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The Theory of Ends

Dedicated to Hans Freudenthal

Georg Peschke

Introduction It lies in the nature of compact spaces that many of their proper-
ties and invariants are completely determined by a finite collection of local data.
For non-compact spaces this reduction to finiteness does not usually work. There-
fore, we might wish to supplement compactly supported information by invariants
concerning the complements of compact sets. This is possible. Indeed, the key
step towards this goal is the notion of an ‘end’ of a space which was introduced
by H. Freudenthal in his Ph.D. thesis and submitted for publication 60 years ago
in March 1930; see H. Freudenthal [10].

If X belongs to a certain class of spaces, Freudenthal achieves a universal
compactification X of X by adjoining to X its end points. More precisely:

1 Theorem (Freudenthal [10]) There is a compact Hausdorff space X and a
map i WX ! X such that

(i) X is homeomorphically imbedded as a dense open subset of X ;

(ii) X �X is totally disconnected;

(iii) every map j WX ! OX satisfying (i) and (ii) factors uniquely through X .

The space X is called the Freudenthal compactification of X and the comple-
ment of X in X is the end space of X , denoted by E.X/. Both, X and E.X/, are
uniquely determined, up to homeomorphism, by the universal property (1.iii).

Thus the end-space of a compact Hausdorff space is empty. The real line R

has two ends, one at C1 and one at �1. So the Freudenthal compactification
R is homeomorphic to the interval Œ�1; 1�. If n � 2, Rn has one end. In this
case the Freudenthal compactification coincides with the 1-point compactification
of Alexandroff.

It appears that Freudenthal was led to his notion of ‘ends’ by the following ob-
servation. On a space X consider any path connected family of homeomorphisms
F containing the identity map of X . Pick any compact subset of X and let U
denote a connected component of its complement. Then U is an almost invariant
subset of X with respect to any f 2 F, i.e. f .U / � U is contained in some
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compact subset of X . After passing to the Freudenthal compactification X of X ,
this observation translates into: F extends to a family of homeomorphisms of X
and each of the extended homeomorphisms is the identity map on E.X/. If, in
addition, F acts transitively on X , this places severe constraints on the end space
E.X/. in particular:

2 Theorem (Freudenthal [10]) A path connected topological group has at most
two ends.

For example, remove two points from R3. The resulting space has three ends,
hence cannot carry the structure of a topological group.

Some properties typical of a transitive group action are still shared by groups
acting with compact fundamental domain. Covering spaces with compact base
provide examples of such actions. H. Hopf extended Freudenthal’s investigations
in this direction and discovered:

3 Theorem (Hopf [15]) Let pWX ! B be a covering map with compact
base. Then X has 0, 1 or 2 (discrete) ends or E.X/ is a Cantor space. Moreover,
if p0WX 0 ! B 0 is another covering map with compact base and p; p0 have
isomorphic groups of covering transformationsG, then the end spaces E.X/ and
E.X 0/ are homeomorphic.

The first conclusion is in line with Freudenthal’s work. The second conclusion
says that the end space of such a covering space is an invariant of the groups G
of covering transformations. Thus we define the end space of G by E.G/ ´

E.X/. For example, E.Z / is the (discrete) 2-point space because the covering
map pWR ! R=Z has Z as its group of covering transformations.

In Section 1, we shall explain the central aspects of the theory of ends of topo-
logical spaces and discrete groups. In honour of the originators H. Freudenthal
and H. Hopf we shall comment on some of the verifications of their work.

There is a maximal class of spaces to which Freudenthal’s end space construc-
tion applies; see Freudenthal [11]. This class contains all connected countable and
locally finite CW-complexes. For simplicity, we assume throughout that spaces
whose ends we consider are CW-complexes of this type. Together with proper
maps (preimages of compact sets are compact) these spaces form a good category
to develop end-sensitive invariants. Often such invariants are obtained by suitably
modifying functors from ordinary Algebraic Topology. We provide some flavour
of the resulting proper homotopy theory in Section 2.
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Ends of spaces and of groups turn out to be a cohomological invariant. This
transition was forged by Specker [24] in the late 1940’s. It lead to fruitful interplay
between algebraic and topological methods when dealing with ends. In Section 3,
we shall sample some results that have been obtained in this fashion.

