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Abstract: We summarize and discuss phenomena related to the vector meson dominance 
(VMD) of electromagnetic hadron currents. This includes VMD implications for pion 
and nucleon electromagnetic form factors and shadowing effects seen in the interactions 
of real and virtual high energy photons with nuclei. In particular, we discuss deep 
inelastic lepton-nucleus scattering at small values of the Bjorken variable x = Q2/2Mv. 

1. I N T R O D U C T I O N :  
E L E C T R O M A G N E T I C  C U R R E N T S  OF H A D R O N S  

Hadrons interact with photons through the electromagnetic currents of their quark 
constituents. The fundamental electromagnetic current is 

J~(x) = q(x)~Qq(x)  (1) 

where q(x) are the quark fields. For Nf = 3 flavours, 

q = , (2) 

and Q is the quark electric charge, 

Q = ½(B + S + r3) (3) 

which involves the baryon number B = 1/3, strangeness S(= - 1  for the s-quark, 0 for 
u,d-quarks) and isospin r3(+l  for u,d-quarks, 0 for the s-quark). At high energies and 
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momentum transfers in the multi-GeV range, QCD is perturbative and the elementary 
current quarks are directly visible. At low energies, where hadrons (rather than quarks) 
are the relevant degrees of freedom, the currents (1) are realized in the form of vector 
mesons (p, w, ¢, ...). This is the basic idea behind the Vector Meson Dominance (VMD) 
model. 

2. E L E C T R O N -  P O S I T R O N  A N N I H I L A T I O N  I N T O  H A D R O N S  

Consider current matrix elements < 0 [ Jr  [ hadrons >, which describe the formation of 
ha(ironic states out of the vacuum through electromagnetic interactions. These matrix 
elements are measured in the process e+e - ~ hadrons. The data are shown in Figs. 
1, 2. At e+e - center-of-mass energies V~ < 1 GeV, the e+e - ---* hadron spectrum is 
visibly dominated by the p(770), w(783) and ¢(1020). The region x/'g > 1 GeV extends 
into the domain of heavy quarks with a continuum plateau and heavy vector mesons 
of the J / ~  and T families. The fact that the p, w and ¢ completely dominate the low 
energy electromagnetic excitation spectrum suggests the current field identity [1] 

2 

V=p°,~,~ 

where Vg = pO, wg and ¢~ are the respective vector meson fields, m y  are their masses 
and f y  their decay constants (empirically, fp ___ 5.3, f~ _ 15.2 and f¢ ~- 13.4). The 
current-field identity (4) is the basis of a remarkably successful phenomenology. For 
example, the accuracy of the model in predicting various radiative decay widths of 
mesons is generally at the 10 % level (see ref. [2] for a recent survey). We continue 
here by summarizing briefly the role which VMD plays in hadron electromagnetic form 
factors at [ q~ [_< 1 GeV 2. 

3. V M D  P H E N O M E N O L O G Y  AT W O R K :  P I O N  F O R M  F A C T O R  

A well-known demonstration of the degree to which VMD works is the pion form factor 
F~(q2). It is measured to high accuracy in the spacelike region q2 < 0 by pion-electron 
scattering experiments [3] and in the timelike region q2 > 0 by e+e - --* 7r+Tr - .  The 
data are shown in Fig. 3. The timelike region exhibits the strong dominance of the p0 
resonance. 
The pion form factor can be written as a dispersion relation, 

q2 [oo Im F,r(t) 
F,r(q 2) = 1 + ~r Jam2 dtt(t - q2 + ie)" (5) 

Here the imaginary part Im F~(t) represents the 7r+Tr - mass spectrum with its strong 
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Figure 2: Low energy par t  of the ratio cr(e+e - --+ h a d r o n s ) / a ( e + e  - --+ # + ~ - ) ,  
showing the dominance of vector mesons (p, w, 4). 



resonant peak at t = m2p ~-- 0.6 GeV 2. The electromagnetic pion radius is given by 

