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1 Preliminary Notions

1.1 Ring spectra and smash product

We will collect here some notions which are used throughout the seminar.
Recall the following theorem:

Theorem 1.1.1. E| There is a construction which assigns to spectra E,F a certain spectrum denoted by
E AN F. This construction is called the smash product E AN F of spectra and has the following properties:

1. It is a covariant functor of each of its arguments.
2. There are natural equivalences:

a=a(E,F,G): (ENF)NG = EAN(FAG)
T=7(E,F): ENF - FAE
I=I(E):SNE—E

):EANS—E

): SEAF — S(EAF)

3. For every spectrum E and CW-complex X, there is a natural equivalence e = e(E,X): EAN X —
EANY>®X. In particular 3°(X NY) =~ X°X AX®Y for every pair of CW-complezes X,Y

4. If f: E— F is an equivalence then f Aldg: EANG — F NG 1is.

5. Let {E\} be a family of spectra, and let ix: Ex — \/, Ex be the inclusions. Then the morphism

{ixn1d}: \/(ExAF) = (\/(Ex)AF
A A

s an equivalence

6. if A 5B L Cisa cofiber sequence of spectra, then so is the sequence

ANEINYS BAE Y onE

for every spectrum E.

We are ready now to give the following definition:

!Theorem 2.1 page 45 on [6]



Definition 1.1.2 (Ring Spectrum). E|A ring spectrum is a triple (E, p,¢) where F is a spectrum, p: EAE —
FE and 1: S — E are morphisms such that the following diagrams commute up to homotopy:

e Associativity:

(ENE)ANE 25 EAE

o

EANENE) -2 EAE 25 E

where a is a natural equivalence given by definition of the smash product of spectra.

e Unitary:

SAE LYy EAE 22 EAS

[
E E i E

Where [, r are natural equivalences given by definition of the smash product of spectra.
The ring spectrum is commutative if the following diagram commutes up to homotopy:

ENE —— EANE
12 12
E—1 F
Where 7 twists the factors of the smash product.

A morphism of ring spectra ¢: (E, p,1) — (E',/,4') is a morphism ¢: E — E’ s.t. the following diagrams
commute up to homotopy:

EANE 228 B AR S '3 E
bk bk
E—* L F S > B

Examples of ring spectra are provided by spectra X equipped with maps:
Xy AN Xy = Xy tny

which are suitably associative and and unital. This is the case for example of the sphere spectrum (whose
multiplication is the classical smash product) and the Thom spectra, which we will see later. Before concluding
this section, one has to take this example with a grain of salt. In order to be sure that this smash product
really factor through the homotopy category then one needs some additional compatibility conditions. We
will cover these during the lecture.

Proposition 1.1.3. Up to homotopy there is only one morphism of ring spectra S — X, for X any ring
spectrum.

Before giving the proof, notice that working in the category of Ring Spectra is crucial here. In fact if
we are allowed to consider map which are not morphisms of ring spectra, then the proposition is false, for
example, for any non trivial ring R, mo(HR) = R 2 0.

Proof. Notice that S is a ring spectrum, where the product is the degree-wise smash product and the unit is
the identity Id: S — S. Take any morphism of ring ¢: S — X. Then last diagram given by the axiom of ring
morphism with £ =S, E/ = X and 1 = Id gives the proof:

2Definition 2.12 page 51 on [6]
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1.2 Homology and Cohomology induced by a Spectrum

Let E be an arbitrary spectrum.

e Define covariant functors E,: CW® — Ab where E,,(X) := m,(E A £*°X) for every X € CW* and

IEn(f) = mp(Idg AX® f) for every morphism f: X — Y of pointed CW complexes. One can verify
that it is a reduced homology theory and that it is additive. See [6] page 63 construction 3.13.

e One can build cohomology theories as well, by defining contravariant functors E": CW* — Ab by
setting E"(X) := [E>° X, X" E] for every X € . and
E"(f): [E®Y,S"E] = [E¥X, T E] E"(f)lg] := [g 0 =]
for every f: X — Y and ¢g: XY — X"E. As before, one can verify that this defines an additive
reduced cohomology theory on CW*.

Every morphism ¢: E — F of spectra induces a morphism ¢, : IE*(—) — F*(—) of homology theories and a
morphism ¢: E*(—) — F*(—) of cohomology theories. Here

o ={p E(X) = Fu(X)}, ¢lf] = [(p ATdx) o (f)]
for every f: X'S — E A X for homology and
p = {ok: E(X) > F(X)} ¢lf] = [(S'¢) o f]
for every f: X — X'E for cohomology. So we have a functor from spectra to (co)homology theories. In

particular, equivalent spectra yield isomorphic (co)homology theories.

In order to obtain unreduced (co)homology theory we just define E,(X) := E,(X ™) the reduced (co)homology
of the space with an adjoint basepoint.

1.3 A brief recall of (B, f)-structures
Recall the definition of (B, f)-structure:

Definition 1.3.1. A (B, f) structure B is a collection of pointed spaces B, and strictly commutative
diagrams

B, —I"— BO(n)

[ [

Bni1 % BO( 4+ 1)

where the maps f,, are required to be based fibrations. We require additionally that By = .

As a shorthand for the iterated composition of the g,,’s, we will denote with g, m := gm—10gm—20---0gn.
We will denote with O the trivial (B, f)-structure with B,, = BO(n) and f, = Id. Other well-known
(B, f)-structures which we will use often are FO and U, the framed and stable almost complex structure
respectively. Their precise definition can be found on [I] at page 14 — 15.



Definition 1.3.2. A multiplicative (B, f)-structure B also has natural based maps
[t Bu X By = Brym
for all n,m € N, such that the following diagrams commute:
e Naturality

B
Hn,'m
Bn X By —™ % Bt

fn X f’mJ{ J{fnﬁ»m
o

BO(n) x BO(m) -2 BO(n +m)
e Associativity

Hopm X1
B, x B,, X By, —— Bptm X By,

B B
1><“1n,kj/ - J/#n+m,,k
IJ/TL,Wl+k‘

Bn X Berk I Bn+m+k

e Compatibility and Unitality We require that the product is compatible with the g,’s in the following
ways.

In,m+n

Specializing to By = * and g,,, = Id we get that the product uﬁm has a unit, namely *.

