A HoTT Quantum Equational Theory

Jennifer Paykin
Galois, Inc
jpaykin@galois.com

MURI Project Review
University of Maryland

March 8, 2019

With Steve Zdancewic at the University of Pennsylvania.

Quantum data, classical control

...via embedded languages

Quantum data, classical control

...via embedded languages
» Quipper [Green et al., 2013]

» Embedded in Haskell, a functional lazy language.

» Uses Haskell types, functions, data structures, type classes,
template haskell... to construct quantum circuits.

» Access to Haskell REPL and debugging tools.

Quantum data, classical control

...via embedded languages
» Quipper [Green et al., 2013]

» Embedded in Haskell, a functional lazy language.

» Uses Haskell types, functions, data structures, type classes,
template haskell... to construct quantum circuits.

» Access to Haskell REPL and debugging tools.

» LiQUID, Q language, Project Q, QISKit, pyQuill...

Quantum data, classical control

...via embedded languages
» Quipper [Green et al., 2013]

» Embedded in Haskell, a functional lazy language.

» Uses Haskell types, functions, data structures, type classes,
template haskell... to construct quantum circuits.

» Access to Haskell REPL and debugging tools.

» LiQUID, Q language, Project Q, QISKit, pyQuill...
» OWIRE [Paykin et al., 2017, Rand et al., 2017]
» A formal theory of embedded quantum circuits.
» Implemented as an embedded language in Coq, a theorem
prover with dependent types.

» Uses Coq theorem proving capabilities to prove correctness of
quantum circuits.

Quantum /non-quantum calculus

» Based on Linear/Non-Linear

classical (LNL) logic [Benton, 1995]
host language

» Linear types, pairs (®), etc

Quantum /non-quantum calculus

» Based on Linear/Non-Linear

classical (LNL) logic [Benton, 1995]
host language

» Linear types, pairs (®), etc

a.

put a: QExp - (Lower «)

Quantum /non-quantum calculus

» Based on Linear/Non-Linear

classical (LNL) logic [Benton, 1995]
host language

» Linear types, pairs (®), etc

a.

put a: QExp - (Lower «)

e: QExp A (Lower «) f:a— QExp A" T

e>!f:QExp (AA) 7

Quantum /non-quantum calculus

» Derived quantum operations:

classical
host language

Qubit = Lower(Bool)
|b) = put b
let b:=meas ein e =e >! \b.e

Quantum /non-quantum calculus

» Derived quantum operations:

classical
host language

Qubit = Lower(Bool)
|b) = put b
let b:=meas ein e =e >! \b.e

» Unitaries (not derived):

U : UMatrix(o, 7) e:QExp Ao
U#e:QExp AT

Reasoning about quantum data

» Denotational semantics
» Spaces are exponential in size of program

Reasoning about quantum data

» Denotational semantics
» Spaces are exponential in size of program
» Program logics
» Best suited to imperative quantum languages

Reasoning about quantum data

» Denotational semantics

» Spaces are exponential in size of program
» Program logics

» Best suited to imperative quantum languages
» Equational theory

» Syntactic rules that characterize when programs are equivalent.
» May or may not be directed; difficult to normalize.
» Validated with respect to denotational semantics.

Goal

Equational theory for embedded quantum circuit language.

Goal

Equational theory for embedded quantum circuit language.

P Interaction between quantum data and host language control

» NOT equational theory for classes of unitaries

Prior work — Staton [2015]

» Equational theory for algebra with unitaries and classical
control.

% B ;\JH\Z’/"

Prior work — Staton [2015]

» Equational theory for algebra with unitaries and classical
control.

% B ;\JH\E}/"

» Complete with respect to C*-algebras.

Prior work — Staton [2015]

» Equational theory for algebra with unitaries and classical
control.

% B ;\JH\E}/"

» Complete with respect to C*-algebras.
» Procedural axioms based on diagrams
» symmetric monoidal structure

=
|
|
(=]

Goal

Equational theory for embedded quantum circuit language.