( 6dF  6 rio dt = - v i m  F~(t). 
< "" > = \-ff~-q~ Jq,=o ~ , - ;  

(6) 

Hence the pion size as seen by a photon is determined by the low mass part of the 
j ,r  = 1- ,  isospin I = 1 mesonic spectrum. The VMD assuption is that  this spectrum 
is dominated by the p meson. The current-field identity (4) restricted to the p meson 
implies I m  F,~(t) = 7rm~6(t - m~), and one finds 

2 > 1 [ 2 =  ,~/r~ 0 .63f ro ,  (7) 
u p  

which is remarkably close to the measured radius < r~ >1/2= (0.66 4- 0.01) f m  [4]. 
Corrections to the naive VMD model, mainly related to a realistic description of the 
21r continuum have been discussed in the literature and must of course be taken into 
account in a more detailed quantitative analysis. 

4. H A D R O N I C  S T R U C T U R E  O F  T H E  P H O T O N  

Consider a photon of energy v and momentum ~, i.e. with squared four-momentum 
q2 = 1/2 _ ~.2 = _Q2. Its propagator, including vacuum polarization effects, can be 
written in terms of a spectral representation: 

[ z f~d# ~ _n(#~) ] Dgv(q 2)=-9~,v qZ+ie ~ #2 q2_'~_ie +(q~*qu- terms). (8) 

The polarization function II(# 2) describes the mass spectrum of intermediate states 
that  contribute to vacuum polarization. In the following, we consider only hadronic 
vacuum polarization, the process shown in Fig. 4 by which a photon creates virtual 
quark-antiquark pairs which evolve into hadrons. The lightest hadronic system that  
can be formed in this way is ~r+~r - .  Hence the threshold in the integral in eq. (8) is 
#0 2 = 4m~. The Z factor gives the reduced probability of finding the photon in a "bare" 
state, and the qt, q~ terms guarantee gauge invariance. 
The spectral function II(# 2) is a measured quantity. Consider the process e+e - --* 
hadrons --+ e+e - at a c.m. energy Vff. Its amplitude is proportional to the hadro- 
nic polarization part  of the photon propagator D~,~(s). The cross section a(e+e - --+ 
hadrons) is then proportional to the imaginary part of this amplitude, and hence to 
H (s). 
One finds 

+ - 
If(s) = -~e2a(e e --* hadrons)  

1 ~(e+e- -~ hadro.s) (9) 
12r 2 a(e+e - ---) # + # - )  
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where the cross section ratio on the right hand side is just  the one shown in Figs. 1,2. 
We now introduce a length scale which is of crucial importance for our  fur ther  discus- 
sions: the propagation length (or coherence length) A of a hadronic fluctuation when 
it appears in the vacuum polarization process, Fig. 4. Let p be the mass of this 
hadronic intermediate state. Then  the lifetime of the fluctuation is h / A E  where 
A E  = ~ 2 - +  #2 _ v, the difference between the energy of the hadronic state and 
the photon energy. Using Q2 = ~.2 _ z/2 and assuming that  the fluctuation travels with 
a velocity close to the speed of light (i.e. p < <  v), we have 

2// 
- -  (10) A ~ Q2 + p2" 

As an example, consider a real photon with Q~ = 0 and v = 10 GeV. Then  a p meson 
intermediate state with p = mp ,,, 4 f m  -1 has a coherence length A > 6frn, comparable 
to the sizes of heavy nuclei. 
For later purposes when discussing virtual  photons in deep inelastic scattering, it is 
useful to rewrite A in terms of the Bjorken scaling variable x = Q2/2Mv (in the lab. 
frame), where M is the nucleon mass: 

- ~  Q~+~2 • (11) 

For Q2 > >  p2 we see that  A -- 1/Mx starts to reach nuclear length scales when x < 0.1. 
One therefore expects tha t  processes such as deep inelastic muon scattering at small 
x will be strongly influenced by phenomena related to the sizeable coherence length of 
photon-like hadronic fluctuations. 

