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Quantum data, classical control

...via embedded languages
» Quipper [Green et al., 2013]

» Embedded in Haskell, a functional lazy language.

» Uses Haskell types, functions, data structures, type classes,
template haskell... to construct quantum circuits.

» Access to Haskell REPL and debugging tools.

» LiQUID, Q language, Project Q, QISKit, pyQuill...
» OWIRE [Paykin et al., 2017, Rand et al., 2017]
» A formal theory of embedded quantum circuits.
» Implemented as an embedded language in Coq, a theorem
prover with dependent types.

» Uses Coq theorem proving capabilities to prove correctness of
quantum circuits.
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e: QExp A (Lower «) f:a— QExp A" T
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Quantum /non-quantum calculus

» Derived quantum operations:

classical
host language

Qubit = Lower(Bool)
|b) = put b
let b:=meas ein e =e >! \b.e

» Unitaries (not derived):

U : UMatrix(o, 7) e:QExp Ao
U#e:QExp AT
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Reasoning about quantum data

» Denotational semantics

» Spaces are exponential in size of program
» Program logics

» Best suited to imperative quantum languages
» Equational theory

» Syntactic rules that characterize when programs are equivalent.
» May or may not be directed; difficult to normalize.
» Validated with respect to denotational semantics.
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Equational theory for embedded quantum circuit language.

P Interaction between quantum data and host language control

» NOT equational theory for classes of unitaries
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Prior work — Staton [2015]

» Equational theory for algebra with unitaries and classical
control.

% B ;\JH\E}/"

» Complete with respect to C*-algebras.
» Procedural axioms based on diagrams
» symmetric monoidal structure
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Goal

Equational theory for embedded quantum circuit language.

» Specialized to an embedded programming language
> not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

» Fewer “procedural” axioms, focus on interesting axioms.

» Completeness of axioms by comparing with Staton’s theory.
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Homotopy type theory (HoTT): a type theory of equality

vvyyypy

Equality of two terms a = b is a type
Constructor: 1,:a=a

Terms of equality type p : a = b called paths
Path induction:

H:V(a,b:A). a=b— Type V(a: A). H(1,)
path_indy : V(a,b: A). ¥(p:a=b). H(p)

Equivalence class of an element a: A with respect to a
relation R: [a]g = [b]r if (a,b) € R.
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Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A— A — Prop is a type
A/R with data constructor:

a:A
[a]R:A/R

.. and path constructor:

a,b:A p: R(a,b)
[p] - [alr = [b]r

Note
If p,q: R(a, b) and p # q, then [p] # [q].
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So what?

» HITs use paths to represent equivalence relations or groupoids.
» Path induction still holds of HITs:
» Prove theorems about groupoids by showing property holds of
1,:a=a.

» Unitary transformations form a groupoid.
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Idea: Represent Unitaries as paths

» UMatrix(a, ) is the type of unitary matrices of dimension
laf < |B].
> o, : FinType
» Quantum types: QType = FinType/UMatrix.
» Qubit = [BOOI]UMatrix

» Unitaries are paths:

U : UMatrix(a, §)
[U] - [e] = [6]

> [H]: Qubit = Qubit
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o € QType = FinType/UMatrix
Lower a = [a]uMatrix
e=x|letx=eineée
| (e1,€2) | let (x1,x2) = ein €
|putale>!f]---

» Derive |b) and meas e using Lower

» Derive unitaries...
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Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : 0 = 7.
(0,7 : QType = FinType/ UMatrix)

If A+ e : o then there exists another expression A+ U # e : 7.
(apply the unitary U to e)

Proof.

By path induction. The proposition is true for 1, : 0 = o:

l, #e=e

Note
[H] # e # e because [H] # 1qupbit
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Unitaries in the HoTT QNQ

Theorem
Let U:o =171 and V : 7 = p be unitary transformations. Then

V#UH#e)=(Vol)#e.

Proof.
By path induction on V. If V = 1. then

LHS =1, #(U#e)=U#e
RHS = (1o U) # e= U4 e
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We can prove a lot...

Theorem

U'#U#e)=e

Theorem

(U1 @ Uz) # (e1, &) = (U1 # e1, Ux # e2)
Theorem

discard(meas(U # e)) = discard(meas(e))

U - 5

Theorem
X #(0) = |1) meas(X # e) = -meas(e)
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...but not everything
Theorem
SWAP # (e1, &) = (&2, e1)

Proof.
777

Theorem
let (x,y) = SWAP # e ine = let (y,x) =e in¢€

Proof.
777

Similar results for behavior of other “structural” unitaries:

ASSOC : 01 ® (02 ® 03) = (01 ® 02) ® 03
LUNIT: () ®oc =0
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Partial initialization axiom

SWAP is a structural equivalence of type VX, Y. X QY - Y ® X
defined by the function

swap(x,y) = (v, x)
Structural equivalences all correspond to unitaries
wWap:Vo,T. 0T =T®0
The partial initialization a state X ® Y is a pair of expressions.
inity e=e
initQub;t (b : BOO|) = ‘b>
initewr (a, b) = (init, a,init; b)

Axiom
Let f be a structural equivalence. Then

f # init(b) = init(f(b))
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Partial measurement axiom

Partial measurement or partial observation:

matchyx e with f =let x = e in f x
matchqQupit € with f = e >1 f
match,g, e with f =let (x,y) == e in
match, x with (match, y with f(x,y))

Axiom
Let f be a structural equivalence. Then:

match 1?# e with g =~ match e withgof
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Results

» Two axioms:

» structural unitaries + initialization
» structural unitaries + measurement

» Quantum programming language embedded in HoTT
» (Finite) classical data, tuples, and sums

» Complete with respect to Staton's equational theory

» Sound with respect to density matrices
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Results

» Pros: theorems for free with path induction

» Cons:
» theorems not actually free
» no normalization
» steep learning curve
» Takeaway: Equations stem (mostly) from quantum
data/classical control, not artificial axioms

Thanks!



A HoTT Quantum Equational Theory

Jennifer Paykin
Galois, Inc
jpaykin@galois.com

MURI Project Review
University of Maryland

March 8, 2019

Questions?

Supported by FA9550-16-1-0082
Semantics and Structures for Higher-level Quantum Programming
Languages



References |

M. Backens. Completeness and the ZX-calculus. PhD thesis,
University of Oxford, 02 2015.

N. Benton. A mixed linear and non-linear logic: Proofs, terms and
models. In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, volume 933 of Lecture Notes in Computer
Science, pages 121-135. Springer Berlin Heidelberg, 1995. doi:
10.1007/BFb0022251.

A.S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and
B. Valiron. Quipper: A scalable quantum programming
language. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI '13, pages 333-342, New York, NY, USA,
2013. ACM. doi: 10.1145/2491956.2462177.



References |l

J. Paykin, R. Rand, and S. Zdancewic. QWIRE: A core language
for quantum circuits. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL
2017, pages 846-858, New York, NY, USA, 2017. ACM. doi:
10.1145/3009837.3009894.

R. Rand, J. Paykin, and S. Zdancewic. QWIRE practice: Formal
verification of quantum circuits in Coq. In Proceedings 14th
International Conference on Quantum Physics and Logic, QPL
2017, Nijmegen, The Netherlands, 3-7 July 2017., pages
119-132, 2017. doi: 10.4204/EPTCS.266.8.

S. Staton. Algebraic effects, linearity, and quantum programming
languages. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL '15, pages 395-406, New York, NY, USA,
2015. ACM. doi: 10.1145/2676726.2676999.



	References