1Xgm, m+n
_—

B, x B, B, X Btk

B B
”n,ml L“‘n,m-%—k

In+m,n+m+k
Bn+m EE— Bn+m+k

B B
:“’anT T“nﬁ»kmn

In,ntk X1
B, x B, —~ Bpir X B,

Definition 1.3.3. A (B, f)-structure B on a smooth manifold M is a pair (h,?) such that h: M — R"T*
is an embedding with normal bundle N — M classified by v and 7 is a lifting 7: M — By, of v:

By,
/ lfk
M s BO(k)

Definition 1.3.4. Let B and B’ be two (B, f)-structures. A map of (B, f)-structures h: B — B’ is a
collection of maps h,, such that the following diagram commutes, for every n € N.



hn ’
B, — 5 B/

bk

hnii ,
Bny1i —— B

If B and B’ are multiplicative (B, f)-structures, then h is a map of multiplicative (B, f)-structures if, in
addition, for all indeces n,m € N, the following diagram commutes.

It?ﬂ?l
B, x B, —— Bpim

hn Xh'mj/ lhm,-%-n
fBI

Hnom

! ! !
B, x B, — B,

Please note that if 98 is a (multiplicative) (B, f)-structure, we require that there is a map of (multiplicative)
(B, f)-structure h: EO — B.

1.4 The construction of the Thom Spectra MU

Now let B be a (B, f)-structure, and let w,, denote the universal O(n)-bundle over BO(n). Over B,, we
have the bundle v,, = fw, and
nVYnt1 = g:f;-&-lwn-i-l = f;(Bin)*Wn-&-l = f;:(wn S2] 61) >~ fown @ e = Yn @ e
This g, induces a bundle map
Y @ €' = Yot

and hence a map
M(gn) : ZM(VYL) — M(’Yn—&-l)
of Thom complexes.

Definition 1.4.1. We define the Thom Spectrum M*B to be the following spectrum: as objects we have
(M$B),, := M(v,) and as structure maps we take M(g,): X(MB),, = (MB)n4+1

In particular MO(n) := Th(~y,). In order to define MU, we consider the following (B, f)-structure

BU(n) —=— BO(2n)

lld lB in

BU(n) 22 BO(2n + 1)

and a (B, f)-structure for a manifold represents exactly a stable almost complex structure. Pulling back
via the inclusion i,, the universal bundle over BO(2n) gives us the universal bundle over BU(n) (call it
wp: BU(n) — BU(n)). We define the spectrum MU as follows: (MU)a, = MU(n) and (MU)ap41 =
MU (n). Structure maps are the maps induced by the classifying map r,: BU(n) — BU(n + 1).

Lemma 1.4.2. MO(1) ~RP* and MU(1) ~ CP®.
Proof. This is Lemma 2.6.5 page 61 in [I]. Let
T EO(I) X0(1) R — BO(l)

the associated vector bundle to the principal bundle ;. By construction its Thom space is M O(1). Recall
that BO(1) = RP*°, and let 7, denote the pullback of 7 to RP™. Then the sphere bundle of =, is the
canonical S%-bundle S® — RP™, Thus

S(r) = lim S™ = S5%

n—oo
which is contractible. Since the image of the zero section of 7 is a strong deformation retract of D(r), the zero
section from BO(1) to D(m) /S(W) = MO(1) is a homotopy equivalence. Analogously for MU (1) ~ CP> [



Remark 1.4.3. Tt is worth mentioning that if we have a multiplicative (B, f)-structure B, then we obtain a
ring spectrum M3, whose product is the one induced by the product we have on B, and unit i: S — M5
induced by inclusion of the fibre ig: S — M9, over the basepoint.

2 A Crash Course in Spectral Sequences

2.1 What is a Spectral Sequence

We will list here the main properties of a first quadrant spectral sequence, clearly this will be only a brief
introduction but the aim is to motivate certain passages and reasoning that will be used in the following
sections:

Definition 2.1.1. A cohomology spectral sequence (starting at the page E,) in an Abelian Category A
consists of the following data:

1. A family {EP?} of objects of A defined for all integers p,q and r > a
2. Maps dP?: EPY — EPT™47F1 that are differentials in the sense that d,.d, = 0

3. Isomorphism between E*{, and the cohomology of (E;*,d,) at the spot EPI:
Efj—l ~ ker(dlr’q) /Im(df_T’qJ'_T_l)

Ezample 2.1.2. A first quadrant spectral sequence is one with EP? = 0 unless p, ¢ > 0, that is, the point (p, q)
lies in the first quadrant of the plane. (If this condition holds for r = a, it clearly holds for all r). If we fix p
and ¢, then EP9 = EPY, for all large r (more specifically r > max{p, ¢ + 1}), because the d, landing in (p, q)
spot come from the second quadrant (i.e is 0), and the d,. leaving £}, land in the fourth quadrant (i.e. is 0).
We write E?? for this stable value of EP9.

Definition 2.1.3 (Bounded Convergence). We say that a bounded spectral sequence converges to H* if we
are given a family of objects H™ of A, each having a finite decreasing filtration

0=FSH"C...C FPYIg" C FPH" C FP71H" C...C F'H" = H"
and we are given isomorphisms Er4 ~ FPHP™ /byt protq

In almost all of the applications of Spectral Sequences in this seminar, H" will be a filtered module for
any n € N. In this setting, we call that the graded module

ngn = @FmHn /Fm+1Hn

the associated graded module.

This suggests the first big limit of spectral sequences: they give to us information about the associated graded
module (see the definition of the infinity page) and in order to retrieve H™ from grH™ we have to solve the
(highly non trivial) extension problem. In order to explain what is this problem, consider the stable page of
a first quadrant Spectral Sequence:



E%S ELS E2 B33 B3
E%? EY? B2 E3? B2
E9 EL' B2 EY BY
E90 ELO E20 E30  EA

0 0 0 0 0

We know that E% = FoHy / F, H,- By the fact that all the elements on the same diagonal are 0, we have
0= ELy™™ = FrH° /Fn+1 g0 hence for n > 0 F"H? = F"T1HO. Therefore after climbing this ladder of
equalities we get inductively F1H? = 0. An analogous reasoning using the second quadrant this time shows

that FOH? = H°. Therefore by the very definition of convergence

Let’s have a look at the first diagonal, again by definition of convergence we have the following isomorphism:
EX=F'H! jpoppn B = FPH! [pipp.
Using the same reasoning of the preceding case (i.e. we have 0 on the second and fourth quadrants) we can
conclude that FOH! = H' and F2H! = 0, therefore F9! = H' / EL0. Equivalently we have the following
0—EY - H' - EY >0

S.e.s.

