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Fibred categories have been introduced by Grothendieck (1959, 1971), as the setting for his 

theory of descent. The present paper contains (in section 4) a characterisation of the effective 

descent morphisms under an arbitrary fibred category. This essentially geometric result com- 

plements a logical analysis of the Beck-Chevalley property (section 1) - which was crucial in 

the well-known theorem on sufficient conditions for the descent under bifibrations, due to 

Brnabou-Roubaud (1970) and Beck (unpublished). We describe the notion of  interpolants 

(sections 2 and 3) as the common denominator of the concepts of  descent and the Beck- 

Chevalley property. 

(For the basic notions and facts about fibred categories, the reader can consult Gray 1966, or 

BEnabou 1985. A survey can also be found in Pavlovi6 1990.) 

1. The  Beck-Cheval ley  cond i t i on /p rope r ty  

11. Proposi t ion .  Let E: ~----> ~B be a bifibration, Q = (f,g,s,t) a square in ~B such that 

fog = sot, and O = (~p,T,~,O) a square in g such that ¢poT= coO, with Eq0=f, ET=g, Ecr=s and 

EO=t. The following conditions are equivalent: 

a) if 1} and q~ are cartesian and if o is cocartesian then y must be cocartesian; 

b) if o and y are cocartesian and if O is cartesian then cp must be cartesian; 

c) if O is cartesian and if c is cocartesian then q~ is cartesian iff y is cocartesian. 
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If some inverse image functors f* and t* and some direct image functors g! and sI are chosen, 

then every square O over Q satisfies conditions (a-c) i f f  there is a canonical natural isomor- 

phism 

d) f 's! " g!t*. 

12. Definition. A square Q in the base of a bifibration E:8 --9 ~ satisfies the Beck-Chevalley 

condition if  every square O over Q satisfies conditions (a-c). E is said to have the Beck- 

ChevalIey property if  all the pullback squares in ~ satisfy the Beck-Chevalley condition. - 

"Beck-Chevalley" will be abbreviated to "BC". 

13. Proposition. A bifibration E has the BC-property iff the cocartesian arrows are stable 

under those pullbacks along cartesian arrows which E preserves. 

14. Sources. The Beck-Chevalley condition has arisen in the theory of descent - as devel- 

oped from Grothendieck 1959. Jon Beck and Claude Chevalley studied it independently from 

each another. The former expressed it in the form 1 l(d), the latter as in 1 l(a). It is conspicuous 

that neither of them ever published anything on it. Early references are: Btnabou-Roubaud 

1970, Lawvere 1970. 

The proofs of propositions 11 and 13 are elementary. They can be found in my thesis (1990). 

15. Logical meaning of the BC-property.  Consider a fibration E:8 ---9 ~ as a "category 

of predicates": the base category $ is to be thought of as a category of "sets" and "functions", 
while the objects and arrows of a fibre eI represent "predicates" ct(x I) over the "set" I, and 

"proofs" between them. In this setting, the logical operation of substitution is interpreted by the 

inverse images. An inverse image functor over a "function" t: I---) J in :B can be understood as 

mapping 

t*:Sj ---) 8I: ~(yJ) k---) 15(t(xI)). 

Lawvere (1969) noticed that the quantifiers are adjoint to the substitution: 

O~(x I) I- ~(t(XI)) ¢:~ 3XI(t(XI)=y J ^ ~(xI))  I- ~(yJ), 
~(t(xI)) t-- (g(X I) ¢=> ~(yJ) F- VXI(t(xI)=y J ~ ~(XI)), 

so that the logical picture of the direct image functors (t!-q t*---t t ,)  becomes 

t! : e l  ----) 8j: 0~(x I) ~ 3x I (t(xI)=y J A ~(x I) ), and 

t,: el-'--)8j: 0t(xI)k---)VxI(t(xI)=y J ~ Ct(xI)). 

What does the Beck-Chevalley property mean in this context? The simplest case is when the 

commutative square Q consists of projection arrows. A direct image functor along a projection 

~: KxM----) K just quantifies a variable, while an inverse image functor adds a dummy: 
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X*:~K'-'~ ~KxM: X(X K) I----) x(xK,/xaM) 
X! :~KxM --') ~K : ~( XK, zM) t'-) 3zMAI/(X K, zM), 
X*:~KxM--) ~K : ~(X K, zM) t--) VzM.~I/(x K, zM). 

