ∈ V.

One also says that A is an isometry between (V, g) and (V ′, g′).

S2: The standard model is Rn with the standard inner product gcan:

gcan(u, v) = 〈u, v〉 =
∑
i

uivi,

or, in the matrix notation (see the previous subsection):

(2) gcan(u, v) = u tv.
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Exercise 1.2. Show that, indeed,any vector space endowed with an inner prod-
uct, (V, g), is isomorphic to (Rn, gcan).

S3: The symmetry group of the standard model becomes

O(n) = {A ∈ GLn(R) : gcan(A(u), A(v)) = gcan(u, v) for all u, v ∈ Rn} =

= {A ∈ GLn(R) : AtA = I} ⊂ GLn(R).

S4: We find that ”the special frames” of (V, g) are those frames φ ∈ Fr(V ) with

the property that the induced linear isomorphism φ̂ : Rn → V is an isomorphism
between (Rn, gcan) and (V, g).

Exercise 1.3. Check that this is the case if and only of the frame φ = (φ1, . . . , φn)
is orthonormal with respect to g, i.e.

(3) g(φi, φj) = δi,j ∀ i, j.

Hence one ends up with the set of orthonormal frames of (V, g), denoted

Sg ⊂ Fr(V ).

The following Proposition makes precise the fact that (and explains how)
the ”inner product g” is encoded by the associated set of frames Sg.
Proposition 1.4. Given the vector space V , show that

1. if g and g′ are inner products on V such that Sg = Sg′ , then g = g′.

2. a subset S ⊂ Fr(V ) is of type Sg for some inner product g if and only if:

A1: S is O(n)-invariant, i.e.: φ ∈ S, A ∈ O(n) =⇒ φ ·A ∈ S.
A2: if φ, φ′ ∈ S then [φ : φ′] ∈ O(n).

Proof. The key (but obvious) remark is that, if we know an orthonormal frame
φ for a metric g, then we know g. This clearly implies 1. Also the reverse
implication in 2, i.e. starting with S satisfying the two axioms, one just picks
up an arbitrary φ ∈ S and then considers the associated g (given by (3 ). The
axioms imply that g does not depend on the choice of φ in S (check this!) and
that S = Sg. The direct implication is a simple check.

Corollary 1.5. Given a vector space V , there is a 1-1 correspondence between:

1. inner products g on V .

2. subsets S ⊂ Fr(V ) satisfying (A1) and (A2) above.

This corollary indicates the way we will proceed in general, when discussing
G-structures for an arbitrary G ⊂ GLn(R). There is a slightly different way of
encoding inner products (which can also be used in order to deal with arbitrary
G-structures), but which is less intuitive; however, we mention it here:

Exercise 1.6. Given a vector space V , show that there is a 1-1 correspondence
between:

1. inner products g on V .

2. elements of Fr(V )/O(n) (quotient modulo the right action of O(n)).

The correspondence associates to an inner product g the equivalence class [φ] ∈
Fr(V )/O(n) of a(ny) frame φ orthonormal with respect to g.
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1.3 Orientations

The next example of ”structure” that we consider is that of ”orientation”. This
is very well suited to our discussion because the notion of orientation is it-
self defined (right from the start) using frames. More precisely, given our n-
dimensional vector space V , one says that two frames φ, φ′ ∈ Fr(V ) induce the
same orientation if the matrix [φ : φ′] of change of coordinates has positive de-
terminant; this defines an equivalence relation ∼ on Fr(V ) and an orientation
of V is the choice of an equivalence class:

O ∈ Orient(V ) := Fr(V )/ ∼ .

Exercise 1.7. S1: Given two oriented vector spaces (V,O), (V ′,O′), what are
the isomorphisms between them?

S2, S3: The local model is Rn with the orientation Ocan induced by the stan-
dard basis (frame) and computing the induced symmetry group (isomorphisms
from the local model to itself) we find the subgroup of GLn of matrices with
positive determinant:

GL+
n = {A ∈ GLn : det(A) > 0}.

S4: The special frames of (V,O) are, of course, the frames which induce the given
orientation; they correspond to oriented isomorphism (Rn,Ocan)→ (V,O). De-
note the set of such frames by

SO ⊂ Fr(V ).

Exercise 1.8. State and prove the analogue of Proposition 1.4 in this context.

Note also that the analogue of Exercise 1.6 in this context, i.e. a 1-1 corre-
spondence between orientations on V and elements of Fr(V )/GL+

n , holds by the
very definition of orientations, since the equivalence relation ∼ discussed above
is precisely the one induced by the action of GL+

n on Fr(V ).

1.4 Volume elements

Recall that a volume element on V is a non-zero element µ ∈ ΛnV ∗ (where n
is the dimension of V ) or, equivalently, a non-zero skew-symmetric multilinear
map

µ : V × . . .× V︸ ︷︷ ︸
n times

→ R.

S1: An isomorphism between (V, µ) and V ′, µ′) is any linear isomorphism A :
V → V ′ with the property that

µ′(A(v1), . . . , A(vn)) = µ(v1, . . . , vn)

for all vi’s. Equivalently, a linear map A induces A∗ : V ′∗ → V ∗ and then
A∗ : Λn(V ′)∗ → ΛnV ∗, and we are talking about the condition A∗µ′ = µ.

S2: The standard model is, again, Rn with the canonical volume element given
µcan given by (or uniquely determined by):

µcan(e1, . . . , en) = 1.
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S3: The associated symmetry group becomes (after the computation)

SLn(R) = {A ∈ GLn(R) : det(A) = 1}.

S4: Given (V, µ), its special frames will be those φ ∈ Fr(V ) satisfying:

µ(φ1, . . . , φn) = 1.

Exercise 1.9. Again, state + prove the analogue of Prop. 1.4 in this context.

Remark 1.10. Note that a volume element on V determines, in particular,
an orientation Oµ on V : the one induced by frames φ with the property that
µ(φ) > 0. This is basically due to the inclusion SLn(R) ⊂ GL+

n (try to make
this more precise and to generalize it).

Geometrically, a volume element allows us to talk about the oriented volume
of any ”body” (simplex) induced by n-vectors v1, . . . , vn.

Remark 1.11. It is useful to remember a few things about tensor calculus.
ΛpV ∗ are defined as above for any p ≥ 0, with the convention Λ0V ∗ = R. All
these spaces are finite dimensional (see also below), and they vanish for p > n.
Hence ΛnV ∗ is the last one of them which does not vanish (for that reason it is
also called the top exterior power of V ); it is actually one-dimensional. These
spaces interact with each other via the wedge products, i.e. the operations

ΛpV ∗ × ΛqV ∗ → Λp+qV ∗, (ω, η) 7→ ω ∧ η

(ω ∧ η)(v1, . . . , vp+q) =
∑
σ

sign(σ)ω(vσ(1), . . . , vσ(p))η(vσ(p+1), . . . , vσ(p+q))

where the sum is over all (p, q)-shuffles, i.e. all permutations σ with

σ(1) < . . . < σ(p), σ(p+ 1) < . . . < σ(p+ q).

The basic properties of the wedge operation are: it is bilinear, associative:

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) for all ω, η, θ

and grade antisymmetric:

η ∧ ω = (−1)pqω ∧ η for all ω ∈ ΛpV ∗, η ∈ ΛqV ∗.

Note that, in particular (but also immediate from the definition),

θ ∧ θ = 0 for all θ ∈ Λ1V ∗.

Using the wedge operation, one can express all elements in the exterior powers
using (sums of wedges of) elements of Λ1V ∗ = V ∗. Even better, fixing a frame
φ = (φ1, . . . , φn) of V , one has an associated (dual) frame

φ∗ = (φ1, . . . , φn)

of V ∗ (determined by φi(φj) = δi,j) and then

{φi1 ∧ . . . ∧ φip : 1 ≤ i1 < . . . < ip ≤ n}

forms a basis of ΛpV ∗. In particular, ΛnV ∗ is one dimensional. For V = Rn,
the canonical volume element is simply the element induced by the standard
basis:

µcan = e1 ∧ . . . ∧ en.
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1.5 p-directions

Another interesting ”structure” one can have on a vector space V (and becomes
more interesting when passing to manifolds) is that of “p-directions” in V , where
p is any positive integer less or equal to the dimension n of V . By that we simply
mean a p-dimensional vector subspace W ⊂ V . The S1-S4 steps are quite
clear: Given (V,W ) and (V ′,W ′), and isomorphism between them is any linear
isomorphism A : V → V ′ satisfying A(W ) ⊂ W ′. The local model is (Rn,Rp),
where we view Rp sitting inside Rn via the inclusion on the first components

Rp ↪→ Rn = Rp × Rn−p, u 7→ (u, 0).

For the symmetry group we find

GL(p, n− p) = {
(
A 0
B C

)
∈ GLn(R) : A ∈ GLp(R), C ∈ GLn−p(R)}.

(B is an (n− p)× p matrix). The special frames of (V,W ) will be those of type

φ = (φ1, . . . , φn) with φ1, . . . , φp ∈W

and they define
SW ⊂ Fr(V ).

1.6 Integral affine structures

By an (linear) integral affine structure on a vector space V we mean a lattice

Λ ⊂ V.

That means that Λ is a discrete subgroup of (V,+). Equivalently, Λ is of type

Λ = Zφ1 + . . .+ Zφn

for some frame φ = (φ1, . . . , φn). Frames of this type are called integral frames
of (V,Λ) and they play the role of “special frames”. The local model is (Rn,Zn),
while the symmetry group becomes

GLn(Z) ⊂ GLn(R).

Note that an integral affine structure Λ on an oriented vector space (V,O)
induces a volume element µΛ on V

µΛ = φ1 ∧ . . . φn

where φ is a(ny) positively oriented integral basis (and we use the dual basis in
the last equation). This comes from the fact that any matrix A ∈ GLn(Z) has
determinant ±1.

1.7 Complex structures

A (linear) complex structure on a vector space V is a linear map

J : V → V

8



satisfying
J2 = −Id.

Note that such structures can exist only on even dimensional vector spaces (see
the next remark and exercise). An isomorphism between (V, J) and (V ′, J ′) is
any linear isomorphism A : V → V ′ satisfying

J ′ ◦A = A ◦ J.

Remark 1.12. Such a complex structure allows us to promote the (real) vector
space V to a complex vector space by defining

(r + is) · v := rv + sJ(v).

When we view the vector space V as a complex vector space in this way, we will
denote it by VJ . Note that the notion of isomorphism corresponds to the fact
that A is an isomorphism between the complex vector spaces VJ and V

′

J′ .

Exercise 1.13. Show that, given (V, J), one can find a frame of V of type

φ = (φ1, . . . , φk, J(φ1), . . . , J(φk)).

(k = 1
2dim(V )).

The frames of this type, also called “complex frames” (why?), will be the
special frames of (V, J); they define

SJ ⊂ Fr(V ).

The local model is R2k = Rk ⊕ Rk with the complex structure

Jcan(u, v) = (−v, u)

(think i · (u+ iv) = −v+ iu). It is sometimes useful to use the matrix notations.
Using the previous decomposition of R2k, we see that a linear automorphism of
R2k can be represented as a matrix

M =

(
A B
C D

)
where such a matrix encodes the map

R2k 3 (u, v) 7→ (Au+Bv,Cu+Dv) ∈ R2k.

With this, one has:

(4) Jcan =

(
0 −Ik
Ik 0

)
.

The associated symmetry group consists of those M ∈ GL2k(R) satisfying
JcanM = MJcan. In the matricial notation, working out this condition, we
find out that we are looking at Ms of type

M =

(
A B
−B A

)
.

We find that the symmetry group is a copy of GLk(C) embedded in GL2k(R)
via

GLk(C) 3 A+ iB 7→
(

A B
−B A

)
∈ GL2k(R).

We hope that the rest of the story (and the analogue of Proposition 1.4) is clear.
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Remark 1.14. A complex structure J on V induces an orientation OJ on V :
one just considers the orientation induced by the complex frames. The fact that
the orientation does not depend on the frame (which is the main point of this
remark) comes from the fact that, via the previous inclusion of GLk(C), one
ends up in GL+

2k.

Exercise 1.15. Prove the last statement. More precisely, denoting by incl the
inclusion of GLk(C) into GL2k(R), show that

det(incl(Z)) = |det(Z)|2 ∀ Z ∈ GLk(C).

(Hint: there exists a matrix X ∈ GLk(R) such that(
A B
−B A

)
=

(
X 0
0 I

)(
I X−1

−I X

)(
B 0
0 B

)
)

Remark 1.16 (another way of encoding complex structures). There is another
way of encoding complex structures: via (sub)spaces instead of maps. This will
be useful when passing to manifolds. This is based on some yoga with complex
vector spaces. Start with a real vector space V (no J yet). Then we introduce
the complexification of V as the complex vector space

VC := V ⊗R C = {u+ iv : u, v ∈ V }

with the obvious complex structure. Note that it also comes with an obvious
conjugation map

u+ iv 7→ u+ iv := u− iv.

Now, if J is a complex structure on V , just view it as an R-linear map on V
and extend it to a C-linear map on VC:

J(u+ iv) = J(u) + iJ(v).

Using now that J2 = −Id and that J acts now on a complex vector space
(namely on VC), VC can be split into the i and −i eigenspaces of J :

V = V 1,0 ⊕ V 0,1,

where the two summands are the complex vector spaces given by:

V 1,0 = {w ∈ VC : J(w) = iw} = . . . = {u− iJ(u) : u ∈ V },

V 0,1 = {w ∈ VC : J(w) = −iw} = . . . = {u+ iJ(u) : u ∈ V }.

Of course, the two are related by conjugation:

V 0,1 = V 1,0.

The key remark here is that the complex structure J on V not only gives rise
to, but it is actually determined by the resulting complex subspace of VC

V 1,0 ⊂ VC.

The key properties of this subspace is that

VC = V 1,0 ⊕ V 1,0.
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and that the first projection V 1,0 → V is an isomorphism. Note that these
properties are, indeed, formulated independently of J and they do determine J .

Note also the connection between the complex vector spaces that arise from
the two points of view. On one hand, J gave rise to the complex vector space
VJ (V viewed as a complex vector space using J). On the other hand, we had
the complex subspace V 1,0 of VC. Note that the two are isomorphic as complex
vector spaces, by the obvious map

VJ
∼→ V 1,0, u 7→ u− iJ(u).

Indeed, denoting by I this map, one has:

i · I(u) = iu+ J(u) = J(u)− iJ(J(u)) = I(J(u)).

Similarly, the obvious map VJ → V 0,1 is a conjugate-linear isomorphism. One
often identifies V 1,0 with VJ using I and then V 0,1 with the conjugate of VJ .

1.8 Linear symplectic forms

A linear symplectic form on a vector space V is a non-degenerate antisymmetric
2-forms

ω : V × V → R.

One can think of linear symplectic forms as some antisymmetric versions of
inner products. Note however that, in contrast with inner products, they can
only exist on even dimensional vector spaces (this will be proven below).

S1: An isomorphism between (V, ω) and (V ′, ω′) is any linear isomorphism
A : V → V ′ satisfying

ω′(A(u), A(v)) = ω(u, v) ∀ u, v ∈ V.

S2: The local model is not so obvious before one thinks a bit about symplectic
structures. Postponing a bit the “thinking”, let us just describe the resulting
local model from several points of view. First of all, it is (R2k, ωcan) with

(5) ωcan((x, y), (x′, y′)) = 〈x′, y〉 − 〈x, y′〉,

where:

• we use R2k = Rk × Rk to represent the elements of R2k as pairs

(x, y) = (x1, . . . , xk, y1, . . . , yk).

• 〈·, ·〉 is the standard inner product on Rk.

More compactly, writing the standard frame of R2k as

(e1, . . . , ek, f1, . . . , fk),

and using the associated dual frame and the wedge-products (Remark 1.11),

ωcan = f1 ∧ e1 + . . .+ fk ∧ ek.
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Even more compactly, one can use the canonical inner product gcan and the
canonical complex structure Jcan on R2k (see the previous subsections) to write

ωcan(u, v) = gcan(u, Jcan(v)), ∀ u, v ∈ R2k.

This is a fundamental relation between metrics, complex structure and sym-
plectic strutures that will be further discussed in the next section. One can go
further and use the matrix expressions (2) and (4) and write:

ωcan(u, v) = uJcan
t(v).

S3: To describe the symmetry group of (R2k, ωcan) one can proceed in various
ways, depending on which of the previous formulas for ωcan one uses. The most
elegant way is to use the last formula; hence we are looking at those matrices
M ∈ GL2k(R) for which

uJcan
t(v) = ωcan(u, v) = ωcan(M(u),M(v)) = t(M t(u)) JcanM

t(v) = u t(M)JcanM
t(v)

for all u, v ∈ R2k. Hence the symmetry group of interest is

Spk(R) := {M ∈ GL2k(R) : t(M)JcanM = Jcan}

and is called the symplectic group. Note that, writing

M =

(
A B
C D

)
,

the previous equations for M become

t(A)C = t(C)A, t(D)B = t(B)D, t(D)A− t(B)C = Ik,

equations at which one can arrive directly using the formula (5).

S3: The “special frames” for a pair (V, ω) (called also the symplectic frames)
are somehow similar to the orthonormal frames for metrics. However, unlike
there, it is not so clear “right away” how to define the notion of “symplectic
frame”. Of course, since we have already described the local model, we could
just say that φ ∈ Fr(V ) is a symplectic frame for (V, ω) if the induced linear

isomorphism φ̂ is an isomorphism between (R2k, ωcan) and (V, ω). Explicitely,
that means frames of type

(φ1, . . . , φk, ψ1, . . . , ψk) (in particular n = 2k)

with the property that

ω(φi, ψi) = −1, ω(ψi, φi) = 1, ω(φi, ψj) = 0 for i 6= j, ω(φi, φj) = 0 = ω(ψi, ψj).

Ok, we take this as the definition of symplectic frames, but one should keep in
mind that there is still some cheating involved since, on the first place, the local
model was not that obvious.

Let’s now pass to a more careful analysis of symplectic vector spaces (V, ω)
which should clarify the previous discussion. So, we fix our (V, ω). The key
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notion will be that of Lagrangian subspace. First of all, one calls a subspace
L ⊂ V isotropic if ω vanishes on it:

ω(u, v) = 0 ∀ u, v ∈ L.

Those which are maximal (of highest possible dimension) among all isotropic
subspaces are called Lagrangian.

Note that for any isotropic L one has a well-defined map

ΦL : L→ (V/L)∗, ΦL(u)(v) = ω(u, v)

(where one thinks of (V/L)∗ as consisting of linear maps from V to R that
vanish on L).

Lemma 1.17. An isotropic subspace L ⊂ V is Lagrangian if and only if ΦL is
an isomorphism.

Note that this implies that all Lagrangian subspaces have the same dimen-
sion, namely

dim(L) =
1

2
dim(V ).

(in particular, the dimension of V is even).

Proof. Note that the map ΦL is automatically injective, because ω is non-
degenerate. In particular, the dimension of the domain is less than of the
codomain, hence

dim(L) ≤ 1

2
dim(V )

(... for all isotropic L). If ΦL is an isomorphism then this becomes an equality
hence L is clearly maximal among the isotropic subspaces. Assume now that L
is Lagrangian. To check that ΦL is also surjective, let ξ ∈ (V/L)∗, i.e. ξ : V → R
linear satisfying ξ|L = 0. Using again the nondegeneracy of ω,

(6) V → V ∗, u 7→ ω(u, ·)

is an isomorphism, hence we find u0 ∈ V such that ξ(v) = ω(u0, v) for all v ∈ V .
We have to show that u0 ∈ L. Assume this is not the case. But then

L′ := L+ Ru0

will be larger than L and still isotropic: indeed, since ξ|L = 0, we also have
ω(u0, u) = 0 for all u ∈ L. Hence the desired contradiction.

Proposition 1.18. Given (V, ω) and L ⊂ V Lagrangian:

1. L admits a Lagrangian complement, i.e. L′ ⊂ V Lagrangian with

V = L⊕ L′.

2. for any Lagrangian complement L′, one has a linear isomorhism

Φ : L′ → L∗, Φ(l)(l′) = ω(l, l′).

13



3. The resulting linear isomorhism V ∼= L ⊕ L∗ is an isomorphism between
(V, ω) and (L⊕ L∗, ωL), where

ωL((l, ξ), (l′, ξ′)) = ξ(l′)− ξ′(l)).

(for (l, ξ), (l′, ξ′) ∈ VL)

Note that the very last part tells us that (V, ω) is determined, up to iso-
morphism, by the bare vector space L (indeed, no extra-structure is needed to
define ωL). This provides “the local model”. It is now easy to see that, for
L = Rk one recovers, after the identifications

Rk ⊕ (Rk)∗ ∼= Rk ⊕ Rk ∼= R2k,

the local model (R2k, ωcan).

Proof. Start with any complement C of L in V (Lagrangian or not), with cor-
responding projection pC : V → C. Then, for any c ∈ C, the map

v 7→ 1

2
ω(c,prC(v))

vanishes on L (because prC does) hence, using that ΦL is an isomorphism, this
map is of type ω(lc, ·) for some lc ∈ L. In particular,

ω(lc, c
′) =

1

2
ω(c, c′) ∀ c′ ∈ C.

Replace now C by
L′ := {c− lc : c ∈ C}.

We claim that L′ is the Lagrangian complement we were looking for. Indeed,
using the last equation and the fact that lc ∈ L, which is Lagrangian, we get
for any two elements c− lc, c′ − lc′ ∈ L′

ω(c− lc, c′ − lc′) = ω(c, c′)− ω(lc, c
′) + ω(lc′ , c) + ω(lc, lc′)

= ω(c, c′)− 1

2
ω(c, c′) +

1

2
ω(c′, c)

= 0

Moreover, V = L⊕ C implies V = L⊕ L′. This proves the first part.
Assume now that L′ is an arbitrary Lagrangian complement. Note that Φ

is precisely ΦL′ after the identification V/L′ ∼= L. We deal with the resulting
sequence of isomorhisms:

V = L⊕ L′ ∼= L⊕ (V/L′)∗ ∼= L⊕ L∗.

For v ∈ V , denote by (lv, ξv) the resulting element in L ⊕ L∗. Going through
the maps involved, we find the characterization:

ξv ◦ prL(·) = ω(v − lv, ·).

For v, w ∈ L, compute now

ω(v, w)− ωL((lv, ξv), (lw, ξw))

14



(we have to prove it is zero). Applying the definition of ωL and the fact that
ξv(lw) = ω(v, lw) we find

ω(v, w)− ω(v − lv, lw) + ω(w − lw, lv).

For the middle term, using ω(lv, lw) = 0 (L is isotropic), we find

ω(v, w)− ω(v, lw) + ω(w − lw, lv)

hence we find

ω(v, w − lw) + ω(w − lw, lv) = ω(v − lv, w − lw)

where we have also used the antisymmetry of ω. Since v − lv ∈ L′ for all v and
L′ is isotropic, the last expression is indeed zero.

Exercise 1.19. As before, state and prove the analogue of Proposition 1.4 in
this context. Try to do it coordinate/formula free (e.g. do not us the previ-
ous explicit matrix description of Spk(R), but the direct definition- as linear
isomorphism preserving ωcan.

Remark 1.20 (from symplectic forms to volume elements). Any (linear) sym-
plectic form ω on V induces (canonical- i.e. without any further choices) a
volume element

µω := ωk = ω ∧ . . . ∧ ω︸ ︷︷ ︸
ktimes

∈ ΛnV ∗.

This is related to the fact that

Spk(R) ⊂ SL2k(R).

1.9 Hermitian structures

Let’s now briefly mention Hermitian structures (which can be thought of as
analogues of metrics on complex vector spaces). First of all, given a complex
vector space W (we reserve the letter V for real spaces), a Hermitian metric on
W is an R-bilinear map

h : W ×W → C

which is C-linear in the first argument (and then, because of the next axiom,
C-antilinear in the second), satisfies the conjugates symmetry

h(w2, w1) = h(w1, w2) ∀ w1, w2 ∈W

ans h(w,w) ≥ 0 for all w ∈W with equality only for w = 0.

Given a real vector space V , a hermitian structure on V is a pair (J, h)
consisting of a complex structure J on V and a Hermitian metric on the resulting
complex vector space VJ ,

h : V × V → C.

The main remark we want to make here is that such pairs can be unravelled
and thought of in several equivalent ways. Here is the summary:
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Lemma 1.21. Given a real vector space V , there is a 1-1 correspondence be-
tween

1. Hermitian structures (h, J) on V .

2. pairs (J, g) consisting of a complex structure J and a metric g on V sat-
isfying

g(Ju, Jv) = g(u, v) ∀ u, v ∈ V,

3. pairs (J, ω) consisting of a complex structure J and a symplectic structure
ω on V , satisfying

ω(Ju, Jv) = ω(u, v) ∀ u, v ∈ V,

and such that
ω(u, Ju) > 0 ∀ u ∈ V \ {0}.

The defining relations between them are:

h(u, v) = g(u, v)− iω(u, v), ω(u, v) = g(Ju, v), g(u, v) = −ω(Ju, v).

Note that, using J2 = −Id, the equations in the statement can be written
in the equivalent forms

g(Ju, v) = −g(u, Jv) ∀ u, v ∈ V,

ω(u, Jv) = −ω(Ju, v) ∀ u, v ∈ V.