5. S H A D O W I N G  

Consider the Compton scattering of a real or virtual photon from a nucleon or nucleus. 
We prefer a description in the laboratory frame in which the photon has energy v and 
squared four-momentum Q2. A hadronic component of the photon with mass p then 
travels over a distance A = 2v/(Q 2 + p2). If this coherence length becomes comparable 
to typical nuclear dimensions, then the Compton scattering process will undergo the 
lab. frame t ime ordering sketched in Fig. 5: the photon converts into hadrons which 
then scat ter  on the target  nucleons. Single scattering leads to o'..fA = Aa.yN, i.e. the 
?,-nuclear cross section is then just an incoherent sum of the cross sections for individual 
nucleons. For sufficiently large propagation length A, however, multiple scattering can 
occur, which leads to O'TA = Aao'TN with a < 1. This is the so-called shadowing effect. 

5.1 S h a d o w i n g  in T o t a l  P h o t o n - N u c l e u s  C r o s s  S e c t i o n s  

For real photons,  nuclear shadowing is a well established phenomenon at energies 
v > 5 GeV. Note that  at these energies, the coherence length of vector mesons is 
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Figure 5: Illustration of high energy Compton scattering on nucleons or nuclei 
through scattering of hadronic intermediate states. 
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Figure 6: Comparison of the total photon-proton cross section and the photo- 
nuclear cross section for 2°Spb. Data from ref. [4]. 
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Ap,o, ~ 2v/rn2p,,~ > 3 fro,  i.e. it already exceeds the average distance d -~ 2 f m  between 
nucleons in the center of nuclei. Hence double scattering of vector mesons from nucleons 
in the nucleus starts to become relevant. 
The empirical data above v > 5 GeV can be parametrized in the form [5] 

0"~, A ~ AO'ga~N . (12) 

An example is given for 2°Spb in comparison with the free proton in Fig. 6. We 
observe there that the shadowing starts to develop at photon energies around 2 GeV 
and stabilizes above 5 GeV. 
The VMD interpretation of this effect has been subject of much work in the mid seventies 
[5, 6]. The basic picture is that of Fig. 5, but now with the hadronic intermediate states 
dominated by the vector mesons V = p,w, ¢, ...; the VMD principle then implies 

a'~rA = ~ v ° ' V A / f ~  (13) 
an'N ~-~V a V N / f ~ z  

where O'VN and aVA are the vector meson-nucleon and -nucleus cross sections. One can 
connect these cross sections by multiple scattering theory and finds (for the example of 
a Gaussian nuclear density): 

3 Ao'vN ] 
aVA = Aa~N I 8~ R-----~A + "'" ' (14) 

where RA is the nuclear radius. At the same time, the analysis of vector meson 
photoproduction experiments on the proton [6] leads to apN ~-- a,,N ~-- 25 mb and 
O.bN/ap N 2 2 rap~inC. This gives already a rough idea about the effects which generate 
the "shadow" in eq. (12). 

