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Abstract. Partially ordered sets, causets, partially ordered spaces and
their local counterparts are now often used to model systems in computer
science and theoretical physics. The order models ‘time’ which is often
not globally given. In this setting directed paths are important objects
of study as they correspond to an evolving state or particle traversing
the system. Many physical problems rely on the analysis of models of
the path space of a space-time manifold. Many problems in concurrent
systems use ‘spaces’ of paths in a system. We review some ideas from
algebraic topology and discrete differential geometry that suggest how
to model the dipath space of a pospace by an enriched category. Much
of the earlier material is ‘well known’, but, coming from different areas,
is dispersed in the literature.

1 Introduction

Partially ordered sets are frequently used to model systems in both computer
science and physics. The order models ‘time’, or ‘use of resources’, and often
can not be globally given. For instance, in models for the temporal modal logic
S4, the models are partial orders (or more generally preorders) but the time
dependency is merely ‘before’; there is no clock. Similarly in the theory of causal
sets, which are ‘locally finite’ or ‘discrete’ partial orders, ‘causality’ is represented
by ‘≤’ and again no global clock is given.

Many physical systems are analysed by models of an evolving state space,
or, almost equivalently, a space of ‘evolving states’. In the study of ‘space-time’
manifolds, the evolving states are modelled by ‘time-like’ paths.

Here we will review some ideas from algebraic topology that suggest ap-
proaches on how to model spaces of directed (hence ‘time-like’) paths in a di-
rected space using enriched, and, in particular, simplicially enriched, categories.
We will point out some of the possible constructions, but also, where possible,
their inadequacies for the task of using simplicially enriched category theory in
a useful way for the study of ‘spaces of dipaths’. We will explore various con-
structions, and their interpretation in an attempt to identify the way in which
‘topology change’ might be detected in directed homotopy and related dynamical
systems.
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The idea of constructing a simplicially enriched category using the paths in
a partially ordered set or small category seems to have occurred first in work
by Leitch, [1]. At about the same time, Boardman and Vogt, [2], used a closely
related construction for topological categories. This was pushed forward in Vogt’s
paper, [3], and later exploited by Cordier, [4]. We will describe this and briefly
look at related issues of simplicially enriched functors from such a gadget to
various target categories, or structured coefficients.

Order enriched categories have been quite often used in theoretical computer
science as have category enriched ones (2-categories), for instance in rewriting
theory. Both these can be subsumed within the simplicial enrichment setting.

Having passed from various situation to simplicially enriched categories, we
explore what information they give you and how it is ‘packaged’. It is clear
that as a simplicial set has various invariants modelling parts of their homotopy
type, one can, with care, pass via these homotopy or homology models to other
enriched settings such as chain complexes. Of particular note however are the
analogues of the ‘cochain-cohomology’ group of constructions, as these are nearer
to the invariants used to explore the geometry, rather than the homotopy of a
space. We show how to pass from some simplicially enriched categories to dg-
categories via a cobar construction and briefly explore some of the consequences.

Another theme that will emerge is the search for ‘evolving bundles’. The
theory of fibre bundles on spaces is highly dependant on the ‘symmetry group’,
‘gauge group’, ‘reversible path’ technologies, so will need a new approach if
it is to be transformed into something that is optimised for the ‘directed path’
paradigm. We propose a possible set of analogues, but will not be able to develop
the theory that far here.

The section on differential graded categories of paths has benefited enor-
mously from joint work with Jonathan Gratus, and the construction there owes
a lot to some unpublished joint work with him.

2 Path spaces

Given a space, X, the usual ‘classical’ homotopy invariants such as its homo-
topy groups are closely linked to the space of loops on X. This works well for
arc-wise connected spaces and ordinary maps. For some problems however, the
space of free paths is needed. This is XI , usually considered with the compact
open topology. Again this is fine for standard topological situations, but when,
for instance, non-compact spaces are involved it leads to inadequate informa-
tion, (see, for instance, the survey article, [5]), as asymptotic information of the
behaviour out towards the ‘ends’ of the space cannot be included. Similarly in
directed homotopy, paths are there not reversible and homotopies cannot ‘undo’
what has already been done, yet the (directed) paths are what are of most in-
terest as they correspond to evolving states with ‘time’ as the variable in the
paths.

Returning to the case of paths in a space, X, the usual path space is XI ,
that is, the space of continuous functions, a : I → X, from the unit interval,



I = [0, 1], to X. This has certain nice structure that is fairly obviously ‘of use’,
but shows some difficulties as well. There are two continuous maps

e0, e1 : XI → X,

where e0(a) = a(0), and e1(a) = a(1). There is also a continuous map s : X →
XI , where is x ∈ X, s(x) is the constant path, s(x)(t) = x for all t ∈ [0, 1].
There is also almost a composition on paths, but if a is a path from x to x′ in
X (so e0(a) = x and e1(a) = x′), and b is one from x′ to x′′, then the natural
composite a ? b is of ‘length’ 2, i.e. a ? b : [0, 2]→ X with

a ? b(t) =

{

a(t) if 0 ≤ t ≤ 1,
b(t− 1) if 1 ≤ t ≤ 2.

This almost looks like a category structure, but as well as the ‘composition’ not
quite working, the constant path does not quite act as an identity! We could
rescale the composition, but then we loose associativity, and dividing by enough
‘homotopy’ to fix the identities results in the destruction of much of the sense
that the parameter in the path corresponds to time. It is possible to build a
‘homotopy coherent’ category in this way, but it is technically quite difficult to
do so in detail.

From the point of view of standard topology, this would not matter and, of
course, the above forms part of the construction of the fundamental groupoid of a
space, (cf. Brown, [6]). From the point of view of modelling physical phenomena
or concurrent distributed systems, the ‘faults’ noted above are important, but
here we do not need to invert paths as we are not heading for a groupoid,
rather our aim is a category. There is, of course, an alternative used in standard
homotopy theory that gets around some of the difficulties in a neat way and is
closer to the intuition of time as the variable. It is the space of Moore paths of
X.

For this we replace XI by a much larger space, namely

Paths(X) =
⊔

r≥0

X [0,r].

This has a beautiful structure of a spatially enriched category. For points x, x′ ∈
X, we consider the subspace Paths(X)(x, x′) of all those a ∈ Paths(X), a :
[0, r]→ X for some r, such that a(0) = x and a(r) = x′. Composition of paths,
adapted in an obvious way from the above, gives, for x, x′, x′′ ∈ X,

Paths(X)(x, x′)× Paths(X)(x′, x′′)→ Paths(X)(x, x′′),

which is continuous, and associative and has identities, since Paths(X)(x, x)
always contains the identity path of length 0 at x, something we did not have
available before. Of course, paths of length r compose with paths of length s
to give paths of length r + s and later this will be a cause of some problems
as it inhibits rescaling of paths. The category Paths(X) is enriched over the
category of topological spaces with monoidal structure given by the Cartesian



product. (For generalities on enriched categories, see the entry in Wikipedia,
( http://en.wikipedia.org/wiki/Enriched_category). For more detailed in-
formation, consult the references there.) Later we will use simplicially enriched
categories quite a lot and some brief discussion of them is given in an appendix.