Now we proceed as before for the second diagonal and we have
~ 2772 ~ L2 ~ 0772
Ei?:FH /F3H? ES:FH /F2H? ngzFH JFLH?.

which gives us the following two short exact sequences
0—FEX - r'a? - EY -0
0— F'H?> 5 H> - E2 -0

In general once you reach the stable page, just solve consecutive extension problems starting from EP?, and
the last extension will provide you the right result. We can sum up together all this information in the

following short exact sequence of graded modules:
0— F*H HPTS 5 PP 5 E2* — 0

This will turn out to be important later. Recall that if for some reason we know that the s.e.s. are split

exact then we can easily retrieve H* from the extension problem since inductively we get

@

p+q=k,p,q>0

1

Hk:



2.2 Additional Structure on a Spectral Sequence

We will list here a list of additional feature of a spectral sequence which can come in handy for extra-
polating as much information as possible. It should be clear now that in theory they are a strong tool but
not so often one is able to solve the extension problem or finding the stable page. Additional structure will
provide more ways to reach the stable page or to find the right extension. We start recalling the multiplicative
structure of a spectral sequence.

Definition 2.2.1 (Multiplicative Structure). A cohomology spectral sequence E? = C* is called multi-
plicative if the following properties hold:

1. all the (E$! d,) are bigraded algebras, i.e. ESt - WY C Estuwttv
2. C* is a filtered algebra, i.e. FPC™ . F4C™ C FrraCcmtn

3. d, is a derivation and FE, induces the product of E, ;1 for all r > 2.
4. C* induces the product of F,.

The last point is especially important, since it correlates the product on the stable page to the product
(which in a lot of computations we don’t know) of the target object C*.

Proposition 2.2.2. The Atiyah-Hirzebruch Spectral Sequence (from now on AHSS) is multiplicative and on
the second page the algebra structure is given by the usual cup product in singular cohomology.

Proof. See [I] prop. 4.2.9 O

Multiplicativity will play a huge role in our upcoming computations, apart from the fact that it will let
us find the cohomology ring of certain spaces, but property (3) will be crucial in finding the stable page.
The last property we want to address here is the presence of a pairing in the AHSS between the homology
and cohomology version. The pairing will translate what we know about cohomology in homology which is
somewhat harder to compute via spectral sequence. Even though the first feeling with cohomology is that it
is much richer and therefore harder to compute, the additional structure will play a huge role in finding out
stable page and limit in the AHSS. On the contrary, since homology doesn’t have much structure, trying to
compute it via the spectral sequence directly without using the pairing is very hard.

If E is a ring spectrum (we will denote the (co)homology induced by it with E* and E,) and X is a CW-
complex, then there is a pairing

(= =) EMX) ® B (X) = Emn—n(pt.)

defined by letting (f, g) be represented by
sm G EAxT 2L Ay 2 srp
Observe that for groups G, G’ evaluation of cochains on chains induces a map
H"(X;G)®@ H,(X;G') - GG

Composing with a group homomorphism G ® G’ — G” gives a pairing

(—,—): H'(X;G) @ H,(X;G") — G”
Thus, if E is a ring spectrum, the map p,: E7%(pt.) @ Ei(pt.) = Es1¢(pt.) defines a pairing

(= =) H"(XGE™(pt.)) @ Ha(X;Ee(pt.)) = Esse(pt.) (1)

Proposition 2.2.3. Let E be a ring spectrum, and let X be a CW-complex such that X = XN for some
natural number N. Assume that E.(pt.) is bounded below. Consider the AHSS

B}, = Ho(X;Ei(pt.)) = Eppe(X)

n,t —



and
Ey' = H"(X;E'(pt.)) = E""(X)

then there is a natural pairing
(=) BV QB — Eape(pt.)

such that
1. the pairing on Ey ® E? is the pairing of
2. (dy(z),y) = (w,d"(y)) forallz € B} andy € E] ., .11
3. the pairing on E*(X) @ E.(X) induces the pairing on Es @ E*
Proof. See [I] Proposition 4.2.10, page 129. O

Before concluding this section, we will define here the edge homomorphism and we will identify them in
the case of the AHSS. Edge homomorphisms are maps which arise if there is a transition from a quadrant
with only zeroes and a possible non trivial quadrant of a spectral sequence. So a first quadrant spectral
sequence will have two edge homomorphisms, in general AHSS has only one edge homomorphism. So let us
consider a spectral sequence whose second and third quadrant are zero:

Since there are no non-trivial differentials hitting the Oth column, the stable objects there are simply subob-
jects of Eg’p. Using the fact that E%" =2 E"(X) /FlE"(X) we can fit all these information in the maps

E"(X) — E%" < E3™

It is clear that if the edge homomorphism is surjective, the last arrow is the identity and therefore E%™ = Ey™.
This means that all the differentials starting from element in such column have to vanish.

In conclusion, one can proves that the edge homomorphism in the case of AHSS is simply the map induced
by the inclusion pt. < X, and therefore it is always surjective!

2.3 Relative Spectral Sequences

Recall that, for any (co)homology theory h., the equality h.(X, A) 2 h,(X/A) holds. Therefore in order
to compute relative (co)homology groups for a pair of CW complexes it is enough to be able to compute
relative (co)homology groups. So we give here the following theorem

Theorem 2.3.1. Let F — E 2 B be a fibration with B a CW-complex. Let A C B be a subcomplex. Let
D =p~Y(A). Let G be an unreduced (co)homology theory



e There is a homology spectral sequence with

B2, = Hy(B,A;Gy(F)) = Gpyq(E, D)

e If B is finite dimensional or if there exists an N so that G(F) = 0 for all ¢ < N, there is a cohomology
spectral sequence with
EY? = H?(B, A;GY(F)) = GPT1(E, D)

Proof. See [3] page 266 Theorem 9.33 or [4] page 351 Remark 2. O

Taking A = x and p = Id we obtain our statement for reduced (co)homology theories.
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3 Oriented Spectra
3.1 (Co)homology of CP>

The aim of this section is to deal with the notion of an oriented spectrum and its properties. In order to
introduce the formal definition let us consider this example.

Example 3.1.1. Let (E, p,1) be a ring spectrum. Observe that CP! = S§2. We want to compute IE*((CPl),
and we do it as follows:

[E*(Cpl) ~ IE*(SQ) ~ E*(EQSO) o~ IE*72(SO) ~ 1, oF

Since E* is a reduced cohomology theory and therefore we can use the suspension isomorphism. If we see the
cohomology as a 7, E-module, it’s free of rank 1 and it’s clearly generated, as a module, by the suspension of
the unit element Y27 since the action of the ring 7, F on the module is given by the multiplication and since
we have a down-shift of two indices.