Proof. The key remark is that, writing

h(u, v) = g(u, v)− iω(u, v)

(where, priory, g and ω are just R-bilinear):

• the conjugated symmetry for h is equivalent to the fact that g is symmetric
and ω is antisymmetric,

• the C-linearity of h in the first argument of h is equivalent to

h(Ju, v) = ih(u, v)

and then to the two very last equations in the statement.

• the non-degeneracy of h is equivalent to that of g as a real bilinear form.

The rest is simple manipulations with these identities.

Finally, there is some terminology that comes out of this lemma:

Definition 1.22. Given a vector space V , a complex structure J on V and
a symplectic structure ω on V , one says that J is ω-compatible if 3. of the
previous proposition is satisfied.

This terminology reflects the key idea for relating symplectic and complex
structures- actually, on how to use complex structures in the study of symplectic
ones. It is interesting to know that, for any symplectic ω, one can choose a ω-
compatible J .
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Exercise 1.23. Let (V, ω) be a symplectic vector space and fix a Lagrangian
sub-space L ⊂ V . Show that, fixing a metric g on V , there is a canonical way
of constructing an ω-compatible complex structure J on V (“canonical” means
that no extra-choices are necessary).

(Hint: first look at the proof of Prop 1.18, where you use as complement of
L the orthogonal with respect to g. Then identify V with L⊕L where you use
again the metric. On the later use J(u, v) = (v,−u)).

1.10 General linear G-structures

It is now clear that all the previous examples fit in a general framework.

Definition 1.24. Let G be a subgroup of GLn(R).

A linear G-structure on an n-dimensional vector space V is a subset

S ⊂ Fr(V )

satisfying the axioms:

A1: S is G-invariant, i.e.: φ ∈ S, A ∈ G =⇒ φ ·A ∈ S.

A2: if φ, φ′ ∈ S then [φ : φ′] ∈ G (for notation, see subsection 1.1).

Definition 1.25. Let S and S ′ be G-structures on V and V ′, respectively. An
isomorphism between them is a linear map isomorphism A : V → V ′ such that,
for any frame φ of V , one has:

A(φ) ∈ S ′ ⇐⇒ φ ∈ S.

(where, for φ = (φ1, . . . , φn), A(φ) := (A(φ1), . . . , A(φn))).

Note that, for any G ⊂ GLn, one has the ”standard G-structure“

Scan
G ,

on Rn, consisting of those frames φ = (φ1, . . . , φn) of Rn which, when interpreted
as a matrix (in which each row contains the components of φi with respect to
the standard basis), belong to G.

Exercise 1.26. For a linear G-structure S on V check that a frame φ ∈ Fr(V )

belongs to S if and only if φ̂ is an isomorphism from (Rn,Scan
G ) to (V,S).

Note that one can generalize also Exercise 1.6 to this context; actually, due
to the generality of our discussion, the proof becomes almost tautological (so,
better think about the proof yourself than reading it).

Proposition 1.27. Given an n-dimensional vector space V and G ⊂ GLn(R),
there is a 1-1 correspondence between

• G-structures on V .

• elements of Fr(V )/G.
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Proof. Given S ⊂ Fr(V ) a G-structure, axiom (A2) implies that any two el-
ements φ, φ′ ∈ S induces the same element in Fr(V )/G; hence one obtains a
well-defined element

uS ∈ Fr(V )/G.

Conversely, given an element u, one just defines

Su := {φ ∈ Fr(V ) : u = φ modulo G}.

Note in particular that, when applied to V = Rn, due to the identification of
Fr(Rn) with GLn(R), we find that the set of G-structures on Rn is (in natural
bijection with) GLn(R)/G, the quotient modulo the action of G on GLn(Rn)
by right multiplication of matrices.

Example 1.28. The examples that we discussed show that choosing an O(n)-
structure on V is the same thing as choosing an inner product on V , an GL+

n -
structure is an orientation, an SLn(R)-structure is a volume form, etc etc.

Example 1.29. [e-structures] One case which looks pretty trivial in this linear
discussion but which becomes important when we pass to manifolds is the case
when G is the trivial group

G = {I} ⊂ GLn(R).

In this case one talks about e-structures (“e” refers to the fact that G is trivial-
fact that is often written as G = {e} with e denoting the unit). Note that the
subset

S ⊂ Fr(V )

encoding an e-structure has one element only. Hence an e-structure on V is the
same thing as the a frame φ of V .

Example 1.30 (G-structures associated to tensors). At the other extreme,
many of the previous examples fit into a general type of structure: associated
to various tensors. More precisely:

• for inner products, we deal with elements g ∈ S2V ∗.

• for volume elements, we deal with µ ∈ ΛnV ∗.

• for symplectic forms, we deal with ω ∈ Λ2V ∗.

• for complex structures, we deal with J ∈ V ∗ ⊗ V .

The fact that these elements were of the type we were interested in (positive def-
inite for g, non-degenerate for ω, non-zero for µ, satisfying J2 = −Id) came from
the fact that the standard models had these properties (actually, were deter-
mined by them, up to isomorphisms). The above examples can be generalized.
In principle we can start with any

t0 := any canonical “tensor” on Rn.

To such a tensor we can associate a group G(t0) of linear isomorphisms, which
preserve t0, i.e.

G(t0) := {A ∈ GLn(Rn) : A∗t0 = t0}.
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Then a G(t0)-structure on a vector space V corresponds to a tensor t on V , of
the same type as the original t0, with the property that (V, t) is isomorphic to
(Rn, t0).

Example 1.31. As a general construction that puts together Remark 1.10 and
1.20 note that for subgroups

H ⊂ G ⊂ GLn(R),

any H-structure S on a vector space V induces a G-structure SG on V . Here:

SG := {φ ·A : φ ∈ S, A ∈ G}.

Equivalently, one can use the point of view given by Proposition 1.27 and use
the canonical projections

Fr(V )/H → Fr(V )/G.

Particular cases of this are:

1. Remark 1.10: a volume element on V induces an orientation on V ; this
comes from SLn(R) ⊂ GL+

n .

2. Remark 1.20: a symplectic form induces a volume element; this comes
from Spk(R) ⊂ SL2k(R).

3. Remark Remark 1.14: a complex structure induces an orientation; this
comes from GLk(C) ⊂ GL+

2k.
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2 G-structures on manifolds by examples

2.1 G-structures on manifolds

To discuss G-structures on manifolds it is rather natural to proceed like in the
previous section and start with the examples. However, the exposition/terminology
is simpler/clearer if we start with the general theory first. However, one should
always have an eye on the examples.

So, let us fix a closed subgroup

G ⊂ GLn(R)

and we will discuss G-structures on n-dimensional manifolds M . The idea is to
consider G-structures on all the tangent space TxM for x ∈ M , so that ”they
vary smoothly with respect to x”. More precisely:

Definition 2.1. A G-structure on an n-dimensional manifold M consists of a
collection

S = {Sx : x ∈M}
of linear G-structures, Sx on TxM (one for each x ∈M), satisfying the following
smoothness condition: for any x0 ∈M and any

φ = (φ1, . . . , φn) ∈ Sx0 ,

there exist vector fields X1, . . . , Xn defined on some open neighborhood U of x0

such that
Xi(x0) = φi, (X1(x), . . . , Xn(x)) ∈ Sx ∀ x ∈ U.

Remark 2.2 (the frame bundle). As for the tangent (and cotangent) bundle,
one can define the frame bundle Fr(M) of a manifold M by considering the
disjoint union of all the frame bundles of the tangent spaces TxM :

Fr(M) := {(x, φx) : x ∈M,φx ∈ Fr(TxM)}.

It comes with an obvious projection

p : Fr(M)→M, (x, φx) 7→ x.

Moreover (and still as for the tangent bundle), Fr(M) can be naturally made
into a smooth manifold. Passing to G-structures, a G-structure can be viewed
as a sub-space:

S := ∪xSx ⊂ Fr(TxM) = Fr(M).

Moreover, the smoothness of S from the previous definition is equivalent to the
smoothness of S as a smooth submanifold of Fr(M) (this will become clearer
when we discuss principal bundles).

Remark 2.3 (global/local frames). One can talk about global frames on a
manifold M : they are maps φ:

M 3 x 7→ φ(x) = (φ1(x), . . . , φn(x)) ∈ Fr(TxM)

with the property that any of the components φi are smooth vector fields. Hence
a frame on M is a (ordered) collection

(φ1, . . . , φn)
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of vector fields on M with the property that

φ1(x), . . . , φn(x)

is a basis of TxM for all x ∈ M . Equivalently, a global frame is a (smooth)
section of the frame bundle Fr(M), i.e. a map

M 3 x 7→ φx ∈ Fr(TxM)

which is smooth as a map from M to TM (see the previous remark).
Global frames rarely exist on interesting manifolds. However, one can talk

about local frames- i.e. defined over some open U ⊂ M (we call them local
frames of M , defined over U). Given a G-structure S on M , we say that a local
frame φ of M (defined over some open U ⊂ M) is a local frame adapted to the
G-structure if

φ(x) ∈ Sx ∀ x ∈ U.

Important: When looking at geometric structures, one should think that giving
a G-structure as in the definition is the same thing as specifying which frames
are adapted to the structure (after all, if we know the adapted local frames,
then we also know the G-structure). With this, the smoothness condition on S
says that, for any pointwise frame φx ∈ Sx, there exist an adapted local frame
φ, defined on some open containing x, such that φ(x) = φx.

Inspired by the previous discussion on adapted frames, we have:

Definition 2.4. Given a G-structure S on M , a coordinate chart (U, χ) of M
is called adapted to the G-structure if the induced frame is adapted, i.e.:

(
∂

∂χ1
(x), . . . ,

∂

∂χn
(x)) ∈ Sx ∀ x ∈ U.

A G-structure is called integrable if around any point x ∈ M one can find an
adapted coordinate chart.

The notion of integrability is very much related to isomorphisms of G-
structures and the so-called equivalence problem (when are two G structures
locally equivalent?) applied to the original G-structure and the local model.
Here are the details. First of all, the notion of isomorphism of G-structure is
the natural one: any diffeomorphism f : M →M ′ induces linear isomorphism

(df)x : TxM → Tf(x)M
′

and then, at the level of frames,

f∗ : Fr(TxM)→ Fr(Tf(x)M
′)

(or, in terms of bundles: a bundle map f∗ : Fr(M)→ Fr(M ′) covering f).

Definition 2.5. Given two G-structures, S on M and S ′ on M
′
, an isomor-

phism between them is any diffeomorphism f : M →M ′ with the property that

f∗(Sx) = Sf(x) ∀ x ∈M.
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Next, given G, there is a “standard G-structure” Scan
G on Rn. Indeed, each

of the spaces TxRn is canonically isomorphic to Rn (using the standard basis
∂/∂xi) and then one just uses the standard linear G-structure on Rn. Equiv-
alently, the frames of Rn that are adapted to Scan

G are precisely those of type
φ = (φ1, . . . , φn),

φi(x) =
∑

gi,j(x)
∂

∂xj
(x)

where all the matrices (gi,j(x))i,j belong to G.

Proposition 2.6. A G-structure S on M is integrable if and only if (M,S) is
locally isomorphic to (Rn,Scan

G ).

Proof. tautological.

2.2 G = {e}: frames and coframes

Let us briefly look at the extreme case when G is the trivial group. In that case
we talk about e-structures (see also Example 1.29). We see that an e-structure
on a manifold M is simply a global frame

φ = (φ1, . . . , φn)

on M . The local model is, of course, Rn with the standard global frame
∂
∂x1

, . . . , ∂
∂x1

. An isomorphism between two manifolds endowed with global
frames, (M,φ) and (M,φ′), is any diffeomorphism f : M → M ′ with the prop-
erty that

(df)x(φi(x)) = φ
′

i(f(x)) ∀ c ∈M.

The integrability of (M,φ) (when interpreted as an e-structure) means that:
around any point x ∈M one can find a coordinate chart (U, χ) such that

φi =
∂

∂χi

for all i. The integrability of a coframe can be characterized in terms of the
“structure functions” of the coframes, which are the smooth functions cki,j that
arise as the coefficients with respect to the frame φ of the Lie brackets of the
vectors of φ:

[φi, φj ] =
∑
k

cki,jφk.

Theorem 2.7. A frame φ is integrable if and only if its structure functions
vanish identically.

Proof. The condition is [φi, φj ] = 0 for all i and j; this is clearly a local condition
and is satisfied by the local model, so it is necessary in order to have integrability.
For the sufficiency, we use the flows Φti of the vector fields φi. The condition
we have implies that each two of them commute. Let x0 ∈M be arbitrary and
consider

F : Rn →M, F (t1, . . . , tn) = Φt11 ◦ . . .Φtnn (x0);

strictly speaking, this is defined on an open neighborhood of 0 ∈ Rn (correspond-
ing to the domains of the flows). Clearly F (0) = x0. Computing the partial
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derivatives of F at an arbitrary point x ∈ M we find the vectors φi(F (x)). In
particular, by the inverse function theorem, F is a local diffeomorphism from
an open containing 0 to an open containing x0; this defines the desired local
chart.

There is one more comment we would like to make here: very often one
prefers to work with differential forms instead of vector fields. In particular,
one prefers to work with coframes instead of frames, i.e. with a family of 1-
forms:

θ = (θ1, . . . , θn)

which, at each x ∈ M , induces a basis of T ∗xM . Of course, the two points of
view are equivalent, as one has a 1-1 correspondence φ ←→ θ between frames
and coframes given by the usual duality

θi(φj) = δi,j .

However, when one goes deeper into the theory, the parallelism between the two
points of view becomes a bit less obvious. One thing to keep in mind is that the
role played by the Lie derivatives of vector fields, in the dual picture of forms, is
taken by the DeRham differential. For instance, for a coframe θ, the resulting
structure functions are characterized by

dθk =
∑
i<j

cki,jθ
i ∧ θj .

Exercise 2.8. Prove that, indeed, given a frame φ and the induced coframe
θ, the structure functions of φ satisfies the previous equation.

Of course, in the dual picture, the local model is (Rn, dx1, . . . , dxn), the
integrability of (M, θ) is about writing (locally) θi = dχi and the previous
proposition say that this is possible if and only if all the 1-forms are closed.

Exercise 2.9. Give now another proof of the previous proposition, using the
fact that, locally, all closed 1-forms are exact.

For the curious reader. As we have already mentioned, it is vary rarely that interesting manifolds
admit e-structure (global frames). Manifolds that do are called parallelizable. The situation is
interesting even for the spheres. You should first do the following:

Exercise 2.10. Show that S1 is parallelizable. Then do the same for S3 (try to use the quater-
nionic numbers for this one).

Let us discuss the spheres in a bit more detail. Note that, the question of whether Sn is
parallelizable can be rewritten in very down to earth terms: one is looking for n+ 1 functions

F
1
, . . . , F

n → Rn+1

with the property that, for each x ∈ Sn ⊂ Rn+1, vectors F 1(x), . . . , Fn(x) are linearly independent
and take value in the hyperplane Px orthogonal to x:

F
i
(x) ∈ Px := {v ∈ Rn+1

: 〈v, x〉 = 0}.

This comes from the standard identification of the tangent spaces TxS
n with Px ⊂ Rn+1. In the

case n = 1 one can take
F

1
(x1, x2) = (x2,−x1)

or, interpreting R2 as C ((x1, x2) 7→ x1 + ix2),

F
1
(z) = iz.
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It works quite similarly for S3, but using quaternions (previous exercise). The 2-sphere however
is not parallelizable. Actually, on S2 any vector field must vanish at at least one point. This is
popularly known as the “hairy ball theorem”, and stated as: “you can’t comb a hairy ball flat with-
out creating a cowlick”(see also the “Cyclone consequences” on the wikipedia). The mathematical
reason that S2 is not parallelizable (and actually that it does not admit any no-where vanishing
vector field) is that its “Euler characteristic” does not vanish. Actually, a nice (but non-trivial)
theorem in differential topology says that the Euler characteristic of a compact manifold vanishes
if and only if it admits a no-where vanishing vector field. By the way, for the same reason, all the
even dimensional spheres S2n are not parallelizable.

Are the other (odd dimensional) spheres parallelizable? Yes: there is also S7. This uses
octonions (also called the Cayley algebra) instead of quaternions (S3) and complex numbers (S1).
How general is this? In what dimensions does it work? Looking at the proofs (e.g. for S1 and S3)

we see that what we need is a “normed division algebra” structure on Rn+1 (in order to handle the

n-sphere Sn). By that we mean a multiplication “·” on Rn+1, with unit element 1 := (1, 0, . . . , 0)
(but not necessarily associative- as in the case of the octonions) and satisfying the norm condition

|x · y| = |x||y| ∀ x, y ∈ Rn+1
,

where | · | is the standard norm. The term “division algebra” comes from the fact that the norm
condition implies that the product has the “division property”: xy = 0 implies that either x = 0
or y = 0 (if we keep this condition, but we give up on the norm condition, we talk about division
algebras). Indeed, any such operation induces

F
i
(x) = ei · x

proving that Sn is parallelizable. But on which Rn+1 do there exist such operations? Well: only on
R, R2 (complex), R4 (quaternions) and R8 (octonions)! This was known since the 19th century. It
is also interesting to know why was there interest on such operations already in the 19th century:
number theory and the question of which numbers can be written as sums of two, three, etc squares.
For sum of two squares, the central formula which shows that a product of two numbers that can
be written as a sum of two squares can itself be written as a sum of two squares is:

(x
2

+ y
2
)(a

2
+ b

2
) = (xa− yb)2

+ (xb+ ya)
2
.

Or, in terms of the complex numbers z1 = x+ iy, z2 = aib:

|z1z2| = |z1||z2|.

The search for similar “magic formulas” for sum of three squares never worked, but it did for four:

(x
2

+ y
2

+ z
2

+ t
2
)(a

2
+ b

2
+ c

2
+ d

2
) =

(xa+ yb+ zc+ td)
2

+ (xb− ya− zd+ tc)
2
+

+(xc+ yd− za− tb)2
+ (xd− yc+ zb− ta)

2
.

This is governed by the quaternions and its norm equation.
Any way, returning to the spheres, we see that the trick with the multiplication can only work

for S1, S3 and S7. And, indeed, one can prove that there are the only parallelizable spheres! Well,
S0 as well if you insist. The proof is highly non-trivial and makes use of the machinery of Algebraic
Topology.

There are a few more things that are worth mentioning here. One is that probably the largest
class of manifolds that are automatically parallelizable (because of their structure) are the Lie groups
(see also later); this applies in particular to the closed subgroups of GLn. This is one of the reasons
that S1 and S3 are parallelizable. The circle is clearly a Lie group (with complex multiplication),
which can be identified with the rotation group{(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)}
⊂ GL2(R).

The fact that S3 can be made into a Lie group follows by characterizing S3 as the set of unit
quaternionic vectors (i.e. similar to S1, but by using quaternions instead of complex numbers).
The similar argument for S7 (but using octonions instead of quaternions) does not work because
the multiplication of octonions is not associative (to ensure that S7 is parallelizable, the division
property is enough, but for making it into a Lie group one would need associativity). Can other
spheres be made into Lie groups (besides S1 and S3)? No!

What else? Note that the negative answer in the case of even dimensional spheres - due to the
fact that such spheres do not even admit nowhere vanishing vector fields- comes with a very natural
question: ok, but, looking at Sn, which is the largest number of linearly independent vector fields
that it admits? Again, this is a simple but very non-trivial problem, whose solution (half way in the
20th century) requires again the machinery of Algebraic Topology. But here is the answer: write
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n + 1 = 24a+rm with m odd, a ≥ 0 integer, r ∈ {0, 1, 2, 3}. Then the maximal number of linearly
independent vector fields on Sn is

r(n) = 8a+ 2
r − 1.

Note that r(n) = 0 if n is even (no nowhere vanishing vector fields on the even dimensional spheres),

while the parallelizability of Sn is equivalent to r(n) = n, i.e. 8a + 2r = 24a+rm which is easily
seen to have the only solutions

m = 1, a = 0, r ∈ {0, 1, 2, 3}

giving n = 0, 2, 4, 8 hence again the spheres S0, S1, S3 and S7.

Exercise 2.11. Show that S2 × S1 is parallelizable.

2.3 G = GL+
n : orientations

Here we briefly discuss the case G = GL+
n (orientations). An orientation on a

manifold M consists of a collection

O = {Ox : x ∈M}

of orientations on the tangent spaces TxM which vary smoothly with respect to x
in the following sense: for any x0 ∈M one can find a local frame φ of M defined
over some open U ⊂M containing x0, such that φx induces the orientation Ox
for all x ∈M . In other words, an orientation on M is an GL+

n -structure on M .
One says that a manifold is orientable if it admits an orientation.

Remark 2.12. We see that, from the point of view of G-structures, an isomor-
phism between two oriented manifolds (M,O) and (M ′,O′) is a diffeomorphism
f : M → M ′ with the property that (df)x : TxM → Tf(x)M

′ sends oriented
frames of M to oriented frames of M ′.

Proposition 2.13. Any orientation O on M , when interpreted as an GL+
n -

structure, is integrable. In other words, for any point x0 ∈ M , one can find a
coordinate chart (U, χ) around x0 such that, for any x ∈ U , the orientation Ox
on TxM is induced by the frame

∂

∂χ1
(x), . . . ,

∂

∂χn
(x).

Proof. We know we find a frame φ defined over some open U containing x0 such
that φx induces Ox for all x ∈ U . Choose a coordinate chart (U0, χ) defined over
some open U0 ⊂ U containing x0 which we may assume to be connected, such
that the corresponding frame at x0 induces the orientation Ox0 . For x ∈ U0, the
matrix A(x) of coordinate changes from the frame φx to the frame induced by
(U0, χ) at x, has the entries Ai,j(x) smooth with respect to x ∈ U0. Hence also
det(A) is smooth; the determinant is also non-zero, and we know it is strictly
positive at x0. Hence it is positive on the (connected) U0. This implies that the
frame induced by (U0, χ) at any x ∈ U0 induces the orientation Ox.

Note that the previous proposition shows that an orientation on M is de-
termined by the choice of an atlas A for the smooth structure of M with the
property that, for any (U, χ), (U ′, χ′) in M , the change of coordinates

cχ,χ′ := χ′ ◦ χ−1

(function between opens in Rn) has positive Jacobian at all points. Such atlases
are called oriented. Two oriented atlases A and A′ are called oriented equivalent
if A ∪A′ is an oriented atlas. We see that:
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• a manifold M is orientable if and only if it admits an oriented atlas.

• the choice of an orientation is equivalent to the choice of an equivalence
class of an oriented atlas.

Exercise 2.14. Do the same for arbitrary subgroups G ⊂ GLn(R). More
precisely:

• define the notion of G-atlas and equivalence of G-atlases.

• explain how a G-atlas induces a G-structure and show that two different
G-atlases induce the same G-structure if and only if they are equivalent.

• show that a G-structure comes from a G-atlas if and only if it is integrable.

Conclusion: the choice of an integrable G-structure is equivalent to the choice
of an equivalence class of G-atlases (or to the choice of a maximal G-atlas).

Exercise 2.15. Exhibit an oriented atlas for the sphere Sn.

Of course, exhibiting oriented atlases is not quite the (practical) way to
obtain orientations. Here is a general procedure (that works e.g. for Sn):

Exercise 2.16. A unit normal vector field on a hypersurface (or codimension
one submanifold) S in Rn is a smooth map n : S → Rn with the property that
n(x) ⊥ TxS and ‖n(x)‖ = 1 for all x ∈ S.

1. Prove that S is orientable if and only if S admits a unit normal vector
field.

2. Let U be open in Rn and Φ : U → R be a smooth function. Let c be a
regular value of Φ. Then the manifold Φ−1(c) has a unit normal vector
field and is therefore orientable.

For the curious reader. Do all manifolds admit an orientation? The answer is: no. However,
most of them do.

It should be clear that any parallelizable manifold is also orientable. As pointed out in the
previous exercises, the spheres are orientable. Actually, so are all the simply connected manifolds
(i.e. for which the first fundamental group vanishes). What would be the non-orientable examples
then? Well, probably the simplest/nicest are the even-dimensional (real) projective spaces P2n. The
complex projective spaces however (as any complex manifold- see also below) are orientable.

And, there is a simple trick to replace a non-orientable manifold M by one which is orientable,
denoted M̃ , and which covers M via a projection

p : M̃ →M

which is a 2-cover (each fiber consists of two points). Explicitly,

M̃ = {(x,Ox) : x ∈M,Ox − orientation on TxM}, p(x,Ox) = x.

(I let you guess the smooth structure on M̃). For instance: which are the oriented covers of the
(non-orientable) projective spaces P2n ? (yes, it is the spheres S2n).

Remark 2.17 (integration). One of the main uses of orientations comes from the fact that, once
an orientation is fixed on a manifold M , one can integrate n-forms with compact supports, i.e. there
is an associated integration map ∫

M

: Ω
n
cpt(M)→ R,

where, as above, n is the dimension of M and subscript c denotes “compact supports” (i.e. forms
that vanish outside a compact). Here are some details. To understand why n-forms (and not
functions) and how the orientation is relevant, let us start with an n-form ω which is supported
inside the domain of a coordinate chart

χ : U
∼→ Ω ⊂ Rn.
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Using the basis induced by the coordinate chart for the tangent spaces TxM , and then for ΛnT∗xM ,
we see we can write, on U :

ω = fχ ◦ χ(dχ1) ∧ . . . ∧ (dχn)

for some smooth function fχ : Ω→ R (with compact supports). Of course, we would like to use the
standard integration of functions on (opens in) Rn and define∫

M

ω =

∫
U

ω :=

∫
Ω

fχ(x1, . . . , xn)dx1 . . . dxn.