The picture of the BC-condition is: 

g ( x , ~  ~ , ~  

n ~ ~  3z.xg(x~, z) 

3z.~(x, z) 
E KxLxM 

" "  

KxL 

/ 
K 

"rhe quantifier 3z and the variable y do not interfere" - says the BC-condition here. If we ap- 
ply 3z on ~(x,/y~, z), we get the same result as when when we apply it on ~(x,z) and then add 
y. 

Over a general pullback square Q, this picture becomes 

13(t(x)) , I .  

s i ~  3 ~ ) = f ( w )  ^ ~(y) 

3y(s(y)=z ̂  ~(y)) 
I E 
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A proof 3x(g(x)=w ^ ~(t(x))) F- q y (s (y)=f(w) ^ [3(y)) can be derived from a proof that Q is 

commutative: 

V- f(g(x))=s(t(x)). 
The converse proof 3y(s(y)=f(w) ^ ~3(y)) ~- 3x (g(x)=w ^ 13(t(x))) - follows from 

s(y)=f(w) v- qx(t(x)=y ^ g(x)=w),  

which tells that Q is a (weak) pullback. In this way, logic suggests the demand for an isomor- 
phism f'st(13) = g!t*(~) when Q is a pullback. 

2. Interpolation condition 

21. Motivation. The fact that variables do not interfere with each other can be expressed in a 

different way, without quantifiers: 
a(x,y) ~- T(y,z) ¢~ 

there is an interpolant 13(y), such that a(x,y) ~- [~(y) e- 7(y,z). 

At the first sight, this seems to be a different idea of the independence of  variables. 

Surprisingly, it is not. We show in the sequel that the BC-property - whenever it can be ex- 

pressed-  is equivalent with the existence of a certain kind of interpolants. 

22. Notation. For a given fibration E:~ ---> a3, an arrow te ~B(I,J) and an object Ye ICjI (i.e. 
EY=J), O~,: t'Y----) Y denotes an arbitrary cartesian lifting of t at Y; if E is a cofibration (i.e. if 

its dual EO:~°--> ~3o is a fibration), then ok: X---) t!X will be an arbitrary cocartesian lifting of t 

at an object X over I (i.e. a cartesian lifting with respect to E°). In general, we do not choose 

the whole (co)cleavages, but we do use these generic symbols for an arbitrarily chosen carte- 
sian or cocartesian arrow. Moreover, the unique vertical arrow by which o k factorizes through 

Otl~£ will be TI: X----) t*t!X - for the obvious reason that this arrow would be a component of  the 

unit of the adjointness t!--t t* / f  functors t! and t* were chosen. Similarly, given a vertical arrow 
q: tlX--> Y, we denote by q': X---> t*Y the unique vertical arrow such that ~ ~o q' = q o o)~: this 

is the "right transpose" of  q by t!--4 t*. Given vertical p:X---> t 'Y ,  its "left transpose" 
'p: tlX---> Y is the unique vertical arrow such that O~,op = 'poo)~. 

The unique vertical isomorphisms between various inverse images of an object along an arrow 
will all be denoted by "¢. E.g., if fog = sot, g*f*B and t*s*B are inverse images of B along the 

same arrow, and there is a unique vertical iso 'c: t*s*B---) f*g*B. 

Note, finally, that the thick points o.... enclose the (sketches of) proofs. 
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23. Definition. Let E: ~ --) ~B be a fibration, and Q = (f,g,s,t) a commutative square in B. 

An (Q-)interpolant of an arrow de ¢ i ( t*A,  g 'C)  is a triple (a,B,c),  where Be leKI, 
ae ~j(A, s 'B),  c~ ~L(f*B, C), such that 

d = g*(c)oxot*(a). 

Ot -t~ A d ' ~ g *  

A t*s*B "~ g*f*B 

4s  
s*B f*B 

,z  
B E 

K 

A square Q in the base of a fibration E satisfies the interpolation condition if there is a Q-inter- 

polant for every arrow de ~i(t*A, g 'C).  