This is fine if X is just a topological space, but if it is, say, a smooth manifold
then the paths need to be piecewise smooth for Paths(X) to have a hope of
reflecting more than just the structure of the underlying space. This is not the
only problem. It is often desirable to perform analogues of the operations of
calculus on such spaces of paths, but they are infinite dimensional even when
the spaceX is a nice finite dimensional smooth manifold. IfX has other structure
such as that of a space-time, then similarly operations such as integration seem
to be needed for the study of this context. (This leads, for instance, to the theory
of iterated integrals due to Chen.) The hope has been to replace the ‘hom-sets’,
Paths(X)(x, x′), etc. by discrete, combinatorial models. We will discuss one
such in particular, namely replacing them by simplicial sets, as this seems to be
relevant in many contexts and has obvious extensions to areas of more general
interest.

For the moment we will work with Paths(X) and the topological situation.
One possibility, then, is to replace each Paths(X)(x, x′) by its singular complex,
i.e. by a simplicial set made up of singular simplices in Paths(X)(x, x′). To set
this up properly we need to digress for a short while.

Recall, (cf. Curtis [7]), ∆n ⊆ R
n+1 is the topological n-simplex given by

t = (t0, . . . , tn) ∈ ∆
n ⇐⇒

∑

ti = 1 and all ti ≥ 0.

The simplices of adjacent dimensions are related by coface and codegeneracy
maps:

δi : ∆n−1 → ∆n 0 ≤ i ≤ n

δi(t) = (t0, . . . , 0, . . . , tn−1),

so, in δi(t), a 0 is inserted in position i, and the later coordinates are shifted
right; whilst

σi : ∆n+1 → ∆n, 0 ≤ i ≤ n,

σi(t) = (t0, . . . , ti + ti+1, . . . , tn+1),

so adds the ith and (i+ 1)st coordinates together.
Let ∆ be the skeletal category of finite ordinals, [n] = {0 < 1 < . . . < n}. A

simplicial set is a presheaf on ∆, and so is a functor

K : ∆op → Sets.

There are generating maps in ∆,

δi : [n− 1]→ [n]

and
σi : [n+ 1]→ [n]



corresponding to the topological ones considered above. The usual convention is
that, if K is a simplicial set, we write Kn := K[n], for the set of n-simplices of
K, di := K(δi) : Kn → Kn−1 and si := K(σi) : Kn → Kn+1, these maps being
called the face and degeneracy maps respectively.

(Good classical introductions to simplicial sets can be found in Curtis, [7],
and May, [8], whilst Gabriel and Zisman’s treatment in [9] is more categorical.
The theory is also explored in Kamps and Porter, [10], and in numerous other
sources.)

The category, Sets∆
op

, is called the category of simplicial sets and will be
denoted S.

Given a space Y , we can define a simplicial set, Sing(Y ), by setting Sing(Y )n =
Top(∆n, Y ), the set of continuous maps from ∆n to Y , (so called singular n-
simplices). This simplicial set, Sing(Y ), is the singular complex of Y . Of course,
Sing(Y )1 = Top(I, Y ), so consists of paths of ‘length’ 1 in Y . We note

Sing(Y × Z) ∼= Sing(Y )× Sing(Z),

so, for a space X, we can obtain a simplicially enriched category from Paths(X)
by specifying

Paths(X)(x, x′) := Sing(Paths(X)(x, x′)).

The fact that Sing preserves products means that if the composition in Paths(X),
is taken to be that induced from the one in the Top-enriched case, then it works
well at this simplicial level.

One motivation for working with Paths(X) rather than Paths(X) is that it is
more suited for generalisation to non-topological contexts. Before we investigate
that, however, we need to rework our description of Paths(X)(x, x′).

We have

Paths(X)(x, x′) =
∐

r≥0

X [0,r](x, x′),

where X [0,r](x, x′) = {a : [0, r]→ X | a(0) = x, a(r) = x′} ⊂ X [0,r]. Thus

Sing(Path(X)(x, x′))n =
∐

r≥0

Sing(X [0,r](x, x′))n

∼=
∐

[0,r]

Top(∆n,X [0,r](x, x′))

⊂
∐

[0,r]

Top([0, r]×∆n,X),

i.e. a subspace of the set of singular prisms in X. The maps in this subspace
are those which squash the two ends of the prism, sending them to x and x′

respectively.
Composition, identities etc. make just as much sense in this description, and,

of course, we get the same S-enriched category, Paths(X), as before with now a
nice geometric interpretation of the arrows in terms of singular prisms.



Now to return to our problem of rescaling, when working with the funda-
mental groupoid and its higher analogues, based on a unit interval as the only
domain of a path, then the operations of rescaling, reversion and the associativ-
ity homotopy are all important (see, for instance, the papers by Hardie, Kamps
and Kieboom, [11,12] for their use in defining a fundamental 2-groupoid or bi-
groupoid of a space, or Fahrenberg and Raussen [13] for an in-depth discussion
of reparametrisation relevant to our overall topic of directed paths). In our set-
ting we have associativity for free, and we do not want reverses (which are only
needed for inverses), but we do need rescaling for some of the interpretations
in the geometric semantics. What we will do is to consider any two constant
prisms at the same point to be the same, so we allow rescaling of a constant
path of length r to be ‘the same’ as one of length 0 at the same point. This will
be sufficient to allow us to normalise prisms to have whatever positive length we
need. Note that it does not disturb associativity, nor identities and we still have
a (simplicially enriched) category.

For future reference and motivation we note

– Paths(X)0 consists of paths in X;
– Paths(X)1 consists of fixed end-point homotopies between paths in X;
– Paths(X)2 consists of fixed end-point homotopies between fixed end-point

homotopies between paths in X,
– and so on.

Each set in fact forms the arrows of a category with object set the set of points of
X, in which source and target maps are the end points of paths, and composition
is in the direction of the paths. Face and degeneracy maps are functors that are
fixed on objects.

We can now adapt this to the context of directed homotopy, causets, and
space-time.

3 Causets

Definition: A causal set or causet C is a discrete partially ordered set.
By discrete here, we mean that for each pair p, q of points in C,

C(p, q) = {r ∈ C | p ≤ r ≤ q}

is finite. (Of course, if p 6≤ q, it is empty.)
The notion, which is also known as a ‘locally finite poset ’, occurs in models

of space-time (cf. [14,15]). A nice categorical and logical gloss on their use in
physics can be found in Markopoulou, [16].