The question is: doesn’t this depend on the choice of the coordinate chart on U? Of course, this
should be related to the change of variable formulas for the standard integration: if h : Ω′ → Ω is
a diffeomorphism between two opens in Rn then, for any f ∈ C∞c (Ω),∫

Ω′
|Jac(h)|f ◦ h =

∫
Ω

f,

where |Jac(h)| is the absolute value of the Jacobian of h.
So, let’s assume that

χ
′

: U → Ω
′

is another coordinate chart. Then we obtain another function fχ′ on Ω′ and the question is whether
its integral coincides with that of χ. The relationship between the two functions can be expressed
in terms of the coordinate change

h = χ ◦ (χ
′
)
−1

: Ω
′ → Ω.

More precisely, writing

(dχi)x =
∑
j

∂hi

∂xj
(χ
′
(x))(dχ

′
j)x,

we find that fχ′ = Jac(h)fχ ◦ h. Hence we are almost there: if the Jacobian of h was everywhere

positive then, by the standard change of variable formula,
∫
Ω
fχ =

∫
Ω′ fχ′ hence

∫
M
ω will be

defined unambiguously. This is where the fixed orientation comes in: it allows us to talk about,
and work only with, positive charts; and, for two such charts, the change of coordinates h will have
positive Jacobian!

This explains how
∫
M
ω is defined if ω is supported inside a coordinate chart. Now, for an

arbitrary ω ∈ Ωncpt(M) one uses a partition of unity to decompose ω as a finite sum

ω = ω1 + . . .+ ωk

where each ωi is supported inside some coordinate chart (with compact support there). Define then∫
M

ω =

∫
M

ω1 + . . .+

∫
M

ωk.

Again, this does not depend on the way we decompose ω as a sum as before; this follows basically
from the additivity of the usual integral.

Note also the reason that we work with forms (and, e.g., not with functions): locally they
are represented by functions fχ (that we can integrate) and the way these functions change when
we change the coordinates is compatible with the change of variables formula for the standard
integration. We only had the “small problem” that the Jacobians had to be positive- which was
fixed by the orientation. One can wonder here: ok, but can’t one work with something else instead
of forms, so that even the “small problem” disappears, so that the integration is defined even on
non-orientable manifolds? The answer is yes: use “densities”. We do not give further details here,
but let us only mention that they are very similar to top forms: they are represented locally by
functions fχ and the formula when changing the coordinates is precisely the one coming from the
change of variable formula (so that the integration can be defined without further complications).
Of course, the choice of an orientation on M induces an identification between the space of densities
and the one of n-forms, and then the resulting integration is the one we discussed.

Remark 2.18 (relationship with cohomology). Let (M,O) be a compact n-dimensional oriented
manifold, so that the integration ∫

M

: Ω
n

(M)→ R

is well-defined. Then the Stokes formula implies that the integral vanishes on all exact forms (forms
of type dθ). Interesting enough (and not completely trivial) is the fact that also the converse is true
if M is connected: if the integral of an n-form vanishes, then it must be exact.

This discussion fits very well with DeRham cohomology. Since dω = 0 for all n-forms ω (just
because any form of degree strictly larger than the dimension of the manifold vanishes), the Stokes
argument tells us that the integral descends to a linear map∫

M

: H
n

(M)→ R,
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while the previous comment tells us that, if M is also connected, then the last map is injective
(hence Hn(M) is either zero or isomorphic to R). This is an indication of the following charac-
terization for orientability: a compact connected manifold is orientable if and only if Hn(M) is
isomorphic to R (see also the similar discussion on volume forms).

This discussion may be viewed as the starting point of an important tool of Algebraic/Differential
Topology: Poincare duality. Given the compact, connected, orientedM then for any k ∈ {0, 1, . . . , n},
using the wedge product of forms, passing to cohomology and then using the integration gives a
pairing

H
k
(M)×Hn−k(M)→ R, ([ω], [η]) 7→

∫
M

ω ∧ η.

One version of the Poincare duality says that this pairing is perfect (“non-degenerate”). From this
it follows for instance that, for odd dimensional M , its Euler characteristic is zero. The previous
pairing is an important tool in the study of manifolds. For instance, for 4-dimensional manifolds,
choosing k = 2, one obtains a non-degenerate bilinear form on H2(M)- an algebraic invariant that
tells us a lot about M . But, again, we are moving to other territories here ...

2.4 Volume forms

We are again very brief. A volume form on a manifold M consists of a collection

µ = {µx : x ∈M}

of linear volume elements on the tangent spaces TxM varying smoothly with
respect to x, in the sense that for any vector fields X1, . . . , Xn on M ,

µ(X1, . . . , Xn) : M → R

is smooth. Equivalently
µ ∈ Ωn(M)

is a differential form of top degree which does not vanish at any point x ∈ M .
In other words, a volume element on M is an SLn(R)-structure on M . In
particular, the local model is Rn together with

µcan = (dx1) ∧ . . . ∧ (dxn).

Remark 2.19. We see that, from the point of view of G-structures, an isomor-
phism between two manifolds endowed with volume forms, (M,µ) and (M ′, µ′)
is a diffeomorphism f : M →M ′ with the property that f∗(µ) = µ′. These are
called volume preserving diffeomorphisms.

Proposition 2.20. Any volume form µ on a manifold M , when interpreted as
a SLn(R)-structure, is integrable. In other words, around any x ∈ M , one can
find a coordinate chart (U, χ) such that, on U ,

µ = dχ1 ∧ . . . ∧ dχn.

Proof. Start with an arbitrary chart (U, χ) around x. Writing µ in the resulting
coordinates, it looks like

µ = fdχ1 ∧ . . . ∧ dχn

for some smooth function f on U . Then just choose any function χ
′

1 near x
such that ∂χ

′

1/∂χ1 = f and replace the old coordinates by (χ′1, χ2, . . . , χn).

Note that the linear story implies that the choice of a volume form on M
determines the choice of an orientation on M . Actually more is true when it
comes to the existence question:
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Exercise 2.21. Show that a manifold M admits a volume form if and only if
it is orientable. (Hint: time to exercise a bit with partitions of unity!)
For the curious reader. By the previous exercise, the question of existence of volume forms
brings nothing new (see however below).

One of the main uses of volume forms comes from the fact that, once we fix a volume form µ
on a manifold M , one can integrate compactly supported smooth functions, i.e. there is an induced
integration map: ∫

M

: C
∞
cpt(M)→ R.

This goes via the integration of n-forms (see the previous subsection) and the fact that µ induces
an orientation on M and an isomorphism

C
∞

(M)
∼→ Ω

n
(M), f 7→ fµ.

In other words, the integral of a function M is defined as the integral of the n-form fµ (associated
to the orientation induced by µ).

In particular, the choice of a volume form allows us to talk about the volume of M :

Volµ(M) :=

∫
M

1

(where 1 is the constant function equal to 1). It is remarkable that this is invariant characterizes µ
uniquely up to isomorphism:

Theorem 2.22. [Moser] If µ and µ′ are two volume elements on a compact manifold M then
the following are equivalent:

1. there exists a diffeomorphism h : M →M such that µ′ = h∗µ.

2. Volµ(M) = Volµ′ (M).

Proof. For the direct implication, note that the integration is invariant under oriented diffeomor-
phisms (...). Let’s concentrate on the other, more difficult, implication. If you did the previous
exercise, you noticed that an affine combinations of volume forms is a volume form. Hence for any
t ∈ [0, 1],

µt := tµ+ (1− t)µ′

is a volume form, and it is not difficult to see that it induces the same orientation as µ. Since∫
M
µ =

∫
M
µ′ it follows (see the relationship of integration with DeRham cohomology) that µ− µ′

is exact. We conclude that there exists a form η ∈ Ωn−1(M) such that

dµt

dt
= µ− µ′ = dη

for all t. Moreover, since µt is a volume form, it is not difficult to see that the operation

X (M)→ Ω
n−1

(M), X 7→ iX(ηt)

is an isomorphism (think first what happens for vector spaces) hence we find a vector field Xt such
that

iXt (µt) = −η.
All together, {Xt : t ∈ [0, 1]} form a smooth family of vector fields on M (time dependent vector
field). Finally, consider the flow of this family, which can be seen as a family of diffeomorphisms

ϕ
t

: M →M.

Using the basic properties of flows, one computes:

d

dt
ϕ
∗
tµt = ϕ

∗
t (LXt (µt) + µ̇t) = . . . = 0,

hence ϕ∗tµt is constant with respect to t. In particular ϕ∗1µ1 = µ0, i.e. ϕ∗1µ = µ′.

Remark 2.23 (more on the relationship with integration). Note that, since the integral of a
volume form is always strictly positive, the resulting integration map∫

M

: H
n

(M)→ R

is non-zero. Combining with the similar discussion from the orientability subsection, we deduce
that : for an n-dimensional compact connected manifold, the following are equivalent:

• M is orientable.

• M admits a volume form.

• Hn(M) 6= 0.

• Hn(M) is isomorphic to R.
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2.5 Foliations

The story gets more interesting now. A p-dimensional distribution of a manifold
M is a collection

F = {Fx : x ∈M}

of p-dimensional subspaces Fx of TxM which vary smoothly with respect to x
in the sense that, for any x0 ∈ M one can find a local frame φ defined over
some neighborhood of x0 such that {φ1(x), . . . , φp(x)} is a frame for Fx for all
x ∈ U . In terms of vector bundles (to be done in more detail later), we are
talking abouts p-dimensional (smooth) vector sub-bundles

F ⊂ TM.

Again, it should be clear that we are now talking about GL(p, n− p)-structures
on M (see also subsection 1.5). What about integrability? In what follows, we
will denote by Γ(F) the space of (smooth) sections of F , i.e. of vector fields X
on M with the property that Xx ∈ Fx for all x ∈M .

Definition 2.24. A distribution F ⊂ TM is called involutive if:

[X,Y ] ∈ Γ(F) ∀ X,Y ∈ Γ(F).

A (p-dimensional) foliation on M is an (p-dimensional) distribution that is
involutive.

Note that the local model is involutive. It is Rn with the distribution Fcan

given by

Fcan,x = Span{ ∂

∂x1
(x), . . . ,

∂

∂xp
(x)}.

Theorem 2.25 (Frobenius). For a p-dimensional distribution F on a manifold
M , the following are equivalent:

1. F is involutive.

2. F , interpreted as an GL(p, n − p)-structures, is integrable. Equivalently,
for any x0 ∈M one finds a coordinate chart

(U, χ) = (U, χ1, . . . , χp, χp+1, . . . , χn)

around x0 such that

Fx = Span{ ∂

∂χ1
(x), . . . ,

∂

∂χp
(x)} ∀ x ∈ U.

Proof. (rather sketchy, but with all the main ingredients) The reverse direction
should be clear since the bracket of two vector fields of type ∂/∂χi is zero. Let
us prove the direct implication. Fix x0 ∈M and fix any coordinate chart (U, χ)
around x0. After eventually renumbering the coordinates, we may assume:

TxM = Fx ⊕ SpanR{
∂

∂χp+1
(x), . . . ,

∂

∂χn
(x)}

for all x in a neighborhood W ⊂ U of x0 (note: for dimensional reasons the
sum is any way direct; then, by assuming the previous equation to hold at x0,
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it follows by a continuity argument that it holds in a neighborhood W of x0).
We may assume that W is some small ball. Consider the projection on the first
p coordinates:

π : W → Rp.

It follows that its differential restricted to F induces isomorphisms

(dπ)x : Fx
∼→ Tπ(x)Rp ∀ x ∈W.

Hence we find
V 1
x , . . . , V

p
x ∈ Fx (for x ∈W )

which are projectable (via (dπ)) to

∂

∂x1
(π(x)), . . . ,

∂

∂xp
(π(x)) ∈ Tπ(x)Rp.

Moreover, each V i is smooth w.r.t. x ∈ W (show this using the smoothness
of F !). Hence we obtain the vector fields V 1, . . . , V p defined on W , spanning
F and π-projectable to ∂/∂x1, . . ., ∂/∂xp. In general, the property of being
π-projectable is compatible with the Lie bracket (show that!) hence the Lie
brackets [V i, V j ] are π-projectable to

[
∂

∂xi
,
∂

∂xj
] = 0.

Since they also belong to F (the involutivity condition!), from the choice of W ,
it follows that [V i, V j ] = 0 for all i and j. Then, as in the proof of the similar
result for e-structures (Theorem 2.7), it follows that the flows of the vector fields
V i combine to give F which is a diffeomorphism from a neighborhood of 0 ∈ Rn
to W ; this provides the desired coordinates.

Remark 2.26 (more about foliations). A p-dimensional distribution F on M
specifies certain directions. It is natural to look at curves that follow the given
directions (as for flows of vector fields). Even better, one can look for integrals
of F , by which we mean submanifolds L ⊂M with the property that

TxL = Fx ∀ x ∈ L.

When is it true that through each point of M there passes an integral of F? Well
... precisely in the involutive (integrable) case. In one direction, it is clear that
the existence of integrals through each point implies involutivity, because for any
two vector fields X and Y tangent to a submanifold L, [X,Y ] remains tangent
to L. The Frobenius theorem implies the converse: around each x0, choosing
the coordinate chart as in the statement, we may assume that χ(x0) = 0 and
then

{x ∈M : χp+1(x) = . . . = χn(x) = 0}

is an integral of F through x.
However, the story does not stop here: like for flows of vector fields, when

one looks for maximal integral curves, one looks here for maximal integrals of F .
There are also called leaves of F . These are (immersed) submanifolds L ⊂ M
which are integrals of F and which are maximal with this property. Starting
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from Frobenius theorem and proceeding as for vector fields, we see that leaves
exist through each point, an the collection of all leaves of F gives a partition
of M . The Frobenius theorem says that this partition looks locally like the
partition

Rn =
⋃

y∈Rn−p
Rp × {y}.

Actually, that is precisely one should think of (and picture) a foliation: such a
partition which, locally, looks trivially (the bundle F is handy to encode and
work with the foliation). Foliation Theory study the intricate geometry of such
partitions.

Exercise 2.27. Let λ ∈ R and consider the foliation on the torus M = S1 → S1

given by

{ ∂

∂θ1
+ λ

∂

∂θ2
}.

How do the leaves of F look like?

For the curious reader. The question of existence of foliations of a given codimension (where
the codimension is the dimension of the ambient manifold minus the dimension of the foliation),
on a given compact manifold, is a very interesting (and hard) question. Actually, the very birth
of “Foliation Theory” is identified with the PhD thesis of George Reeb (1943), where he answered
the question of existence of codimension one foliations on S3. The answer was positive, and the
examples he found is well-known under the name of “the Reeb foliation”. It arises by first realizing
S3 as obtained from two copies of the solid torus S1 × D2 (think on the picture) by gluing them
along their boundary torus S1 × S1 (indicated on picture ??). into two solid tori.

In formulas, one thinks of the 3-sphere as

S
3

= {(u, v) : u, v ∈ C : |u|2 + |v|2 = 1},

one consider the copy of the 2-torus inside S3 given by

A = {(u, v) ∈ S3
: |v| =

√
2

2
}

and the two connected components X1 and X2 of S3 \A (described similarly to A above, but with
“≤” and “≥” instead of “=”). It is not difficult to see that X1 and X2 are indeed solid tori.

The idea is now to foliate (partition) each solid torus with a codimension one foliation which
has, as one of the leaves, the boundary torus. This is done by wrapping around“planes” inside the
solid torus, as indicated in pictures ?? and ??.

After gluing, one gets a foliation on S3. It is interesting to note that, although it is pretty clear
that the result is smooth, the result can never be done analytically (the geometric phenomena of
wrapping around is quite non-analytic). Actually, an old theorem of Haefliger says that S3 does
not admit any analytic codimension foliation. The theorem actually proves that compact manifolds
that admit analytic codimension one foliation have infinite fundamental group.

Back to the existence of codimension one foliations on manifolds, it is not so difficult to see
that the even dimensional spheres cannot carry such; actually, the existence of such a foliation
on a compact simply connected manifold would imply the vanishing of the Euler characteristic.
So one is left with the odd dimensional spheres. The case of S5 was answered by Lawson in
1971 and then, after the work of several people, it was proved that all odd-dimensional spheres
do admit codimension one foliations. This story (about codimension one foliations on compact
manifold) came to an end around 1976 with the work of Thurston who showed that, on a compact
orientable manifold M such a foliation exists if and only if its Euler characteristic vanishes. The
story continues with the existence of foliations of other interesting dimensions/codimensions (e.g.
there is a 2-dimensional one on S7) etc etc ... and with Foliation Theory.

2.6 Complex structures

Another very interesting case is that of (almost) complex structures. An almost
complex structure on a manifold M is, by definition, a family

J = {Jx : x ∈M}
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of linear complex structures on the tangent spaces TxM , varying smoothly with
respect to x, in the sense that for any vector field X on M , J(X) is smooth
(in terms of vector bundles, we are talking about vector bundle morphisms
J : TM → TM satisfying J2 = −Id). As in the linear story (see Subsection
1.7), the dimension of M must be even:

n = 2k.

It should be clear now that almost complex structures on M correspond to
GLk(C)-structures on M (where we use the embedding GLk(C) ⊂ GL2k(R) as
in Subsection 1.7.

Remark 2.28 (from almost complex to orientations). It should be clear from
the linear story that an almost complex structure on M induces an orientation
on M .

Again, the local model is Ck, with the almost complex structure induced by
the multiplication by i, after identifying the tangent spaces of Ck with Ck. In
other words, identifying

Cn ∼→ R2n

(z1 = x1 + iy1, . . . , zn = xn + iyn) 7→ (x1, . . . , xn, y1, . . . , yn),

we are talking about R2n with the almost complex structure is given by

Jcan(
∂

∂xk
) =

∂

∂yk
, Jcan(

∂

∂yk
) = − ∂

∂xk
.

Definition 2.29. The Nijenhuis tensor of an almost complex structure J is the
map

NJ : X (M)×X (M)→ X (M),

NJ(X,Y ) = [X,Y ] + J([JX, Y ] + [X, JY ])− [JX, JY ].

Exercise 2.30. Show that NJ comes indeed from a tensor, i.e. it is C∞(M)-
linear in its entries:

NJ(fX, Y ) = NJ(X, fY ) = fNJ(X,Y )

for any two vector fields X,Y oi M and any smooth function f on M .

With these, one has the following:

Theorem 2.31 ( Newlander-Nirenberg). For an almost complex structure J on
M the following are equivalent:

1. the Nijenhuis tensor of J vanishes.

2. J , interpreted as a GLk(C)-structure, is integrable. Equivalently, for any
x0 ∈M , one finds a coordinate chart

(U, χ) = (U, x1, . . . , xk, y1, . . . , yk)

around x0 such that, on U ,

J(
∂

∂xk
) =

∂

∂yk
,
∂

∂yk
= − ∂

∂xk
.
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Proof. too difficult to give here.

Remark 2.32 (complex manifolds). This implies that we are talking about
complex manifolds- which are defined exactly in the same way as smooth (real)
manifolds, but with charts taking values in opens in Ck and with transition
function holomorphic: these are the charts that arise from the theorem. Indeed,
if one considers a transition function corresponding to two such charts:

f = (f1, . . . , fk, g1, . . . , gk) : V →W (V,W ⊂ R2k opens)

we see that
(df) ◦ Jcan = Jcan ◦ (df),

or, equivalently,
∂fk
∂xj

=
∂gk
∂yj

,
∂fk
∂yj

= −∂gk
∂xj

,

which are precisely the Cauchy-Riemann equations that characterize the holo-
morphicity of fk + igk. Hence F is holomorphic.

Note also that, for a complex manifold M , one can talk about its complex
tangent space and, as a real vector space, it can be canonically identified with
the standard tangent space of M , viewed as a smooth (real) manifold. This gives
an intrinsic description of the almost complex structure on the smooth manifold
underlying a complex manifold. It is also useful to think in coordinates. Then
complex charts (U, z1, . . . , zk) induce then a basis over C of the tangent space

∂

∂z1
, . . . ,

∂

∂zk
.

The identification of the complex tangent space (as a real vector space) with
the standard tangent space of M comes from splitting th complex coordinates
(of complex charts) as zk = xk + iyk; then

∂

∂zk
=

1

2
(
∂

∂xk
− i ∂

∂yk
).

It is customary to consider also

∂

∂zk
=

1

2
(
∂

∂xk
+ i

∂

∂yk
)

so that, for a smooth function f , the Cauchy-Riemann equations ensuring the
holomorphicity of f take the form ∂f

∂zk
= 0.)

Remark 2.33 (complex foliations). Almost complex structures can be inter-
preted (formally) like “complex foliations”. This comes from the reinterpreta-
tion of a linear complex structure J on a (real) vector space V as a certain
complex subspace V 1,0 of the complexification VC of V . See Remark 1.16. That
discussion applied to each tangent space TxM tells us that an almost complex
structure J on a manifold M is encoded in the resulting T 1,0M ⊂ TCM which,
in terms of J is

T 1,0M = {X − iJ(X) : X ∈ X (M)}
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It is now easy to see that the condition that the Nijenhuis tensor of J vanishes
is equivalent to the Frobenius-type condition:

[X,Y ] ∈ Γ(T 1,0M) ∀ X,Y ∈ Γ(T 1,0M).

(where [·, ·] is just the Lie bracket of vector fields, extended by C-linearity to
the entire Γ(TCM)).

For the curious reader. Also in the case of complex structures, the question of existence of a
complex structure on a manifold M is a rather hard one. For instance, it seems to be an open
problem the question of whether S6 admits a complex structure. On the other hand, from all the
spheres, only S2 and S6 admit an almost complex structure; for S2 it comes from an honest complex
structure (by viewing S2 as a complex manifold, e.g. as CP1); for S6 it follows by using, again, the
octonions. Actually, there is a simple trick that allows us to relate the existence of almost complex
structures to parallelizability and then, using the fact that S1, S3 and S7 are the only parallelizable
sphere, to conclude that S2 and S6 are the only spheres which admit an almost complex structure.
Here is the trick:

Exercise 2.34. Assume that Sn ⊂ Rn+1 admits an almost complex structure J. Interpret it as
a family of linear endomorphisms

Jy : Py → Py for y ∈ Sn

of the hyperplane Py = {v ∈ Rn+1 : 〈v, y〉 = 0} ⊂ Rn+1 orthogonal to y.

Pass now to Rn+2; denote by e0, . . . , en+1 its standard basis and interpret Rn+1 (and all its

subspaces, e.g. the Pys) as the subspace of Rn+2 via the standard inclusion

(y0, . . . , yn) 7→ (y0, . . . , yn, 0).

For x = (x0, . . . , xn+1) ∈ Sn+1 ⊂ Rn+2 different from ±en+1, we denote by p(x) its orthogonal

projection on Rn+1,

p(x) = (x0, . . . , xn) ∈ Rn+1

and the induced element on the sphere

s(x) =
1

||p(x)||
p(x) ∈ Sn.

Consider the orthogonal projection onto Ps(x),

pr
⊥
s(x) : Rn+1 → Ps(x), pr

⊥
s(x)(λ) = λ− 〈λ, s(x)〉s(x)

and define:

Fi(x) := xn+1ei − xien+1 + ||p(x)||Js(x)(pr
⊥
s(x)(ei))

for all x ∈ Sn+1, where the very last term is set to be zero when it does not make sense (i.e. for

x = ±en+1). Show that {F 0, . . . , Fn} is a frame of Sn+1. Hence Sn+1 is parallelizable.

Interesting enough, the product of any two odd dimensional spheres admits a complex structure.

2.7 Riemannian metrics I: existence

A Riemannian metric on a manifold M is a collection

g = {gx : x ∈M}

of metrics (inner products) gx on the tangent spaces TxM , which “vary smoothly
with respect to x”, where smoothness is given by one of the following equivalent
descriptions:

Exercise 2.35. Given the family g, show that the following are equivalent:
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1. For any two vector fields X and Y on M ,

g(X,Y ) : M → R, x 7→ gx(X(x), Y (x))

is smooth.

2. For any coordinate chart (U, χ) of M , the coefficients of g given by

gi,j(x) := gx

(
∂

∂χi
(x),

∂

∂χj
(x)

)
are smooth (as functions of x ∈ U).

We talk about O(n)-structures.
The first basic result about Riemannian metrics is:

Proposition 2.36. Any manifold admits a Riemannian metric.

Proof. (sketch) Locally it is clear (just transport the standard inner products
via coordinate charts). Then use a partition of unity.

Exercise 2.37. Using Riemannian metrics prove again that a manifold admits
a volume form if and only if it is orientable.

Moving to the point of view of G-structures, one has:

Definition 2.38. An isomorphism (or isometry) between two Riemannian man-
ifolds (M, g) and (M ′, g′) is any diffeomorphism f : M → M ′ with the prop-
erty that (df)x : TxM → Tf(x)M

′ is an isomorphism between (TxM, gx) and
(Tf(x)M

′, gf(x)).