24. Proposition. Let E: ~ ~ ~ be a bifibration. A commutative square Q = (f,g,s,t) in B 

satisfies the interpolation condition iff the vertical arrow P=PA : g!t*A----> f*s!A is a split mono 

for every A~ I~jI. (The arrow p is defined by the equation: Oslf opoot,~ A = ~ o O ~ . )  

• If: Suppose eop = id. We claim that an interpolant (a,B,c) is given by: 

B := slA, 
a := rl : A----) s*s!A, 

c := 'doe : f*s!A---) g!t*A---) C. 
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On the diagram 

d 
t*A -"- g * C  

ot 0 g 

A ~,t*a g*c I ' ~  ~,_ 
• - I ~ I d  

t*s*B z ' - - ~ g * f * B  ~" *" I / x , , .  glt A 

s's! A F f*sl A 

we see that 
~dgh = eoOp~hoxot*(a) ~ d = g*(c)oxot*(a). 

But the antecedens of this implication is a consequence of the fact that eop = id and of  lemma 

25 below. 

Then: Let (a~, B~ I, c~l)'be an interpolant of the "unit" 

r 1 : t'A---> g*g!t*A, 

(defined as in 22) and let 'a~ I : s!A---) B be the "left transpose" of arl. By lemma 26, the arrow 

e := crlof*('aq) : f*s!A---> f ' B - - )  g!t*A 
is then a left inverse of p.- 

Lemmas. The following statements are true for any bifibration E. 

25. poag = asgoxot*(rl). 

• By the definition of p, the left side is the unique factorisation over g of ¢s~oO]~ through Ostf. 

But the right side is such a factorisation too, as the next diagram shows. 

. .  t*A ~ A 

t*s*s t A ~  
( l  s 

"c~ ~ s * s l A  

g*f*s • I A O O f ~  

" ~  f*slA s! A 
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26. Each of two squares below commutes iff the other one does. 

d 
t*A ~- g*C 

~1 t*a g*c 

t*s*B x ~ g*f*B 

'd 
gi t*A --- C 

P 

f*B f's! A f*('a)- 

• In the following diagram, each of the triangles clearly commutes iff the other one does. 

d t*A .,_ ~ g * C . . ~  

o:"---o, 
"?, 

f*B 

Thus we are done if we prove f*('a)op = '(xot*(a)). 

As for this equality, compare the following two diagrams: 

t*A *--g!t*A 

,~,~ x ,  o g V 
t s B g*f*s!A -'~"~f*s!A 

L,<.R> 
g~*}* t3 ~g ~f*'B 

(I g 
g!t*A ~ t*A 

'(xot*(a)) I t*(a) 

t*s*B 

J v g 

f * t ~  ~ g*f*B 

The pentangle R commutes by lemma 25, the rest by definitions. It is easy to see that 
a = s*('a)orl; hence t*(a) = t*s*('a)ot*(ri). The arrows '(xot*(a)) and f*('a)op are thus the ver- 



313 

tical factorizations of the same arrow Ogoxot*(a) = Ogoxot*s*('a)ot*(rl) through og. By the 

uniqueness, they must be equal.. 

27. Corollary. For fibred preorders, the BC-condition is equivalent with the interpolation 

condition. 

28. Remark. The connection of interpolation and the Beck-ChevaUey condition in the cate- 

gory of Heyting algebras has been noticed by A.M. Pitts (1983a). He also studied the interpo- 

lation condition for a special sort of fibred Heyting algebras (1983b), showing how Craig's 

Interpolation Theorem and Beth's Definability Theorem can be presented in this setting. 

3. Uniform interpolation 

31. Definition. For functors S::K ---) ,~ and F::K ----> £, the category of interpolants/S,F/ 

consists of: 
- the triples (a,B,c), where Be I:~1, a~ ,~(A, SB), c~ £(FB,C); 
- a morphism (a,B,c)--) (a',B',c') is a triple (p,q,r), such that the squares on the fol- 

lowing diagram commute. 

FB c__£.~C 

p al:q Fq{ tr 
A'----~SB' FB' ----~C' 

a' B c' 

B' 

32. Comments . /S ,F/ (wi th  obvious projections) is a certain type of lax limit of the diagram 

J s 3 (  F-F->/C in the category of categories. It can also be obtained by strict pullbacks, as the next 

picture shows. 
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/S,F/ 

/ v ' , ,  
,]Is 

/ v  x. 
j/J 

J 

F/f~ 

/ v ' , ,  
N / om 

11 

Given functors T:~ ---) ) and G:I~ ---) ), every natural transformation cp:TS ---) GF induces a 

functor from the category of interpolants of S and F to the comma category o f T  and G: 
R : / S , F / - - - )  T /G:  (a, B, c)~---) (A, GcocpBoTa, C) 

(p, q, r)v---) (p, r). 