5.2 Shadowing in Deep-Inelastic Scattering on Nuclei  

Deep inelastic muon scattering on a variety of nuclear targets has also revealed a pro- 
nounced shadowing effect at small values of the Bjorken variable x = Q2/2Mv .  Recent 
measurements in the kinematical range 0.3 GeV 2 < Q2 < 3.2 Ge V  2 (EMC [7]) and 
1 GeV  2 < Q2 < 20 GeV 2 (NMC [8]) show a systematic reduction of the nuclear struc- 
ture functions F2A(Q 2, x) with respect to A times the free nucleon structure function 
F2N(Q2,x) at x < 0.1. This observation has stimulated a great deal of theoretical ac- 
tivity, with attempts to describe this shadowing effect either in terms of quark-gluon 
dynamics on the light cone [9-11] or in complementary hadronic language [12-14]. 
Our aim here is to investigate the role of vector meson dominance phenomena in these 
processes. We point out [15] that VMD in its simplest form is by far not sufficient to 
understand the behaviour of the free nucleon structure function F N at small x, whereas 
it may still be an important factor in the shadowing mechanism [15]. 
Let us first return to the propagation length (11) of hadronic fluctuations of the photon. 
We have already mentioned that A ~ l [ M x  = 0 . 2 1 f m / x  reaches nuclear dimensions 
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for x < 0.1. Consider now a description of deep-inealstic lepton scattering on nucleons 
or nuclei in the laboratory frame with the target at rest. In this frame the basic dia- 
grams representing the interaction of the virtual photon with the nucleon involve time 
orderings as shown in Figs. 7a and b: the photon either hits a quark in the target 
which then picks up the large incident momentum and energy, or the photon converts 
into a quark-antiquark pair which subsequently interacts with the target. At small x, 
the pair production term Fig. 7b dominates. This can be seen by comparing the en- 
ergy denominators of the processes illustrated in Fig. 7 in standard "old fashioned" 
perturbation theory. Let rnq be a typical (constituent) quark mass. For large energy 
transfer u > >  mq and u 2 > >  Q2 the characteristic energy difference for process (a) 

m~+Q2 In process (b), let the quarks in the is AEa  =_ Ea(t2)  - E a ( z l )  ~ - m q  + • 
produced qq-pair carry momenta ~'/2 -b A~" and ~'/2 - A~', respectively. We assume 
that the relative momentum of the pair is small compared to its total momentum: 
I A~* I<<[ ~" [= V ~  2 + v 2. In fact I q'l is of order 10 GeV or larger in our kinemati- 
cal range, whereas the typical hadronic scale which governs the relative motion of the 
q~-pair implies ] A~' ] < 1 GeV. Therefore we find for the energy difference in process 

4m~+Q2 Consequently the ratio of magnitudes of the (b): A E a  -- E b ( t ~ ) -  E b ( t l )  ~-- 2~ • 

quasifree amplitude Aa and the pair amplitude Ab behaves roughly like 

~ ~ 2mq  l +  0 2  j .  

This ratio is evidently small compared to unity for x < 0.1. Hence the q4-pair mecha- 
nism, Fig. 7b, dominates at small x. The further evolution of the process will then 
lead to the mechanism in which a hadronic state, carrying photon quantum numbers, 
strongly interacts with the nucleon. 
This picture implies that in deep-inelastic scattering at small x, the virtual photon 
primarily interacts with a nucleon or nucleus through the scattering of its hadronic 
components on the target. Nuclear shadowing is expected to occur when the coherence 
length A of the hadronic intermediate state exceeds the average distance between two 
nucleons in the nucleus, i.e. when double scattering starts to occur. With d __ 1.8 fin 
and A > d this implies x < 1 / M d  ~- 0.1 as a condition for shadowing. 

5.2.1 Free Nucleon Structure Function 

The free nucleon structure function FN(Q 2, x) (introduced here as the average of proton 
and neutron structure functions) can be written 

Q2 
F (Q 2, x) = (16) 

in terms of the virtual photon-nucleon cross section (the sum of longitudinal and trans- 
verse cross sections). Following the previous discussions we assume that, at small x, 
the virtual photon interacts with the nucleon by first converting into a q~ - pair which 
then propagates and interacts strongly with the nucleon. This leads to the following 
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Figure 7: Time orderings in a lab. frame description of virtual photon-nucleon 
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approximate form of the structure function, valid at small x: 

F ~ ( Q ~ , z )  Q2f4¢¢ p2H(~2) = ~  d# ~ aN(#2;s  ~ Q2/x) .  (17) 