The local flat model of Riemannian geometry is Rn, endowed with the stan-
dard metric given by

gcan

(
∂

∂xi
,
∂

∂xj

)
= δi,j .

2.8 (Almost) symplectic structures

Next, we move to Symplectic Geometry.

Definition 2.39. An almost symplectic structure on a manifold M is a 2-form

ω ∈ Ω2(M)

with the property that each ωx is non-degenerate.

Hence each ωx is a linear symplectic form on TxM . From the linear story, we
know that the dimension n of M must be even. Here we will use the notation:

n = 2k.

Interpreting each ωx as a linear Spk(R)-structure Sx on TxM (see the linear
story of Subsection 1.8), the smoothness of ω = {ωx : x ∈ M} as a 2-form
is easily seen to be equivalent to the smoothness of S = {Sx : x ∈ M} as a

36



Spk(R)-structure on M . Hence an almost symplectic structure on M is the
same thing as an Spk(R)-structure on M .

Note that the local model is R2k, with

ωcan = dy1 ∧ dx1 + . . .+ dyk ∧ dxk,

where (x1, . . . , xk, y1, . . . , yk) denote the coordinates of R2k. What about inte-
grability?

Definition 2.40. A symplectic structure on a manifold M is an almost sym-
plectic structure ω ∈ Ω2(M) which is closed.

Isomorphisms between symplectic manifolds (M,ω) and (M ′, ω′) correspond
to diffeomorphisms f : M → M ′ satisfying ω = f∗ω′. They are also called
symplectomorphisms.

Theorem 2.41 (Darboux). For an almost symplectic manifolds (M,ω), the
following are equivalent:

1. ω is symplectic.

2. ω, interpreted as a Spk(R)-structure, is integrable. Equivalently, for any
x ∈M , one finds a coordinate chart

(U, χ) = (U, x1, . . . , xk, y1, . . . , yk)

around x such that

ω = dy1 ∧ dx1 + . . .+ dyk ∧ dxk.

Proof. This is very similar to the proof of Theorem 2.22. Let’s write it in
a slightly different order. The reverse implication is clear since the standard
symplectic form is closed. Assume now that ω is symplectic. We may assume
we are on R2n with coordinates denoted (x, y) and we work around the origin.
We may also assume that ω = ωcan at the origin (why???). The idea is to realize
the desired diffeomorphism between open neighborhoods of the origin taking ω
to ωcan as the flow at time t = 1 of a vector field. Just using vector fields
does not work, but it will if we allow time-dependent vector fields. Let Xt be
the time-dependent vector field we are looking for and let ϕ be its flow. The
next idea is to connect ω to ωcan by a smooth family of forms, {ωt : t ∈ [0, 1]},
satisfying

ω0 = ωcan, ω1 = ω

and make sure that ϕ∗tωt stays constant or, equivalently, d
dtϕ
∗
tωt = 0. Using the

properties of the flow (see Exercise 2.42 below) we can write this condition as
follows:

LXt(ωt) +
d

dt
ωt = 0,

or, if the ωt’s are all closed and using Cartan’s magic formula LX = diX + iXd:

d(iXtωt) +
d

dt
ωt = 0.
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That is all we have to do. Here is how one does it. First of all, one considers
the most obvious family:

ωt = tω + (1− t)ωcan,

so that the equation we have to solve (to find Xt) becomes:

d(iXtωt) + (ω − ωcan) = 0.

Note that, since ω − ωcan is closed, by working in a ball around the origin, we
may assume it is exact (Poincare lemma), say of type dη for some 1-form η.
Then it is enough to solve the (simpler) equation

iXt(ωt) + η = 0.

Here we deal with the operation from vector fields to 1-forms which sends a
vector V to the 1-form iV (ωt). This we know to be a bijection (in particular
surjective) if ωt was non-degenerate. This is certainly so for t ∈ {0, 1}, so we
just have to make sure that, after eventually shrinking the neighborhood of 0
that we are working on, all the ωt are symplectic. Here is where the assumption
that ω and ωcan coincide at 0 comes in. They also coincide with ωt at 0. Since
ωt is non-degenerate at 0, it will be non-degenerate in a neighborhood Wt of 0.
Since we are interested in t ∈ [0, 1] and since ωt is a continuous family (even
smooth) and [0, 1] is compact, it follows that one can choose the same Wt for
all t; call it W . If you followed the argument, you see we are done. Otherwise,
start from here and read the proof backwards.

Exercise 2.42. Let αt be a smooth family of d-forms and Xt a time-dependent
vector field. Let ϕt be the flow generated by Xt. Prove that

d

dt
ϕ∗tαt = ϕ∗t

(
d

dt
αt + LXtαt

)
.

(Hint: if you cannot figure it out, look at the appendix from Geiges’ book.)

Remark 2.43 (from almost symplectic to volume forms and orientations).
Again, it should be clear by looking at the local picture that an almost sym-
plectic structure ω on M induces a volume forms (hence also an orientation). It
is customary to use a certain scaling: given ω one defines the Liouville (volume)
form associated to ω as:

µω :=
1

k!
ωk =

1

k!
ω ∧ . . . ω︸ ︷︷ ︸
k times

.

Exercise 2.44. Using Riemannian metrics prove that if M admits an almost
complex structure then it also admits and almost symplectic one. More precisely,
show that if J is an almost complex structure and g is a Riemannian metric,
then

ω(X,Y ) := g(X,JY )− g(JX, Y )

defines an almost symplectic structure on M .
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Remark 2.45 (almost symplectic versus almost complex). It is not true that
an almost symplectic structure induces (“naturally”) an almost complex one,
or the other way. What is true however is that a manifold M admits an almost
symplectic structure if and only if it admits an almost complex one. The reverse
implication is rather easy to show once we have Riemannian metrics (Exercise
2.44). The direct implication is slightly more difficult, but it should be easy if
you did already Exercise 1.23.

Exercise 2.46. Use Exercise 1.23 to show that if M admits an almost sym-
plectic structure ω then it admits an almost complex structure J .

For the curious reader.
While the existence of an almost complex structure is equivalent to the existence of an almost

symplectic structure, anything else can happen:

• There are compact manifolds which admit almost complex structures, but do not admit
complex or symplectic structures. This was proven for the connected sum of three copies of
CP2 by Taubes in 1995.

• there are compact manifolds that admit complex structures but do not admit symplectic
ones. One example is S3 × S1.

• There are compact manifolds that admit symplectic structures but not complex ones.

The key idea for relating (almost) symplectic with (almost) complex structure comes from the notion
of ω-compatibility - see subsection 1.9 for the linear story; on manifolds, we require that condition
at each point. With this, one can show that, given any almost symplectic structure ω one can find
an ω-compatible almost complex structure. After that, one can proceed an use J as it was an actual
complex structure, exploiting ideas from complex geometry, to derive information about ω. This is
the basic idea behind the theory of “pseudo-holomorphic curves” in Symplectic Geometry.

Regarding existence results, due to the difference between symplectic and almost symplectic
structures, there are really two questions to answer here. The question of which (compact) manifolds
admit symplectic structure is a very hard one, especially in the case of a negative answer; this is due
to the lack of (known) invariants/obstructions for symplectic structures. What one can say right
away, for compact manifolds M , is that if they admit a symplectic structure, then they must be
even dimensional and orientable. And a bit more: the second DeRham cohomology group H2(M) is
non-zero (so this excludes all the sphere Sn with n 6= 2). This last remark follows using integration:
if ω is a symplectic form, then one has an induced volume form and orientation and the integral of
[ω]k ∈ Hn(M) is non-zero, hence omega itself will represent a non-zero cohomology class. Here are
some examples/results:

• in dimension 2, a symplectic structure is the same thing as a volume form. Hence orientable
surfaces are symplectic.

• from all the spheres, only S2 and S6 admit an almost symplectic structure, and only S2

admits a symplectic structure.

• the connected sum of three copies of CP2 admits an almost symplectic structure but neither
a complex nor a symplectic one (Taubes, 1995).

• For any finitely presented group Γ one can find a compact 4-manifold M , which is symplectic,
with fundamental group isomorphic to Γ (Gompf, 2000).

• The existence of an almost symplectic structure is equivalent to the existence of an almost
complex structure (see also subsection 2.6).

• On open manifolds (i.e. manifolds which are not compact), there is quite some flexibility-
due to the so called h-principle of Gromov (“h” stands for “homotopy”). For symplectic
structures it says that: starting with any almost symplectic structure on an open manifold
M , one can smoothly deform it (through almost symplectic structures) into a symplectic
structure.

Remark 2.47 (Hamiltonian dynamics). The motion of a mass 1 particle in Rk in the presence of
a potential force Φ(x) = − ∂V∂x is governed by Newton’s second law, q̈ = Φ(q). If we introduce the
auxiliary variable p = q̇, the total energy of the particle is given by

H =
1

2
p

2
+ V (q)
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and Newton’s equation transforms into a system of first order ODE’s (or, equivalently, a differential

equation in the 2k-dimensional space R2k with coordinates (x, y)), known as a Hamiltonian system:

dy

dt
= −

∂H

∂x
,

dx

dt
=
∂H

∂y

The corresponding Hamiltonian flow ϕt sends (x0, y0) to the solution of the Hamiltonian system
satisfying the initial condition (x(0), y(0)) = (x0, y0). In classical mechanics, these diffeomorphisms
were sometime referred to as mechanical motions and they have the property that they preserve
the volume form

µ = dy1 ∧ dx1 ∧ . . . ∧ dyk ∧ dxk

The crucial observation here is that, in fact, mechanical motions preserve the canonical sym-
plectic form on R2n, i.e. they are symplectomorphisms. Obviously this second property implies the
first one, in view of

µ = µω =
ωk

k!

and this should be more evidence that the similarity between the proofs of the Darboux theorem
for symplectic forms and the Moser theorem for volume forms is not accidental (of course, the
two coincide in dimension two). The volume preserving property of Hamiltonian flows already
attractted a lot of attention more than a century ago. The fact that these mechanical motions
preserve the symplectic form was first pointed out explicitly by Arnol’d in the 1960’s and the
question of whether volume-preserving diffeomorphisms were the same as symplectomorphisms is
one that kept symplectic topologists busy for quite some time. The (negative) answer was provided
by Gromov in the 1980’s, with his famous proof of the non-squeezing theorem, and makes use of
very sophisticated techniques (J-holomorphic curves).

So the punchline is: Hamiltonian mechanics makes sense and can be studied on any manifold
endowed with a symplectic form. For any such manifold (M,ω), the symplectic form ω sets up a one-
to-one correspondence between vector fields and one-forms on M (in other words, an isomorphism
between the tangent and the cotangent bundle). So given a smooth function H : M → R (the
Hamiltonian function) there is a uniquely defined vector field XH corresponding to the differential
of H: it is called the Hamiltonian vector field and it is defined by iXHω = −dH. We are interested
in integral curves of this vector field, i.e. curves γ on M that satisfy the equation:

γ̇(t) = XH(γ(t)),

which should be interpreted as the most general form of Hamilton’s equations.

Exercise 2.48. Check that if M = R2n with coordinates (x, y) and standard symplectic form
ωcan, the Hamiltonian vector field is given by J0∇H = (∂yH,−∂xH) and we recover the classical
system of Hamiltonian equations. Can you guess what the form of the Hamiltonian vector field
should be for an arbitrary (M,ω)?

2.9 Integral affine structures

An almost integral affine structure on a manifold M is, by definition, a family

Λ = {Λx}x∈M

of lattices Λx on the tangent spaces TxM , which vary smoothly with respect to
x in the sense that, for any X0 ∈ M , there exists a local frame φ defined on a
neighborhood U of x0 such that

Λx = SpanZ{φ1(x), . . . , φn(x)} ∀ x ∈ U.

As before, Λ can be interpreted as a subspace

Λ ⊂ TM.

We also see the we are talking about GLn(Z)-structures on M (see also sub-
section 1.6). The adapted frames in this case are the ones whose components
(vector fields) take values in Λ. Vector fields with this property are called inte-
gral vector fields of (M,Λ).
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Definition 2.49. We say that Λ is an integral affine structure if, when inter-
preted as an GLn(Z)-structure, it is integrable.

Note that the local model is Rn with the lattice

Λcan = Z
∂

∂x1
+ . . .+ Z

∂

∂xn
.

Hence the integrability of Λ means that, around any point we can find a coor-
dinate chart (U, χ) such that

Λx = Z
∂

∂χ1
(x) + . . .+ Z

∂

∂χn
(x)

for all x ∈ U . The atlas consisting of such charts have very special transition
functions F : V → W (between opens V,W ⊂ Rn): they are integral affine, i.e.
of type

(7) F (v) = v0 +A(v) v0 ∈ Rn, A ∈ GLn(Z).

Such an atlas is called an integral affine atlas. As before, the existence of such
an atlas is equivalent to the existence of an integral affine structure.

Ok, but can one characterize the integrability of Λ more directly (as we did
for symplectic or complex structures?). The answer can be given in several
different ways. One of them makes use of the dual

Λ∨ ⊂ T ∗M

of Λ defined by
Λ∨x = {ξ ∈ T ∗xM : ξ(Λx) ⊂ Z}.

Theorem 2.50. For an almost integral affine structure Λ on a manifold M the
following are equivalent:

1. Λ is integrable (hence an integral affine structure).

2. the Lie bracket of any two local vector fields which are integral (i.e. take
values in Λ) vanishes.

3. Λ∨ is locally spanned by closed 1-forms, i.e. any point in M admits a
neighborhood U and closed 1-forms θ1, . . . , θn on U such that

Λ∨x = SpanZ{θ1(x), . . . , θn(x)}.

Proof. That 1 implies 2 comes from the fact that the condition in 2 can be
checked locally and is valid for the local model. Assume now that 2 holds.
Locally, we choose any frame {φ1, . . . , φn} which spans Λ (as in the description
of smoothness above). The condition in 2 tells us that φ is integrable in the
sense of e-structures (see subsection 2.2), hence we find charts (U, χ) such that
φi = dχi, and this implies 1. The equivalence with 3 is similar, using the dual
point of view (see again subsection 2.2).

Exercise 2.51. Show that if a manifold M is orientable and admits an integral
affine structure, then it admits a volume form.
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2.10 Affine structures

In the previous subsection we have discussed integral affine structures (where
“‘integral” reflects the role of Z in the story). What about affine structures? At
least when it comes to integral affine atlases, it is clear that the role of Z is not
important, and one can talk about affine atlases as those with the property that
the transitions functions are of type (7) but with A ∈ GLn(R) (i.e. just affine
transformations). But the rest of the story is more problematic: affine structure
is a type of geometric structures which is interesting (and worth looking at) but
which does not fit in the general theory of G-structures, at least not in an
obvious way, and not in the way we discussed it so far. Nevertheless, let’s us
discuss it a bit.

The central notion here is that of (affine) connection.

Definition 2.52. An affine connection on a manifold M is a bi-linear map

(8) ∇ : X (M)×X (M)→ X (M), (X,Y ) 7→ ∇X(Y ),

satisfying the following equations:

∇fX(y) = f∇X(Y ), ∇X(fY ) = f∇X(Y ) + LX(f)Y

for all X,Y ∈ X (M), f ∈ C∞(M).

One should think of a connection as a rule that allows to take derivatives
along a vector field Y along another vector field X. Note that, for functions
f , one can talk about such derivatives- they are precisely the Lie derivatives
LX(f). The analogue of this with f replaced by a vector field Y would be

LX(Y ) := [X,Y ],

but this encodes “the variation of Y along X” (rather than the “derivative”); in
particular, this last operation does not satisfy the first of the equations from the
definition (but it does satisfy the second). By the way, ∇X(Y ) is also called the
covariant derivative of Y along X, with respect to ∇. Any way, the point is that,
although we would sometimes like to be able to talk about such “derivatives”
of vector fields along vector fields, they do not come for free- we have to make
a choice- and that is what an affine connection is. Using a partition of unity
argument, one can show that any manifold admits an affine connection.

Remark 2.53 (More general connections). In the previous definition, X (M)
(or, even better: TM) plays a double role. One role comes from the first
appearance of X (M) in (8) (i.e. the role of X when one write ∇X(Y )): it
tells us “along what” we take derivatives: along vector fields. This is the most
important role. The other one comes from the second and third appearance of
X (M) in (8) and it tells us “of what” we take derivatives: of vector fields (with
the result being the same kind of object). With this in mind, one sees that one
can talk about different type of connections: keep the first X (M) but replace
the other two. For instance, one can look at operations

∇ : X (M)× Ω1(M)→ Ω1(M), (X, θ) 7→ ∇X(θ)
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satisfying exactly the same conditions as above, but with Y replaced by θ. This
are connections on T ∗M”. More generally, one can talk about connections on
any vector bundle E over M , completely similarly, as operations:

∇ : X (M)× Γ(E)→ Γ(E), (X, s) 7→ ∇X(s)

where one uses the space Γ(E) of sections of E.

Exercise 2.54. Given an affine connection on M , show that for any open
U ⊂M there is an induced connection ∇U on U (sometimes also denoted ∇|U -
the restriction of ∇ to U) uniquely characterized by the condition that, for any
two vector fields X,Y on U ,

∇X(Y )|U = ∇UX|U (Y |U ).

Although we are not talking about G-structures, note that there is a natural
notion of “special” (or adapted) frame. More precisely, given ∇, the interesting
vector fields are those V ∈ X (M) with the property that

∇X(V ) = 0 ∀ X ∈ X (M).

These are called flat vector fields (flat with respect to ∇). With this, one can
talk about flat frames (and also local flat frames- cg. the previous exercise) of
(M,∇)- and these are the adapted frames. Of course, the local model is Rn
with ∇can uniquely determined by the condition that the standard vector fields
∂
∂xi

are flat.

Definition 2.55. An affine structure on a manifold M is an affine connection
∇ with the property that (M,∇) is locally isomorphic to (Rn,∇can) i.e. around
any point in M one can find a local chart (U, χ) such that the vector fields ∂

∂χi
are flat.

As before, this gives rise to an atlas for which the change of coordinates are
affine transformations between opens in Rn (hence of type v 7→ v0 + A(v) with
v0 ∈ Rn, A ∈ GLn(R)). Conversely, any such atlas gives rise to an integrable
∇. Hence, with the obvious notion of equivalence of affine atlases, an integrable
affine structure on M is the same things as an (equivalence class of an) affine
atlas.

But can one characterize the integrability of ∇? This brings us to the notion
of curvature and torsion:

Definition 2.56. Given an affine connection ∇ on M , X,Y ∈ X (M), one
considers:

• the torsion expressions

T∇(X,Y ) = ∇X(Y )−∇Y (X)− [X,Y ].

• the curvature expressions

K∇(X,Y ) = ∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X,Y ] : X (M)→ X (M).
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Exercise 2.57. Check that these expressions are C∞(M)-linear in all its en-
tries:

T∇(fX, Y ) = T∇(X, fY ) = fT∇(X,Y ),

K∇(fX, Y )(Z) = K∇(X, fY )(Z) = K∇(X,Y )(fZ) = fK∇(X,Y )(Z).

The exercise ensures that we deal with tensors, called the torsion tensor T∇
of ∇ and the curvature tensor K∇. Abstractly, they belong to:

T∇ ∈ Ω2(M,TM) = Γ(Λ2T ∗M ⊗ TM),

K∇ ∈ Ω2(M,End(TM)) = Γ(Λ2T ∗M ⊗ End(TM)).

It is clear that, for the local model, these tensors must vanish.

Theorem 2.58. An affine connection is integrable if and only if its torsion and
curvature vanish.

Proof. Will not be given in these lectures.

2.11 Riemannian metrics II: integrability

As we have seen in section 2.7, Riemannian metrics exist on any smooth mani-
fold. The integrability of Riemannian metrics (interpreted as O(n)-structures)
is interesting, but a bit more involved then in the symplectic or complex case,
and certainly not so important as in those cases. The key concept here is that
of Levi-Civita connection.

Theorem 2.59. Given a Riemannian metric g on M , there exists and is unique
an affine connection ∇ on M (called the Levi-Civita connection associated to
∇) with the following properties:

• it is torsion free: T∇ = 0.

• it is compatible with g in the sense that, for all X,Y, Z ∈ X (M),

LX(g(Y, Z)) = g(∇X(Y ), Z) + g(Y,∇X(Z)).

Proof. This proof here (which is the standard one) is not very enlightening
(hopefully we will see a much more transparent/geometric argument a bit later
in the course). One just plays with the compatibility equations applied to
(X,Y, Z) and their cyclic permutations, combined in such a way that most of
the appearances of the ∇ disappear by using the torsion free condition. One
ends up with the following identity (which, once written down, can also be
checked directly):

2g(∇X(Y ), Z) = LX(g(Y, Z)) + LY (g(X,Z))− LZ(g(X,Y ))+

+g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X).

Hence, fixing X and Y , we see that for the expression we are looking for, ∇X(Y ),
the product with respect to any Z is predetermined. Since g is a metric, this
forces the definition of ∇X(Y ) pointwise. It remains to check all kinds of iden-
tities for ∇, identities that say that some expression E vanishes. For that one
proves that g(E, V ) = 0 for all vector fields V . In that way, one can use the
above (defining) equation for ∇ and the check is straightforward.
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Theorem 2.60. A Riemannian manifold (M, g) is integrable as a O(n)-structure
if and only if its Levi-Civita connection is flat, i.e. K∇ = 0.

For this reason, such manifolds are also called flat Riemannian manifolds.

Proof. Follows immediately from the similar theorem for affine connections.

2.12 Kahler geometry

This is an example of interesting geometric structure for which “integrability”
is less interesting (it is too restrictive). However, the more general equivalence
problem is relevant. More precisely, one does not have one local model but sev-
eral (depending on the choice of a certain function) and the interesting question
is when a Hermitian structure is equivalent to one of the models. And that
happens precisely in the Kahler case. This can be explained nicely/easily.

2.13 Contact structures

Shall we say something about them as well? Or maybe make a section in which
we enumerate a few more: contact structures, symplectic foliations (∼= regular
Poisson structures), etc.

************************************************

Remark 2.61. Mention and emphasize that a lot of the theory of G-structures
is about understanding the conditions under which integrability holds. Some-
times, this is carried out as part of a more general program of the ”equivalence
problem”.

AT THIS POINT: WE SAY THAT, AT THIS POINT, WE STOP FOR
A WHILE WITH THE STUDY OF G-STRUCTURES, AND WE CONCEN-
TRATE ON THE GENERAL FRAMEWORK (e.g. OF PRINCIPAL BUN-
DLES) THAT ALLOWS US TO TREAT G-STRUCTURES MORE CONCEP-
TUALLY. OF COURSE, THE STUDY OF G-STRUCTURES IS OUR MOTI-
VATION.

3 Closed subgroups of GLn(R); Lie groups

3.1 Matrices and the exponential map

Recall that we denote by M(n,R) the vector space of n× n matrices with real
entries and by GL(n,R) the group of invertible n× n matrices, i.e.

GL(n,R) = {A ∈M(n,R) : detA 6= 0}.

If we identify (in the obvious way) M(n,R) with Rn2

, we see that GL(n,R), as
an open submanifold, is equipped with a smooth structure and that the group
operation (matrix multiplication), is smooth with respect to this structure, since
it is just polynomial in the entries (same holds for the inverse matrix). Moreover,
if we define left translation on GL(n,R) by an element A as the map LA : B 7→
AB, this gives a way to identify the tangent space at any matrix A with the
tangent space at the identity element I. In particular, the tangent bundle to

45



GL(n,R) is trivial and isomorphic to GL(n,R)×TIGL(n,R). In the language of
the previous section, GL(n,R) (as a manifold) is parallelizable. You are asked
to work out the details of the proof in the exercise below. We could summarize
these observations by saying that GL(n,R) has a Lie group structure, but we
will only come back to this concept at the end of the lecture.

Exercise 3.1. Prove that GL(n,R) is parallelizable.

On the space of n× n matrices there is a norm, namely

‖X‖2 =
∑

1≤i,j≤n

|aij |2 = trace(tAA),

which, under the identification with Rn2

, is just the usual Euclidean norm.
We would like to discuss here in some details the exponential map for ma-

trices.

Lemma 3.2. For each matrix X ∈M(n,R), the exponential sequence

I +X +
X2

2!
+
X3

3!
+ · · ·

converges.

Exercise 3.3. Prove Lemma 3.2. (Hint: every Cauchy sequence converges in

Rn2

.)

In view of the above lemma, the following definition is meaningful.

Definition 3.4. For X ∈ M(n,R) we define the exponential of X as the limit
of the exponential series, i.e.

eX = I +

∞∑
k=1

Xk

k!
.

Exercise 3.5. Prove the following properties of the matrix exponential:

(i) if X = 0, then e0 = I;

(ii) if X is diagonal, say X = diag(λ1, . . . , λn), then eX = diag(eλ1 , . . . , eλn);

(iii) if X and Y commute, then eXeY = eX+Y = eY eX .

The third property has the following important consequence:

Corollary 3.6. For all X ∈ M(n,R), eX is invertible with (eX)−1 = e−X ,
hence eX ∈ GL(n,R).

Thus the exponential establishes a map

(9) exp : M(n,R)→ GL(n,R), X 7→ eX .

Proposition 3.7. If the eigenvalues of X are λ1, . . . , λn, then the eigenvalues
of eX are eλ1 , . . . , eλn .