In the obvious sense, (a,B,c) is an interpolant of R(a,B,c), relative to q~. 

33. Definition. Given a square of functors Q = (F,G,S,T) as above, with a natural transfor- 
mation cp:TS---) GF, we define initial interpolants to be those objects o f / S , F / w h i c h  are initial 

among the interpolants of  the same arrow. In other words, (a, B, c) is an initial interpolant if 

for any other interpolant (a',B',c'), such that R(a',B',c') = R(a,B,c), there is unique qe  ~ ( B ,  

B'), with 

a '=  Sqoa and c ' oFq=c .  

We consider, thus, the initiality in R-fibres. 

We say that the interpolation in Q is uniform if an initial interpolant can be recognized by the 
f'n'st component. In other words, with uniform interpolation, an interpolant (a, B, c) must be 

initial wheneve r  for every (a',B',c'), such that R(a',B',c') = R(a,B,c) ,  there is unique 

qe ~ (B, B'), with 

a ' = S q o a .  

34. Back to fibrations. For a fibration E: ¢ ---) a3 and a commutative square Q =  (f,g,s,t) in 

a3, the categories /s*, f*/obtained for various choices of the inverse image functors s* and f* 

are all isomorphic. Moreover, these categories are equivalent with the category of all the inter- 

polants for all the possible inverse images along s and f. Similarly, the comma category t*/g* 
for some chosen t* and g* is equivalent with the category of  triples (A, d, C), where 

d: t'A----) g*C is a vertical arrow from an arbitrary inverse image of A along t to an arbitrary in- 

verse image of C along g. 

Note that Q satisfies the interpolation condition i_f the functor R:/s*,f*/---) t*/g* induced by 
the canonical isomorphism x: t 's*---) g*f'* is a retraction, i.e. if there is a functor 
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M: t*/g* "-'>/s*,f*/ 

such that RM=id. This functor M gives a choice of initial interpolants if it is left adjoint to R. 

On the other hand, the interpolation condition does not mention the arrows of t*/g*, so that it 

does not seem to imply the existence of  M. 

35. Terminology. We shall say that a commutative square Q in the base of a fibration satis- 

fies the un/form interpolation condition if it satisfies the interpolation condition, and if the inter- 

polation over it is uniform. 

For the next proposition - which explain s what is uniform about the uniform interpolation - we 

need the notion of trifibration. The notion of bifibration is standard: A functor E:~ ~ ;B is a bi- 

fibration if both E and its dual E°:~°--b ~Bo are fibrations. (The dual categories and functors 

are, of course, obtained by formally changing the directions of all morphisms.) We say that E is 

a trifibration if both E:~ ---> :B and E°P: ~op---) ;B are bifibrations. The category ~op, fibred 

over :B, is obtained by changing the direction of all the vertical arrows in ~. (The arrows of ~op 

are the equivalence classes of spans with a vertical arrow pointing at the source, and a cartesian 

arrow pointing at the target.) 

A fibration E:¢ ---) B is a bifibration iff every inverse image functor t*: ~J---~ ~I has a left ad- 

joint t!: ¢I---> Cj. It is a trifibration iff there is also a right adjoint t,:  ~I'--) ~J of t*. 

A cocartesian lifting by Eop of t at X is generically denoted xgt: XXo(--->, I )t,X. (The barred ar- 

rows --~ always belong to ~op.) 

36. Proposition. Let E: ~ ----> :B be a trifibration, and Q = (f,g,s,t) a commutative square in 

:B, satisfying the interpolation condition. The interpolation is uniform iff 

c 'o 'a = ~"o'~" 

is true for any two interpolants (a, B, c) and (a', ~, c') of the same arrow. 
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t*A g*C 
~ ~t*a g * c / ~  

A ~  t*s*B. -~  g*f*B . ~ 0 

s~B. ~ ~ - i f ,  B 
s! A f*C  ~ /  

B 

I 

K 
• Then: If (a,B,c) is an interpolant of d, the triple (rl, s!A, cof*('a)) is another interpolant of d - 
since a = s*r'aao~ , , .,, so that the next diagram commutes. 