When compactifying a manifold it is desirable that the result be a manifold.
This leads to the following refinement, called completion, of the Freudenthal com-
pactification within the category of manifolds: The completion of a manifold M
is an imbedding of M in a compact manifold W such that W �M is contained
in the boundary ofW . For example the completion of the open unit ball in Rn is
the compact unit ball and the compactifying boundary is the unit sphere of Rn.
This and related problems were first answered by the work of Browder, Levine,
Livesay [2] and Siebenmann [23] and have since then received persistent attention.
In Section 4, we shall outline the key aspects of this development.

These are the main strands in the theory of ends that we chose to follow. The
presentation is not comprehensive. However, it is hoped that most of the germi-
nating ideas and phenomena in the theory of ends are exposed.

It must be a pleasure for any researcher to observe how his own ample con-
tributions are eventually picked up by others and developed further in numerous
directions. Hans Freudenthal enjoyed this privilege over a period of, now, 60
years. Congratulations!

1 Ends of spaces and groups
A space permitting a free and transitive action of a topological group has at most
two ends; Freudenthal [10]. In this section we sketch the underlying facts as well
as directly related further developments.

Let us begin by explaining the Freudenthal-compactification of a spaceX ; see
[10]. We remind the reader of the stipulation of the introduction: X is a connected
countable locally finite CW -complex.

Then X is the union of an ascending sequence of compact sets

C1 � C2 � � � � � Cn � � � � :

The complementary sets Cn
0´ X � Cn form an inverse sequence

C1
0
� C2

0
� � � � � Cn

0
� � � � :

As a point set take E.X/ to be the collection of sequences .Un/ of nonempty
sets

U1 � U2 � � � � � Un � � � �
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where Un is a connected component of Cn
0. The Freudenthal-compactification

of X is the space X ´ X [ E.X/ whose topology is generated by the open sets
of X together with all sets

Un [
˚
.Vi/ 2 E.X/ W VnCj � Un for all j � 0

	
:

Thus the sequence elements of an end " D .Un/ 2 E.X/ also define a neigh-
bourhood basis of " inX . A different choice of an ascending sequence .Cn/ only
changes X up to homeomorphism.

From this construction we see that a proper map f WX ! Y (preimages
of compact sets are compact) has a continuous extension f WX ! Y over the
Freudenthal-compactifications of X and Y .

We shall now sketch the key issues behind

2 Theorem [10] A path connected topological group X has at most two
ends.

The argument involves two key steps.
Firstly, left translatingX by any x 2 X is a homeomorphism fx and, hence,

has a continuous extension over X . As X is connected, fx is homotopic to the
identity through homeomorphisms. Such a homotopy also extends overX . As the
end space of X is totally disconnected, fx must leave all end points of X fixed.

Secondly, supposeX has distinct ends " and "0 with neighbourhoodsU andU 0.
Then Freudenthal shows the existence of an element x 2 X which translates the
complement of U in X into U 0. Therefore, if X has three distinct ends "; "0; "00,
choose disjoint open neighbourhoods U;U 0; U 00. The complement of U contains
U 0 [ U 00, yet can be translated into U 00. So, there is a translation of X sending "0

to "00, contradicting the fact that translations leave ends fixed.

It is clear that these arguments also apply to certain actions of a topological
group on X . The interplay between the two end-spaces involved is also explained
in Freudenthal’s paper [10]. The desire to extend such insight as far as possi-
ble was the motivation for Freudenthal’s work [11], where the feasibility of the
end space construction under weakest possible hypotheses is studied and previous
applications to actions of topological groups are accordingly generalized.