Using this proposition one can obtain a simple relation between the deter-
minant of the matrix exponential and the usual exponential, namely:
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Corollary 3.8.
det eX = etraceX

Exercise 3.9. Prove Proposition 3.7 and Corollary 3.8.

We have seen that exp maps the zero matrix to the identity matrix. In
fact it even sets up a diffeomorphism between suitable neighborhoods of these
elements.

Proposition 3.10. There exists an open neighborhood U of 0 ∈M(n,R) which
is mapped diffeomorphically by exp onto an open neighborhood V of I ∈ GL(n,R).

Proof. The idea is very easy, namely: as in the scalar case, the inverse of the
exponential map should be the logarithm.

Suppose X ∈ M(n,R) satisfies ‖X‖ < 1. Then the matrix T = I + X is
invertible, i.e. an element of GL(n,R), with inverse

(I +X)−1 = I −X +X2 −X3 + . . .

Moreover, the logarithmic series

log T = X − X2

2
+
X3

3
− . . .

is convergent and, if we denote its limit by log T , the following identity holds:

elog T = T.

Now let V = {T ∈ GL(n,R) : ‖T − I‖ < 1} and let U = logV = {log T : T ∈
V}. Then the maps V → U , T 7→ log T , and U → V, X 7→ eX , are mutually
inverse.

Notice that one can identify (in a canonical way) M(n,R) with the tangent
space to GL(n,R) at I. This feature is very important in view of the general
theory of Lie groups. Recall that the smooth structure on GL(n,R) is that
of an open submanifold of M(n,R) and hence that, as a manifold, it also has
dimension n2. Let X ∈ M(n,R): then the curve g : R → GL(n,R), t 7→ etX

starts at the identity at time t = 0 and g′(0) = X. In fact, from the definition
of the exponential map we have

etX = I + tX + o(t)

and therefore
d

dt

∣∣∣∣
t=0

etX = X.

This shows that we can view M(n,R) as a subspace of TIGL(n,R) and then,
by a dimension argument, we conclude that we can in fact identify these two
linear spaces.

Remark 3.11. We can actually conclude something more: the tangent vector
g′(t) at each time t is the image of g′(0) = X under the differential of Lg(t), left
translation by g(t).
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3.2 Linear groups and their Lie algebra

Recall that on M(n,R) we have the commutator operation given by the Lie
bracket:

[X,Y ] = XY − Y X.

This fits into the following general framework:

Definition 3.12. A Lie algebra l over R is a real vector space together with a
bracket [ , ], i.e., a skew-symmetric bilinear map, satisfying Jacobi’s identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Notice that if l, as a vector space, has a basis {e1, . . . , em}, to define the Lie
bracket it’s enough to give the m(m−1)/2 elements [ei, ej ], i < j. Each of these
brackets, in fact, can be written as

[ei, ej ] =

m∑
k=1

ckijek

and the scalars ckij are called the structure constants of the Lie algebra.
We would now like to extend the discussion aboutGL(n,R), M(n,R) and the

exponential map to general closed subgroups of GL(n,R) (closed in the topology
induced by the norm). We have already encountered a few such subgroups in the
previous part of the course: for instance, O(n) ⊂ GL(n,R), GL+

n ⊂ GL(n,R),
SLn(R) ⊂ GL(n,R), GL(k,C) ⊂ GL(2k,R), Sp(k,R) ⊂ GL(2k,R).

Definition 3.13. A linear group is a closed subgroup of GL(n,R).

Definition 3.14. For G ⊂ GL(n,R) a linear group, we set

g := {X ∈M(n,R) : etX ∈ G ∀ t ∈ R}.

So far we have established that M(n,R) = gln is the Lie algebra of GL(n,R).
What we want to do next, is to show that for any linear group G, the corre-
sponding space g, with the restriction of the matrix Lie bracket, is a Lie algebra
(which will be called the Lie algebra of G). In fact we will show that it is a
subalgebra of gl.

Proposition 3.15. Let G be a linear group.Then

(i) g is a vector subspace of gln;

(ii) g is closed with respect to the Lie bracket.

For the proof of this proposition we will need the following lemma (stated
and proved in Sternberg as Lemma 4.2, Chapter V):

Lemma 3.16. Let Xi → X be a sequence of elements in gln and ti → 0 a
sequence of non-zero real numbers. Suppose etiXi ∈ G for all i: then etX ∈ G
for all t, i.e., X ∈ g.

Remark 3.17. The fact that G is closed as a subspace of GL(n,R) is used in
the proof of this Lemma
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Proof of Proposition 3.15. (i) R-linearity follows immediately from the def-
inition. We still need to prove that if X,Y ∈ g, then X + Y ∈ g. If
X,Y ∈ g, then etXetY ∈ G for all t. We have:

etXetY = et(X+Y ) + o(t),

so we can write

etXetY = ef(t), with lim
t→0

f(t)

t
= X + Y.

Taking ti a sequence of real numbers converging to 0 and Xi = f(ti)
ti

,
Lemma 3.16 implies that X + Y ∈ g.

(ii) We need to prove that if X,Y ∈ g, then [X,Y ] ∈ g. If X,Y ∈ g, then
etXetY e−tXe−tY ∈ G. But as in the first part of the proposition, we can
write

etXetY e−tXe−tY = ef(t), with lim
t→0

f(t2)

t2
= [X,Y ],

so with ti → 0, si = t2i and Xi = f(si)
si

the lemma applies and we conclude
that [X,Y ] ∈ g.

Proposition 3.18. Any linear group G is an embedded submanifold of GL(n,R).

Proof. We already know that the Lie algebra g of G is a linear subspace of gln.
What remains to prove is that exp(g) is a neighborhood of I in G, then left
translation will provide us with charts around other points of G.

Choose a complementary subspace g′ s.t. gln = g⊕g′. Then the first claim is
that there exists a neighborhood V ′ of 0 in g′ such that eX

′ 6∈ G for any element
X ′ 6= 0 of V ′. In fact, if we suppose the claim does not hold, we can construct
a sequence Yi → 0 in g′ such that eYi ∈ G. Let A = {X ∈ g′ | 1 ≤ ‖X‖ ≤ 2}
and choose integers ni such that Xi = niYi ∈ A. Since A is compact, the Xi’s

converge to some nonzero element X in g′. But 1
ni
→ 0 and e

1
ni
Xi ∈ G for all

i, so by Lemma 3.16 we would also have X ∈ g, which is a contradiction.
Now let W be a neighborhood of 0 in gln such that

φ : gln = g⊕ g′ → GL(n,R) , X +X ′ 7→ eX eX
′

is also a diffeomorphism. We may assumeW = V×V ′. Let U = φ(W ): if T ∈ U ,
then T = eX eX

′
and if T ∈ U ∩G, then X ′ = 0 and hence U ∩G = exp g.

Example 3.19. If G = SL(n,R), then g = {X ∈ gln : traceX = 0}. In fact,
X ∈ g implies det(etX) = 1 for all t. To the first order in t, etX = I+ tX+o(t)
and hence

det(etX) = 1 + t traceX + o(t)

(on expanding the determinant, the off-diagonal terms in tX will only appear
in second or higher order terms). Hence traceX must be zero. Conversely, if
traceX = 0, then det(etX) = et traceX = 1 and hence X ∈ g.

Exercise 3.20.
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• Let G be the orthogonal group O(n) = {T ∈ GL(n,R) : tTT = I}. Prove
that its Lie algebra is

g = {X ∈ gln : tX +X = 0}.

• Determine the Lie algebra of GL(k,C), U(k) and Sp(n).

Remark 3.21 (The adjoint representation). Every element T ∈ G = GL(n,R)
defines a linear transformation AdG of gln: an element X ∈ gln is sent to the
velocity at t = 0 of the parametric curve cT ◦etX , where cT denotes conjugation
automorphism A 7→ TAT−1. This curve has velocity TXT−1 at t = 0, so
AdG(T ) is smooth (T-conjugation on gln). It therefore makes sense to consider
its derivative at the identity matrix. This is related to the Lie bracket by the
formula

[X,Y ] =
d

dt

∣∣∣∣
t=0

(AdG(etX)(Y )).

3.3 General Lie groups

The above discussion can be generalized to general Lie groups, i.e., smooth
manifolds with a group structure such that the group operations (g, h) 7→ gh
and g 7→ g−1 are smooth. One can associate to these groups a Lie algebra and
this Lie algebra can be identified with the tangent space to the group at the
identity element. Closed subgroups of a Lie group are smooth submanifolds
(hence Lie subgroups). And so on. One of many good references for general Lie
group theory is F.W. Warner, Foundations of Differentiable manifolds and Lie
groups.

Exercise 3.22. In the definition of G-structures, show that the smoothness
condition is equivalent to the fact that BG is a smooth submanifold of Fr(M).
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4 Vector bundles and principal bundles

4.1 Vector bundles

In this subsection we recall some basics on vector bundles.

Definition 4.1. Let M be a manifold, r ≥ 0 integer. A (real) vector bundle of
rank r over M consists of

• a manifold E,

• a surjective map π : E →M ; for x ∈M , the fiber π−1(x) is denoted Ex

• for each x ∈M , a structure of r-dimensional (real) vector space on Ex

satisfying the following local triviality condition: for each x0 ∈ M , there exists
an open neighborhood U of x0 and a diffeomorphism

h : E|U := π−1(U)
∼→ U × Rr

with the property that it sends each fiber Ex into the {x} × Rr and

hx := h|Ex : Ex
∼→ {x} × Rr ∼= Rr

is a linear isomorphism for all x ∈ U . Complex vector bundles are defined
similarly, replacing R by C.

As terminology: although we should say that π : E → M is a (real) vector
bundle over M , we often just mention E; in such cases we usually denote by
πE the associated map into M and we refer to it as the projection of the vector
bundle E.

One should think about E as the collection

{Ex}x∈M

of vector spaces (of rank r), “smoothly parametrized by x ∈M”.

Note that, as hinted by the notation E|U , a vector bundle E over M can be
restricted to an arbitrary open U ⊂M . More precisely,

E|U := π−1(U)

together with the restriction of π gives a vector bundle πU : E|U → U over U .
Here are some basic concepts/constructions regarding vector bundles.

4.2. Morphisms: Given two vector bundles E and F over M , a morphism
from E to F (of vector bundles over M) is a smooth map u : E → F with the
property that, for each x ∈M , u sends Ex to Fx and

ux := u|Ex : Ex → Fx

is linear. We say that u is an isomorphism (of vector bundles over M) if each
ux is an isomorphism (or, equivalently, if u is also a diffeomorphism).
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Again, one should think of a morphism f as the collection {ux}x∈M of linear
maps fx, “smooth in x”.

4.3. Trivial vector bundles; trivializations: The trivial vector bundle of
rank r over M is the product M × Rr together with the first projection

pr1 : M × Rr →M

and the usual vector space structure on each fiber {x} × Rr.
We say that a vector bundle E (of rank r) over M is trivializable if E is

isomorphic to M×Rr. A trivialization of E is the choice of such an isomorphism.
With these in mind, we see that the local triviality condition from the defi-

nition of vector bundles says that E is locally trivializable, i.e. each point in M
admits an open neighborhood U such that the restriction E|U is trivializable.

4.4. Sections: The main objects associated to vector bundles are their (local)
sections. Given a vector bundle π : E → M , a section of E is a smooth map
s : M → E satisfying p ◦ s = Id, i.e. with the property that

s(x) ∈ Ex ∀ x ∈M.

We denote by
Γ(M,E) = Γ(E)

the space of all smooth sections. For U ⊂ M open, the space of local sections
of E defined over U is

Γ(U,E) := Γ(E|U ).

Sections can be added pointwise:

(s+ s′)(x) := s(x) + s′(x)

and, similarly, can be multiplied by scalars λ ∈ R:

(λs)(x) := λs(x).

With these, Γ(E) becomes a vector space. Furthermore, any section s ∈ Γ(E)
can be multiplied pointwise by any real-valued smooth function f ∈ C∞(M)
giving rise to another section fs ∈ Γ(E):

(fs)(x) := f(x)s(x).

The resulting operation

C∞(M)× Γ(E)→ Γ(E), (f, s) 7→ fs

makes Γ(E) into a module over the algebra C∞(M). Actually the entire vector
bundle E is fully encoded in the space of sections Γ(E) together with this
module structure; a precise formulation of this is Swan’s theorem which says
that the construction E 7→ Γ(E) gives a 1-1 correspondence between vector
bundles over M and finitely generated projective modules over C∞(M). A
simpler illustration of this is the following:
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Lemma 4.5. Let E and F be two vector bundles over M . Then there is a
bijection between‘:

• morphisms u : E → F of vector bundles over M .

• morphisms u∗ : Γ(E)→ Γ(F ) of C∞(M)-modules.

Explicitely, given u, the associated u∗ is given by

u∗(s)(x) = ux(s(x)).

4.6. Frames: Let π : E → M be a vector bundle over M . A frame of E is a
collection

s = (s1, . . . , sr)

consisting of sections si of E with the property that, for each x ∈M ,

(s1(x), . . . , sr(x))

is a frame of Ex. A local frame of E is a frame s of E|U for some open U ⊂M ;
we then say that the local frame s is defined over U .

Remark 4.7. Choosing a frame s of E is equivalent to choosing a trivialization
u : M × Rr → E of E. Hence, the local triviality condition from the definition
of vector bundles can be phrased in terms of local frames as follows: around any
point of M one can find a local frame of E.

4.8. Remark on the construction of vector bundles: Often the vector
bundles that one encounters do not arise right away as in the original definition
of vector bundles. Instead, one has just a collection E = {Ex}x∈M of vector
spaces indexed by x ∈ M and certain “smooth sections”. Let us formalize this
a bit. We will use the name “discrete vector bundle over M (of rank r)” for any
collection {Ex}x∈M of (r-dimensional) vector spaces indexed by x ∈M . We will
identify such a collection with the resulting disjoint union and the associated
projection

E := {(x, vx) : x ∈M,vx ∈ Ex}, p : E →M, (x, vx) 7→ x

(so that each Ex is identified with the fiber p−1(x)).
For such a discrete vector bundle E we can talk about discrete sections,

which are simply functions s as above,

M 3 x 7→ s(x) ∈ Ex

(but without any smoothness condition). Denote by Γdiscr(E) the set of such
sections. Similarly we can talk about discrete local sections, frames and local
frames. As in the case of charts of manifolds, there is a natural notion of
”smooth compatibility” of local frames. To be more precise, we assume that

s = (s1, . . . , sr), s̃ = (s̃1, . . . , s̃r)

are two local frames defined over U and Ũ , respectively. Then, over U ∩ Ũ , one
can write

s̃i(x) =

r∑
j=1

gij(x)sj(x),
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giving rise to functions

gij : U ∩ Ũ → R (1 ≤ i, j ≤ r).

We say that s and s̃ are smoothly compatible if all the functions gij are smooth.
The following is an instructive exerse.

Exercise 4.9. Let E = {Ex}x∈M be a discrete vector bundle over M of rank
r. Assume that we are given an open cover U of M and, for each open U ∈ U ,
a discrete local frame sU of E over U . Assume that, for any U, V ∈ U , sU and
sV are smoothly compatible. Then E admits a unique smooth structure which
makes it into a vector bundle over M with the property that all the sU become
(smooth) local frames.

Moreover, the (smooth) sections of E can be recognized as those discrete
sections s with the property that they are smooth with respect to the given
data {sU}U∈U in the following sense: for any U ∈ U , writing

u(x) = f1(x)s1
U (x) + . . .+ fr(x)srU (x) (x ∈ U),

all the functions fi are smooth on E.

Example 4.10. For a manifold M one consider all the tangent spaces TM =
{TxM}x ∈ M and view it as a discrete vector bundle. Given a chart χ : Uχ →
Rn for M , then the associated tangent vectors

(
∂

∂χ1
(x), . . . ,

∂

∂χn
(x))

can be seen as a discrete local frame of TM over Uχ. Starting with an atlas A
of M , we obtain in this way precisely the data that we need in order to apply
the previous lemma; this makes TM into a vector bundle over M in the sense
of the original definition.

4.11. Operations with vector bundles: The principle is very simple: nat-
ural operations with vector spaces, applied fiberwise, extend to vector bundles.

Direct sums: Let us start with the direct sum operation. Given two vector
spaces V and W we consider their direct sum vector space V ⊕W . Assume now
that pE : E →M and pF : F →M are vector bundles over M . Then the direct
sum E ⊕ F is another vector bundle over M , with fibers

(10) (E ⊕ F )x := Ex ⊕ Fx.

These equations force the definition of the total space E⊕F and of the projection
into M . To exhibit the smooth structure of E⊕F one can e.g. use Exercise 4.9.
Indeed, choosing opens U ⊂ M over which we can find (smooth) local frames
e = (e1, . . . , ep) of E and f = (f1, . . . , fq) of F , one can form the direct sum
local frame

e⊕ f = (e1, . . . , ep, f1, . . . , fq)

and we consider the smooth structure on E⊕F which makes all the local frames
of type e⊕ f smooth.
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This procedure of extending operations between vector spaces to operations
between vector bundles is rather general. In some cases however, one can fur-
ther take advantage of the actual operation one deals with and obtain “more
concrete” descriptions. This is the case also with the direct sum operation. In-
deed, recall that for any two vector spaces V and W , their direct sum V ⊕W
can be described as the set-theoretical product V ×W with the vector space
operations

(v, w) + (v′, w′) = (v + v′, w + w′), λ · (v, w) = (λ · v, λ · w)

(the passing to the notation V ⊕W indicates that we identify the elements v ∈ V
with (v, 0) ∈ V ×W , w ∈W with (0, w) ∈ V ×W , so that an arbitrary element
(v, w) can be written uniquely as v + w with v ∈ V , w ∈ W ). Hence one can
just define E ⊕ F as the submanifold of E × F

E ×M F := {(e, f) ∈ E × F : pE(e) = pF (f)}.

The condition (10) is clearly satisfied (and specify the vector space structure on
the fibers) and is not difficult to see that the resulting E⊕F is a vector bundle
over M . Note that the space of sections of E⊕F coincides with the direct sum
Γ(E)⊕ Γ(F ).

Duals: Let us now look at the operation that associates to a vector space V its
dual V ∗. Starting with a vector bundle E over M , its dual E∗ is another vector
bundle over M with the property that

(E∗)x = (Ex)∗

for all x ∈ M . Again, this determines E∗ as a set and its projection into M .
Moreover, using dual basis, we see that any smooth local frame e = (e1, . . . , er)
of E induces a local frame e∗ for E∗ and we can invoke again Exercise 4.9 to
obtain the smooth structure of E∗.

Hom-bundles: Next we look at the operation that associates to two vector spaces
V and W the vector space Hom(V,W ) consisting of all linear maps from V to
W . Given now two vecctor bundles E and F over M , we form the new vector
bundle Hom(E,F ) over M with fibers

Hom(E,F )x = Hom(Ex, Fx).

And, again, we see that local frames of E and F induce a local frame of
Hom(E,F ), and then we obtain a canonical smooth structure on the hom-vector
bundle. Note that a section of Hom(E,F ) is the same thing as a morphism
u : E → F of vector bundles over M . Hence Lemma 4.5 identifies sections of
Hom(E,F ) with C∞(M)-linear maps Γ(E)→ Γ(F ).

Of course, when F is the trivial vector vector bundle of rank 1 (F = M×R),
we recover the dual of E:

E∗ = Hom(E,M × R).

Hence Lemma 4.5 identifies the sections of E∗ with the dual of Γ(E) as an
C∞(M)-module.
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Tensor products: One proceeds similarly for the tensor product operation on vec-
tor spaces. Since we work with finite dimensional vector spaces, this operation
can be expressed using duals and homs:

V ⊗W = Hom(V ∗,W ).

(where for v ∈ V , w ∈W , the tensor v⊗w is identified with (or stands for) the
linear map

V ∗ →W, ξ 7→ ξ(v)w.)

Other operations: Similar to taking the dual of a vector space one can consider
operations of type

V 7→ Sk(V ∗), (or: V 7→ Λk(V ∗))

which associate to a vector space V the space of all k-multilinear symmetric (or:
anti-symmetric) maps V ×. . .×V → R. Again, one has to remember/notice that
any frame of V induces a frame of SkV ∗ (or: ΛkV ∗). Slightly more generally,
one can consider operations of type

(V,W )→ Sk(V ∗)⊗W (or: (V,W ) 7→ Λk(V ∗)⊗W )

which associate to a pair (V,W ) of vector spaces the space of k-multilinear
symmetric (or: anti-symmetric) maps on V with values in W and then one
obtains similar operations on vector bundles. Note the following generalization
of Exercise 4.9:

Exercise 4.12. Show that, for any two vector bundles E and F over M and
k ≥ 1 integer, there is a 1-1 correspondence between:

• sections u of SkE∗ ⊗ F .

• symmetric maps
u∗ : Γ(E)× . . .× Γ(E)︸ ︷︷ ︸

k−times

→ Γ(F )

which is C∞(M)-linear in each argument.

Similarly for sections of ΛkE∗ ⊗ F and antisymmetric maps as above.

Pull-backs Another important operation with vector bundles, but which does
not fit in the previous framework, is the operation of taking pull-backs. More
precisely, given a smooth map

f : M → N,

starting with any vector bundle E over N , one can pull-it back via f to a vector
bundle f∗E over M . Fiberwise,

(f∗E)x) = Ef(x)

for all x ∈M . One can use again Exercise 4.9 to make f∗E into a vector bundle;
the key remark is that any section s of E induces a section f∗s of F ∗E by

(f∗s)(x) := s(f(x))

and similalrly for local sections and local frames.
Note that, when f = i : M ↪→ N is an inclusion of a submanifold M of N ,

then i∗E is also denoted E|N and is called the restriction of E to M .

56



4.13. Differential forms with coefficients in vector bundles: Vector
bundles also allows us to talk about more general differential forms: with coef-
ficients. The standard differential forms are those with coefficeints in the trivial
vector bundle of rank 1. Recall here that the space of (standard) differential
forms of degree p on a manifold M , Ωp(M), is defined as the space of sections
of the bundle ΛpT ∗M . Equivalently, a p-form on M is the same thing as a
C∞(M)-multilinear, antisymmetric map

(11) ω : X (M)× . . .×X (M)︸ ︷︷ ︸
p times

→ C∞(M),

where X (M) is the space of vector fields on M . Such p-forms can be written
locally, over the domain U of a coordinate chart (U, χ1, . . . , χn) as:

(12) ω =
∑

i1,...,ip

f i1,...,ipdχi1 . . . dχip ,

with f i1,...,ip -smooth functions on U .
Assume now that E is a vector bundle over M . We define the space of

E-valued p-differential forms on M

Ωp(M ;E) = Γ(ΛpT ∗M ⊗ E).

As before, an element ω ∈ Ωp(M ;E) can be thought of as a C∞(M)-multilinear
antisymmetric map

(13) ω : X (M)× . . .×X (M)︸ ︷︷ ︸
p times

→ Γ(E).

Also, locally, with respect to a coordinate chart (U, χ1, . . . , χn), one can write

(14) ω =
∑

i1,...,ip

dχi1 . . . dχip ⊗ ei1,...,ip .

with ei1,...,ip local sections of E (defined on U). Using also a local frame e =
{e1, . . . , er} for E, we obtain expressions of type∑

i1,...,ip,i

f
i1,...,ip
i dxi1 . . . dxip ⊗ ei.

Recall also that
Ω(M) =

⊕
p

Ωp(M)

is an algebra with respect to the wedge product: given ω ∈ Ωp(M), η ∈ Ωq(M),
their wedge product ω ∧ η ∈ Ωp+q(M), also denoted ωη, is given by
(15)

(ω∧η)(X1, . . . , Xp+q) =
∑
σ

sign(σ)ω(Xσ(1), . . . , Xσ(p))·η(Xσ(p+1), . . . , Xσ(p+q)),

where the sum is over all (p, q)-shuffles σ, i.e. all permutations σ with σ(1) <
. . . < σ(p) and σ(p + 1) < . . . < σ(p + q). Although this formula no longer
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makes sense when ω and η are both E-valued differential forms, it does make
sense when one of them is E-valued and the other one is a usual form. The
resulting operation makes

Ω(M,E) =
⊕
p

Ωp(M,E)

into a (left and right) module over Ω(M). Keeping in mind the fact that the
spaces Ω are graded (i.e are direct sums indexed by integers) and the fact that
the wedge products involved are compatible with the grading (i.e. Ωp ∧ Ωq ⊂
Ωp+q), we say that Ω(M) is a graded algebra and Ω(M,E) is a graded bimodule
over Ω(M). As for the usual wedge product of forms, the left and right actions
are related by1

ω ∧ η = (−1)pqη ∧ ω ∀ ω ∈ Ωp(M), η ∈ Ωq(M,E).

4.2 Principal bundles

And here are some basics on principal bundles.

Definition 4.14. Let M be a manifold and G a Lie group. A principal G-bundle
over M consists of

• a manifold P together with a right action of G on P

P ×G→ P, (p, g) 7→ pg

• a surjective map πP : P →M which is G-invariant (i.e. πP (pg) = πP (p)
for all p and g).

satisfying the following local triviality condition: for each x0 ∈ M , there exists
an open neighborhood U of x0 and a diffeomorphism

Ψ : π−1
P (U)→ U ×G

which maps each fiber π−1
P (x) to the fiber {x} ×G and which is G-equivariant.