d 
t*A ---- *~g  

. 

t*rl _ _  ,.,,,],s*n .... 

l / * s * ( ' a ) x  / g * f * ( ' a )  
g*f*B 

t*s*s ! A ~ g * f * s :  A 

It follows from the uniformity that (rl, s!A,cof*('a)) is an initi~ interpolant. Hence an arrow 
(idA, 'a', idc): (1], s!A, co f*('a)) --) (~',~,~') 

for each interpolant (ff,~,~') of d. 

two lnterpolants (a, t~ A On the other hand, for any ' A , C ), (a', ]g, 6-) of d, the existence of an arrow 

(idA, q, idc):  (~, i~, ~)---> (~',~,~') ( in / s* , f* / ) ,  implies c 'o'a = c o a. 
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~*q slA f ,C  f . q ~ / ~  

B 
A 

Putting ~ := ~1 and c := cof*('a), we get 

~"o'~" = (cof*('a))'o'rl (cof*('a))' 'o '  = - - C  a .  

If: Let (a,B,c} be an interpolant such that for every interpolant (a,~,c') of the same arrow there 

is unique ~ ~K(B, l~) with ~'=s*(~)oa. We must prove that (of*(~)=c. 

Since (T 1, s!A, cof*('a)) is an interpolant of the same arrow, there is q~le ~K(B, s!A), such that 

Tl=s*(q11)oa. It is easy to see that 

1) qTio'a = id ond 'aoq~ = id. 
On the other hand, from s * (~) o a = a": A---) s* ~ follows ~ o' a = '  a': s!A ----> ~. Using (1), we get 

2) q = 'goq n. 
Finally, the "left transpose" of c 'o 'a:  s!A---> f , C  is cof*('a): f*s!A--> C; the hypothesis 

c'o 'a = ~"o'~" imvlies 
3) cof*('a) = ~of*('~'). 

Now we can derive: 
~'of*(~) ~) ~'of*('~'oqrl) (3)cof,(,aoqrl) ~) c.. 

37. Theorem. A commutative square Q = (f,g,s,t) in the base of a bifibration E: ~ ---) ~ sat- 

isfies the uniform interpolation condition iff it satisfies the Beck-Chevalley condition. 

• In section 2 we proved that the interpolation condition is satisfied iff p: g!t*A---) f*s!A is a 

split mono. It is now sufficient to show that the interpolation is uniform iff p: glt*A---) f*s!A is 

an epi. 

If: The if-part of the previous proof can be copied almost completely. The only difference is 

that equality (3) must be derived in a different way this time: namely, from lemma 26 and the 
fact that p: g!t*A--)f*s!A is an epi. 

Then: For arbitrary arrows Cl, c2: f*s!A---) C, the equivalence 
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Then: For arbitrary arrows Cl, c2: f*s!A---) C, the diagram 

shows that 

a g 
t*A 

p' t ' s ' s t  A 

g*f*s~A og 

g*(cl) g*(c2) 

g*C og 

,~ g~t*A 

'~ f*s!A 

Cl j C2 

~ C 

ClOp = c2op ¢~ g*(cl)oXot*(rl) = g*(c2)oxot*(rl). 

But this means that clop = c2op implies that (rl, s!A, Cl) and (rl, slA, c2) must be interpolants 

of the same arrow. The uniformity now imDlies that these interpolants must be initial; thus 

Cl =c2. So we derived that clop = c2op implies Cl =c2." 

4. Descent by interpolat ion 

41. Geometric  motivation. Let a3 be a site (cf. Artin et al.), and D: ~ ---> a3 a discrete fi- 

bration. If f: L----) K is a covering morphism in a3, and 00,31: M----> L its kernel pair - ob- 

tained by pulling back f along itself - the sheaf condition (ibid.) on D tells that for every 

A¢ ;DL, such that 30*A=31*A, there must exist a unique Be 33 K with A=f*B.  In other 

words, every "vertical arrow" 30*A----> 01*A (which is of course identity, since the fibration D 

is discrete) must have a unique interpolant over the kernel square (f, 30, f, 31) of f. For arbitrary 

coveting family {fn: Ln---)KI n¢N }, the sheaf condition can be expressed by saying that every 

family of "vertical arrows" {n30*An---)n31*Aml n,me N} determines a unique common inter- 

polant Be ;D K. The arrows n30: Mnm---)Ln and n31: Mnm--)Lm here are obtained in a pull- 

back of fn and fm. 