Countable discrete groups cannot act transitively on spaces of positive dimen-
sion but may act with compact fundamental domain. Such actions still share some
essential behavioral phenomena with transitive actions. So we may ask to which
extent Freudenthal’s results carry over to this more general situation.
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The answer was provided by H. Hopf in the early 1940’s. For convenience,
we restate

3 Theorem (H. Hopf [15]) Let G be a finitely generated discrete group acting
on a space X by covering transformations. Suppose the orbit space B ´ X=G

is compact. Then (i) and (ii), below, hold.

(i) The end space of X has 0, 1 or 2 (discrete) elements or is a Cantor space.

(ii) If G also acts on Y satisfying the hypotheses above, then X and Y have
homeomorphic end spaces.

Conclusion (i) is in line with Freudenthal’s work. That E.X/ may have more
than two ends comes from the fact that the action of a discrete group on X need
not fix the end space; compare the explanation given below Theorem 2.

Conclusion (ii) suggests to regard the end space of X as an invariant of the
group G itself:

4 Definition Let pWX ! B be a covering map with compact base B and
group of covering transformations G. The end space of G is

E.G/´ E.X/:

It should be possible to determine an invariant of G by looking at G itself. In-
deed, a discrete group is a space in which a fixed subset S determines a combinato-
rial notion of connectedness: U � G is S-connected, if for all u; u0 2 U there is
some .u0; : : : ; ur/ 2 U

rC1 with u D u0; u
0 D ur and u�1

i�1ui 2 S [S
�1[f1g,

for all 1 � i � r . IfG is finitely generated and S is a finite set of generators, then
the complement of any finite set C in G has finitely many S-connected compo-
nents .G�C/�. Finitely generated groups are countable. Hence, we may proceed
as with spaces and define

E.G/ WD inv lim.G � C0/
�
 .G � C1/

�
 � � �

where G is the union of the ascending sequence of finite subsets .Cn/.
This approach can be paralleled topologically in the corresponding Cayley

graph of G. So, the topological and combinatorial end spaces of G are homeo-
morphic. This combinatorial approach to E.G/ is a very special case of a general
theory of ends of a discrete space with a combinatorial relation of connectedness.
Freudenthal developed this theory in response to Hopf’s work; see [12].
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It is possible to carry the work of Freudenthal and Hopf further. Even if a
group G acts on a space X by covering maps without compact fundamental do-
main, the end spaces of X; G and the orbit space B ´ X=G are interrelated.
This has been shown by the present author [19].

Here G need no longer be finitely generated. However, Hopf’s work renders
legitimate the construction

E.G/ ´ dir limE.H/

whereH runs through the system of finitely generated subgroups ofG. The action
of G on X determines uniquely a continuous map

�WE.G/ �! E.X/:

If B is compact, � is a homeomorphism and we have restated Hopf’s result. In
general, the deviation of � from being a homeomorphism is completely explained
by end data of B .

2 Proper homotopy theory
The opening paragraph of this article refers to the development of end-sensitive in-
variants of non-compact spaces which supplement the usual compactly supported
ones. Many of these invariants are directly related to familiar ones in Algebraic
Topology. We proceed to give some flavour of this development.

The appropriate setting for our discussion is the category of connected locally
finite countable CW -complexes and proper maps, proper homotopies, etc.

First of all, let us recall a description of ends due to Hopf [15].

5 Theorem (i) For every end " of a space X , there exists a proper map
aW Œ0;1/! X with a.1/ D ".

(ii) Two proper maps ai W fig � Œ0;1/ ! X , i D 1 or 2, determine the same
end " if and only if they have a proper extension f WL! X , where L is the
‘infinite ladder’ f0; 1g � Œ0;1/ [ Œ0; 1�� f0; 1; 2; : : : g.