The G-equivariance means that

Ψ(pg) = Ψ(p)g

for all p ∈ P , g ∈ G, where the right action of G on U ×G is

(16) (x, a)g = (x, ag).

As for vector bundles, there are several concepts/constructions to be discussed.

4.15. Fibers: Given a principal G-bundle π : P →M one can talk about the
fiber Px := π−1

P (x) above any point x ∈M . Since πP is G-invariant, each Px is
stable under the action of G, hence each fibers is a (right) G-space. The axioms
imply that any such fiber is, as a G-space, isomorphic to G itself (endowed with

1Important: this is the first manifestation of what is known as the “graded sign rule”:
in an formula that involves graded elements, if two elements a and b of degrees p and q are
interchanged, then the sign (−1)pq is introduced
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the right action coming from the multiplication of G); more precisely, choosing
p ∈ Px, one has an induced diffeomorphism

φp : G→ Px, φp(g) = pg

which is compatible with the right action of G:

φp(gh) = φp(g)h

for all g, h ∈ G. Keep in mind however that the isomorphism between Px and
G is not canonical: it depends on the choice of an element p ∈ Px. Actually, P
may fail to be diffeomorphic to M ×G.

4.16. Basic example: the frame bundle of a vector bundle: Start with
a vector bundle E over M , of rank r. One forms the frame bundle associated
to E

Fr(E) = {(x, u) : x ∈M,u− a frame of Ex}.

Proceeding exactly as in the case of Fr(M) (which is obtained in teh particular
case when E = TM), we find that Fr(E) is a principal GLr-bundle over M ,
whose fiber over x ∈M is the space Fr(Ex) of frames on the vector space Ex.

4.17. Isomorphisms: Isomorphisms F : P → Q between two principal G-
bundles over M are diffeomorphisms which map each fiber Px into the fiber
Qx (or, in equation form: πQ(F (p)) = πP (p)) and which are G-equivariant, i.e.
F (pg) = F (p)g for all p ∈ P , g ∈ G. Of course, one could also try to define
the notion of “morphisms between principal G-bundles” by requiring F to be
smooth instead of being a diffeomorphism. However, it is not difficult to see
that any such F must be a diffeomorphism.

4.18. The trivial principal G-bundle: For any Lie group G, M ×G is itself
a principal G-bundle over M , with the action given by (16) and with πP being
the projection on the first factor. This is called the trivial principal G-bundle.

We see that the local triviality axiom says that, around each point of M , P
is isomorphic to the trivial principal G-bundle.

4.19. Sections: Sections of a principal G-bundle P are smooth maps σ : M →
P which send each x ∈M into an element σ(x) in the fiber Px (equation-wise:
πP ◦ σ = IdM ). Similalry one can talk about local sections.

Note that the choice of a section σ of P is equivalent to a trivialization of
P , i.e. the choice of an isomorphisms between P and M ×G. Indeed, because
of the G-invariance of isomorphisms F : M → G → P we see that any such F
is determined by what it does on elements of type (x, 1), i.e. by the values

σ(x) := F (x, 1) ∈ Px

(then F (x, g) = σ(x)g for all x and g).
In particular, the local triviality axiom says that, around each point of M ,

π admits local sections. Actually, we see that the local triviality condition is
equivalent to the condition that πP is a submersion! Indeed, using the local
form of a submersion, we see that any submersion admits such local sections.
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4.20. More general morphisms: To have a more sensible notion of mor-
phisms one allows the change of the base manifold and of the group. More
precisely, let ρ : G1 → G2 be a morphism of Lie groups and let f : M1 → M2

be a smooth map. Given principal Gi-bundles πi : Pi →Mi, i ∈ {1, 2}, one can
talk about ρ-morphisms that cover f - which are smooth maps

F : P1 → P2

with the property that
π2(F (p)) = f(π1(p))

for all p ∈ P1 (i.e. F sends each fiber (P1)x into (P2)f(x)), and which is ρ-
equivariant in the sense that

F (pg) = F (p)ρ(g)

for all p ∈ P1, g ∈ G1.

4.21. Remark on the definition: So, what can we say for a general principal
G-bundle π : P →M? Here are some consequences of the axioms:

• π is a G-invariant submersion.

• the action of G on P is free and proper.

• the action of G on P restricts to an action on each fiber Px; each two
points p, q in the same fiber Px determine an unique element g ∈ G with
the property that p = qg. We will denote this element by [p : q] (read: p
divided by q).

• Introducing the fibered product

P ×M P := {(p, q) : p, q ∈ P, π(p) = π(q)}

(a submanifold of P × P !), one obtains an operation

P ×M P → G, (p, q) 7→ [p : q].

This gives rise to a bijection (actually a diffeomorphism)

P ×M P → P ×G, (p, q)→ (p, [p : q]),

whose inverse is simply

(17) P ×G→ P ×M P, (p, g) 7→ (p, pg).

One can slightly change the point of view and take some of these consequences as
axioms- giving rise to slightly different (but equivalent) definition of the notion
of principal G-bundle. For instance, we have already remarked that the local
triviality axiom is equivalent to the condition that π is a surjective submersion.
Here is another possibility:

Exercise 4.22. Assume that G acts on the manifold P from the right and that
π : P → M is a surjective submersion. Show that P is a principal G-bundle if
and only if (17) is well-defined and is a diffeomorphism.
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Yet another variation arises by realizing that the entire information is con-
tained in P and the action of G. More precisely, one can show that: starting
with any manifold P together with a right action of G on P which is free and
proper, then the quotient P/G carries a natural smooth structure, uniquely de-
termined by the condition that the quotient map p : P → P/G is a submersion,
and P becomes a principal G-bundle over P/G. Hence a principal G-bundle
over a manifold M can be thought of such a P (endowed if a free and proper
action of G) together with a diffeomorphism between P/G and M .

4.23. Pull-backs: As for vector bundles, one can pull-back principal bundles
along smooth maps: given f : M →M smooth and a principal G-bundle P over
N , one forms

f∗(P ) := M ×N P := {(x, p) ∈M × P : f(x) = π(p)

with projection the standard projection on the first coordinate (built so that its
fiber at x ∈M is basically just Pf(x)), with the right action of G:

(x, p)g = (x, pg).

It is not difficult to see that f∗P becomes a principal G-bundle over P .

4.24. Push-forwards along group homomorphisms: The other opera-
tions on vector bundles such as taking duals, direct sums, etc, do not have an
immediate analogue for principal bundles (think e.g. that the rank of the di-
rect sum of two vector bundles is the sums p + q of their ranks; hence, at the
level of the associated frame bundles, one has to deal with three groups at the
same time: GLp, GLq and GLp+q). The main operation on principal bundles
that is related to such operations on vector bundles is the push-forward along
morphisms of Lie groups: a morphism ρ : G → G̃ of Lie groups induces an
operation

ρ∗ : BunG(M)→ BunG̃(M)

which associates to a principal G-bundle π : P → M a principal G̃-bundle
ρ∗(P )→M . Explicitely,

ρ∗(P ) := (P × G̃)/G

is the quotient of P ×G modulo the action of g given by

(p, a)g = (pg, aρ(g)).

With the same arguments as before, this is a smooth manifold. It comes with a
projection

π̃ : ρ∗(P )→M, [p, a] 7→ π(p)

and an action of G̃ given by

[p, a] · b = [p, ab].

It is not difficult to check that ρ∗(P ) becomes a principal G̃-bundle over M .
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Exercise 4.25. Consider the group homomorphism

ρ : GLr → GLr, ρ(A) = t(A−1).

Show that for any vector bundle E, the frames bundles associated to E and to
itse dual are related by

Fr(E∗) ∼= ρ∗(Fr(E)).

Exercise 4.26. Show that if πi : Pi → M are principal Gi-bundles, for i ∈
{1, 2}, then

P1 ×M P2

carries a natural structure of principal G1 ×G2-bundle.
Assume now that Pi = Fr(Ei) is the frame bundles associated to a vector

bundles Ei of rank ri (hence also Gi = GLri), i ∈ {1, 2}. Consider r = r1 + r2

and the group homomorphism

ρ : GLr1 ×GLr2 → GLr, (A,B) 7→ A⊕B := diag(A,B).

Show that the frame bundle associated to E1 ⊕ E2 is isomorphic to the push-
forward of P1 ×M P2 via ρ.

4.27. Reduction of the structure group: Of particular interest is the case
when ρ : G → G̃ is an inclusion of a subgropup G of G̃. Given a principal G̃
-bundle P̃ → M , the question of whether it comes from (i.e. is isomorphic to)
the pushforward of a principal G-bundle P → M reflects the complexity of P̃ .
If the answer is positive, and G is rather small, it means that P̃ is, in its essence
(i.e. as a principal bundle), simple. For instance, if the answer is positive for
the trivial subgroup G = {e}, it simply means that P̃ is trivializable.

In general, given a principal G̃-bundle P̃ and a subgroup G ⊂ G̃, a reduction
of P̃ to G is (by definition) choice of a principal G-bundle P → M and of an
isomorphism between i∗(P ) and P̃ , where i : G ↪→ G̃ is the inclusion.

Lemma 4.28. Up to isomorphisms, a reduction of a principal G̃-bundle π̃ :
P̃ →M to a subgroup G ⊂ G̃ is the same thing as the choice of a subspace

P ⊂ P̃
which is G-invariant and, together with the restriction π := π̃|P : P → M , is a
principal G-bundle. In turn, the choice of such a P is equivalent to the choice
of a (smooth) section σ of the resulting projection P̃ /G→M .

Proof. To come.

Remark 4.29. Although it is rather simple, the last part of the lemma is quite
important conceptually. One reason is that it allows us to interpret reductions
as (smooth) sections. This is important since functions are easier to handle.
Another use of the previous corollary comes from general properties a locally
trivial fiber bundles. By a locally trivial fiber bundle with fiber N (N is a
manifold) we mean a submersion π : Q→ M with the property that any point
x ∈M has a neighborhood U with the property that π−1(U) is diffeomorphic to
U ×N , by a diffeomorphism that sends the fibers π−1(x) to the fibers {x}×N .
A basic but non-trivial property of locally trivial fiber bundles is that, if the
fiber N is contractible, then it automatically admits global sections. Of course,
this can be applied to the projection P̃ /G→M to deduce:

Corollary 4.30. If the quotient G̃/G is contractible, then any principal G̃-
bundle admits a reduction to G.
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4.3 Vector bundles versus principal bundles

We have seen that any vector bundle E of rank r over M gives rise to a principal
GLr-bundle over M - the frame bundle Fr(E) of E. We now describe a reverse
construction.

What we need is a principal G-bundle π : P →M as well as a representation
V of G, i.e. a vector space V together with a group homomorphism ρ : G →
GL(V ) from G to the group of all linear automorphisms of V . To such a data
we will associate a vector bundle

E(P, V )

over M - called the vector bundle obtained by attaching to P the fiber V , via the
representation ρ (a more faithful notation would be E(P,G, V, ρ), but G and ρ
are usually clear from the context).

First note that the representation encodes a linear action of G on V from
the left:

G× V → V, (g, v) 7→ g · v := ρ(g)(v).

One then defines
E(P, V ) := (P × V )/G

the quotient of P × V modulo the action of G given by

(p, v)g· := (pg, g−1v).

Denotiong by [p, v] ∈ E(P, V ) the element induced by (p, v) ∈ P , we see that
the identifications that are made in the quotient are

[pg, v] = [p, gv]

for all p ∈ P , v ∈ V , g ∈ G. We endow E(P, V ) with the projection

π̃ : E(P, V )→M, π̃(p, v) = π(v).

Note that the fiber of π̃ above an arbitrary point x ∈M ,

E(P, V )x = {[p, v] : p ∈ Px, v ∈ V },

has a natural structure of vector space obtained by requiring

[p, v] + [p, w] = [p, v + w], λ[p, v] = [p, λv].

Here it is important to note that, for arbitrary element [p, v], [q, w] which sit
in the same fiber, since p and q sit in the same fiber of π one can find g ∈ G
such that p = qg and then [q, w] = [p, gw]- so that the sum between [p, v] and
[q, w] can be defined as [p, v+ gw] (check that these are well-defined and do not
depend on choices). Rephrasing a bit: given x ∈M , the choice of an elemement
p ∈ Px induces an bijection

φp : V → E(P, V )x, φp(v) = [p, v];

this bijection is used to transfer the vector space structure from V to E(P, V )x,
and the result does not depend on the choice of p ∈ Px. Of course, E(P, V )x is
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isomorphic to V as a vector space- but it is important to note that one needs
to choose a point p ∈ Px in order to obtain such an isomorphism. Hence, when
looking at E(P, V ) as a vector bundle over M , it is in general not the trivial
vector bundle M × V .

To describe the smooth structure on E(P, V ) one can proceed in several
ways. One is to use again the fact that the quotient N/G of a manifold N
modulo a free and proper action of a Lie group G on N carries itself a natural
structure of smooth manifold (uniquely determined by the requirement that the
quotient map N 7→ N/G is a submersion); one just needs the simple remark
that, since the action of G on P is free and proper, so is the action on P × V .
Another way is to use local trivializations of P :

Ψ : π−1(U)→ U ×G

and note that any such trivialization induces a trivialization of E(P, V ):

Ψ̃ : π̃−1(U)→ U × V, p 7→ (π(p), gΨ(p)v),

where gΨ(p) ∈ G is the second component of Ψ(p). Of course, similar to what

we have already seen, the local trivializations Ψ̃ will serve as charts of a smooth
atlas for E(P, V ).

4.31. The bijection between vector bundles and principal bundles:
The previous construction is particularly interesting in the case when

G = GLr, V = Rr, ρ = Id,

when it associates to a principal GLr bundle P the vector bundle E(P,Rr). Let
us apply this to the frame bundle

P = Fr(E)

of a vector bundle E of rank r over M . In this case, since an element p ∈ Px is
the same thing as the choice of an isomorphism ip : Rr → Ex, we see that that
a pair [p, v] ∈ E(P,Rr)x can be identified with ip(v) ∈ Ex. In other words, one
has an isomorphism of vector bundles over M :

E(P,Rr) ∼→ E, [p, v] 7→ ip(v).

Putting everything together, we find:

Theorem 4.32. The constructions which associate:

• to a vector bundle E its frame bundle Fr(E)

• to a principal GLr-bundle P the vector bundle E(P,Rr)

define a 1-1 correspondence between (isomorphism classes of) vector bundles of
rank r over M and principal GLr-bundles over M .

4.33. Sections of the associated vector bundle: Let us now return to
the general discussion and describe the space of sections of the vector bundle
E(P, V ) associated to a principal G-bundle π : P → M and a representation
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ρ : G → GL(V ). We consider the (vector) space C∞(P, V ) of all smooth
functions f : P → V . We say that f is G-equivariant if

f(pg) = g−1f(p)

for all p ∈ P , g ∈ G; we denote by C∞(P, V )G the resulting (vector) space of
G-invariant functions. Equivalently, the actions of G on P and V we introduce
the action of G on C∞(P, V ) given by

(g · f)(p) := gf(pg)

and then
C∞(P, V )G = {f ∈ C∞(P, V ) : g · f = f ∀ g ∈ G}.

Note that any G-equivariant function f induces a section of E(P, V ): first
of all it induces

(id, f) : P → P × V, p 7→ (p, f(p))

which is equivariant (where the right action of G on P × V is precisely the one
used to define E(P, V )); hence, passing to the quotient modulo G, it induces a
map

sf : M → E(P, V ).

Lemma 4.34. If E = E(P, V ) is the associated vector bundle, then one has a
bijection

C∞(P, V )G
∼→ Γ(E), f 7→ sf .

Exercise 4.35. Now given a section s of the associated vector bundle E(P, V ),
construct a G-invariant function fs and check that the constructions are inverse
to each other.

4.36. Differential forms with coefficients in the associated vector bun-
dle: The previous discussion can be generalized further, obtaining a description
directly in terms of P and V of the space of forms on M with coefficients in the
vector bundle E(P, V ). We need some terminology:

• as above, there is an action of G on Ωk(P, V ) obtained by combininig the
action of G on P and one V :

(g · ω)(−) := ρ(g)(R∗g(ω)(−)),

where ρ : G→ GL(V ) is the given representation and R∗g is the pull-back
of forms via the right multiplication by g, Rg : P → P , Rg(p) = pg.
Hence, on vectors Xi

p ∈ TpP , 1 ≤ i ≤ k:

(g · ω)p(X
1, . . . , Xk) = ρ(g)(ωpg((dRg)p(X

1), . . . , (dRg)p(X
k))).

We say that ω ∈ Ωk(P, V ) is G-invariant if g · ω = ω or, equivalently,

R∗g(ω) = ρ(g−1)(ω)

for all g ∈ G. We denote by Ωk(P, V )G the space of invariant differential
forms.
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• we say that a tangent vector X ∈ TP is vertical if it is tangent to the
fiber of π or, equivalently, if (dπ)(X) = 0. We denote by T∨P the space
of vertical vectors (a vector sub-bunlde of TP ). Note that for each p ∈ Px
(x ∈M)

lp : G→ P, lp(g) = pg

is a diffeomorphism between G and Px. It is natural to introduce the maps

ap : g→ TpP, ap(v) = (dlp)I(v) =
d

dt

∣∣∣∣
t=0

pexp(tv)

which, when varrying p, give rise to a map

a : g→ X (P )

which is called the infinitesimal action of g on P . It is clear that each ap
is an isomorphism between g and T∨p .

Exercise 4.37. Check that a defines an isomorphism of vector bundles
over P , from the trivial vector bundle with fiber g to T∨P .

• we say that a differential form ω ∈ Ωk(P, V ) is horizontal if iX(ω) = 0 for
all vertical vectors X or, equivalently, if

ia(v)(ω) = 0 ∀ v ∈ g.

We denote by Ωk(P, V )hor the space of horizontal differential forms.

• we say that a differential form ω ∈ Ωk(P, V ) is basic if it is horizontal and
G-invariant. Denote by Ωk(P, V )bas the resulting space.

Proposition 4.38. If E = E(P, V ) is the associated vector bundle, then one
has a linear isomorphism

π• : Ωk(M,E)
∼→ Ωk(P, V )bas.

Proof. We start with two remarks. The first one is that that the pull-back π∗E
of the vector bundle E via the projection π : P →M is, as a vector bundle over
P , isomorphic to the trivial vector bundle P × V , by a canonical isomorphism

i : P × V → π∗(E).

At the fiber at p ∈ P , this is simply

ip : V → Eπ(p), v 7→ [p, v].

The second remark is that the usual pull-back of forms along π : P →M makes
sense for forms with coefficients, giving rise to

π∗ : Ωk(M,E)→ Ωk(P, π∗E).

Explicitely, for X1, . . . , Xk ∈ TpP ,

(18) π∗(ω)(X1, . . . , Xk) = ω((dπ)p(X
1), . . . , (dπ)p(X

k)) ∈ Eπ(p) = (π∗E)p.

Combining the isomorphism from the previous remark, we consider

π• := i−1 ◦ π∗ : Ωk(M,E)
∼→ Ωk(P, V ).

The rest of the proof is left to the reader in the form of a (guided) exercise.
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Exercise 4.39.

1. Check directly that π• actually takes values in Ωk(P, V )bas (for instance,
since (dπ) kills the vertical vector fields, all forms of type π∗ω are hori-
zontal).

2. The map π• is also easily seen to be injective (since the differential of π
is surjective).

3. One still has to show that each η ∈ Ωk(P, V )bas can be written as π∗ω for
some ω. Explicitely, one wants

ωπ(p)((dπ)p(X
1), . . . , (dπ)p(X

k)) = ip(ηp(X
1, . . . , Xk)).

for all p ∈ P Xi ∈ TpP . But this forces the definition of ω: for x ∈ M
and V i ∈ TxM , choosing p ∈ P with π(p) = x and choosing Xi ∈ TpP
with (dπ)p(X

i) = V i, we must have

ωx(V 1, . . . , V k) = ip(ηp(X
1, . . . , Xk)).

4. What is left to check is that this definition does not depend on the choices
we made. First of all, once p ∈ π−1(x) is chosen, the formula does not
depend on the choice of the Xi’s- this follows from the fact that η is
horizontal. The independence of the choice of the point p in π−1(x) follows
from the G-invariance of η and the fact that any other q ∈ π−1(x) can be
written as q = pg for some g ∈ G.

Finally, let us also discuss the compatibility of this construction with the
push-forward operation along group homomorphisms.

Proposition 4.40. Let P̃ = ρ∗(P )- the pushforward of a principal G-bundle
P →M along a morphism of Lie groups ρ : G→ G̃. Consider also a represen-
tation V of G̃; using ρ, we interpret V also as a representation of G. Then the
resulting vector bundles E(P̃ , V ) and E(P, V ) are isomorphic.

Proof. Direct checking (the identifications are tautological!).

As a warm up for the next lecture, do the following exercise:

Exercise 4.41. Prove that:

1. every principal bundle over a contractible manifold is trivial;

2. two Riemannian metrics on Rn are isomorphic (as O(n)-structures) if
and only if they are isometric, whereas the corresponding principal O(n)-
bundles are always isomorphic.
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4.4 Applications to G-structures

Of course, the main examples that are relevant in the discussion of G-structures
on M are

• for vector bundles: TM .

• for principal bundles: Fr(M) (principal GLn-bundle).

The two correspond to each other by the bijection of Theorem 4.32.

Furthermore, if we are given a G-structure, encoded in

S ⊂ Fr(M),

then S is itself a principal G-bundle. Hence one can apply the construc-
tions/notions from principal bundles to the study of G-structures. Here are
some illustrations of this principle.

4.42. A first characterization of principal bundles that come from
G-structures: Of course, one interesting question is to understand which prin-
cipal bundles come from G-structures. The first answer is related to another
natural question: given a G-structure S on M (hence G ⊂ GLn), seing Rn as a
representation of G we can form the vector bundle E(S,Rn); what is it?

Proposition 4.43. Assume that G ⊂ GLn is a closed subgroup. Then a prin-
cipal G-bundle P over M is isomorphic to a G-structure S if and only if the
associated vector bundle E(P,Rn) is isomorphic to TM .

4.44. Infinitesimal automorphisms of G-structures: Viewing aG-structure
S on M as a principal G-bundle, we know that every representation V of G in-
duces a vector bundle E(S, V ) over M . Half of the previous proposition tells us
that, for V = Rn, we recover TM . Another interesting representation of G is
its Lie algebra g, with the adjoint representation. What is the resulting vector
bundle E(S, g)? We will show that it is related to the bundle of infinitesimal
autommorphisms of the G-structure.

To explain this, note that any vector space V endowed with a linear G-
structure S has an associated group of automorphisms

Aut(S) ⊂ GL(V )

and then also an associated Lie algebra (of infinitesimal automorphisms)

aut(S) ⊂ End(V ),

consisting of those linear maps A : V → V with the property that

exp(A) := Id +
A

1!
+
A2

2!
+ . . . ∈ GL(V )

is an automorphism of (V,S). Of course, for Rn with the standard G-structure
one receovers the Lie group G and its Lie algebra g. Moreover, any e ∈ S, in-
terpreted as an isomorphism between Rn with standard G-structure and (V,S),
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induces an isomorphism between the (infinitesimal) automorphisms of (V,S)
and G (g).

In the case of a G-structure S on a manifold M , one obtains the bundle of
infinitesimal automorphisms of S

aut(S) ⊂ End(TM),

which is a vector bundle over M (actually a bundle of Lie algebras) whose fiber
at x ∈M consists of infinitesimal automorphisms of (TxM,Sx):

aut(S)x = aut(TxM,Sx) ⊂ End(TxM).

Proposition 4.45. For any G-structure S on M one has

E(S, g) ∼= aut(S).

Proof.

4.46. G-structures as reductions: Lemma 4.28 tells us the G-structures are
just reductions of the frame bundle Fr(M) to G. Hence the (rather trivial) last
part of Lemma 4.28 gives us:

Corollary 4.47. Given G ⊂ GLn and an n-dimensional manifold M , there is
a 1-1 correspondence between G-structures S on M and (smooth) sections σ of
the projection Fr(M)/G→M .

Remark 4.48. As we have already mentioned in the case of general principal
bundles, the importance of this corollary comes from the is that it allows us
to handle G-structures as (smooth) sections. This is particularly important if
we want to linearize G-structures or study their deformations (just because, in
principle, we know how to do that for functions).

Moving now to Corollary 4.30, one obtains a deeper consequence:

Corollary 4.49. If the quotient GLn/G is contractible, then any n-dimnesional
manifold M admits a G-structure.

The nicest illustration of this corollary is when G = O(n); indeed, in this
case one can show that the resulting quotient GLn/O(n) is contractible, hence
we re-discover the fact that any manifold admits a Riemannian metric.

4.50. What is special about G-structures: the tautological form: Here
is anotehr characterization of the principal bundles that come from G-structure,
characterization that is extremely useful. And this brings us to one of the most
important objects in the study of G-structures: the so called tautological form.