The basics of enriched category theory require the input of a symmetric
monoidal category and the category of posets, Poset, is one such. The monoidal
structure is given by product, just as in the two earlier examples of enrichment
that we have met in this paper, namely with Top and S. If C is a partially ordered
set, then for each pair of elements a, b ∈ C, the ‘interval’ hom-set, C(a, b), as



above, is a partially ordered set. The obvious composition is : if C(a, b) is non-
empty (so a ≤ b) and C(b, c) is non-empty (so b ≤ c) then a ≤ c so C(a, c) is
non-empty, but this does not correspond to an order preserving function

C(a, b)× C(b, c)→ C(a, c).

This, however, is forgetting the motivation and intuition behind the study of
possible enrichments. If C is a causet, or more generally, any poset, we can
consider Paths(C), and the structure of the set of all paths in C. We would
expect a categorical structure corresponding to concatenation of paths, but is
there more structure around? (A basic reference for this is Cordier’s paper from
1982, [4]. This was followed by work which analysed the use of this in conjunction
with other simplicially enriched categories in the theory of homotopy coherence,
see Cordier and Porter, [17].) We first take a ‘geometric’ viewpoint.

First some necessary standard definitions and notation: we will write [0, r]
for the poset [r] = {0 < 1 < . . . < r}, when we are considering it more as a
subdivided line of length r rather than as a simplex. (Of course, it is both, but
a line has a ‘start’ and ‘end’ more clearly than a simplex!)

Definition: A path a of length r in a poset, C, is a morphism

a : [0, r]→ C.

The source of a is a(0) and its target is a(r). We write Paths(C) for the set of
all paths in C. If x, x′ ∈ C, Paths(C)(x, x′) will denote the subset of those paths
starting at x and ending at x′. Of course,

Paths(C) =
∐

r≥0

C[0,r],

and so on, ... just as before, and C[0,r] has a natural poset structure given by
pointwise comparison, and such that the source and target maps, e0, and e1,
defined in the evident way, are order preserving. There is a well defined ‘compo-
sition’,

C[0,r](x, x′)× C[0,s](x′, x′′)→ C[0,r+s](x, x′′),

with identities given by the zero length paths, and this induces a category struc-
ture on Paths(C). What needs noting is that Paths(C)(x, x′) is a poset, but
paths of different lengths are incomparable as they are in different parts of the
disjoint union.

Once again we have an enriched category, this time Poset-enriched. (Such
categories are also called locally ordered categories.) To emphasise the similar
intuitions involved (and for numerous other reasons), we will use an S-enriched
version of this.

Any poset P = (P,≤) yields a simplicial set, Ner(P), with

Ner(P)n = Poset([n],P),



and the face and degeneracy maps induced by the δi and σi. This is the analogue
of the singular complex for posets. It is the well known nerve construction and,
of course, an n-simplex τ ∈ Ner(P)n is just a chain of length n,

τ = (p0 ≤ . . . ≤ pn).

If the chain is not strict (i.e. if it has repeats, so say pi = pi+1), then it will be
degenerate.

We leave it to the reader to check that if P, Q are posets then

Ner(P ×Q) ∼= Ner(P)×Ner(Q),

hence from Paths(C), we can obtain a simplicially enriched category Paths(C),
where, for x, x′ ∈ C,

Paths(C)(x, x′) = Ner(Paths(C)(x, x′)).

As in the topological example, we have a description of the n-simplices of this
simplicial set, Paths(C)(x, x′), as ‘singular’ prisms

a : [0, r]× [n]→ C

with a(0, k) = x for all 0 ≤ k ≤ n and a(r, k) = x′, similarly:
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The condition of ‘discreteness’ or ‘local finiteness’ on a causet corresponds
to ensuring that each Paths(C)(x, x′) has only finitely many non-degenerate sim-
plices.

4 Pospaces and directed homotopy

We can combine the two previous case studies to look at the category of par-
tially ordered spaces. (As references for this, see work by Grandis, [18,19,20,21]
in addition to the papers of Fajstrup, Goubault, Haucourt and Raussen, for in-
stance, [22,23,24,25]. The terminology used here, however, will not necessarily
be identical to that used in those papers.)

Definition: A partially ordered space or pospace, X, is a topological space
with a (globally defined) closed partial order, ≤, so considering ≤ as a subset of
X ×X, it is a closed subset.



A dimap f : X → Y between two pospaces, X and Y , is a continuous map
that respects the partial order,

x ≤ x′ ⇒ f(x) ≤ f(x′).

Examples:

1. Give the unit interval I = [0, 1], the usual order. This gives it the structure

of a pospace that we will denote by
→

I . A related similar pospace is the closed

interval [0, r] of length r ≥ 0 with its usual order. This will be denoted
−→

[0, r].
2. Let M be a compact differentiable manifold and f : M → R a Morse func-

tion, so that f is smooth with no degenerate critical points. (As a simple
example, take a torus “on end” with f a height function,
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R−→

then f has 4 critical points, one is a minimum, one a maximum and there
are two saddle points. This example is put forward as it shows some of the
structure found in the case of d+ 1 cobordisms in topological quantum field
theory.)
Define a pospace structure on M by

x ≤ x′ ⇐⇒ x = x′ or f(x) < f(x′).

(The idea is to make t = f(x) into a ‘time-like variable’, in such a way that
the space-like slices are the level sets f−1(t).)

3. The ‘Swiss flag’ and other examples, well known from the work of Fajstrup,
Goubault, Raussen and others (see [22,23,24,25], as before), have a pospace

structure derived from the product (
→

I )n after carving out some cubical or
hypercubical ‘forbidden’ regions. This occurs in models of PV languages and
for situations involving ‘mutual exclusion’, cf. [26].

Definition: A dipath a in a pospace X is a dimap a :
−→

[0, r]→ X. (The usual
terminology will apply to the ends of a.)

If a, b :
−→

[0, r]→ X are dipaths with the same ends, so a(0) = b(0) and a(r) =
b(r), then a (fixed end-point) homotopy between them is a map

h : [0, r]→ X

such that



(i) h(0, t) = a(0) and h(r, t) = a(r) for all t ∈ I;

(ii) h(−, t) :
−→

[0, r]→ X is a dipath for each t ∈ I;
(iii) h(−, 0) = a and h(−, 1) = b.