In order to define proper homotopy groups at the end " of X , replace the role
of the base point in the ordinary theory by a proper base ray �W Œ0;1/ ! X ,
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representing ". Moreover, replace the n-sphere Sn by some 1-ended analogue
Sn containing Œ0;1/ as a subspace. Then consider proper maps .Sn; Œ0;1//!

.X;�/ and suitable proper homotopy relations.
One meaningful choice for Sn is

Sn
´ Œ0;1/ � Sn=f0g �Sn:

In this case Sn is homeomorphic to RnC1. This illustrates that RnC1, from the
proper homotopy point of view is seen like an n-dimensional sphere - not like a
point as in ordinary homotopy theory.

There are various meaningful candidates for Sn and also for proper homo-
topy relations. They are all interrelated; see e.g. E.M. Brown [3], Z. Cerin [4], J.I.
Extremiana, L.J. Hernández and M.T. Rivas [8] and the references there.

Proper homotopy groups permit an analogue of the Whitehead-theorem for
proper homotopy equivalences:

6 Theorem (E.M. Brown [3]) A proper map f WX ! Y is a proper homo-
topy equivalence if and only if

(i) f induces a homeomorphism of end spaces

(ii) f is a weak homotopy equivalence in the ordinary sense

(iii) for each end " of X , f induces isomorphism between all proper homotopy
groups at " and those at f ."/.

Similarly, proper homology groups are defined by replacing the standard do-
main of singular maps by a suitable non-compact analogue. For example, the unit
cube I n is replaced by Kn ´ K1 � � � � �Kn, where Ki is either I or Œ0;1/.
Singular maps Kn ! X are now required to be proper.

There is a Hurewicz homomorphism from proper homotopy groups to proper
homology groups and a proper version of the Hurewicz-isomorphism theorem
holds; see Extremiana, Hernández and Rivas [8].

On manifolds, proper homotopy theory offers a proper version of the h-cobordism
theorem for non-compact manifolds; see Freedman [9] and Quinn [21]. Some-
times proper homotopy equivalent manifolds are homeomorphic. We state ex-
plicitly two theorems of this type in the ‘tough’ dimension 4. The corresponding
result in higher dimensions had been obtained earlier; cf. Theorem 16, below.

7 Theorem (M.H. Freedman [9]) A topological 4-manifold, which is proper
homotopy equivalent to R4, is homeomorphic to R4.
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8 Theorem (M.H. Freedman [9]) A smooth 4-manifold, which is proper ho-
motopy equivalent to S3 �R is homeomorphic to S3 �R .

3 Ends of groups revisited
Given a space X , the cardinality e.X/ if its end-space E.X/ is a cohomological
invariant (we do not distinguish between various infinite cardinalities). The tran-
sition to this algebraic interpretation of the end invariant was forged by Specker
[24]. We shall proceed to outline the development in this direction. Part of this
material was already compiled by Epstein [7].

9 Theorem (E. Specker [24]) e.X/ D dimZ =2H
0
c .X IZ =2/.

Here,H �c denotes cohomology with cellular cochains module compactly sup-
ported cochains. Applying this result to the Cayley graph of a finitely generated
group G yields

10 Theorem (E. Specker [24]) e.G/ D 1C dim H 1.GIZ=2ŒG�/.

Interpreting a 0-cochain with Z =2-coefficients in the Cayley-graph of G as a
subset of G yields yet another description of the number of ends of G:

11 Theorem (D.E. Cohen [5]) e.G/ D dimZ =2
a�inv.G/

f .G/
.

Here the collection of subsets of G, denoted by S.G/, is treated as a Boolean
algebra with ‘symmetric difference’ and ‘intersection’ as operations. Then a �
inv.G/ is the collection of subsets of G which are almost invariant under left-
translation by all elements ofG (compare the explanation given with Theorem (2)
in the introduction). This makes a � inv.G/ a subalgebra of S.G/. Moreover,
f .G/, the collection of finite subsets of G, is an ideal of S.G/.