Definition 3.1.2 (Oriented Spectrum). Let i: CP! — CP*> denote the inclusion map. A ring spectrum E
with 7, E bounded below is called oriented if there is a class 2 € E?(CP>), called orientation class, such
that i* (xF) = X2, the canonical generator of E*(CP?).

Let us denote with 2z the orientation of a spectrum E. Let i, : CP® — CP*> and i}: CP* — CP" the
obvious inclusions. By definition 25 € E2(CP>) is such that i} (zg) € E2(CP') is a generator of E*(CP?) as
a w4 F module. To avoid confusion, we will denote the image of these classes to the unreduced cohomology
groups with the letter yg and the same decorations, i.e. i’ (yz) € E?(CP™).

Example 3.1.3. We give some examples of oriented spectra:

e We know that for any ring R
H*(CP®;R) = Rlz]
where i*(z) is the canonical generator of H?(CP'; R). Therefore the Eilenberg-MacLane spectrum is

oriented.

e Let K be the Bott spectrum which defines the complex K-theory:

K, =

BU x Z if n even
U if n odd

Let f: CP> = BU(1) — BU (see it as the complex Grassmannian G1(C>)) be the canonical map and
let §: CP> — BU be the constant map. Then f — 6 defines a generator z of K?(CP>) which is an
orientation of K.

— 2
e MU is oriented with orientation z € MU (CP*) represented by
¢: CP™ = MU(1) <% MU(1)

— 2
In fact MU (CP>) := [X*°CP>,X2MU] which is seen to be isomorphic to

— 2

MU (CP®) := [E®CP>®, 22 MUstable
~ [E®CP™>, 22QMU]strict
~ [CP™, Q*°%2QMU].
= [CP>,(QMU)].

3see https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1-1|example 14
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Since MU is a CW-spectrum, the (QMU )y =~ colimy, Q¥ MUy o, and it still makes sense to consider
the class of the identity here (consider k¥ = 0 and post-compose the identity with the canonical map to
the colimit).

Note that i*(z) is represented by S? = CP! L cpe & MU (1) which represents +: S — MU and
¥ 82 — ¥2MU.

We show that the condition that a spectrum E being orientable is sufficient to determine the structure
of E*(CP>) as a power series ring.

Proposition 3.1.4. Let (E,xg) be an oriented spectrum. Then
1. E*(CP™) gﬂ'*E[i:z(yE)]/(iZ(yE))"'*‘l
2. E*(CP>) = m.Ellygl]

3. E.(CP™) = m.E{ay,...,a,} where ay, is the dual basis element of (i’ (yg))* under the pairing
E*(CP") @ E,(CP") — m,E.

4. EL(CP>®) = m,E{ay | k > 0} where ay, is the dual basis element of y%, under the pairing
E*(CP>) @ E,(CP™) — m,E.

5. E*(CP> x CP™) = 1, E[[y1, y2]] where y; € E2(CP> x CP>) is defined by y; := p} (yg).
6. E.(CP® xCP>®) = mE{o; ®ay | j, k> 0}

Remark 3.1.5. The careful reader should now complain about point (2) of the proposition, since it seems
to be in contrast with what we know about singular cohomology. In fact we always used the fact that
H*(CP*>) = Z[yg] but by point (2) it would be Z[[yg]], the ring of formal series in the indeterminate z. A
priori one has only the cohomology groups, one for each degree. With the cup product (and more generally
with a multiplicative structure), we can form the product of two elements. Now we want to gather all of
these information in a graded ring. This can be done in two possible ways: The usual convention is to define
H* = @, -, H™; however, one could instead consider the product H* = [], -, H". The second choice is
more natural now for the following reason: in computing the cohomology ring of each of the projective spaces
CP™, there is no such ambiguity since the grading is finite. So when computing the cohomology of CP>° as
a limit over the cohomologies of the CP™’s we have the natural option to take the limit in the category of
rings right away, instead of first taking it in groups, and then putting a graded ring structure on the result.
Now the limit of polynomial rings for increasing polynomial degree is the formal power series ring, therefore

H*(CP*>) = Z[[yx]].
Proof. We will use the standard CW structure of CP™ and CP* throughout the proof.
1. Recall that H*(CP™; Z) = Zliy(yn)] /(Z'Z(yH))"H’ and consider the AHSS for CP!:

Claim 3.1.6. The element it (yg) ® 1 € E3° represents the orientation class it (yr)

Proof. Let us have a look at the AHSS for CP!:

12



HY(CPY®@E3(x) 0 H2CPY®E3x) 0
HOY(CPY®@E2(x) 0 H2CPY®E%(x) 0
H(CPHY®EY(x) 0 H*CPYH®EY(x) O

HYCPY)®E'(x) 0 H2CPY®E(x) 0

HY(CPY®E1(x) 0 H2CPYHY®E l(x) 0

Since the edge homomorphism for the AHSS is always surjective, we have that the only possible non
zero differentials (the differentials of the 2nd page starting from the zeroth column to the second one)
are trivial. This implies that the spectral sequence collapses. Since the second page is generated
multiplicatively by i} (yy) ® 1 € E22’0 and it is a free graded m, E-module (i.e. the extension problem is

trivial) the isomorphism E2?(CP?) =N ES’Q €3] E22’0 maps i} (yg) — i (yu) @ . O

Claim 3.1.7. The AHSS for CP™ collapses at the second page and we have that i} (yy) @ 1 € Eg,o
represents the orientation class i} (yg)

Proof. Let us have a look at the AHSS for CP™:

HY(CP")@E3(x) 0  H2CP")®E3(x) 0  H*CP") @E3(x)
HO(CP"®E2(x) 0 H2CP")®@EX(x) 0 H*YCP")®E2(x)
HY(CP")®E'(x) 0 H2CP")®E(x) 0 H*CP")@E(x)

HO(CP")®E%(x) 0 H2*CP")®E°(x) 0  HYCP")®E"(x)

HYCPM@E () 0 HXCPY)@E'(x) 0 HYCP")QE ()

Since the AHSS is multiplicative and thanks to the ring structure of the second page, it’s enough to
show that the element i (yg) ®1 € ES’O is an infinite cycle. In fact, one proceed inductively using the
fact that any other element in the previous page (i.e. in the second page) is a 7, E-linear combination
of powers of i¥ (ym) ® .