The terminology we are using differs from that sometimes used. We think of
this as a continuously varying family of dipaths, but that family, itself, is ‘un-
ordered’, so ‘homotopy of dipaths’ seems appropriate. We will reserve the term
‘dihomotopy’ as a diminutive of ‘directed homotopy’, following more closely the
terminology of Grandis in this (cf. Grandis [18,19,20,21]). (This choice of abbre-
viation is partially a question of taste. ‘Dihomotopic’ is also less awkward to say
than ‘directed homotopic’.)

Definition: A directed homotopy between a and b (as above) is a dimap

h :
−→

[0, r] ×
→

I→ X,

where
−→

[0, r] ×
→

I is given the product partial order. We say a and b are dihomo-
topic, the relation being called directed homotopy.

Directed homotopy is not reversible, hence is not symmetric, but is transitive
and reflexive.

The two notions, homotopy and dihomotopy, are closely related, but distinct.
It is often the case that if two dipaths are homotopic, then they are connected
by a zig-zag of dihomotopies, whilst clearly any two dihomotopic dipaths are
homotopic.

Both of these notions yield simplicially enriched categories of paths. The first
requires less preparation so is easier to give.

Definition: Let X be a pospace. For x, x′ ∈ X, let diPaths(X)n(x, x
′) be the

set of dimaps a :
−→

[0, r] ×∆n → X, for any r ≥ 0 and where ∆n is given the trivial
partial order, such that a(0, t) and a(r, t) are constant with respect to t. This
gives a simplicial set diPaths(X)(x, x′) and there is an obvious concatenation
composition

diPaths(X)(x, x′)× diPaths(X)(x′, x′′)→ diPaths(X)(x, x′′)

and identities yielding a simplicially enriched category, diPaths(X).
The second construction requires a partially ordered version of the simplices

such that all the coface and codegeneracy maps are dimaps. The usual topological
models of simplices do not give this immediately, so we will use a slightly different
model.

Consider the subset Dn ⊂ In given by

x ∈ Dn ⇔ x = (x1, . . . , xn) with x1 ≤ x2 ≤ . . . ≤ xn.



Thus, for n = 2, D2 is the upper triangle of the unit square subdivided by the
x1 = x2 diagonal. In general, Dn is an n-simplex. The correspondence between
this and the earlier description of ∆n, which we give in dimension 2 only for
convenience, is that (x1, x2) corresponds to (1 − x2, x2 − x1, x1) or conversely
(t0, t1, t2) to (t2, t1 + t2). We leave the reader the task of generalising this to
n-dimensions.

The coface maps are by insertion of 1 on the right, 0 on the left, or repeating
xi for the ith coface with 0 < i < n. With the identification of Dn with ∆n, the
codegeneracy maps are now simple to write down. For example, again for n = 2,
the two codegeneracy maps from D1 to D2 are induced by the two projections
from I2 to I1.

We give Dn an induced order from
→

In, but will write the result as
→

∆n. The
following is now the obvious thing to do.

Definition: Let X be a pospace. For x, x′ ∈ X, let DiPaths(X)n(x, x
′) be

the set of dimaps a :
−→

[0, r] ×
→

∆n→ X, etc.

Of course, DiPaths(X) gives a simplicially enriched category. We will refer to
the element of DiPaths(X)n(x, x

′) as singular n-prisms from x to x′.

These simplicially enriched categories have a slight disadvantage. They are
intended to mirror the properties of the pospace X, but for any point x ∈ X,
DiPaths(X)0(x, x), and similarly diPaths(X)0(x, x), have constant paths of all
lengths in them, and similarly in higher dimensions. The sort of interpretation
which is sought for categorical invariants of pospaces, would prefer there to
be no loops other than the constant paths at each x (of length zero). In those
interpretations of dipaths it is customary to consider the variable as being ‘time’,
yet in non-synchronised systems there is no ‘global clock’. It is thus usual to
normalise paths so as to have ‘length’ or ‘duration’ 1, but here in DiPaths(X)
and diPaths(X), we have paths of arbitrary duration. For comparison with the
normalised theories, it would be useful to be able to rescale paths. To do this
we adapt the comment on constant paths made in an earlier section. In fact this
problem is the same as that of constant loops that we have just discussed. We
will consider a variant of these S-categories in which all constant paths, of any
duration, are considered to be equivalent. More formally:

Define a relation, ∼, on DiPaths(X)n(x, x
′), resp. diPaths(X)n(x, x

′) by :
if a : [0, r] × ∆n → X is a singular n-prism from x to x′ and constn(s, y) :
[0, s] ×∆n → X denotes the constant n-prism of duration s at a point y of X,
then

a ∼ a ∗ constn(s, a(r)),

and

a ∼ constn(s, a(0)) ∗ a.



We will also denote by ∼ the congruence generated by this primitive ∼, so, for
instance,

a ∗ b ∼ a ∗ constn(s, a(r)) ∗ b.

The following helps explain the usefulness of this.

Proposition 1. Suppose a : [0, r1]→ X with r1 > 0, is a dipath, and let r2 > r1.
Define a dipath b : [0, r2]→ X by rescaling a, so

b(t) = a
(r1
r2
t
)

for t ∈ [0, r2],

then there is a directed homotopy

h : a ∗ const1(r2 − r1, a(r1))
∼
→ b.

�

The similar result with a a singular n-prism also holds.
The directed homotopy is fairly easy to construct explicitly. Of course, this

means that combining directed homotopies with identifying all constant paths
does yield a well behaved rescaling operation. (The combination of this with the
insights in Fahrenberg and Raussen’s paper, [13], have yet to be explored.) We
will usually continue to work with DiPaths(X) and diPaths(X) as constructed,
but if an application or interpretation needs normalising or rescaling, then we
note the following: denoting by DiPaths∼(X) and diPaths∼(X), the result of
dividing these two S-categories by the congruence ∼, then

Proposition 2. The two structures DiPaths∼(X) and diPaths∼(X) have well
defined compositions making them into S-categories. �

In fact, the construction of the congruence makes this almost tautologous.
Of course, by dividing out by ∼ we get rid of the difficulty of non-trivial ‘loops’
in these categories. In a later section we will look at the free S-category on a
small category, again using the analogue of paths, this time in a directed graph,
and there also it is necessary to avoid non-identity ‘constant’ loops. In both case
there is an aspect that relates to rewriting, although we cannot explore that
here.

It is to be noted that when calculating the component categories of these
examples using the methods derived from [23] and [27] (see below, section 8.1),
any const0(s, x) yields an arrow which is weakly invertible, so will be killed off
in that process.

Variants of this construction should be moderately easy to manufacture. For
instance, if X is a smooth manifold, piecewise smooth order preserving singular
simplices may work and if, say, hyperbolic structures are given on X, then using
hyperbolic versions of simplices (cf., for instance, Bridson and Haefliger, [28])
would perhaps work, although these are normally of constant curvature.