This description of E.G/ does no longer require the hypothesis ‘finitely gen-
erated’, hence produces an invariant for all groups. Classifying groups by the
number of their ends has been begun by Hopf [15], was completed for finitely
generated groups by Stallings [26] and has only recently been completed for all
groups by Dicks and Dunwoody [6].

12 Theorem Let G by any group. Then e.G/ is 0,1,2 or1.

(i) e.G/ D 0 if and only if G is finite.
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(ii) e.G/ D 2 if and only if G has an infinite cyclic subgroup of finite index.

(iii) e.G/ D1 if and only if one of the following holds

(a) G Š B �C D with C finite and B ¤ C ¤ D and G not of type (ii).

(b) G Š B �C x with C finite and G is not of type (ii).

(c) G is countably-infinite and locally-finite.

(iv) e.G/ D 1 if and only if G is not of type (i),(ii), or (iii).

We also remark that it is possible and meaningful to define the notion of a
relative end of a groupG with respect to a given subgroup S � G; see Kropholler
and Roller [16] and the references there.

Let us now sample some applications, first of algebraic nature: Stallings ob-
tained a criterion which detects non trivial free products among finitely generated
groups with infinitely many ends. This was an essential ingredient in the proof of
a conjecture of Serre (Theorem (13)) and a conjecture of Eilenberg-Ganea (Theo-
rem (14)). Theorem (14) was first proven by Stallings for finitely generated groups
and then for arbitrary groups by Swan; compare also Cohen [5].

13 Theorem (Stallings [25][26]) Suppose G is a finitely generated torsion-
free group with a free subgroup of finite index. Then G is free.

14 Theorem (Stallings [25][26], Swan [27]) Groups of cohomological di-
mension 1 are free.

The topological application of ends of groups below had already been foreseen
by H. Hopf and was completed by Specker [24]. By combining his cohomological
interpretation of the end-invariant with Poincar‘e duality, he saw that the .n�1/-st
homology group of an open orientable n-manifold is free abelian of rank e.M/�

1. Applying this result to the universal cover of a closed 3-manifold M yields
information on �2M via the Hurewicz-isomorphism theorem.

15 Theorem (Specker [24]) SupposeM is a closed 3-manifold. Then �2M

is free abelian of rank

� 0 if �1M is finite or e.�1M/ D 1

� 1 if e.�1M/ D 2

� 1 if e.�1M/ D1
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Moreover, M is aspherical if and only if e.�1M/ D 1.

The invariant e.G/ can be enriched by additional end-structure (in the spirit
of Section 2). Thus there are the notions of a fundamental group of a finitely
presented group, Lee and Raymond [17], semistability at1, Mihalik [18], as well
as higher dimensional invariants; the article of Geoghegan [13] provides excellent
perspective.

Such additional structure components sharpen considerably the use of the in-
variant e.G/. To illustrate this let us consider the question of which closed mani-
folds M have Euclidean space Rn as their universal cover.

In dimensions 1 and 2, the answer follows from well known classification
theorems. So, we may assume n � 3. As Rn is contractible, M must be an
Eilenberg-Mac Lane space of type .�; 1/ and, by Hopf’s work, � must have
precisely one end. Now our problem splits into two parts:

(a) among the contractible n-manifolds identify those which are homeomorphic
to Rn

(b) impose conditions on �1M which imply those found in (a).

A satisfactory response to (a) is the following result of Siebenmann:

16 Theorem (Siebenmann [23]) Let M be a contractible topological man-
ifold without boundary which is 1-locally connected at1. If n WD dim M � 5,
then M is homeomorphic to Rn.

A space X is 1-locally connected at1 if every neighbourhood U of1 con-
tains a neighbourhood V of1 such that every loop in V is contractible in U .