Consider the inclusion i7: CP* — CP". We know that i’ (yg) is sent to ii(yg) by the fact that
(#7)*i* = 4. Now recall that 7 induces a map of spectral sequences. Since we know that AHSS

for CP™ converges a priori to E*(CP™) (m.E is required to be bounded below) there is an element
in the stable page EP9, for some p,q € Z which is a representative of i’ (yg). By Claim [3.1.6] we
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already know that the representative of i} (yg) lies in F20 = F?E*(CP") /F3]E2((CP1)- Now suppose
that the class of % (yg) lives in FpEp+q(CPn)/Fp+1Ep+q((cpn), since the inclusion preserves the
filtration, it would send our class to an element lying in FPEPHI(CPY) /FpHEerq((Cpl) , but since we

already established that the image of i} (yg) lies in F?E*(CP') /FSEQ(CPl), it must be that p > 2
and ¢ = 0 (Since FPE?(CP") C FP~'E?(CP™)). By definition of filtration, if this element lies in
FPE?(CP™) /Fp+1E2 (CP™) for p > 2 in particular its representatives lie in F2E?(CP"™) meaning that
when restricted to CP! they are all zero. Since we know that the restriction to CP! of the orientation
i} (yg) is a non zero element, it must be p =2 and ¢ = 0.

This shows that we have to look for a representative for i* (yz) in E%°. Consider the following diagram,
where EP? will denote the group in position p, ¢, page r of the AHSS for CP™:

n\ %
2,0 @) 2,0
EOO EOO

The lower map is an isomorphism since it is the map induced between the second singular cohomology
groups of CP! and CP™. The diagram implies that the unique preimage of the representative of
it(yr) € E*(CP"), which by Claim [3.1.6)is i{(ym) ® 1, has to be i, (ys) ® 1, and therefore it has to be
an element of F2° i.e. an infinite cycle. This readily implies that the AHSS collapses at the second
page, since it is multiplicative: the second page is generated multiplicatively by % (yg) ® 2, and we just
showed that it is an infinite cycle, by an easy induction we have that the differentials in every page
must be zero since they are 7, E-linear derivations. O

Claim 3.1.8. As an m.E-graded module, EX* = E*(CP™).

Proof. This is trivial, since using Claim the stable page is the second page, and it is clearly a
free 7, E-graded module. Therefore the extension problem is trivial as remarked in the crash course on
spectral sequences, and we have the claim. O

Claim 3.1.9. As a ring we have EX* 2 E*(CP™).

Proof. We will denote with — the product on E*(CP"™) and with e the one on the stable page.

Using Claim it’s enough to prove that the multiplicative structure one has (by definition) on
E*(CP"), coincide with the one of E%* seen as TeE[i,yE] /(lZyE)"H . To this end, since E*(CP") =
"] it suffices to prove that (iXyp)™ — (ifyp)* = (ifyg)™tk (modntl)
)m+1 (mod n+1)'

WOE[i:LyE’ (i;kzyE)27 L] (l:zyE)
Using associativity and induction it’s enough to prove that (ifyg) — (ityg)™ = (ifye
We know that ifyp € E%0 and that (ifyr)™ € E2™9 and on the stable page (ifyg) — (ilyp)™ =
(ifyp)mHt (mod n+1) = By the compatibility of the product structure of the stable page and on the
cohomology ring, this relation must hold on E*(CP™). O

2. For m < nlet iy, n: CP™ — CP" denote the inclusion map. Since the inverse system i}, : E*(CP") —
E*(CP™) satisfies the Mittag-Leffler condition

3. Consider the homological AHSS for E,(CP"), using UCT we have:

E2, = Hy(CP") ® Ey(%) = Eot(CP")

14



Recall that, as a Z-module we have H,(CP") = Z{ao, ..., a,} where aj is the dual of (i} (yx))* under
the identification H,(CP™) = hom(H*(CP™);Z). Recall that we have a pairing for the AHSSes for
E*(CP") and E,(CP™).

Claim 3.1.10. On the stable page the pairing Exo® ER=3% 5 Ey(x) is non-degenerate, i.e.
(,y) =0 Ve=y=0
and the AHSS for E.(CP™) collapses

Proof. We merged these two statements into one claim since we will prove inductively one of them
assuming the previous step of the other one and so on.
On the second page, by Prop we have that the pairing is non degenerate. In fact by our choice of
generator of the homology group

(i () @ 1,0k @ B) = b

and clearly ¢+ € myE. This means that

€] - (2) /o« 3)

0= <d2(7’n(yE))k ® %, 0 ® b> = <(Zn(yE))k & ?, d2ak & b> = d2ak ® b=20
where (1) is due to d?> = 0, (2) is by the properties of the pairing and (3) since by linearity of the
differentials and of the pairing it’s enough to test dea, ® b against i*(yg))* ® 2 alone in order to
invoke the non-degeneracy property. So we just proved that do = 0. Now we can proceed inductively
since E5'* = EF0 = B0 and the inductive hypothesis E} _, = E} _, to show that the pairing is non-
degenerate (since it coincides with the one on the second page) and d,, = 0 which implies Esfls =Ek—s
and we can continue for higher indices. Since we are dealing with a convergent spectral sequence we
can conclude that

S

() ERo ® B ™ — Ey()
is non degenerate and that the homological AHSS collapses at the second page. O

For the same reason as in the proof of the first point, we can identify E%* with E,(CP"™). Using the
fact that the pairing between the stable pages is induced by the one between homology and cohomology
we have a non degenerate pairing

E*(CP") @ E.(CP") = m.E
Claim 3.1.11. The pairing E*(CP™)QE.(CP") — . E induces an isomorphism E,(CP™) = hom,, p(E*(CP"), m. E).