The basic objects we have used here and earlier are prisms [0, r] × ∆n in
ordered or unordered variants. As [0, r] is like the path 0 → 1 → . . . → r in



∆, this may be linked to ∆r × ∆n and hence to viewing these S-categories as
being related to bisimplicial sets. Why stop there? In general, it may be useful

to consider order variants of ‘hyperprisms’
→

∆r1 × . . .×
→

∆rk and to interrelate
them generalising the approach to weak category theory due to Simson and
Tamsamani, see [29].

5 S-groupoids from simplicial sets.

Simplicial sets, as such, have some attributes that resemble partially ordered
sets as well as others that look spatial. The theory described in this section
relates to the ordinary homotopy of simplicial sets and gives simplicially enriched
groupoids, so might seem out of place here. However, it allows, to some extent,
a comparison of the directed theory with a fairly standard construction from
standard algebraic topology, so it seems worth while to see this.

Let K be a simplicial set. Near the start of simplicial homotopy theory, Kan
showed how, if K was reduced (that is, if K0 was a singleton), then the free group
functor applied to K in a subtle way, gave a simplicial group whose homotopy
groups were those of K, with a shift of dimension. They modelled loops on K
in some sense that we shall not explore here. With Dwyer in [30], he gave the
necessary variant of that construction to enable it to apply to the non-reduced
case. This gives a ‘simplicial groupoid’ G(K) as follows:

The object set of all the groupoids,G(K)n, will be in bijective correspondence
with the set of vertices K0 of K. Explicitly this object set will be written {x | x ∈
K0}.

The groupoid G(K)n is generated by edges

y : d1d2 . . . dn+1y → d0d2 . . . dn+1y for y ∈ Kn+1

with relations s0x = idd1d2...dnx
. Note since these relations just ‘kill’ some of the

generating edges, the resulting groupoid G(K)n is still a free groupoid.

Define σix = si+1x for i ≥ 0, and, for i > 0, δix = di+1x, but for i = 0,
δ0x = (d1x)(d0x)

−1.

(We use here σ for the degeneracy morphisms and δ for the faces, since the
formulae for them already us the more usual s and d, and a double usage may
increase the risk of confusion.)

These definitions yield a simplicial groupoid as is easily checked and, as is
clear, its simplicial set of objects is constant, so it also yields a simplicially
enriched groupoid, G(K), see Proposition 3 below.

It is instructive to compute some examples and we will look at G(∆[2])
and G(∆[3]). These simplicially enriched groupoids are free groupoids in each
simplicial dimension, and their structure can be clearly seen from the generating



graphs. For instance, G(∆[2])0 is the free groupoid on the graph
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whilst G(∆[2])1 is the free groupoid on the graph
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Here it is worth noting that δ0(012) = (02).(12)−1. Higher dimensions do not
have any non-degenerate generators.

Again withG(∆[3]), in dimension 0, we have the free groupoid on the directed
graph give by the 1-skelton of∆[3]. In dimension 2, the generating directed graph
is
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233
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Here only a few of the arrow labels have been given. Others are easy to provide
(but moderately horrible to typeset in a sensible way!). Those from 0 to 1 are
012, 011 and 013; those from 1 to 2 are 122 and 123, and finally from 0 to 3, we
have 033.

The next dimension is only a little more complicated. It has extra degenerate
arrows such as 0112 and 0122 from 0 to 1, but also between these two vertices
has 0123, coming from the non-degenerate 3-simplex of ∆[3]. The full diagram
is easy to draw (and again a bit tricky to typeset in a neat way), and is therefore
left ‘as an exercise’.

The functor G has a right adjoint W and the unit K → WG(K) is a weak
equivalence of simplicial sets. This is part of the result that shows that simpli-
cially enriched groupoids model all homotopy types, for which see the original
paper, [30]. Whether any analogue of this result in the directed case is feasible
seems not to have been examined. Its importance is that, for G a simplicial



group, any simplicial map K
τ
→ WG gives a ‘twisting function’ and induces a

principal G-bundle on K, see [7] for the basic theory. Such maps also correspond
to morphisms of simplicial groupoids from G(K) to G. We will see a related
construction later.

The way that the twisting function τ : K → G works is worth spelling
out in a bit more detail. (For an excellent ‘classical’ exposition of these ideas
consult Curtis’ survey article, [7].) We will assume given a slightly more general
situation. Suppose Y is a ‘fibre’ and we want ‘fibre bundles’ on K with fibre
Y . We have a trivial bundle K × Y with the obvious face and degeneracies,
and a simplicial group oif automorphisms of Y , G = aut(Y ), (see Curtis for
how this is constructed). We have a twisting function τ : K → G, which we
can convert either to a simplicial map τ : K → WG or to a simplicial group
morphism τ : G(K) → G, depending on whichever suites us better as they are
completely equivalent, and we form K ×τ Y by (K ×τ Y )n = (K × Y )n with
all di, i > 0 and all si just as in K × Y , that is di(k, y) = (dik, diy), but with
d0(k, y) = (d0k, τ(k)(d0y)), i.e. we twist the 0-face of the cartesian product.

We will see a similar twisting later with ‘twisting cochains’ and the twisted
tensor product. If K is connected, the twisting function can also be specified
by a S-enriched functor F : G(K) → S and in this interpretation, K ×τ Y
is the homotopy colimit of F . This is essentially encoding a fibre bundle on
K as a S-functor to simplicial sets, a viewpoint that may be useful for future
development.

6 From simplicial resolutions to S-cats.

There is an abstract way of generating a simplicially enriched category from
a small category using simplicial resolutions. This views ‘paths’ as sequences
of edges or arrows or perhaps transitions, and so uses the free category on a
directed graph as a basic tool.

The forgetful functor U : Cat→ DGrph0 has a left adjoint, F . Here DGrph0

denotes the category of directed graphs with ‘identity loops’, so U forgets just
the composition within each small category but remembers that certain loops are
special ‘identity loops’. These directed graphs are sometimes also called quivers
and later we will look at an enriched version of these as well. The free category
functor here takes, between any two objects, all strings of composable non-
identity arrows that start at the first object and end at the second, that is, all
paths from the first to the second. One can think of F identifying the old identity
arrow at an object x with the empty string at x.

This adjoint pair gives a comonad on Cat in the usual way, and hence a
functorial simplicial resolution, which we will denote S(A) → A for A a small
category. In more detail, we write T = FU for the functor part of the comonad,
the unit of the adjunction η : IdDGrph0

→ UF gives the comultiplication FηU :
T → T 2 and the counit of the adjunction gives ε : FU → IdCat, that is,
ε : T → Id. Now for A a small category, set S(A)n = Tn+1(A) with face maps
di : Tn+1(A)→ Tn(A) given by di = Tn−iεT i, and similarly for the degeneracies



which use the comultiplication in an analogous formula. (Note that there are two
conventions possible here. The other will use di = T iεTn−i. The only effect of
such a change is to reverse the direction of certain ‘arrows’ in diagrams later on.
The two simplicial structures are ‘dual’ to each other.)