Here II(# 2) is the mass spectrum of hadronic components of the photon, as given by 
eq. (9). The factor (#2 + Q2)-2 is the squared propagator of these fluctuations, and 
o'g(~t2; s) is the effective cross section for the scattering of a hadronic state of mass # 
from the nucleon. The energy variable in aN is s = 2 M y  + M 2 - Q2 ~ Q2/x" 
The effective cross section aN summarizes all interactions of hadronic components of 
the photon with the composite nucleon. For small x the hadron-nucleon center-of mass 
energy v/s is in the multi-GeV range where cross sections are flat. We therefore use an 
average aN, independent of s. The leading dependence of aN on the hadron mass # 
should satisfy the following criteria: 

i) For large Q2, the structure function F ~  should have the proper scaling beha- 
viour, i.e. it should become independent of Q2. This requirement is fulfilled 
with the ansatz aN = const . /#  2. By inspection of the integral (17) it is indeed 
obvious that such a/~-2 dependence of aN leads to scaling. 

ii) Empirical vector meson-nucleon cross sections follow roughly a 1//~ 2 rule. 

We see this from table 1 where the ansatz 

16mb. G eV  2 
aN(  2) - ( i s )  

is compared with the available vector meson cross sections deduced from photoproduc- 
tion data. 

0J 

¢ 

avN[mb] 
empirical from eq. (18) 

27 ± 3 26 

12 ± 3 15 

2+1 2 

Table 1: Vector meson-nucleon cross sections: empirical values [6, 16] (left) compared 
with the ansatz, eq. (18) 
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The simple ansatz (18), together with the empirical H(/~ 2) from a(e+e - ~ hadrons) 
according to eq. (9), reproduces the nucleon structure function at small x remarkably 
well. This is demonstrated in Fig. 8. Note that  the ansatz (18) makes F N independent 
of x for small x. This is consistent with the data  [17] within (admittedly sizeable) error 
bars. At the same time Fig. 8 clearly shows that  the s tandard vector meson dominance 
model is unable to reproduce the Q2 dependence of F N. When the spectrum H(# 2) is cut 
off at tz 2 = m~ ,~ 1 GeV 2 so that  only the low-mass vector mesons contribute, a major 
part of the strenght in F N is obviously missing for Q2 > 1 GeV2: the qq-continuum 
with masses # > 1 GeV is very important  to reproduce F N at small x. 
We note that  in principle, F N of eq. (17) could have been written in the more general 
form of a double dispersion relation [18] in order to account for off-diagnoal diffractive 
dissociation processes (such as V N  --~ VIN  where V and V I are two different vector 
meson states). However, the authors of ref. [13] have pointed out strong destructive in- 
terferences between such on- and off-diagonal terms. Remaining effects are then thought 
to be absorbed in the parametrization of the effective cross section trN(/Z2). 

5.2.2 Nuclear Structure Function 

Next we describe the nuclear structure function F A at small x using exactly the same 
model as previously developed. We write 

FA(Q 2,x) Q2 ) 
= - -  d~t 2 aA(/~2; s), 

71" mS (~2 + Q2)2 
(19) 

where aA is now the effective hadron-nucleus cross section. Given the large photon 
energy v it is justified to use the eikonal approximation and employ Glauber mutiple 
scattering theory to connect *rA and cry. 
A typical feature at high energy is the smallness of Re f N / I m  fN,  the ratio of real and 
imaginary parts of the forward hadron-nucleon amplitudes; we assume this ratio to be 
negligible. We also neglect diffractive dissociation terms V N  -+ V ' N  in the multiple 
scattering series. This could lead to an error of about 5 % in aA due to inelastic screening 
effects [19]. 
An important  point is that  the propagation length A of intermediate hadronic sta- 
tes has to be taken into account properly. This is done by an extension of Glauber 
theory as described by Gribov [20]. The finite coherence length A = 2v/ (Q 2 + g2) 
enters in a characteristic phase factor. It first appears in the double scattering term as 
ezp[i(zl - z2)/A] and has an obvious interpretation: if A is large compared to the di- 
stance d = zl - z2 between two nucleons in the target, the phase factor is close to unity 
and double scattering occurs with full strength. However, if A < <  d, then this phase 
factor rapidly oscillates and double scattering is suppressed. 
Altogether we end up with the following expression: 
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aA(p2; S) ~- AaN(p2; s) -J- 