Proof. We just showed that the pairing coincides with the one on the stable page, and the pairing on the
infinity page is the one on the second page since both AHSSes collapse. On the second page it’s clear that
the pairing is unimodular since it’s unimodular by construction the pairing H*(CP™) ® H,.(CP™) — Z.
The conclusion follows at once. 0

Using Claim [3.1.11} we set a; = (i’ (yg)*)*, which by combining Claim [3.1.11| and Claim is

represented by ay, and thus E,(CP") & m.{aq,...,an}.
. We need the following claim

Claim 3.1.12. E,(CP*) = colim,, E,.(CP")
Proof. Apply Proposition 4.2.2 page 121 in [I] to X = CP*° [ and X™ = CP™ ][] * O
Since CP> = J,,5; CP" we have

E.(CP*) 2 colim,, E.(CP") = colim,, m. E{ao, ..., an} E . E{ag,...,Qn,...}
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5. Let p;: CP>® xCP> — CP™ for i = 1,2 denote the two projection maps. Define y; € E2(CP> x CP>)
by y; = p}(yg). Let jmn: CP™ x CP™ — CP*> x CP* denote the inclusion map. Since

where the first isomorphism is induced by the cross product. Recall that a x b = 7mfa — w3b (where
m; are the obvious projections) and therefore by naturality together with multiplicativity of the AHSS,
one can show inductively that the AHSS for the product E*(CP™ x CP™) collapses at the second page.
We can then apply verbatim the proof of the first point to conclude

E*(CP™ x CP") = T B (y1), drn (2)] /(j;m(yl)mﬂ,j;;m(yQ)nH)
To conclude, as in the proof of the second point
E*(CP* x CP*) = colim,, , E*(CP™ x CP™)
2 colitnyy,, T« Elimn (Y1), Jrn (y2)] /j;*m(yl)m“,j:;m(yz)"“

= 1 Elly1, y2]]

6. The proof of the this last point is left as an exercise.

Recall this result:

Proposition 3.1.13. There is a map p,: [[—; BU(1) — BU(n) which defines in homology an associative
and commutative product

(1) @) H.(BU(1)) = H.(BU(r)

We will denote by juit., the composition pin: [[.—, BU(1) — BU(t) — BU(n).
e There are ¢, € H**(BU(n)) for 1 <k < n called universal Chern Classes such that

H*(BU(n)) & Z{c1,...,cn}

e Let ay, € Hop(BU(1)) defined as ay, = (cF)*. We still denote ay, the element (p1 )« (ar) € Hax(BU(n))
with a little abuse of notation. Define

Afy ** - Qf, = (p’t,n)*(akl @ a’kt)
Then H.(BU(n)) is the free abelian group with basis the set of all ay, - - ay, for 0 <t < n.
Proof. See Theorem 2.3.1 page 39 and Proposition 2.4.1 page 48 on [I] O

Using induction on n > 1 we use various pairings of the AHSS to compute E,(BU(n)) and E*(BU(n))
for an oriented spectrum E.

Proposition 3.1.14. Let E be an oriented spectrum

1. The map py: [[;—, BU(1) — BU(n) induces a map
Q) E.(BU(1)) = E.(BU(n))

Using this product, E,(BU(n)) is the free m.E-module with basis

{ag, rag, | 1<k <---<kandt <n}
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2. There are classes cfi, € E?*(BU(n)) for 1 <k <n called Conner-Floyd classes such that
E*(BU(n)) = m.[cfi,- -, cfnl]
3. EX(BU) 2 m.El[cfi,-. . Cfn,...]]
4. E.(BU) =m Elot,...,0n,...]
Proof. We will make use of induction on n > 1 since BU(1) ~ CP> and extensive use of naturality of AHSS.
1. The base step is done in the previous prop. Assume n > 2 and consider the AHSS
Ep = Hi(BU(n)) ® mE = E,(BU(n))
We know that H,(BU(n)) is the free abelian group with basis
{ag, ---ag, |t <n}

We want to prove that AHSS collapses at the second page. By naturality and induction, d,(ag, - - - ag, ®
n) = 0 if t < n since such an element comes form the AHSS of BU(n — 1) and we know that it collapses
at the second page. So we can assume that ¢ = n. We want to show that d,. = 0 for all » > 2 and by
linearity of the differentials it’s enough to show it on elements of the form ag, - - - a, ® 1. Consider the
map

T ﬁBU(l) — BU(n)

dr(ag, - ag, ®1) = dp((pn)«(ag, @ - @ag,) @1)

= (pn)«dr((a1; ® -+~ @ ag,,) ®1)

= (bn)xdr((ag, X - X ag,) @1)
where the last passage is due to the Kiinneth isomorphism in singular homology. Since we can express
cross product via cup product and induced maps, naturality and multiplicativity show that ag, - - - ak,

is an infinite cycle which represents a, - - - ax,. Therefore the sequence collapses and since the stable
page is a free m, E-module, E,(BU(n)) = EX, form a m, E-basis for E.(BU(n)).

2. Fix a positive even integer g. Consider the pairing of the AHSSes
EYt = H*(BU(n)?) ® E* = E*(BU(n))
and
E}, = Hy(BU(n)?) ® E, = E.(BU(n)9)

(The pairing exists for finite CW, that’s why we have to fix an even number ¢) Note that by Prop.
3.1.13| H.(BU(n)?) has a basis consisting of the set of all ay, ---ay, of degree at most ¢q. Thus, the
homological spectral sequence listed above is a subspectral sequence of the one seen in the point before
and collapses. Therefore,

E.(BU(n)?) = meE{ag, - -ag, |t <nand ky +---+ Kk < ¢/2}

Recall that H*(BU(n)) = Zlcy, . . ., cn), where ¢, = (a¥)* under the identification of H*(BU(n)) with
hom(H,(BU(n)),Z). Therefore, H*(BU(n)?) is the subgroup of Z|cy, . .., ¢,] with basis all monomials
in the ¢ of degree at most gq. Consider the pairing of the two spectral sequences wrote above. It’s
easy to see that on the second page such pairing is uni-modular and by the same reasoning of the
previous proposition we have a uni-modular pairing E*(BU(n)?) ® E,(BU(n)?) — 7 E which induces
an isomorphism
E*(BU(n)?) = hom,, g(E.(BU(n)?, 7. E)

Let cfy = (af)* which projects to ¢, € E2*0. Then E*(BU(n)?) is the free . E-module with basis all
monomials in the cfi, ..., cf, of degree at most g. Since the inverse system of the E*(BU (n)?) satisfies
the Mittag-Leffler condition,

E*(BU(n)) = liy E*(BU(n)%) = m.El[chr, .., cfu]
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3. Just verify the Mittag-Leffler condition and conclude

4. homology preserve direct limits.

3.2 Generalized Orientation for Manifold, Bundles and (B, f)-Structures

We generalize now the definition of an oriented manifold:
Definition 3.2.1. A manifold M" is called E-oriented if there is a class ¢+ € E,(M™, 0M"), called an
E-fundamental class of M™, which maps to a generator of E, (S™) under the canonical map
En(M™,0M™) 25 B, (M™, M"\ {m}) 2 E,(D(m), $(m)) 2 E,, (")
for each m € IntM™.