Definition 4.51. Given a G-structure S on M , the tautological form (also
called the Cartan form, or the soldering form) of S is the 1-form

θS ∈ Ω1(S,Rn)

which associates to a tangent vector Xu ∈ TuS (u ∈ S) the vector

u−1((dπ)u(Xu)) ∈ Rn

(if u is a frame at x, then (dπ)u(Xu) ∈ TxM , while u is interpreted as an
isomorphism u : Rn → TxM).
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To describe the main (abstract) properties of θ0 we will use the terminology
from 4.36 on invariant, horizontal and basic forms. Furthermore, we will say
that a form θ ∈ Ω1(P, V ) (on a principal G-bundle P with coefficients in a
representation V of G) is strictly horizontal if the kernel of each θp (p ∈ P ) is
precisely the space T∨p P of vertical vectors at p. It is straightforward to check
that the tautological form is G-invariant and strictly horizontal. The main
point is that this property, as well as the one from Lemma ??, characterize the
principal G-bundles that come from G-structures.

Proposition 4.52. Let G ⊂ GLn be a closed subgroup and let π : P →M be a
principal G-bundle. Then the following are equivalent:

(i) P is (isomorphic to) the principal G-bundle of a G-structure on M .

(ii) there exists a G-invariant, strictly horizontal 1-form θ ∈ Ω1(P,Rn).

Moreover, given θ as in (ii), the realization of P as a G-structure (i.e. the
choice of the embedding P ↪→ Fr(M)) can be done in such a way that θ becomes
the tautological form θS .

The main message of the previous proposition is that, if we want to say
something about G-structure that depends on more than just the principal
bundle structure, then one has to use the tautological form θS which, together
with its properties, fully encodes the situation.

Proof. To come (or leave it as an exercise since it is easy).

4.53. The relevance of the tautological forms to the equivalence prob-
lem: Here is another (but related) property that shows the importance of the
tautological form. It shows that, when interested in the equivalence problem
(deciding when two G-structures are isomorphic), one can forget about the base
manifold and the G-structure and just concentrate on the manifold S and the
tautological form on it.

Proposition 4.54. Let G ⊂ GLn be a closed, connected, subgroup and assume
that Si is a G-structure on Mi, for i ∈ {1, 2}. Then the two G-structures are
isomorphic if and only if there exists a diffeommorphism

Ψ : S1 → S2

with the property that
Ψ∗(θS2) = θS1 .

Proof. To come (this is not so easy).

5 Connections

5.1 Connections of vector bundles

Throughout this section E is a vector bundle over a manifold M . Unlike the case
of smooth functions on manifolds (which are sections of the trivial line bundle!),
there is no canonical way of taking derivatives of sections of (an arbitrary) E
along vector fields. That is where connections come in.
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Definition 5.1. A connection on E is a bilinear map ∇

X (M)× Γ(E)→ Γ(E), (X, s) 7→ ∇X(s),

satisfying
∇fX(s) = f∇X(s), ∇X(fs) = f∇X(s) + LX(f)s,

for all f ∈ C∞(M), X ∈ X (M), s ∈ Γ(E).

Remark 5.2. In the case when E is trivial, with trivialization frame

e = {e1, . . . , er},

giving a connection on E is the same thing as giving an r by r matrix whose
entries are 1-forms on M :

ω := (ωji )i,j ∈Mr(Ω
1(M)).

Given ∇, ω is defined by

∇X(ej) =

r∑
i=1

ωij(X)ei.

Conversely, for any matrix ω, one has a unique connection ∇ on E for which the
previous formula holds: this follows from the Leibniz identity (the last equation
in the definition of connections).

Please be aware of our conventions: for the matrix ω = {ωij}i,j , the upper
indices i count the rows, while the lower ones the columns:

ω =

ω1
1 . . . ω1

r

. . . . . . . . .
ωr1 . . . ωrr


The other convention (switching the rows and the columns) would correspond
to considering the transpose matrix t(ω); that convention is taken in some text-
books and accounts for the sign changes between our formulas involving ω and
the ones in those text-books.

5.3. Locality; connection matrices: Connections are local in the sense that,
for a connection ∇ and x ∈M ,

∇X(s)(x) = 0

for any X ∈ X (M), s ∈ Γ(E) such that X = 0 or s = 0 in a neighborhood U of
x. This can be checked directly, or can be derived from the remark that ∇ is a
differential operator of order one in X and of order zero in f .

Locality implies that, for U ⊂ M open, ∇ induces a connection ∇U on the
vector bundle E|U over U , uniquely determined by the condition

∇X(s)|U = ∇UX|U (sU ).

Choosing U the domain of a trivialization of E, with corresponding local frame
e = {e1, . . . , er}, the previous remark shows that, over U , ∇ is uniquely deter-
mined by a matrix

ω := (ωij)i,j ∈Mr(Ω
1(U)).
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This matrix is called the connection matrix of ∇ with respect to the local frame
e and, when we want to emphasize this aspect, we write

(19) ω = ω(∇, e) ∈Mr(Ω
1(U)) = Ω1(U, glr).

Proposition 5.4. Any vector bundle E admits a connection.

Proof. Start with a partition of unity ηi subordinated to an open cover {Ui}
such that E|Ui is trivializable. On each E|Ui we consider a connection ∇i (e.g.,
in the previous remark consider the zero matrix). Define ∇ by

∇X(s) :=
∑
i

(∇X|Ui )(ηis).

Exercise 5.5.

1. Let E∗ be the dual bundle of the vector bundle E and suppose ∇ is a
connection on E. For t a section of E∗ and s a section of E define:

(∇∗Xt)(s) = X(t(s))− t(∇Xs).

Prove that ∇∗ is a connection on E∗.

2. Let E1 and E2 be vector bundles over the same manifold M , with con-
nections ∇1 and ∇2‘, respectively. Define a connection on the direct sum
E1 ⊕ E2. (Additivity of connections leaves no choice in the definition!)

Exercise 5.6. Prove that any convex linear combination of two connections is
again a connection, i.e., given ∇1 and ∇2 connections on E and ρ1, ρ2 smooth
functions on M (the base manifold) such that ρ1 + ρ2 = 1, then

∇ = ρ1∇1 + ρ2∇2

is also a connection.

5.7. More than locality: derivatives of paths: We have seen that ∇ is
local: if we want to know ∇X(s) at the point x ∈ X, then it suffices to know X
and s in a neighborhhod of x. However, much more is true.

Lemma 5.8. Given a connection ∇ on a vector bundle E over M , X ∈ X (M),
s ∈ Γ(E) and x0 ∈M , then ∇X(s)(x) vanishes in each of the cases:

1. s-arbitrary but X(x) = 0.

2. X-arbitrary but there exists a curve γ in M starting at x with speed Xx

(i.e. γ(0) = x, γ̇(0) = Xx) such that s(γ(t)) = 0 for all t near 0.

Proof. We deal with a local problem and we can concentrate on an open U
containing x on which we have a given local frame e of E; ∇ will then be
specified by its connection matrix. An arbitrary section s can now be written
on U as

s =

r∑
i=1

f iei
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with f i ∈ C∞(U); on such a section we find using the Leibniz identity and then,
using the connection matrix:

∇X(s)(x) =
∑
i

(df i)(Xx)ei(x) +
∑
i,j

f j(x)ωij(Xx)ei(x).

It is clear that this is zero when X(x) = 0. In the second case we find

(20) ∇X(s)(x) =
∑
i

df i ◦ γ
dt

(0)ei(x) +
∑
i,j

f j(γ(0))ωij(Xx)ei(x)

which clearly vanishe under the condition that f i(γ(t)) = 0 for t near 0.

The first type of condition in the lemma tells us that, given s ∈ Γ(E), it
makes sense to talk about

∇Xx(s) ∈ Ex
for all Xx ∈ TxM . In other words, ∇ can be reinterpreted as an operator

d∇ : Γ(E)→ Ω1(M,E), d∇(s)(X) := ∇X(s).

The axioms on ∇ are equivalent to the fact that d∇ is linear and

d∇(fs) = fd∇(s) + df ⊗ s

for all f ∈ C∞(M) and s ∈ Γ(E). More on this a bit later.

Let us now turn to the secon type of condition in the lemma and give to it
a more conceptual face. Given a path

γ : I →M

(i.e. a smooth map, defined on some interval I, typically [0, 1] or of type (−ε, ε)),
by a path in E above γ we mean any path u : I → E with the property that

u(t) ∈ Eγ(t) ∀ t ∈ I.

One way to produce such paths above γ is by using sections of E: any section
s ∈ Γ(E) induces the path

s ◦ γ : I → E

above γ. The previous lemma implies that the expression

∇γ̇(s)(γ(t))

makes sense, depends on the path s ◦ γ and defines is a path above γ. It is
denoted

∇(s ◦ γ)

dt
.

Slightly more generally, for any path u : I → E above γ one can define the new
path above γ

∇u
dt

: I → E.

Locally with respect to a frame e, writing u(t) =
∑
j u

j(t)ej(γ(t)), the formula
is just the obvious version of (20) and we find the components

(21)

(
∇u
dt

)i
=
dui

dt
(t) +

∑
j

uj(t)ωij(γ̇(t)).
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Exercise 5.9. On the tangent bundle of Rn consider the connection

∇XY =
∑
i

X(Y i)
∂

∂xi
.

Let γ be a curve in Rn and let ∇dt be the derivative induced along γ by the

connection. What is ∇ γ̇dt ?

5.10. Connections and DeRham-like operators: Next, we point out a
slightly different way of looking at connections, in terms of differential forms on
M . Recall that the standard DeRham differential d acts on the space Ω(M) of
differential forms on M , incresing the degree by one

d : Ω∗(M)→ Ω∗+1(M),

and satisfying the Leibniz identity:

d(ω ∧ η) = d(ω) ∧ η + (−1)|ω|ω ∧ d(η),

where |ω| is the degree of ω2, and is a differential (i.e. d ◦ d = 0). Locally,
writing ω as in (12) in 4.13, we have

dω =
∑
i

∑
i1,...,ip

∂f i1,...,ip

∂χk
dχidχi1 . . . dχip .

Globally, thinking of ω as a C∞(M)-linear map as in (11), one has

d(ω)(X1, . . . , Xp+1) =
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xp+1))

+

p+1∑
i=1

(−1)i+1LXi(ω(X1, . . . , X̂i, . . . , Xp+1)).(22)

where LX denotes the Lie derivative along the vector field X.
Let us now pass to differential forms with coefficients in a vector bundle

E (see 4.13). The key remark here is that, while there is no canonical (i.e.
free of choices) analogue of DeRham differential on Ω(M,E), connections are
precisely the piece that is needed in order to define such operators. Indeed,
assuming that ∇ is a connection on E, and thinking of forms ω ∈ Ωp(M,E)
as C∞(M)-multilinear maps as in 13, we see that the previous formula for the
DeRham differential does makes sense if we replace the Lie derivatives LXi by
∇Xi . Hence one has an induced operator

d∇ : Ω•(M,E)→ Ω•+1(M,E).

As in the case of DeRham operator, d∇ satisfies the Leibniz identity

d∇(ω ∧ η) = d(ω) ∧ η + (−1)|ω|ω ∧ d∇(η)

for all ω ∈ Ω(M), η ∈ Ω(M,E). the correspondence ∇ ↔ d∇ is a bijection
between connections on E and operators d∇ as above (increasing the degree by
one and satisfying the Leibniz identity).

2Note: the sign in the formula agrees with the graded sign rule: we interchange d which
has degree 1 and ω
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Note also that, as for the DeRham operator, d∇ can be described in locally,
using the connection matrices. First of all, if U is the domain of a local frame
e = {e1, . . . , er} with connection matrix ω, then one can write

(23) d∇(ej) =

r∑
i=1

ωijej ,

Assume now that U is also the domain of a coordinate chart (U, χ1, . . . , χn).
Representing ω ∈ Ωp(M,E) locally as in (14), the Leibniz identity gives the
formula

d∇(ω) =
∑

i1,...,ip

(−1)pdxi1 . . . dxip ⊗ d∇(ei1,...,ip).

hence it suffices to describe d∇ on sections of E. The same Leibniz formula
implies that it suffices to describe d∇ on the frame e- and that what (23) does.

5.11. Parallel transport: One of the main use of connections comes from
the fact that a connection ∇ on E can be used to move from one fiber of E to
another, along paths in the base. This is the so called parallel transport. To
explain this, let us return to paths u : I → E. We say that u is parallel (with
respect to ∇) if

∇u
dt

= 0 ∀ t ∈ I.

Lemma 5.12. Let ∇ be a connection on the vector bundle E and γ : I → M
a curve in M , t0 ∈ I. Then for any u0 ∈ Eγ(t0) there exists and is unque a
parallel path above γ, u : I → E, with u(t0) = u0.

Proof. We can proceed locally (also because the uniqueness locally implies that
the local pieces can be glued), on the domain of a local frame e. By formula
(21), we have to find

u = (u1, . . . , ur) : I → Rr

satisfying
dui

dt
(t) = −

∑
j

uj(t)ωij(γ̇(t)), u(0) = u0.

In a matricial form (with u viewed as a column matrix), writing A(t) for the
matrix −ω(γ̇(t)), we deal with the equation

u̇(t) = A(t)u(t), u(t0) = u0

and the existence and uniqueness is a standard result about first order linear
ODE’s.

Definition 5.13. Given a connection ∇ on E and a curve γ : I →M , t0, t1 ∈ I,
the parallel transport along γ (with respect to ∇) from time t0 to time t1 is the
map

T t0,t1γ : Eγ(t0) → Eγ(t1)

which associates to u0 ∈ Eγ(t0) the vector u(t1) ∈ Eγ(t1), where u is the unique
parallel curve above γ with u(t0) = u0.

Exercise 5.14. Show that
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1. each T t0,t1γ is a linear isomorphism.

2. T t1,t2γ ◦ T t0,t1γ = T t0,t2γ for all t0, t1, t2 ∈ I.

Then try to guess how ∇ can be recovered from all these parallel transports (there
is a natural guess!). Then prove it.

5.15. Curvature: Recall that, for the standard Lie derivatives of functions
along vector fields,

L[X,Y ] = LXLY (f)− LY LX(f).

Of course, this can be seen just as the definition of the Lie bracket [X,Y ] of
vector fields but, even so, it still says something: the right hand side is a deriva-
tion on f (i.e., indeed, it comes from a vector field). The similar formula for
connections fails dramatically (i.e. there are few vector bundles which admit a
connection for which the analogue of this formula holds). The failure is mea-
sured by the curvature of the connection.

Proposition 5.16. For any connection ∇, the expression

(24) k∇(X,Y )s = ∇X∇Y (s)−∇Y∇X(s)−∇[X,Y ](s),

is C∞(M)-linear in the entries X,Y ∈ X (M), s ∈ Γ(E). Hence it defines an
element

k∇ ∈ Γ(Λ2T ∗M ⊗ End(E)) = Ω2(M ;End(E)),

called the curvature of ∇.

Proof. It follows from the properties of ∇. For instance, we have

∇X∇Y (fs) = ∇X(f∇Y (s) + LY (f)s)

= f∇X∇Y (s) + LX(f)∇Y (s) + LX(f)∇Y (s) + LXLY (f)s,

and the similar formula for ∇X∇Y (fs), while

∇[X,Y ](fs) = f∇[X,Y ](s) + L[X,Y ](f)s.

Hence, using L[X,Y ] = LXLY − LY LX , we deduce that

k∇(X,Y )(fs) = fk∇(X,Y )(s),

and similarly the others.

Remark 5.17. One can express the curvature locally, with respect to a local
frame e = {e1, . . . , er} of E over an open U , as

k∇(X,Y )ej =

r∑
j=1

kij(X,Y )ei,

where kij(X,Y ) ∈ C∞(U) are smooth functions on U depending on X,Y ∈
X (M). The previous proposition implies that each kji is a differential form (of
degree two). Hence k∇ is locally determined by a matrix

k = k(∇, e) := (kij)i,j ∈Mr(Ω
2(U)),
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called the curvature matrix of ∇ over U , with respect to the local frame e. A
simple computation (exercise!) gives the explicit formula for k in terms of the
connection matrix ω:

k = dω + ω ∧ ω,

where ω ∧ ω is the matrix of 2-forms given by

(ω ∧ ω)ij =
∑
k

ωik ∧ ωkj .

5.2 Connections on principal bundles

Throughout this subsection G is a Lie group and π : P → M is a principal
G-bundle. There are several different ways of looking at connections on P . We
start here with the more intuitive one.

5.18. Connections as horizontal distributions: A horizontal subspace of
P at p ∈ P is a subspace

Hp ⊂ TpP

with the property that

(25) (dπ)p|Hp : Hp → Tπ(p)M

is an isomorphism. Note that in this case, for all g ∈ G,

Rg(Hp) := {(dRg)p(Xp) : Xp ∈ Hp} ⊂ TgpP

is a horizontal subspace at gp.
By distribution on P we mean a vector sub-bundle

H ⊂ TP.

Equivalently, it is a collection {Hp}p∈P of vector sub-spaces Hp of TpP , all of
the same dimension, which fits together into a smooth submanifold H of TP .

Definition 5.19. A connection on P is a distribution H on P , with the property
that each Hp is a horizontal subspace of P and

Hpg = Rg(Hp) ∀ p ∈ P, g ∈ G.

Note that here is a slightly different way of looking at horizontal subspaces
Hp ⊂ TpP , by encoding them in the inverse of isomorphism (25), viewed as a
linear map

hp : Tπ(p)M → TpP

with the property that it is a right inverse to (dπ)p:

(dπ)p ◦ hp = Id : Tπ(p)M → Tπ(p)M.

Maps with this property will be called horizontal lifting at p and hp will be
called the horizontal lifting associated to Hp. Note that the subspace Hp can
be recovered as the image of hp. Of course, given a connection H one obtains
an induced horizontal lifting at the level of vector fields

h : X → X (P ), h(X)p := hp(Xπ(p)).
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Putting all the possible horizontal liftings together we obtain the so-called first
order jet of P ,

J1(P ) := {(p, hp) : p ∈ P, hpis a horizontal lifting of P at p}.

This can be seen as a (discrete for now) bundle over P (using the projection on the
first coordinate) and also as a bundle over M by further composing with the projection
π : P →M . The terminology comes from the fact that this set encodes all the possible
first order data (jets) associated to (local) sections of P . More precisely, given x ∈M ,
any local section σ of P defined around x, induces:

• the 0-th order data at x: just the value σ(x) ∈ P .

• the 1-st order data at x: the value σ(x) together with the differential of σ at p
(which encodes the first order derivatives of σ at x),

(dσ)x : TxM → Tσ(x)P.

Of course, (dσ)x is a horizontal lifting at σ(x) and it is not difficult to see that

J1(P ) = {(σ(x), (dσ)x) : x ∈M,σ − local section of P defined around p}.

Note that for a section σ of P , the resulting map

j1(σ) : M → J1(P ), x 7→ (σ(x), (dσ)x))

is a section of J1(P ) viewed as a bundle over P . Similalrly for local sections. There
is a natural smooth structure on J1(P ) uniquely determined by the condition that all
local sections of type j1(σ) are smooth.

5.20. Connection forms: Here is a slightly different point of view on con-
nections, bot so natural but often easr to work with. Let g be the Lie algebra
of G. Recall that

a : g→ X (P )

denotes the induced infinitesimal action of g on P - given by

a(v)p =
d

dt

∣∣∣∣
t=0

pexp(tv).

Also, we consider the adjoint representation of G on g,

Ad : G→ GL(g), g 7→ Adg

which associates to g ∈ G the differential at the identity of the map G→ G, a 7→
aga−1. When G ⊂ GLn is a linear group (so that g ⊂ gln), Adg is simply the
matrix conjugation by g:

Adg(v) = gvg−1.

The general discussion from 4.36 gives us the notion of G-invariant forms on P
with values in g- as those θ ∈ Ωk(P, g) with the property that

R∗g(ω) = Adg−1(ω)

for all g ∈ G.
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Definition 5.21. A connection form on P is a 1-form

ω ∈ Ω1(P, g)

with the property that it is G-invariant and satisfies

ω(a(v)) = v ∀ v ∈ g.

Proposition 5.22. There is a bijection between connection 1-forms ω ∈ Ω1(P, g)
and connections H on P . The bijection associates to ω its kernels:

Hp := {Xp ∈ TpP : ωp(Xp) = 0}.

Proof. For each p ∈ P we consider the short exact sequence of vector spaces

g
ap→ TpP

(dπ)p→ Tπ(p)M.

A right splitting of this sequence is a right inverse of (dπ)p; as we have no-
ticed, such right splittings hp correspond to horizontal subspaces Hp. On the
other hand one can also talk about left splitting of the sequence, by which we
mean a left inverse of ap or, equivalently, linear maps ωp : TpP → g satisfying
ωp(ap(v)) = v for all v ∈ g. What we need here is a simple linear algebra
fact which says that, for a short exact sequence of vector space, there is a 1-1
correspondence between the choice of right splittings hp and the choice of left
splittings ωp. Explicitely, this correspondence is described by the equation

ap ◦ ωp + hp ◦ (dπ)p = Id.

After applying this at all p ∈ P , one obtains the 1-1 correspondence from
the statement. Of course, one still has to check that the smoothness of ω is
equivalent to the one of h and similarly for the G-invariance, but we leave these
as an exercise.

5.23. Parallel transport As in the case of vector bundles, connections on
principal bundles have associated parallel transports. Assume we fix a connec-
tion H on the principal G-bundle π : P →M , with associated connection form
ω. Then we say that a curve u : I → P is horizontal if

u̇(t) ∈ Hγ(t) ∀ t ∈ I,

where γ(t) = π(u(t)). Then, completely similar to Lemma 5.12, we have:

Lemma 5.24. Let γ : I →M be a curve in M , t0 ∈ I. Then for any u0 ∈ Pγ(t0)

there exists and is unque a horizontal path above γ, u : I → P , with u(t0) = u0.

Proof. Again, we may work locally, i.e. we may just assume that P = M × G
is the trivial principal bundle. Let us now see what a connection form on this
bundle looks like. First of all, the invariance condition means that, for all
(x, a) ∈M ×G, (Xx, Va) ∈ Tx,a(M ×G) = TxM × TaG, and for all g ∈ G,

ωx,ag(Xx, Rg(Va)) = Adg−1(ωx,a(Xx, Va)),

where we denote by Rg : G → G the right multiplication by g and also its
differential (dRg)a : TaG → TagG. Taking a = 1, we see that ω is determined
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by all the expressions of type ωx,1(Xx, v) with 1 ∈ G the unit, v ∈ T1G = g.
In turn, the condition that ω(a(v)) = v for all v ∈ g implies that ω is uniquely
determined by all expressions of type

ωx,1(Xx, 0) ∈ g

i.e. precisely by the restriction η ∈ Ω1(M, g) of ω to M via the inclusion
M ↪→ M ×G, x 7→ (x, 1). Writing down the explicit formulas we find that the
formula for ω in terms of η:

ωx,g(Xx, Vg) = Adg−1(ηx(Xx)) + Lg−1(Vg),

where, as before, Lg−1 : G → G stands for the left multiplication by g−1 and
also for its differential (dLg−1)g : TgG→ T1G = g.

A curve in P = M ×G above γ can be written as

u(t) = (γ(t), g(t)).

The fact that it is horizontal means that u̇(t) takes values in the horizontal
space or, equivalently, that it is killed by ω:

ωγ(t),g(t)(γ̇(t), ġ(t)) = 0 ∀ t ∈ I.

Using the previous formula for ω we see that this equation becomes

ġ(t) = −Rg(t)(ηγ(t)(γ̇(t)).

For fixed γ we need existence and uniqueness of g satisfying this equation, with
an initial contion g(t0) = g0 given. We denote v(t) = −ηγ(t)(γ̇(t) (curve in g, so
that the equation reads ġ(t) = Rg(t)(v(t)). At least for linear groups G ⊂ GLr
we deal again (as in the case of vector bundles) with an ordinary ODE. For a
general Lie group one can just interpret this equation as the flow equation of
the time-dependent vector field X(t, g) on G given by

X(t, g) = Rg(v(t))

and use the standard results about flows of time-dependent vector fields. How-
ever, one still has to make sure that the equation with the given initial condition
g(t0) = g0 exists on the entire interval I on which v is defined; for that one uses
the remark that, if g(t) is an integral curve then so is h(t) = g(t)a for all a ∈ G:

ḣ(t) = Ra(ġ(t)) = Ra(Rg(t)(v(t)) = Rh(t)(v(t)).

Finally, as in the case of vector bundles, for curves γ : I → M , t0, t1 ∈ M ,
one obtains the parallel transport (with respect to the connection) along γ:

T t0,t1γ : Pγ(t0) → Pγ(t1)

which associates to u0 ∈ Pγ(t0) the element u(t1) ∈∈ Pγ(t1), where u is the
horizontal path above γ with u(t0) = u0.

Exercise 5.25. Show that T t0,t1γ are diffeomorphisms and are G-equivariant.
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5.26. Curvature Let H be a connection on P , with associated horizontal
lifting h and connection 1-form ω. The curvature of H measure the failure of H
to be involutive or, equivalently, the failure of the horizontal lifting h to preserve
the Lie bracket of vector fields. However, let us introduce it in the form that
is easier to work with. For that we note that the Lie bracket [·, ·] of the Lie
algebra g extends to a bracket

[·, ·] : Ω1(P, g)× Ω1(P, g)→ Ω2(P, g),

[α, β](X,Y ) := [α(X), β(Y )]− [α(Y ), β(X)].