This S(A) is a simplicial object in Cat, S(A) : ∆op → Cat, so does not
immediately give us a simplicially enriched category, however its simplicial set
of objects is constant because U and F took note of the identity loops.

In more detail, let ob : Cat → Sets be the functor that picks out the set of
objects of a small category, then ob(S(A)) : ∆op → Sets is a constant functor
with value the set ob(A) of objects of A. More exactly it is a discrete simplicial
set, since all its face and degeneracy maps are bijections. Using those bijections
to identify the possible different sets of objects, yields a constant simplicial set
where all the face and degeneracy maps are identity maps, i.e. we do have a
constant simplicial set.

Proposition 3. Let B : ∆op → Cat be a simplicial object in Cat such that ob(B)
is a constant simplicial set with value B0, say. For each pair (x, y) ∈ B0 × B0,
let

B(x, y)n = {σ ∈ Bn| dom(σ) = x, codom(σ) = y},

where, of course, dom refers to the domain function in Bn, similarly for codom.
(i) The collection {B(x, y)n| n ∈ N} has the structure of a simplicial set,

B(x, y), with face and degeneracies induced from those of B.
(ii) The composition in each level of B induces

B(x, y)× B(y, z)→ B(x, z).

Similarly the identity map in B(x, x) is defined as idx, the identity at x in the
category B0.

(iii) The resulting structure is an S-enriched category. �

The proof is easy. In particular, this shows that S(A) is a simplicially enriched
category. The description of the simplices in each dimension of S(A) that start
at a and end at b is intuitively quite simple. The arrows in the category, T (A),
correspond to strings of symbols representing non-identity arrows in A itself,
those strings being ‘composable’ in as much as the domain of the ith arrow must
be the codomain of the (i− 1)th one and so on. Because of this we have:
S(A)0 consists exactly of such composable chains of maps in A, none of which is
the identity;
S(A)1 consists of such composable chains of maps in A, none of which is the
identity, together with a choice of bracketing;
S(A)2 consists of such composable chains of maps in A, none of which is the
identity, together with a choice of two levels of bracketing;
and so on.

Face and degeneracy maps remove or insert brackets, but care must be taken
when removing innermost brackets as the compositions that can then take place
can result in chains with identities and these identities then need removing, see



[4]. This is why the comonadic description is so much simpler, as it manages all
that itself.

To understand S(A) in general, it pays to examine the simplest few cases.
The key cases are when A = [n], the ordinal {0 < . . . < n} considered as a
category in the usual way. The cases n = 0 and n = 1 give no surprises. S[0]
has one object 0 and S[0](0, 0) is isomorphic to ∆[0], as the only simplices are
degenerate copies of the identity. S[1] likewise has a trivial simplicial structure,
being just the category [1] considered as an S-category. Things do get more
interesting at n = 2. The key here is the identification of S[2](0, 2). There are
two non-degenerate strings or paths that lead from 0 to 2, so S[2](0, 2) will have
two vertices. The bracketted string ((01)(12)) on removing inner brackets gives
(02) and outer brackets, (01)(12), so represents a 1-simplex

(01)(12)
((01)(12)) // (02)

Other simplicial homs are all ∆[0] or empty. It thus is possible to visualise S[2]
as a copy of [2] with a 2-cell going towards the bottom:

1
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>>

>>
>>
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⇓

@@�������
2

The next case n = 3 is even more interesting. S[3](i, j) will be
(i) empty if j < i,
(ii) isomorphic to ∆[0] if i = j or i = j − 1,
(iii) isomorphic to ∆[1] by the same reasoning as we just saw for j = i+ 2,
and that leaves S[3](0, 3). This is a square, ∆[1]2, as follows:

(02)(23)
((02)(23)) // (03)

(01)(12)(23)

((01)(12))((23)) a

OO

diag

99ttttttttttttttttttt

((01))((12)(23))
// (01)(13)

((01)(13))b

OO

where the diagonal diag = ((01)(12)(23)), a = (((01)(12))((23))) and b =
(((01))((12)(23))).

The case of S[4] is worth doing. It is left to the reader, but as might be
expected S[4](0, 4) is a cube. All higher S[n](0, n) are (n − 1)-cubes for good
combinatorial reasons, which we will not go into here.

These S[n] are all subcategories of a S-category, S, that has been called
the generic homotopy coherent ω-path. This S-category is studied by Verity in
[31] as a precursor for other instances in which the simplicial enrichments are



constrained to carry more structure, mimicking that of weak infinity categories.
He gives some useful categorical characterisations of it, and its relation with
locally ordered categories. The definition of this S-category, S, is that it has N

as its set of objects and S(r, s) = ∆[1](s−r). It is the generic model for paths in
many contexts.

The S-construction given above for small categories can be extended to small
S-categories. If A is a small S-category, we form up for each n the S-category
S(An), this gives a category enriched over bisimplicial sets. Taking the diagonal of
each of these gives us a S-enriched category. The process of removing all brackets
then gives an S-functor, S(A)→ A, called the evaluation or augmentation map.

We saw earlier the way in which a simplicial fibre bundle on a (connected)
simplicial set K, corresponded to a simplicially enriched functor

F : G(K)→ S.

The interpretation was that F (x) is the fibre over x ∈ K0, whilst the edges etc.
of K give the ways in which ‘transitions’ between base points yield transition
functions between the fibres. There is more than a superficial link between G(K)
and S(A) in terms of their construction, so what would be the interpretation of
a simplicially enriched functor

F : S(A)→ S.

This was explored by Cordier in the paper already mentioned earlier, [4]. Such
a S-functor corresponds to a homotopy coherent diagram of ‘shape’ A within
S. Some idea of what that is can be gleaned from the case A = [3] above. If
F : S[3]→ S is a S-functor, it gives four simplicial sets, F (i), i = 0, 1, 2, 3, and a
tetrahedral diagram of maps between them. The triangular faces are ‘filled’ with
homotopies, specified by F , for instance F ((01)(13)) is a homotopy from the
composite F (13)F (01) to F (03). These homotopies compose according to the
diagram (of a square) above , and the two specified 2-homotopies F (a) and F (b)
handle the non-commutativity of the result. (This is discussed in more detail
in Kamps-Porter, [10] at a fairly elementary level, or see [32] or Cordier-Porter,
[17] for how the theory fits in to other geometric considerations.)