The notion of descent lifts the sheaf condition from the discrete fibrations to fibrations 

E: ~ ---> ~B in general. For simplicity, we shall consider covering by one arrow; the passage on 

covering families only requires some more involved formulations. The question will be: When 
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can one descend along a morphism f: L---) K, and represent ~K in terms of ~L? If this is pos- 

sible, f is said to be an effective descent morphism. 

42. Notation, terminology. To fix the notation, consider the following cube of  pullback 

squares. 

P2 ~ 
M _  T _ M 

L 0 L 1 L 

K 

A kernel square of f is a pullback (f):= (f, 30, f, 31). Note that the diagram above contains not 

only (f), but also (30) and (31). Three different pullback squares are obtained by pulling back 

(f) along f: (30), (31) and S := (30,Pl,31,P0). 

By r 1: L-'-') M we shall now denote the unique arrow such that 30oT1 = 8~1 orl = idL. For cartesian 

liftings of 30 we shall use a}0: 30*A ---b A (instead of ~3~0). Let ~0: A ----) 30*A be the unique 

splitting of ~0 over r I (i.e., ~0o~0 = id and Ev0=rl). It is straightforward to show that ~0 must 

be cartesian. - Idem for the splitting 1.} 1 over rl of the cartesian lifting ~I of 31. 

Given a fibration E:S ----) a3 and an (f)-interpolant (a,B,c) of de SM(30*A, 31"C), the triple 

f*(a,B,c) := (~o30*(a), f 'B ,  31"(c)o'¢), where 

xo30*(a): 30*A---) 30*f*B ----) 31*f'B, 

31"(C)O~: 30*f 'B- - )  31*f*B --)  31"C, 

is clearly an S-interpolant of 

dS: = "¢op2*(d) o'c: p0*30*A----) p2*30*A---) p2"31"C-'-) p1"31"C. 

We say that the interpolant (a,B,c) is f-simple if 

(id, id, id): f*(a,B,c) ---) f*(a,B,c) 

is the only arrow in the category of S-interpolants. In other words, the object f*(a,B,c) has just 

one endomorphism in its R-fibre. 

(In general, every pullback square Q and arrow q with the same target span a cube of pullbacks 

as above; and every Q-interpolant induces an interpolant over the square opposite to Q in this 

cube. So we can speak of  q-simple interpolants in this general situation. For Q:=(f) and q:=f, 
we should actually consider two more interpolants induced by (a,B,c): namely, those over (30) 
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and (31) -  and include them in the definition of f-simplicity. This would, however, only add a 

couple of inessential sentences to the proofs below.) 

43. Definition. Let a fibration E: ~ ---) a3 and an arrow fe 3(L,K) be given. An f -descent  

data (for E) is a pair (A,d}, Ae I~LI, de ~M(30*A, ~I*A), such that 

RE) 

TR) 

Olodo~o 0 = id; i.e. ~*(d)=id: 
0 

A - ' ~ O °  3o*A --,,---~-~ A 

d ] id 

A ' ~ - ~ I  31*A 4 ~A 

30 
L ~ M ~  "q <L 

31 

(d,A,d) is an S-interpolant of d':='~op2*(d)ox: p0*30*A--9 pl*31*A; i.e., the 

following diagram commutes 

p2,~0, A p2*d ~- p2,~l, A 

po*0o*A pl*31*A 

Po*d~ lp l*d  

pO*~l*A ~ P1"30 *A "C 

The descent data constitute a category, denoted DesE(f), or just  Des(f).  A morphism 
(A,d)----) (.~,~) in this category is an arrow he ~L(A,A), such that ~l*(h)od =~o30*(h). 