A n - 1  

+ I 
(20) 

Here pn is the n-particle nuclear density with coordinates taken along the path of the 
scattering hadron, i.e. parallel to the z-axis at an impact parameter b. We expand p,, up 
to terms linear in the two-body correlation function/k(F, F') = p2(~', F') - p(~')p(~") -- 
g(~', g')p(g)p(~") where p(~') is the one-body density: 

zl, z,)...p z,) .  (21) 
all permutat ions 

In practice we use for the correlation factor g(I ~" - ~'' I) a simple parametrization 
which approximates the nuclear G-matrix [21]. We also use realistic nuclear density 
distributions p(r) which fit elastic electron scattering data. 
With these ingredients we have calculated [15] the ratio 

FA(Q 2, x) (22) 
R(Q 2, x) = A FN(Q 2, x) 

of the nuclear and free nucleon structure functions for x < 0.1 and compare with recent 
data for 12C and 4°Ca as obtained by the NMC collaboration at CERN. These data 
at small x cover the range 1 GeV 2 < Q2 < 20 GcV 2 with a 200 GeV incident muon 
beam energy. Results are shown in Fig. 9. We find that the pronounced shadowing 
observed at x < 0.1 can in fact be reproduced quite well in our simple model. Note 
that in this calculation, no additional free parameters have been introduced beyond the 
effective cross section aN = 16rob. GeV2/p  2 which enters in F N for the free nucleon. 
The shadowing effect turns out to be dominated (see Fig. 9) by the low-mass vector 
meson components of the spectrum H(# 2); their propagation length A is large compared 
to the nuclear size. Components of large mass #, even though they are very important 
in the free structure function F N, are much less effective in the shadowing process since 
their propagation length is shorter; in addition the 1/p 2 behaviour of the effective cross 
section aN suppresses multiple scattering for large p. 
Much discussion has recently been devoted to the Q2 dependence of the shadowing effect 
[10, 14]. We show in Fig. 10 a comparison of our calculations with the earlier EMC 
data [7] which involve lower Q2 values (0.3 GeV 2 < Q2 < 3.2 GeV 2) than the new 
NMC data. We do this also in order to show the smooth Q2 dependence of our model, 
which turns out to be close to a logarithmic one for 1 GeV 2 < Q2 < 10 GeV 2. For Q2 
much larger than 10 GeV ~, the shadowing effect disappears, as one would expect. 
At Q2 = 0, the present model reproduces quite well the nuclear shadowing observed with 
real photons at z/= 50-100 GeV (see section 5.1 and ref. [22]): we find o'~fA = A°'91a.~N 
in this energy range. 
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6. S U M M A R Y  

Vector mesons play an important role in the electromagnetic interactions of hadrons. 
They govern hadron form factors at q2 < 1 GeV2; they are responsible for a large part 
of the pronounced hadronic shadowing effects seen with real photons in the multi-GeV 
range. One of our primary aims in this presentation was to explore to what extent 
vector meson dominance still plays a role in deep-inelastic scattering at small x where 
sea-quarks become important. This question has been subject of some debate [10, 14]. 
We find that the free nucleon structure function at small x can not at all be reproduced 
by the "naive" version of VMD, with only p, w and ¢ included. It is of crucial importance 
to incorporate the higher mass quark-antiquark continuum in the description. On the 
other hand, the shadowing phenomenon in the nuclear structure function at x < 0.1 is 
still governed by the low-mass vector meson states, at least in our simple model. It is 
of interest to explore the possible connections between the phenomenological hadronic 
description presented here and the QCD-based approaches of refs. [9-11]. 

We would like to thank Gerry Brown, John Durso, Jerry Miller, Kazuo Takayanagi 
and Mark Strikman for illuminating discussions. One of us (W.W.) enjoyed the kind 
hospitality of the Theory Group at GSI (Darmstadt) during the preparation of these 
notes. 
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