Goal

Equational theory for embedded quantum circuit language.

» Specialized to an embedded programming language
> not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

Goal

Equational theory for embedded quantum circuit language.

» Specialized to an embedded programming language
> not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

» Fewer “procedural” axioms, focus on interesting axioms.

Goal

Equational theory for embedded quantum circuit language.

» Specialized to an embedded programming language
> not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

» Fewer “procedural” axioms, focus on interesting axioms.

» Completeness of axioms by comparing with Staton’s theory.

Homotopy type theory (HoTT): a type theory of equality

» Equality of two terms a = b is a type

Homotopy type theory (HoTT): a type theory of equality

» Equality of two terms a = b is a type

» Constructor: 1;:a=a

Homotopy type theory (HoTT): a type theory of equality

» Equality of two terms a = b is a type
» Constructor: 1;:a=a

» Terms of equality type p : a = b called paths

Homotopy type theory (HoTT): a type theory of equality

» Equality of two terms a = b is a type

» Constructor: 1;:a=a

» Terms of equality type p : a = b called paths
» Path induction:

H:V(a,b:A).a=b— Type V(a:A). H(1,)
path_indy : V(a,b: A). ¥(p:a=b). H(p)

Homotopy type theory (HoTT): a type theory of equality

vvyyypy

Equality of two terms a = b is a type
Constructor: 1,:a=a

Terms of equality type p : a = b called paths
Path induction:

H:V(a,b:A). a=b— Type V(a: A). H(1,)
path_indy : V(a,b: A). ¥(p:a=b). H(p)

Equivalence class of an element a: A with respect to a
relation R: [a]g = [b]r if (a,b) € R.

Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A— A — Prop is a type
A/R with data constructor:

a:A
[a]R:A/R

Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A— A — Prop is a type
A/R with data constructor:

a:A
[a]R . A/R
.. and path constructor:

a,b:A p: R(a,b)
[p] - [alr = [b]r

Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A— A — Prop is a type
A/R with data constructor:

a:A
[a]R:A/R

.. and path constructor:

a,b:A p: R(a,b)
[p] - [alr = [b]r

Note
If p,q: R(a, b) and p # q, then [p] # [q].

So what?

» HITs use paths to represent equivalence relations or groupoids.

So what?

» HITs use paths to represent equivalence relations or groupoids.
» Path induction still holds of HITs:

» Prove theorems about groupoids by showing property holds of
1,:a=a.

So what?

» HITs use paths to represent equivalence relations or groupoids.
» Path induction still holds of HITs:
» Prove theorems about groupoids by showing property holds of
1,:a=a.

» Unitary transformations form a groupoid.

Idea: Represent Unitaries as paths

Idea: Represent Unitaries as paths

» UMatrix(a,) is the type of unitary matrices of dimension
laf x [B].
> o, : FinType

Idea: Represent Unitaries as paths

» UMatrix(a,) is the type of unitary matrices of dimension
laf % |3].
> o, : FinType
» Quantum types: QType = FinType/UMatrix.
> Qubit = [BOOI]UMatrix

Idea: Represent Unitaries as paths

» UMatrix(a,) is the type of unitary matrices of dimension
laf < |B].
> o, : FinType
» Quantum types: QType = FinType/UMatrix.
» Qubit = [BOOI]UMatrix

» Unitaries are paths:

U : UMatrix(a, §)
[U] - [e] = [6]

> [H]: Qubit = Qubit

HoTT QNQ calculus

o € QType = FinType/UMatrix
Lower a = [a]uMatrix
e=x|letx=eineée
| (e1,€2) | let (x1,x2) = ein €
|putale>!f]---

HoTT QNQ calculus

o € QType = FinType/UMatrix
Lower a = [a]uMatrix
e=x|letx=eineée
| (e1,€2) | let (x1,x2) = ein €
|putale>!f]---

» Derive |b) and meas e using Lower

HoTT QNQ calculus

o € QType = FinType/UMatrix
Lower a = [a]uMatrix
e=x|letx=eineée
| (e1,€2) | let (x1,x2) = ein €
|putale>!f]---

» Derive |b) and meas e using Lower

» Derive unitaries...

Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : 0 = 7.
(0,7 : QType = FinType/ UMatrix)

If A+ e : o then there exists another expression A+ U # e : 7.
(apply the unitary U to e)

Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : 0 = 7.
(0,7 : QType = FinType/ UMatrix)

If A+ e : o then there exists another expression A+ U # e : 7.
(apply the unitary U to e)

Proof.

By path induction. The proposition is true for 1, : 0 = o:

l, #e=e

Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : 0 = 7.
(0,7 : QType = FinType/ UMatrix)

If A+ e : o then there exists another expression A+ U # e : 7.
(apply the unitary U to e)

Proof.

By path induction. The proposition is true for 1, : 0 = o:

l, #e=e

Note
[H] # e # e because [H] # 1qupbit

Unitaries in the HoTT QNQ

Theorem
Let U:o =171 and V : 7 = p be unitary transformations. Then

V#(U#e)=(Vol)#e.

Unitaries in the HoTT QNQ

Theorem
Let U:o =171 and V : 7 = p be unitary transformations. Then

V#UH#e)=(Vol)#e.

Proof.
By path induction on V. If V = 1. then

LHS =1, #(U#e)=U#e
RHS = (1o U) # e= U4 e

We can prove a lot...

Theorem

U'#(U#e)=e

We can prove a lot...
Theorem
U'#U#e)=e

Theorem
(U1 @ U2) # (e1, &) = (U1 # e1, U2 # &)

We can prove a lot...

Theorem

U'#U#e)=e

Theorem

(U1 @ Uz) # (e1, &) = (U1 # e1, Ux # e2)
Theorem

discard(meas(U # e)) = discard(meas(e))

Ok -

We can prove a lot...

Theorem

U'#U#e)=e

Theorem

(U1 @ Uz) # (e1, &) = (U1 # e1, Ux # e2)
Theorem

discard(meas(U # e)) = discard(meas(e))

U - 5

Theorem
X #(0) = |1) meas(X # e) = -meas(e)

...but not everything

Theorem
SWAP # (e1, &) = (&2, e1)

Proof.
777

...but not everything

Theorem
SWAP # (e1, &) = (&2, e1)

Proof.
777

Theorem
let (x,y) = SWAP# e ine = let (y,x) =einé€

Proof.
777

...but not everything
Theorem
SWAP # (e1, &) = (&2, e1)

Proof.
777

Theorem
let (x,y) = SWAP # e ine = let (y,x) =e in¢€

Proof.
777

Similar results for behavior of other “structural” unitaries:

ASSOC : 01 ® (02 ® 03) = (01 ® 02) ® 03
LUNIT: () ®oc =0

Partial initialization axiom

SWAP is a structural equivalence of type VX, Y. X QY - Y ® X
defined by the function

swap(x,y) = (v, x)

Partial initialization axiom

SWAP is a structural equivalence of type VX, Y. X QY - Y ® X
defined by the function

swap(x,y) = (v, x)
Structural equivalences all correspond to unitaries

wWap:Vo,T. 0T =T®0

Partial initialization axiom

SWAP is a structural equivalence of type VX, Y. X QY - Y ® X
defined by the function

swap(x,y) = (v, x)
Structural equivalences all correspond to unitaries
wWap:Vo,T. 0T =T®0
The partial initialization a state X ® Y is a pair of expressions.

inity e=e
initQub;t (b : BOO|) = ‘b>
initeg- (a, b) = (init, a,init; b)