44. Remarks .  The arrow d occuring as a descent data must be an isomorphism. • Since 

~0=30or lo~0 ,  and the square O0, P0,30,P2)  is a pullback, there is a unique arrow 

m0: M---) P in B, such that p0 o m0 = id and p2 o m0 = r1030. It is routine to show that 

30°P2°m0 = 31op2om0 = 30op0omo = 31oplom0 = 30, and 

31oPOomO = 30oplomO = 21. 
If the inverse images of objects along m 0 are appropriately chosen, one obtains the following 

diagram. 
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id 
Do*A ~ ~A 

id / p2*c}0*A ~ p2*DI*A | id 

I po*d~ ~pl*d 

d m p O * ~ * A ~  pCDCA m 

d 1 A .......... id ~ ~I*A 

The commumtivity of the part TR now implies 

m0*Pl*(d)od = id. 
The arrow d is thus a split mono. An analogous argument with the arrow ml: M---) P, such that 

ploml =id and p2oml --TlO~l, shows that d is split epi too.- 

An f-descent data for E is, in a sense, an action in ~ of the equivalence relation (internal 
groupoid) D0, ~1: M - ~  L induced by f. Namely, <A,d> can be viewed as an internal groupoid 

in ~, with ~0, ~1 od: D0*A--~ A as the domain and codomain arrows, and with ~o0: A-- )  D0*A 

as the arrow of identities. The category Des(f) is equivalent with the category of internal 
groupoids in ~ which are built from cartesian liffings of D0, ~1, 11 etc. (Cf. Pavlovi~ 1990, 

III. 1.2.) 

Note that for every Be [~K[, the pair (f*B,~B) is a descent data (where f*B is any inverse im- 

age, while XB: D0*f*B---) DI*f*B is the vertical isomorphism between two inverse images of B 

along f o ~ 0 = f o b l ) .  Every arrow be g K(B,B'), induces a unique morphism 

f 'b:  (f*B,'CB)----) (f*B',XB') in De~(f). Every choice of inverse image functors f*, D0* and DI* 

determines a functor 

f# : ~K----) D¢~(f) : B ~--) (f*B,XB>. 

45. Definition. (Grothendieck 1959) An f-descent data <A,d) (for E) is effective if it is iso- 

morphic (in DesE(f)) with one in the form <f*B,'CB). An arrow f is said to be effective if all the 

f-descent data are effective. 

f is  a descent morphism if for all B, ~e  I~KI each arrow (f*B,XB>---> (f*~,'cI~> in DesE(f) is in 

the form f*b for a unique be ~K(B,~). 

In other words, f is effective iff each f# is essentially surjective; f is a descent morphism iff each 

f# is full and faithful; f is an effective descent morphism iff each f# is an equivalence of cate- 

gories. 
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46. T e r m i n o l o g y .  An interpolant (a,B,c) of  a descent data d: ~0*A----) ~I*A is natural i f  

a: A----) f*B and c: f*B ---) A are morphisms of descent data, i.e. i f  they satisfy 

~ l* (a )od=  XBO30*(a) and ~l*(C)OZ B = do~0*(c). 

An arrow cp from a fibred category ~ is an E-coequalizer of  a pair ~0,~51 of  parallel arrows if  

- 9 o 5 0 = 9 o ~  1 and 

- for every Z in ~, ZoiS0= ZO~l and E z = E  q) imply that there is a unique vertical arrow 

b with Z =bocp. 

47. Theo rem.  Let  E: ~ ----) :13 be a fibration and f an arrow in its base. (Notation as abovel) 

i) f is an effective morphism iff each f-descent data has a natural, f-simple interpolant. 

ii) f is a descent morphism iff  every cartesian lifting "Of: f*B ---) B is an E-coequalizer  of  its 

kernel pair. 

• i) If: Let  (a,B,c)  be a natural, f-simple interpolant of  f-descent  data (A,d) .  So we have 

d" 30*A----) ~I*A, a: A---) f*B and c: f*B ---) A such that 

1) d = ~l*(C)OXO~0*(a), 

2) ~l*(a)od = "co~0*(a ), and 

3) ~l*(C)O'~ = do~0*(c ). 

We shall prove coa = idA onO aoc = idf*B. 

eoa  = id : As before, choose the cartesian liftings x)0 and a) 1 ofr l  to be the splittings ofa~0 and 

~1 respectively. 
,0. o aj o 

A ~ ,90~.A ~ <A 

[a  [00*a l a  
I o l o l 

1 l id  

I c 

J o, 1 lc 
A ~" OI*A ~ ~ 

We see that 
a~lo'olocoa = ~ lo31 *(c>oxoO0* (a)oa)0 A = ,,1 o,~o,,0 "A u VA" 

= s~l odos 0 But now "A~I o~l,,A idA holds by the definition, while "A "~ "A = idA is just condition (RE). 