If a ‘total space’ for such a fibre bundle’ is desired then the homotopy colimit,
hocolimF , can be used, but beware, it will work best when each F (x) is a Kan
complex. (The theory in the case where each F (x) is just a quasi-category is really
what would be needed in our directed setting, but is not yet fully developed; see
forthcoming ideas of Joyal and to a minimal extent some comments later here.)

7 Dwyer-Kan Hammock Localisation: more simplicially

enriched categories.

(In this section we will need to assume more than a basic knowledge of abstract
and simplicial homotopy theory.)



There is another construction that gives simplicially enriched categories from
a ‘combinatorial’ situation, and again it involves prism-like diagrams (although
the intuition of prisms is replaced by that of hammocks!) First some background:
in his original contribution, [33], to abstract homotopy theory, Quillen introduced
the notion of a model category. Such a context is a category, C, together with
three classes of maps: weak equivalences, W = Cw.e.; fibrations, fib = Cfib; and
cofibrations, cofib = Ccofib, satisfying certain axioms so as to give a general
framework for ‘doing homotopy theory’. One of the constructions he used was
a categorical localisation already well known from Gabriel’s thesis and the work
of the French school of algebraic geometers, (Grothendieck, Verdier, etc.) and,
concurrently with the publication of [33], studied in some depth by Gabriel and
Zisman, [9]. The main point was that the analogues of homotopy equivalences,
in important instances of homotopical or homological algebra, were only ‘weak
equivalences’ so, whilst, with a homotopy equivalence between two spaces, you
are given two maps, one in each direction, plus of course some homotopies, when
you have, for instance, a quasi-isomorphism between two chain complexes, you
only have one map in one direction: f : C → D, together with the knowledge
that the induced map f∗ : H∗(C)→ H∗(D) is an isomorphism. The partial solu-
tion used by Verdier, Gabriel, Zisman and Quillen, was to go to the ‘homotopy
category’ by formally inverting the weak equivalences/quasi-isomorphisms, thus
getting formal maps going in the opposite direction! (This may look like cheat-
ing, but really is no worse than introducing fractions into the integers, so as to
be able to solve certain equations, and, of course, the detailed construction is
closely related!) We thus end up with a category C[W−1].

This construction is very useful, but this homotopy category does not cap-
ture the higher order homotopy information implicit in C. In a series of articles
[34,35,36] published in 1980, Dwyer and Kan proposed a neat solution to this
problem, simplicial localisations. We will limit ourselves to one of the two ver-
sions here, the hammock localisation.

7.1 Hammocks

Given a category C, and a subcategory W, having the same class of objects,
construct a S-category, LH(C,W), or LHC for short, the hammock localisation
of C with respect to W, as follows:

The objects of LHC are the same as those of C.

Given two objects X and Y , the k-simplices of LHC(X,Y ) will be the “re-
duced hammocks of width k and any length” between X and Y . Such a thing is
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in which
(i) the length n of the hammock can be any integer ≥ 0,
(ii) all the vertical maps are in W,
(iii) in each column of horizontal maps, all maps go in the same direction; if they
go left, then they have to be in W;
plus two reduction conditions,
(iv) the maps in adjacent columns go in different directions,
and
(v) no column contains only identity maps.

(In manipulating hammocks, these last two conditions often become violated,
but then it is simple to reduce the hammock by, for example, composing adjacent
columns if they point in the same direction or by removing a column of identities.
Repeated use of the reductions may be needed. One reduction may create a need
for another one. It is often useful to work with unreduced hammocks and then
to reduce.)

The face and degeneracy maps are defined in the obvious way, (remember
the vertices of such a simplex are the ‘zigzags’ from X to Y ), however they may
result in a non-reduced hammock.

Composition is by concatenation followed by reduction:

LHC(X,Y )× LHC(Y,Z)→ LHC(X,Z),

expanding the intervening Y node into a vertical line with identities and then
reducing if need be.

Each LHC(X,Y ) is the direct limit of nerves of small categories in an obvious
way, i.e. increasing the length n of the hammocks, and so is itself a quasi-category
in the sense of Joyal, [37]. Given our earlier discussion, the similarity of this con-
struction with the corresponding diagrams for ‘prisms’ is striking. One possible
adaptation of the prismatic approach is to allow from the start some collection



of Yoneda invertible maps in the sense examined later on and to apply the con-
struction to them. For the case of a calculus of fractions, this was already done
by Dwyer and Kan, as we will see in the next section.

7.2 Hammocks in the presence of a calculus of left fractions.

If the pair (C,W) satisfies any of the usual ‘calculus of fractions’ type conditions,
then the homotopy type of those nerves already stabilises early on in the process
(i.e. for small n). The argument given in [35] is indirect, so let us briefly see
why one of these claims is true. Suppose that (C,W) satisfies a calculus of left
fractions, thus

(i) whenever there is a diagram X ′ u
← X

f
→ Y in C with u ∈ W, there is a

diagram X ′ f
′

→ Y ′ v
← Y so that v ∈ W and vf = f ′u,

and similarly
(ii) if f, g : X → Y ∈ C and u : X → X ′ ∈ W is such that fu = gu, then there
is a v ∈ W such that vf = vg.
By this means any word in arrows of C and W−1 can be rewritten to get all the
occurrences of arrows from W−1 to the left of those ‘ordinary’ arrows from C.
Each of the two substrings, those formed from W−1 and those from C, can then
be composed to reduce the word to one of the form w−1c, i.e. a left fraction.
To understand how this reacts with hammocks, consider a simple case where
the chosen vertex of the hammock, LHC(X,Y ), is simply the following vertex
(zig-zag) (*):

X C
woo c // Y Y

idoo

with w ∈ W. We construct a new diagram, using the left fractions rule (i), giving
a 1-simplex with the given vertex at one end:

X C
woo c //

w

��

Y

w′

��

Y
idoo

X X
idoo

c′
// C ′ Y

w′

oo

,

so our zigzag (*) was homotopic to a ‘left biased’ hammock ((w′)−1, c′).
Of course, if the length of the hammock had been greater then the chain of

‘moves’ to link it to the ‘left biased ’ form would be longer. Again of course, al-
though combinatorially feasible, a detailed proof that the left baissed hammocks
with vertices of the form

X → C ← Y

provide a deformation retract of LHC(X,Y ) is technically quite messy.
Even with a better knowledge of what the LHC(X,Y ) looks like, there is still

the problem of composition. Two left biased hammocks compose by concate-
nation to give a more general form of hammock that then gets reduced by the



left fractions rules, but these rules do not give a normal form for the compos-
ite. Much as in the composite of arrows in a quasi-category, cf. Joyal, [37], the
composite here is only defined up to homotopy.