Part (b) of the above program caught the attention of Lee and Raymond who
showed that the fundamental group of the finitely presented group � is trivial if it
contains a finitely generated non-trivial abelian normal subgroup. Consequently:

17 Theorem (Lee, Raymond [17]) LetM be a closed manifold of typeK.�; 1/
whose dimension n is greater or equal 5. If � contains a finitely generated non-
trivial abelian normal subgroup, then the universal cover of M is homeomorphic
to Rn.

This discussion applies to all closed connected manifolds which admit a Rie-
mannian metric with non-positive sectional curvature: at any point of such a man-
ifold the exponential map is a covering projection.
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In the context of Riemannian Geometry, Siebenmann’s theorem (16) can be
sharpened considerably. This result illustrates perfectly the combined power of
information on compact sets together with end data.

18 Theorem (Greene, Wu [14]) Let M be a complete Riemannian manifold,
of dimension � 3, with non-negative sectional curvature. If M is simply con-
nected at1 and the sectional curvature ofM is 0 outside some compact set, then
M is isometric to Rn.

4 Completion of manifolds
When compactifying a manifold it is desirable that the result again be a mani-
fold. This process is called completion and constitutes a non-trivial adaptation
of Freudenthal’s compactification to the category of manifolds: The completion
of a manifold M is an imbedding of M in a compact manifold W such that the
complement ofM is contained in the boundary ofW . A priori it is not at all clear
if a given manifold admits a completion.

This challenge was taken up by Browder, Levine, Livesay [2] and Siebenmann
[22] in the first half of the 1960’s. We follow Siebenmann to get some idea of
what is involved in the case where we wish to complete an open C1-manifoldM
whose boundary is empty; i.e. we ask for an imbedding i WM ! W such that W
is compact and @W D W � i.M/.

If such a completion exists and N is a closed connected component of the
boundary of W , then N has a collar diffeomorphic to N � Œ0; 1/ in W . Removing
N Š B � f0g from W creates an end in the sense of Freudenthal which has a
collar neighbourhood of the form N � .0; 1/ in M . Consequently,

19 Lemma An open manifold without boundary can be completed by an em-
bedding into a compact manifold if and only if M has finitely many ends each of
which has a collar.

Thus the task is clear: If the end space of M is finite, pick an end " and test if
it has a collar in M . Siebenmann’s approach to ‘testing’ is this: start with some
neighbourhood V of " and try to modify it until it looks like a collar from the
homotopy point of view; i.e. BdV , the boundary of V in M , is a closed manifold
such that the inclusion BdV ! V is a homotopy equivalence.

Obstructions to this program can occur and are of two possible types:
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(1) The fundamental groups of the open sets forming a neighbourhood basis of "
fluctuate too much.

(2) Neighbourhoods of " do not have a finite CW-complex in their homotopy
type. The first obstruction involves simple technicalities with fundamental
groups. The second obstruction is measured by the ‘Wall-obstruction’ to fi-
nite domination of a CW-complex; see [28]. If both obstructions vanish and
dimM � 6, then M has a completion.

Completion of manifolds has since received persistent attention. Subsequent re-
search was dedicated to the case where BdM is not empty and/or was specialized
to low dimensions; see [1] for an overview as well as for more references.

In fact, these authors characterize orientable 3-manifolds with ‘missing’ bound-
ary pieces as those 3-manifolds which are end 1-movable, have finitely many sum-
mands and finitely generated first homology. ‘End 1-movable’ means that every
compact K �M is contained in some compact L �M such that every loop in
M � L can be homotoped to an end of M by a homotopy in M �K.

Quinn generalizes further the problem of completing a manifold to that of
completing a map: Suppose M is a manifold and "WM ! X is a map. A com-
pletion of " is an imbedding M ,! W such that W �M is contained in the
boundary ofW , together with a proper extension e0WW ! X of " overW . In his
paper [20], Quinn develops conditions under which a map " admits a completion.
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Erratum R. Geoghegan for pointed out that Theorem 6 is false as stated. –
It is true under the additional hypothesis that X and Y are finite dimensional.
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