Partial initialization axiom

SWAP is a structural equivalence of type VX, Y. X QY - Y ® X
defined by the function

swap(x,y) = (v, x)
Structural equivalences all correspond to unitaries
wWap:Vo,T. 0T =T®0
The partial initialization a state X ® Y is a pair of expressions.
inity e=e
initQub;t (b : BOO|) = ‘b>
initewr (a, b) = (init, a,init; b)

Axiom
Let f be a structural equivalence. Then

f # init(b) = init(f(b))

Partial measurement axiom

Partial measurement or partial observation:

matchyx e with f =let x = e in f x
matchqQupit € with f = e >1 f
match,g, e with f =let (x,y) == e in
match, x with (match, y with f(x,y))

Partial measurement axiom

Partial measurement or partial observation:

matchyx e with f =let x = e in f x
matchqQupit € with f = e >1 f
match,g, e with f =let (x,y) == e in
match, x with (match, y with f(x,y))

Axiom
Let f be a structural equivalence. Then:

match 1?# e with g =~ match e withgof

Results

» Two axioms:

» structural unitaries + initialization
» structural unitaries + measurement

Results

» Two axioms:

» structural unitaries + initialization
» structural unitaries + measurement

» Quantum programming language embedded in HoTT
» (Finite) classical data, tuples, and sums

Results

» Two axioms:

» structural unitaries + initialization
» structural unitaries + measurement

» Quantum programming language embedded in HoTT
» (Finite) classical data, tuples, and sums

» Complete with respect to Staton's equational theory

Results

» Two axioms:

» structural unitaries + initialization
» structural unitaries + measurement

» Quantum programming language embedded in HoTT
» (Finite) classical data, tuples, and sums

» Complete with respect to Staton's equational theory

» Sound with respect to density matrices

Results

» Pros: theorems for free with path induction
» Cons:

» theorems not actually free
» no normalization
» steep learning curve

Results

» Pros: theorems for free with path induction

» Cons:
» theorems not actually free
» no normalization
» steep learning curve
» Takeaway: Equations stem (mostly) from quantum
data/classical control, not artificial axioms

Results

» Pros: theorems for free with path induction

» Cons:
» theorems not actually free
» no normalization
» steep learning curve
» Takeaway: Equations stem (mostly) from quantum
data/classical control, not artificial axioms

Thanks!

A HoTT Quantum Equational Theory

Jennifer Paykin
Galois, Inc
jpaykin@galois.com

MURI Project Review
University of Maryland

March 8, 2019

Questions?

Supported by FA9550-16-1-0082
Semantics and Structures for Higher-level Quantum Programming
Languages

References |

M. Backens. Completeness and the ZX-calculus. PhD thesis,
University of Oxford, 02 2015.

N. Benton. A mixed linear and non-linear logic: Proofs, terms and
models. In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, volume 933 of Lecture Notes in Computer
Science, pages 121-135. Springer Berlin Heidelberg, 1995. doi:
10.1007/BFb0022251.

A.S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and
B. Valiron. Quipper: A scalable quantum programming
language. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI '13, pages 333-342, New York, NY, USA,
2013. ACM. doi: 10.1145/2491956.2462177.

References |l

J. Paykin, R. Rand, and S. Zdancewic. QWIRE: A core language
for quantum circuits. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL
2017, pages 846-858, New York, NY, USA, 2017. ACM. doi:
10.1145/3009837.3009894.

R. Rand, J. Paykin, and S. Zdancewic. QWIRE practice: Formal
verification of quantum circuits in Coq. In Proceedings 14th
International Conference on Quantum Physics and Logic, QPL
2017, Nijmegen, The Netherlands, 3-7 July 2017., pages
119-132, 2017. doi: 10.4204/EPTCS.266.8.

S. Staton. Algebraic effects, linearity, and quantum programming
languages. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL '15, pages 395-406, New York, NY, USA,
2015. ACM. doi: 10.1145/2676726.2676999.

	References