Remark 3.2.2. It’s important to clarify what we mean by generator here. A generator for En(S") is an
element = € E,,(S™) such that there exists a unit £ € moE such that z = £X™:, where we denoted by ¢ the
class represented by 1, the unit morphism S — F.

Remark 3.2.3. Note that if we take the Eilenberg-MacLane spectrum K(Z), a K (Z)-oriented manifold is an
oriented manifold in the usual sense.

We now define E-oriented vector bundles and E-oriented (B, f)-structure.
Definition 3.2.4. Let us consider a (B, f)-structure 8 and let E be a ring spectrum.

1. Let £: X — Y be a k-dimensional vector bundle. Consider Y to be the subset of X' given by the zero
section. Then ¢ is called E-oriented if there is an element U € E*(X, X \ Y) = E*(M (€)), called the
Thom class of £, such that the restriction of U to

EF (€7 (9),67 () \ {y}) = EF(SY)
is a generator of E¥(S*) over 7, E for all y € Y

2. A vector bundle £: X — Y has a B-structure if there is a map g: Y — By such that £ is the pullback
via fy0g: Y — B — BO(k) of the canonical bundle over BO(k).

3. B is called E-oriented if the pullback 7% of the canonical bundle over BO(m) along f,, is E-oriented
for every m.

4. An E-orientation for a (B, f)-structure 9B is a collection of Thom classes of 72 in E™(MB,,) for every
m.

Proposition 3.2.5. We collect here some properties of an E-orientation of a (B, f)-structure.
1. The pullback of an E-oriented vector bundle is E-oriented
If B is E-oriented, then the normal bundle of every manifold with B-structure is E-oriented.

For any multiplicative (B, f)-structure B, the identity map of M5B defines a MB-orientation of B.

™

If a: B — B is a map of multiplicative (B, f)-structures then Ma: MB — M9B' defines a MB’-
orientation of B.

5. BU is M SO-oriented, BSp is MU -oriented and EO is MB-oriented for any (B, f)-structure B.

Proof. 1. Let £: X — Y be an E-oriented n-bundle. Let f: Z — Y any continuous map. Let ug €

IE”(M (€)) be a Thom class for £&. We have the following commutative diagram by definition of pull-
back bundle
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where f is a fibre-wise isomorphism. Now we apply the functor M: VectBun — Top which gives us
the Thom space of a vector bundle and then the cohomology functor E"

Br((fee)) SN0 Fn(a(e))
l]]i"(M(lncl ) l]E" (M (incl.))
E"(S") ———— E"(S")

E"(M(fomcl

where the lower horizontal arrow is an isomorphism by construction and therefore the class E" (M f Yue
is a Thom class for f*¢ by commutativity of the diagram.

2. By def. of a n-manifold with (B, f)-structure, the normal bundle is the pullback of the bundle 72
This one is oriented by assumption and therefore by the preceding point we are done.

3. Recall that we added the assumption of being a multiplicative (B, f)-structure since we want to work
with a multiplicative spectrum. The identity defines a family of maps Id, : M5, — M9, which in

turn represent elements u,, € ]\%n(M%n) So we need to prove that for every n € N, u,, is the Thom
class of 2. Consider the map of ring spectra induced by fibre-wise inclusion, we showed at the very
beginning of these notes that it represents the unit 2: S — M3, and the restriction via the inclusion
1t S™ — M*B,, is exactly ™, therefore it is a generator by definition.

4. We proceed as in the previous point.

5. There are maps of (B, f) structures
FO — BSp— BU — BSO — BO

induced by the natural inclusion of subgroups {1} C Sp,, C U, (after choosing as a model for B{e} the
space EO), Uy, C SO(2m) and SO(k) C O(k). Recall then that we require that there exists a map of
(B, f)-structure EO — B for any B, apply then the previous point.

O

We show in the next lemma that a manifold is E-orientable if and only if its normal bundle is E-oriented.
The proof uses the following cap product construction. Let F be a ring spectrum, and let A, B be two
subcomplexes of a CW-complex X. Define the cap product

~: E5(X, A) ® By (X, AU B) — E,(X, B)
by letting [z] —~ [u] be represented by

1IAzAL

SH L EAX JauB DS EAXAnX /g L paAs EAX /g ML

YEANX /B

where A: X /4B — X /A AX /B is the diagonal map, 2: X UCA — X°F represents [z] € E*(X, A) and
u: ST — EA (X UC(AU B)) represents [u] € Es+(X, AU B)

Proposition 3.2.6. The cap product is natural, i.e. for f: (X; A, B) = (X'; A’, B") a continuous map, the
relation

f(ff 2’ ~u)=2" ~ fou
holds
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Proof. The element f,(f*x’ —~ u) is represented by the composition

IAfAL

S”taEAX/Aug EAX/AAX/ AL EAX g A X g 2020

1AzAL

N paAssEAX g 2

L ssEAX g DL s A X

now notice that we can pull-back the rightmost f since is precomposed with identities to obtain

Ss+ti>E/\X/AUB 1IAA E/\X/A/\X/ INFAS E/\X/A’/\X/ 1NzAL
W p A s EAX g L s A X g

now using the easy equality (f A f) o A = Ao f we obtain the representative for ' ~ f,u, namely

Ss+t i} E/\X/AUB INf X/ /A’UB’ IAN E/\X/ /A/ /\X/ /B/ 1INzAL
1AzA1 AN N E/\X//B/ pAl ESE/\X /B/

O

Proposition 3.2.7. Let E be a ring spectrum. Let e: M™ — U be an embedding of a compact smooth
manifold M™ without boundary into an (n+k)-dimensional subspace U of R*. Let T(M™) be a closed tubular
neighbourhood of M™ in U with v: T(M™) — M™ the normal bundle. Then the following are equivalent:

e the vector bundle v is E-oriented.
o M™ is E-oriented.

Proof. We prove that (1) implies (2). Let c: S"t%F — T(Mn)/aT(Mn) denote the (pointed) map

Pontrjagin-Thom collapse map. We recall how it was defined here:
c: S8 25 (RFY Ly Th(y) = T(M™) /aT(Mn)

where the dagger map is simply (with a little abuse of notation)

x if v € T(M™)
x =
basepoint  if x ¢ T(M™)

We make the identifications
E. (TOM") [or(arm) ) = B (T(M"),0T(M")) = E.(T(M"), T(M")\ M")

Let now g1, € EkHL(S”*k) be an m, E-generator of E;Hn(S”*k), and let U be an E-orientation of v. Define

tn = V(U —~ cu(tpan))

We show now that ¢, is an E-fundamental class of M™. If m € M™, let N be a closed neighbourhood of m
homeomorphic to a closed disk D™ such that v~}(N) = N x R¥. We identify v~}(N) with N x R* to ease
the notation. We show now that such ¢, is an E-fundamental class of M"™. We will do it by proving that for
each m € M™, 1, maps to a m,E-generator of E,(M™, M™\ {m}).