Note that when β = α ∈ Ω1(P, g) one obtains

[α, α](X,Y ) = 2[α(X), α(Y )].

Definition 5.27. The curvature of the connection ω is defined as

K := dω +
1

2
[ω, ω] ∈ Ω2(P, g).

The main property of the curvature is that (see 4.36 for the notion of basic
forms):

Lemma 5.28. The curvature is a basic form:

K ∈ Ω2(P, g)bas.

Proof. The G-invariance follows from the G-invariance of ω and the fact that
all the operations involved in construction K (d and the bracket) are natural
(functorial), hence are respected by the action of G (give the details!). The fact
that K is horizontal

Note that the fact that Ω is horizontal implies that, in order to know Ω, it
suffices to know all the expressions of type

K(h(X), h(Y )) ∈ C∞(P, g)

with X,Y ∈ X (M), where h(X) ∈ X (M) is the horizontal lift of X with
respect to the connection. For the following, recall that a : g → X (P ) denotes
the induced infinitesimal action (see above).

Proposition 5.29. The curvature can also be characterized as:

1. the horizontal part of dω, i.e. the horizontal form on P (with values in g)
which coincides with dω on horizontal vectors.

2. the unique horizontal form Ω with the property that, after applying the
infinitesimal action a : g→ X (P ),

a(K(h(X), h(Y ))) = h([X,Y ])− [h(X), h(Y )]

for all X,Y ∈ X (M).
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Proof. We have already shown that K is horizontal and then the first part is
clear from the very definition of K. For the second part, by the comments
before the proposition and the injectivity of a, the uniqueness follows. Hence
we just have to show that the actual curvature does have this property. For
that one just compute K(h(X), h(Y )) using the definition of K and the fact
that ω ◦ h = 0 and we find:

K(h(X), h(Y )) = −ω([h(X), h(Y )]) = ω(h([X,Y ])− [h(X), h(Y )]).

On the other hand, since h(X) is π-projectable to X, we have that [h(X), h(Y )]
is π-projectable to [X,Y ] and then h([X,Y ])− [h(X), h(Y )] is π-projectable to
[X,Y ]− [X,Y ] = 0, i.e. it is vertical. Hence, at each point p, it is of type a(vp)
with some vp ∈ g. Plugging in the previous equation, we find that

K(h(X), h(Y ))(p) = ω(a(vp)) = vp,

and then the desired equation follows is just the defining property of vp.

5.3 Vector bundle connections versus principal bundle con-
nections

We have seen the 1-1 correspondence between vector bundles of rank r over M
and principal GLr-bundles over M . We show that this bijection extends at the
level of connections.

5.30. From vector bundle connections to principal bundle ones: Start
with a vector bundle E and a connection ∇ on E. We consider the associated
frame bundle Fr(E), a principal GLr-bundle, and we want to associated to ∇ a
connection on Fr(E). We will do that by constructing a connection 1-form

ω∇ ∈ Ω1(Fr(E), glr).

We have to say what it does on an arbitrary vector

d

dt

∣∣∣∣
t=0

e(t) ∈ Te(0)Fr(E),

where
R 3 t 7→ e(t) = (e1(t), . . . , er(t)) ∈ Fr(E)

is a curve in Fr(E). Let γ : R → M be the base curve of e. Consider the
derivatives of the paths ei with respect to ∇ (see 5.7) and decompose them with
respect to the frame e(t):

∇ei
dt

(t) =
∑
j

aji (t)ej(t)

giving rise to the matrix

e(t)−1 · ∇e
dt

(t) := (aji (t))i,j ∈ glr

(think that, while e(t) : Rr ∼→ Eγ(t),
∇e
dt (t) is a linear map from Rr to Eγ(t)).

Set now

ω∇(
d

dt

∣∣∣∣
t=0

e(t)) := e(0)−1 · ∇e
dt

(0) ∈ glr.
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Theorem 5.31. For any connection ∇ on E, ω∇ is a connection 1-form on
Fr(E), and this defines a bijection between connections on E and connections
on the principal GLr-bundle Fr(E).

Proof. We first show that, for any ∇, ω∇ is a connection 1-form. Let us first
prove that ω(ap(A)) = A for all e ∈ Fr(E), A ∈ glr. Recall that

ap : glr → TeFr(M), ae(A) =
d

dt

∣∣∣∣
t=0

e · exp(tA).

In the definition of ω above, we deal with the path t 7→ eexp(tA) (which at t = 0
is e), hence

ω(ap(A)) = e−1∇e · exp(tA)

dt
(0).

Using the definitions (of ∇dt , as well as the fact that this operation on frames
is defined componentwise), the standard derivation rules apply and, since e is
constant on t, we find

ω(ap(A)) = e−1e · dexp(tA)

dt
(0) = A.

Next, we prove the invariance of ω. We have to show that for any path e(t) of
frames,

ω((dRg)(
de

dt
(0)) = Adg−1ω(

de

dt
(0)).

We start from the left hand side. We see that we deal with ω evaluated on the
curve of frames e(t)g hence, by the definition of ω, the expression is

(e(0)g)−1∇eg
dt

(0) = (g−1e(0)−1)
∇e
dt

(0)g

i.e. precisely

g−1ω(
de

dt
(0))g = Adg−1(ω(

de

dt
(0)).

We still have to show that ∇ 7→ ω∇ is a bijection. This can be shown in
several ways. One way is to basically read the previous argument backwards.
Below we present a different argument, in a slightly more general context.

5.32. From principal bundle connections to vector bundle ones: Let us
now start with a Lie group G, a representation ρ : G→ GL(V ) and a principal
G-bundle π : P →M , so that we can form the vector bundle E = E(P, V ). We
will associate to a connection ω on P , a connection ∇ on the vector bundle E.
It suffices to construct

d∇ : Γ(E)→ Ω1(M,E)

or, equivalently (cf. Proposition 4.38),

D∇ := h•d∇(h•)−1 : C∞(P, V )G → Ω1(P, V )bas.

Proposition 5.33. For any connection ω on P ,

D∇ : C∞(P, V )G → Ω1(P, V )bas, D(f) = df + ρ(ω(−))f

(where ρ(ω(−))f is the V -valued 1-form on P given by X 7→ ρ(ω(X))(f)) in-
duces a connection ∇ on the vector bundle E.

Proof. Direct check.

83



5.4 Application: connections compatible with G-structures

Throughout this section we fix a G-structure S on the manifold M .

Definition 5.34. A connection

∇ : X (M)×X (M)→ X (M)

on M is said to be compatible with the G-structure S if the equivalent properties
from the next proposition are satisfied.

Proposition 5.35. For a connection ∇ the following are equivalent:

(i) For any local frame e over U , that belongs to S the resulting connection
matrix (19) takes values in g:

ω(∇, e) ∈ Ω1(U, g).

(ii) For any curve γ : [0, 1]→M , the parallel transport along γ gives isomor-
phisms

T 0,1
γ : (Eγ(0),Sγ(0))→ (Eγ(1),Sγ(1)).

(iii) The induced principal bundle connection on Fr(M), represented by the
connection 1-form

ω ∈ Ω1(Fr(M), glr)

has the property that
ω|S ∈ Ω1(S, g).

Moreover, the correspondences ∇ 7→ ω 7→ ω|S define bijections between:

• connections ∇ satisfying (i) (or (ii)).

• connections on Fr(M) satisfying (iii).

• connections on the principal G-bundle S.

Proof. To come.

Let us draw some conlcusions coming from the general theory of connections.
From now on we fix

G ⊂ GLn, V := Rn,

and we also consider the Lie algebra g of G. Denote by N the dimension of G.
When we want to write expressions in their coordinates, we will use

{e1, . . . , en} − the standard basis of V = Rn

and
{A(1), . . . , A(N)} − a fixed basis of g,

writing,
A(α) = (Aij(α))1≤i,j≤n ∈ g ⊂ gln.

5.36. The curvature (of connections on G-structures): Given a connec-
tion ∇ on M compatible with a G-structure S and the associated connection
1-form ω on S, we can form:
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1. The curvature of ∇:

K∇ ∈ Ω2(M,End(TM)).

2. The curvature of the principal bundle connection ω:

Kω ∈ Ω2(P, g)bas.

From the general theory (see also 4.44 for the bundle of infinitesimal autonor-
phisms) we deduce:

Corollary 5.37. For any connection ∇ compatible with the G-structure S on
M ,

K∇ ∈ Ω2(M, aut(S))

and, modulo the isomorphism

π• : Ω(M, aut(S))
∼→ Ω(S, g)bas

(see Proposition 4.38 and Proposition 4.45), K∇ is identified with

Kω ∈ Ω2(S, g)bas.

Exercise 5.38. Let S be a G-structure on M . Prove that aut(S) and E[S, g]
are isomorphic as vector bundles on M . Hint: recall that the representation
of G in GL(g) is the adjoint one. One can identify sections of E[S, g] with
functions f : P → g and thus, via a : g→ X (P ), with G-invariant vector fields
on P .

In the case of connections compatible with G-structures their curvatures can
be expressed in more “down to earth” ways. For instance, for any e ∈ Sx, due
to its horizontality, Kω(e) can be seen as a map from Λ2T ∗xM to g; moreover,
since e defines an identification of TxM with V , we find that K can be seen as
a smooth map

K ∈ C∞(S,Hom(Λ2V, g)).

Using the bases fixed above, K can be seen as a collection of maps

K = {Kα
i,j ∈ C∞(S) : 1 ≤ i, j ≤ n, 1 ≤ α ≤ N}

(globally) so that

K(ei, ej) =
∑
α

Kα
i,jA(α).

5.39. The torsion (of connections on G-structures): Let us now take
further advantage of the fact that we deal with TM . In this case, next to the
curvature, the other important tensor that is associated to a connection is its
torsion. As before, one can work either at the level of TM or that of S:

• one has the torsion of ∇,

T∇ : X (M)×X (M), T∇(X,Y ) = ∇X(Y )−∇Y (X)− [X,Y ],

viewed as a tensor
T∇ ∈ Ω2(M,TM).
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• one can also define the torsion of the principal connection ω directly. Since
torsion is specific to TM and frame bundles, it is not surprising that it
is related to the tautological form θ ∈ Ω1(S, V ) (see Proposition 4.52 and
the comment thereafter). More precisely, while the curvature was the
horizontal part of dω (see Proposition 5.29), the torsion is the horizontal
part of dθ. Hence the torsion of ω,

Tω ∈ Ω2(S, V )bas,

is the horizontal form which, on horizontal vectors, coincides with dθ:

Tω(h(X), h(Y )) = (dθ)(h(X), h(Y )).

Again, it is not difficult to see (exercise!) that the two torsions are basically
the same thing, modulo the isomorphism

π• : Ω(M,TM)
∼→ Ω(S, V )bas

coming from Proposition 4.38. And, as for the curvature, one can take further
advantage of the fact that we deal with frames of TM and reinterpret T as a
smooth map

T ∈ C∞(S,Hom(Λ2V, V )),

or as a collection
T = {T ki,j ∈ C∞(S) : 1 ≤ i, j, k ≤ n}

so that
T (ei, ej) =

∑
k

T ki,jek.

5.40. The point of view of coframes: The following is now immediate, but
it is important conceptually since it allows us to pass from G-structures and
connections to coframes.

Proposition 5.41. The choice of a connection compatible with the G-structure
induces a coframe on S, namely

ω ∈ Ω1(S, g), θ ∈ Ω1(S, V ).

More precisely, using the basis {Aα} of g and the standard basis of V , then the
coframe is the one given by the components of ω and θ:

ω1, . . . , ωN , θ1, . . . , θn.

Of course, the interesting question is now: which are the structure functions
of the coframe? It is nice recognize all of them:

1. the Lie algebra structure of g, encoded in the structure constants cαβ,γ
defined by

[A(β), A(γ)] =

α∑
β,γ

cαβ,γA(α).
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2. the representation of g on Rn (or the way that g sits inside gln), encoded
in the matricial representration of the basis {A(α)}

A(α) = (Aij(α))1≤i,j≤n.

3. the torsion and the curvature of the connection.

I.e., two types of coefficents depend only on g ⊂ gln, while the other give rise
precisely to the torsion and the curvature:

Proposition 5.42. One has

dθ = T (θ ∧ θ) + ω ∧ θ (in Ω2(S, V ),

dω = K(θ ∧ θ)− 1

2
[ω, ω] (in Ω2(S, g).

In terms of their components:

dθi =
∑
j,k

T ij,kθ
j ∧ θk +

∑
Aij(α)ωα ∧ θj ,

dωα =
∑
j,k

Kα
j,kθ

j ∧ θk −
∑
β,γ

cαβ,γω
β ∧ ωγ .

Maybe one word explaining the notations in the first type of formulas is
appropriate. Whenever one has three vector spaces (or even vector bundles)
W1, W2 and W and a bilinear map

f : W1 ×W2 →W

one has an wedge-product operations

Ωp(S,W1)⊗ Ωq(S,W2)→ Ωp+q(S,W ), (ω, η) 7→ ω ∧f η

given by the standard formula (15), but using f to pair the values of ω with
those of η. Most of the times f is clear from the context and one just ommits
it from the notation. This applies in particular to

• the evaluation operation

g× V → V, (A, v) 7→ A(v)

which gives rise to

Ω1(S, g)× Ω1(S, V )→ Ω2(S, V )

and which explains the meaning of ω ∧ θ (sometimes also denoted ω ◦ θ).

• the Lie algebra operation

[·, ·] : g× g→ g

which gives rise to

Ω1(S, g)× Ω1(S, g)→ Ω2(S, g),

which is usually denoted still by [·, ·] (and we defined already) and which
explains the term [ω, ω].
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• the triple operation

Hom(Λ2V, V )× V × V → V, (ξ, v1, v2) 7→ ξ(v1, v2)

which gives rise to

C∞(S,Λ2V, V )× Ω1(S, V )× Ω1(S, V )→ Ω2(S, V ).

explaining the meaning of T (θ∧θ). Note that a more conceptual notation
would be

T ∧ θ ∧ θ

since it indicates (and allows us to use) the fact that this operation is a
combination of two operations, in two different ways:

T ∧ θ ∧ θ = T ∧ (θ ∧ θ) = (T ∧ θ) ∧ θ.

• similarly for

C∞(S,Λ2V, g)× Ω1(S, V )× Ω1(S, V )→ Ω2(S, g),

explaining the notation K(θ ∧ θ).

5.43. The example of metric connections in Riemannian geometry:
In the literature one comes across the definition of connections compatible with
a given Riemannian, (almost) symplectic or (almost) complex structure. It
should come as no surprise that all these definitions ultimately coincide with
the compatibility from the point of view of G-structures. For instance, below is
the definition of a metric connection in Riemannian geometry.

Definition 5.44. Given a Riemannian manifold (M, g), a connection ∇ on
TM is called metric (or g-compatible) if the following holds for all vector fields
X,Y, Z on M :

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇X , Z).

In view of the following lemma and the equivalent characterizations of a
G-compatible connection given in Proposition 5.35, a metric connection is the
same as an O(n)-compatible connection.

Lemma 5.45. If a connection is metric, then the associated parallel transport
is an isometry

Proof. Let γ : I → M be a smooth curve, v, w ∈ Tγ(t0)M for some t0 ∈ I.
Suppose X and Y are parallel vector fields along γ (i.e., sections of γ∗TM), with
X(t0) = v and Y (t0) = w. Then we need to prove that t 7→ gγ(t)(X(t), Y (t)) is
constant. By locality we may assume X and Y are in fact local vector fields on
M and so we compute

d

dt
g(X,Y )(γ(t)) = γ̇(g(X,Y )) = g(∇γ̇X,Y ) + g(X,∇γ̇Y ) = 0.

Exercise 5.46. Recover the covariant derivative from parallel transport and
prove the converse of the above lemma.
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Exercise 5.47. In a completely analogous fashion, one defines an almost sym-
plectic connection on (M,ω) as a smooth linear connection on M such that the
almost symplectic form ω ∈ Ω2(M) is parallel, i.e.,

X(ω(Y,Z)) = ω(∇XY,Z) + ω(Y,∇X , Z)

(notice that the connection is called symplectic if its torsion also vanishes).
Prove that in this case the parallel transport associated to the connection pre-
serves ω.

5.5 The intrinsic torsion

Let’s now discuss the intrinisc torsion of a G-structure S; this will be extracted
from the torsion of connections compatible with S as the part that actually does
not depend on the connection. We first need to introduce some spaces that only
depend on

V := Rn, g ⊂ gln = gl(V )

(we prefere to work coordinate free in order to have simpler formulas).

Definition 5.48. The first prolongation of g is defined as

g(1) := {φ : V → g : φ(u)(v) = φ(v)(u) ∀ u, v ∈ g}.

It is useful to think of the first prolongation as the kernel of the linear map

∂ : Hom(V, g)→ Hom(Λ2V, V ), ∂(φ)(u, v) = φ)u)(v)− φ(v)(u).

Also the cokernel of this map will be important:

Definition 5.49. The torsion space of } is defined as

T (g) :=
Hom(Λ2V, V )

∂(Hom(V, g))
.

It may help to think of these spaces as part of an exact sequence:

0→ g(1) ↪→ Hom(V, g)
∂→ Hom(Λ2V, V )→ T (g)→ 0.

Proposition 5.50. For any connection ∇ compatible with the G-structure S,
denoting by

T∇ : S → Hom(Λ2V, V )

its torsion, composing with the projection onto T (g), the resulting

T : S → T (g)

does not depend on the choice of the connection.

Definition 5.51. T from the previous proposition is called the intrinsic torsion
of the G-structure S.

Theorem 5.52. If the G-structure S is integrable, then its intrinsic torsion
must vanish.
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In some interesting examples, but not allways, also the converse of this
corollary holds.

Corollary 5.53. For a G-structure S, the follwong are equivalent:

1. its intrinsic torsion vanishes.

2. M admits a torsion free connection compatible with S.

3. locally, M admits torsion free connections compatible with S.

Corollary 5.54. Given G:

1. If T (g) = 0 then for any G-structure S on M , M admits a torsion-free
connection compatible with S.

2. If g(1) = 0, then for any G-structure S on M , M admits a at most one
torsion-free connection compatible with S.

5.55. Example: metrics For Riemannian metrics, the relevant Lie algebra
is o(n).

Lemma 5.56. o(n)(1) = 0 and T (o(n)) = 0.

This lemma implies that, for Riemannian metrics, the intrinsic torsion van-
ishes. Actually, as shown by one of the previous corollaries, this is also the
reason that any Riemannian structure admits a unique torsion free compatible
connection.

5.57. Example: complex structures For complex structures the relevant
Lie algebra is glk(C) ⊂ gln (n = 2k) with the inclusion that we dscussed before.
Intrinsically, it is

{A ∈ gl(V ) : AJ = JA}

where (V, J) is R2k with the standard (linear) complex structure. We consider
the space

HomJ := {φ : Λ2V → V : φ(Ju, v) = φ(u, Jv) = −Jφ(u, v)}.

Lemma 5.58. One has
T glk(C) ∼= HomJ

by the isomorphism which associates to the class of φ ∈ Hom(Λ2V, V ) modulo
the image of ∂ the bilinear map tJ(φ) given by

tJ(φ)(u, v) = φ(u, v) + J(φ(Ju, v) + φ(u, Jv))− φ(Ju, Jv).

Proof. We claim there is an exact sequence

g(1) ↪→ Hom(V, g)
∂→ Hom(Λ2V, V )

tJ→ Hom(Λ2V, V )
∂

∂J Hom(Λ2V, V )

where ∂J is given by

∂J(φ)(u, v) = φ(Ju, v) + φ(u, Jv) + 2Jφ(u, v)

and has as kernel precisely the space HomJ from the statement.

90



Note that this lemma implies that, for almost complex structures, the in-
trinsic torsion is an element

T ∈ Ω2
J(M,TM) = {ω ∈ Ω2(M,TM) : ω(JX, Y ) = ω(X, JY ) = −Jω(X,Y )}

and the explicit formula for tJ identifies this with the Nijenhuis torsion of J .
In other words, the intrinisic torsion of an almost complex structure J is pre-
cisely its Nijenhuis torsion. Hence, for almost complex structures,the converse
of Theorem 5.52 does hold (and is the Newlander-Nirenberg theorem).

5.59. Example: symplectic structures: Let’s now move to the symplectic
algebra sp(V, ω) associated to a symplectic vector space (V, ω).

Lemma 5.60. For the symplectic Lie algebra sp(V, ω), sp(V, ω)(1) is isomorphic
to S3V ∗ and one has an isomorphism

T (sp(V, ω)) ∼= Λ3V ∗

by the isomorphism which associates to the class of φ ∈ Hom(Λ2V, V ) modulo
the image of ∂ the bilinear map ∂ω(φ) given by

∂ω(φ)(u, v, w) = ω(φ(u, v), w) + ω(φ(v, w), u) + ω(φ(w, u), v).

Proof. We have an exact sequence

S3V ∗
i→ Hom(V, sp(V, ω))

∂→ Hom(Λ2V, V )
∂ω→ Λ3V ∗.

As before, this implies that the intrinsic torsion of an almost symplectic
structure ω is precisely its differential dω. Hence, for almost symplectic struc-
tures,the converse of Theorem 5.52 does hold (and is the Darboux theorem).

5.61. Example: foliations: Similarly (to be written down), also with the
conclusion that, for distributions, the converse of Theorem 5.52 does hold (and
is the Frobenius theorem).

5.62. An integrability result: Although the converse of Theorem 5.52 does
not hold in general, let us at least prove a weaker version of it.

Theorem 5.63. A G-structure S is integrable if and only if, locally, M admits
flat torsion free connections compatible with S.

Proof. We choose a connection as in the statement, say defined over the entire
M . Note that the structure equations simplify to

dθ = ω ∧ θ (in Ω2(S, V ),

dω =
1

2
[ω, ω] (in Ω2(S, g).

In components, we deal with structure equations with constant coefficients.
These coefficients can be recognized as the structure constants of a larger Lie
algebra; but let us proceed intrinisically. We consider the semi-direct product
Lie algebra

g̃ = g⊕ V
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and the forms θ, ω are put together into a 1-form

Ω = (θ, ω) ∈ Ω1(S, g̃).

Then the structure equations can be re-written as

dΩ +
1

2
[Ω,Ω] = 0

hence, by a general result (see below3), one finds a local difeomorphism

f : S → G̃ = G× V

so that Ω is the pull-back of the Maurer-Cartan form of G̃. Clearly, the map
will be G-equivariant, hence we obtain a local diffeomorphism

f : M̃ → V

compatible with teh G-structures. Locally, one can restrict to diffeomorphisms,
proving integrability.

5.64. Flat G-structures: The last discussion brings us to some rather special
G-structure: flat ones (which is more than integrable!). By a flat G-structure
on M we mean a G-structure and a torsion-free connection that is compatible
with S (so that the previous theorem implies integrability).

The previous proof shows that, by passing to the universal cover (where the
G-structure clearly lifts), one has an associated “classifying map”, called the
developping map of the G-structure,

f : M̃ → Rn

which is a local diffeomorphism with the property that S is the pull-back by f
of the standard G-structure on Rn. An interesting question is whether this map
is a diffeomorphism when M is compact. The answer is know to be true for
Riemannian structures, but it is still open for other structures (e.g. for integral
affine structures it is know as the Markus conjecture).

6 Part 8: Prolongations; G-structures of finite
type

Discuss the first and then higher order prolongations of g ⊂ gln.

Go on an define the (first) prolongation of a G-structure and indicate the
higher order structure functions.

Give the definition of finite order structures and note that, after prolon-
gations, finite order structures give rise to {e}-structures. As solution to the

3to be added. It is the one that says that, for a manifold M , a Lie algebra g, forms
ω ∈ Ω1(M, g) satisfying dω+ 1

2
[ω, ω] = 0 are allways pull-backs, via a smooth map f : M → G,

of the Maurer-Cartan form.
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integrability problem in this case, deduce Theorem 33 from page 339. Also de-
duce that the automorphism group of a finite type G-structure is a Lie group
Corollary 4.2 page 348 in Sternberg). Don’t forget to give the Riemannian ex-
ample. Maybe say that things are more complicated in general (say something
about the symplectic case?).

7 Part 9: Elliptic G-structures

Here I would do, in detail, Theorem 4.1 from Kobayashi’s book. We need some
analytic preparation here. It would be nice to explain better here the reason
of the term ”elliptic” in this case. For this, the paper by Singer-Sternberg (or,
better: the few pages where they discuss G-structures and then the other few
pages in which they discuss prolongations) may be helpful.

8 What else?

What I described so far would keep us busy for a while. It is not clear to me how
much time we will have left after all these (if any). There some interesting/worth
learning things one could still do here:

• More on the equivalence problem, the definition of exterior differential
systems + explaining the Cartan-Kahler theorem and how to use it for
(analytic) G-structures. (Part of) the paper by Singer-Sternberg may be,
again, one of the best references for this (because is short and gets to the
point); much more is done in the book by Bryant et comp on exterior
differential systems. This would take 2-3 lectures.

• Something that would take one lecture would be the discussion of pseu-
dogroup structures- from section 8 (starting on page 33) of Kobayashi’s
book. This may be actually the best/nicest since it would allow
us to treat more geometric structures- such as affine structures, contact
structures etc (going more into details, also with contact structures, would
require one extra-lecture).
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