aoc = id : By condition (TR), (d,A,d) is an interpolant of  
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d' :='cop2*(d)o'c: p0*00*A ---) p 1"0 I*A. 
Of course, f*(a,B,c) = ('co00*(a), f 'B ,  01*(c)ox) is another interpolant of the same arrow. The 

equalities (2) and (I) mean that 
(id, a, id): (d,A,d) ~ f*(a,B,c). 

is a morphism of interpolants. On the other hand, (1) and (3) tell the sarae for 
(id, c, id): f * ( a , B , c ) ~  (d,A,d) 

Hence, (id, aoc, id) is an arrow f*(a,B,c) ----) f*(a,B,c). The hypothesis that (a,B,c) is f-simple 

now implies that 

aoc = id. 

Then: Suppose that (A,d)= (f*B,'~B) for some B; i.e., arrows a : (A ,d ) - - )  (f*B,XB) and 
c: ( f*BJB)--+ (A,d) are given, such that aoc = id and coa =id. (a, B, c) is then an interpolant 

of d because 
d = ~l*(C)O31*(a)od = Dl*(c)o~oD0*(a ). 

This interpolant is obviously natural. To show that it is f-simple,, consider a morphism 
h: f*(a,B,c)---)f*(a,B,c). So we have an arrow he ~L(f*B, f 'B) ,  such that 

xoD0*(a) = Dl*(h)oxo~0*(a) and Dl*(C)O'COD0*(h) = Dl*(C)OX. 

Since c is an isomorphism, 01*(c) is, and ~0*(h) must be an identity. Using this, we calculate: 
9fohoaog0 = 9fogOBoD0*(h)o00*(a ) = 9~o@OBoD0*(a ) = 9foaogO, 

and conclude that hoa = a, because I~ 0 is an epimorphism (split by ~j0) and I~ f is cartesian, 

while hoa and a arc vertical arrows. Since a is an isomorphism, h = id. 

ii) It follows from lemma 48 that I~0,I,%1 o'c: ~0*f*B---> f*B is a kernel pair of 9f: f'B---> B 

(for every B). 

Chasing the next diagram - where h is vertical, and X =~foh - one easily proves that 

31*(h)ox = ~'o~o*(h ) ¢=~ XoO0 = xoOlox. 

~0,f* B --- ~l , f ,  B 

f ,  B ~ 0 * I f *  B ~. - - -~  D1: 

B % f*B 
I 

B 
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Thus, if h is a morphism of descent data, the assumption that "0 f is an E-coequalizer of its ker- 

nel pair gives a unique arrow be CK(B,~), such that X = boOf. In other words, h=  f*b. 

Conversely, if an arrow Z: f*B ----) ~ over f satisfies Xo'o0--zo~lox, its vertical part h must be a 

morphism of descent data (f*B,XB)--) (f*~,'q~). The hypothesis that f is a descent morphism 

means that there is a unique arrow be ~K(B,t]), such that h = f*b. Thus, % = boOf. 

48. Lemma.  Let Q = (f,g,s,t) be a pullback square in ~ and O = ((p,7,~,O) a commutative 

square in ~ over Q (i.e., (po T = ~o'O, E(p=f, Ey=g, E~=s, E'O=t). If (p and "O are cartesian, then 

O is a pullback square. 

49. Comment .  This descent theorem is a far descendant of the method which Joyal and 

Tiemey (1984) used to prove that open surjections of toposes are effective descent morphisms 

- in absence of the Beck-Chevalley property. More recently, Moerdijk (1989) observed that an 

appropriately saturated class O of arrows in :B must consist of effective descent morphisms 

with respect to the fibration Cod: ~ / ~ ----) ~B if it satisfies the following axioms: 

i) A coequalizer of every parallel pair of arrows from O exists, and it is stable under 

pullbacks; 

ii) Each arrow belonging to O is a coequalizer of its kernel pair. 

The two parts of theorem 47 clearly correspond to these axioms. 

On the other hand, it is perhaps interesting to put theorems 37 and 47 together, aligning the 

Beck-Chevalley property and descent - on the common ground of interpolation. This way, one 

can analyze how B6nabou-Roubaud-Beck's theorem (cf. Hyland-Moerdijk 1990) provides 

some sufficient conditions for descent in presence of the Beck-Chevalley property. 
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