Consider now the following diagram
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(Sn+k)

/ \

Enyx(D(v)/S(v Eny k(N x DF)/O(N x D¥))

1

(1), S(1)) =% Epyr(D(v), S(v) UD') %= By i (N, ON) x (DF, 5571))

o o~ i

IR

™)

n+k(

IR

En(D(v)) — 2% B (D(v), D) +—2% K, ((N,0N) x D¥)
E,(M") —20 s E,(M",M"\ IntN) +—2— E,(N,N)

\ =it

Ep (M™, M™\ {m})
In this diagram
o gtk —>N><Dk/8(N>< Db
is the map which collapses the exterior of N x D* to a point,
D' = (v| D)) ' (M™\ IntN)
and U’ € EF(N x (DF,S%71)) is the canonical generator of E*(N x (D*, §k—1)) = E*(D*, S*=1) over 7, E.
Claim 3.2.8. The diagram is commutative

Proof. The proof is pretty tedious, the first commutative square to check (more appropriately, the pentagon
on the top) commutes since at the end we land in E,4(D(v), S(v) U D') = E,p4, (D(V) /S(}/) U D/) and

therefore we can just forget what happens outside of S(v) U D’, in particular, the right path shows what’s
really relevant. The two squares which lies just below this pentagon commutes by naturality of the cap
product. The remaining squares commutes by the naturality of the l.e.s. of the respective pairs. O

Claim 3.2.9. the map ¢’: S"tF — N X D* /3(]\7 x D¥) ts a homeomorphism

Proof. Recall that N 22 D™ the rest is trivial. O

Now since the left-external path represents the restriction of i, via the inclusion and the right path is a
composition of isos, the first implication is proved.
The proof of the second part is not given. O

Recall the definition of the homology (with coefficients G) H,(E;G) of a spectrum:
Hn(E, G) = colimk Hn+k(Ek§ G)

and the cohomology:
H"(E; G) = lim H" " (Ey; Q)
P

We are ready to prove the main result of this seminar, i.e. the Thom Isomorphism Theorem for a
E-oriented vector bundle.

Proposition 3.2.10. Let E be a connective ring spectrum, and let £: X — Y be an E-oriented n-dimensional
vector bundle with Thom class ue € E"(X, X \Y).
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1. The map
D, By (ME) 2By (X, X\ Y) = Ey(Y)
z = &u(ue —~ 2)
is an isomorphism
2. IfY is a finite dimensional CW complez, then the map
*: EHY) - EM(X, X\ Y) = EH (M)
w = ug — & (w)
is an isomorphism

Proof. 1. The cap product
~E(X, X\Y)RE+(X, X \Y) = E(X)

induces a pairing of AHSSes|*[such that the pairing ES’_p®ES2+t7q — Eﬁpﬂ is the classical cap product,
~: H (X, X\Y;E,) @ Hit (X, X \Y};E,) —» Hi(X;Eppy)

Notice that by definition Eq(x) = moE = Hy(E;Z). Let us consider H(E; Ey(*)). By Hurewicz theorem
for Spectraﬂ since E is connective, then H,(E;Z) = 0 for n < 0 and Ho(E;Z) = mo(E). It follows
from UCT that for any abelian group A, Ho(E; A) = 7o(E) @ A and H°(E; A) = homg(mo(E), A).
Therefore, for A = moE we have H°(E;moE) = homy(moE,moE). Here we used that we can define a
cellular (co)chain complex for CW spectra, and then prove much as in the case of spaces that cellular
(co)homology coincides with (co)homology defined in terms of Eilenberg-MacLane spaces. The UCT is
then just pure homological algebra.

Now let us consider the following chain of isomorphisms

[E,K(moF)] = H°(E; noE) = homg(moE; mo E)
and take J: E — K(moFE) corresponding to the identity in the latter group.

Claim 3.2.11. ¢ is K(noE)-oriented.

Proof. A map of spectra induces a natural transformation of cohomology theories, so we have the
following commutative diagram

ToE +—— E"(R",R™\ {0}) <2 En(X, X \Y)

Ju Js s

moE «—— H"(R™,R™\ {0}) <2 H"(X,X\Y)

where commutativity in the square on the left is justify by the very definition of J: we choose it such
that the diagram commutes. Therefore J, (u¢) is a Thom class for £ and so the claim. O

Consider the map of AHSSes ¢",r > 2, induced by &,(U —~ —). Then
0% B = Hon(X, X\ Y3 By(%) = EZy, = Hi(Y; By (%))

is given by p?(Z) = &(J.(u¢) ~ Z). Let us have a look at the reduced AHSS for the Thom space
M(E)

4Standard reference: |http://www.numdam.org/item?id=SHC_1958-1959__11_2_A10_0, for a discussion http://mathoverflow.
neti/questions/231 131/cap-product-on-leray-serre-spectral-sequences
°See https://www.math.cornell.edu/~hatcher/SSAT/SSch2.pdf| prop 2.3 page 11
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0 - 0 HYM()imsE) H"(M(E);m3E)

0 o 0 HYM();mE) H"WL(M();mE)
0 - 0 HYM(E);mE) H"WL(M();mE)
0 - 0 H'(M(&imBE) H™(M(&);mE)
0 0 0 0

So we have the identification
E"(X,X\Y) = E"(M(£);mE) = H"(M(&);moE) = H™(X, X \ Y;E%(x))

and by naturality it sends uge to Ji(ue):

E*(X,X\Y) ¢——— H™"(X, X\ Y;E(x))

lincl.* J{incl.*

E"(R™,R*\ {0}) =— H"(R",R"\ {0} E%(x))
Thus ¢? is the classical Thom isomorphism and hence ®, is an isomorphism by Mapping Lemma and
Comparison Theorem E|

2. Consider the maps of AHSSes ¢,., for r > 2, induced by us — £*(—) and the pairing of AHSSes given
by cup product. Then

ot Byt = H(Y, B*) = B, = H'" (X, X\ V3 BY)

is given by wo(W) = Ji(ue) — £*(W). Thus ¢ is the classical Thom Isomorphism and for the same
reasons above, ®* is an isomorphism.

O
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