Suppose we let L1(X,Y ) be the simplicial set of such left biased hammocks,
then it is a deformation retract of LHC(X,Y ). After composition we reduce to
get a diagram

L1(X,Y )× L1(Y,Z) //
� _

'

��

concat

))SSSSSSSSSSSSSS
L1(X,Z)

� _

'

��
LHC(X,Y )× LHC(Y,Z) // LHC(X,Z)

reduce

OO

This looks as if it should work well, but if we look at the associativity axiom,
it is represented by a commutative diagram, and we have replaced each of the
nodes of that diagram by a homotopy equivalent object, so we risk getting a
homotopy coherent diagram, not a commutative one. This is happening inside
LHC, so this does not matter so much. We see that although attempting to cut
down the size of the ‘hom-sets’ does allow us more control over some aspects of
the situation, it also has its downside.

The solution is to study the homotopy theory of S-categories as such. This
will lead us towards the Segal maps (see below) as well as interacting with
homotopy coherence. Both of these areas would seem to have their importance
for our study, but we will only give a brief discussion of the first of them here.

For a short time, for the purpose of exposition, we will restrict ourselves to
small S-categories with a fixed set of objects, O, say, and S-functors will be the
identity on objects. We will denote the category of such things by S−Cat/O.
(The material here is adapted from [38].) This category has a closed simplicial
model category structure in which the simplicial structure is more or less obvious,
in which a map D → D′ is a weak equivalence (resp. a fibration), whenever, for
every pair of objects, x, y ∈ O, the restricted map

D(x, y)→ D′(x, y)

is a weak equivalence (resp. fibration). (Note, (i) that several of the constructions
we have been looking at gave us weak equivalences in this sense, for instance, the
augmentation/evaluation map, S(A) → A is one such, and (ii) that the fibrant
objects are the ‘locally Kan’ S-categories over O.)

Now, as we know, any of the categories, S−Cat/O, forms a subcategory of
the category of simplicial categories, Cat∆

op

. This latter category also has a
closed simplicial model category structure in the sense of Quillen, [33], and the
nerve and categorical realisation functors induce an equivalence of homotopy
categories (even of the simplicial localisations if you want) between Cat∆

op

and
the category of bisimplicial sets, S∆

op

. Within Cat∆
op

we are used to considering
S−Cat as a full subcategory via our earlier proposition. Related to the problem of
reducing the size of the LHC(X,Y )s is the question of determining the result of
restricting the induced nerve functor to S−Cat. The solution is rather surprising.
We first introduce the notion of Segal maps.



Let p > 0, and consider the increasing maps ei : [1]→ [p] given by ei(0) = i
and ei(1) = i + 1. For any simplicial set A considered as a functor A : ∆op →
Sets, we can evaluate A on these ei and, noting that ei(1) = ei+1(0), we get a
family of functions Ap → A1, which yield a cone diagram, for instance, for p = 3:

Ap
A(e1)

**UUUUUUUUUUUUUUUUUUUUUUU

A(e2)

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

A(e3)

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

A1

d0

��
A1

d1 //

d0

��

A0

A1
d1

// A0

and in general, thus yield a map

δ[p] : Ap → A1 ×A0
A1 ×A0

. . .×A0
A1.

The maps, δ[p], have been called the Segal maps.

Lemma 1. If A = Ner(C) for some small category C, then for A, the Segal
maps are bijections.

Proof: A simplex σ ∈ Ner(C)p corresponds uniquely to a composable p-chain
of arrows in C, and hence exactly to its image under the relevant Segal map. �

Better than this is true:

Proposition 4.
If A is a simplicial set such that the Segal maps are bijections then there is a
category structure on the directed graph

A1
// // A0oo

making it a category whose nerve is isomorphic to the given A.

Proof: To get composition you use

A1 ×A0
A1

∼=
→ A2

d1→ A1.

Associativity is given by A3. The other laws are easy, but illuminating, to check.
�

Now consider the full subcategory of S∆
op

determined by those objects X
such that (i) X[0] is a discrete simplicial set (cf. the condition on the object
simplicial set in an S-category);



and
(ii) for every integer p ≥ 2, the Segal map

δ[p] : X[p]→ X[1]×X[0] X[1]×X[0] . . .×X[0] X[1]

is a weak equivalence of simplical sets.
These objects are called Segal categories or sometimes Segal 1-categories.

Of course, there is a notion of Segal 0-categories, but these are just nerves of
ordinary categories. We will denote the category of these Segal 1-categories by
Segal−Cat. The result of Dwyer, Kan and Smith, [38], is that the nerve from
Cat∆

op

to S∆
op

, restricts to given an equivalence of homotopy categories be-
tween S−Cat and Segal−Cat. In particular this says that any Segal category is
weakly equivalent to a bisimplicial set that is a nerve of a simplicially enriched
category. Segal categories are weakened simplicial versions of the algebraic struc-
tures given by the categorical axioms, so this is in many ways a coherence the-
orem for Segal categories rather like the MacLane-type coherence theorems for
bicategories, etc.

We have gone from constructions involving directed paths in pospaces, etc.,
to some relatively technical constructions from homotopy theory. The reason
for going so far is that some of the earlier constructions of S-categories that we
have given do look to be imposing equivalences on arrows, or, alternatively, extra
conditions on arrows too early in the development. Examination of ideas such
as Segal-categories, quasi-categories and complicial sets would seem to provide
some additional technical ways around such slightly artificial constraints. They
thus suggest ways forward to encode the structure of spaces of dipaths that are,
perhaps, closer to the physical or computational ‘reality’ that the models seek to
mirror. The coherence results then state that given such models one can reduce
to the S-categorical model without fear of destroying important aspects of the
model.

8 Now we have it, what can we do with it?

8.1 Fundamental categories

Given any S-category, C, we can use the fact that the connected component
functor, π0, preserves products to obtain a category,

→
π0 (C). Explicitly this has

→
π0 (C)(x, x′) = π0(C(x, x

′))

with the induced composition.
For the case of a pospace X and C = diPaths(X) or DiPaths(X), these would

seem to be the fundamental category of X studied by Fajstrup, Goubault, Hau-
court and Raussen, [23] for the case with homotopies and, with directed homo-
topies, by Grandis, see [21] for instance.

These are quite difficult to handle. Just like the fundamental groupoid on
a space, they have the set of points of X as their set of objects. The methods



developed in [23] and pushed further in [27,39], develop ways of replacing them
by small categories without loops (scwols).

Some idea about what needs to be done can be gleaned from the classical
situation of the fundamental groupoid of a non-connected space, X. This has as
many objects as X has points. To get a manageable algebraic object you can
‘pick’ a basepoint in each connected component. This results in a disjoint union of
groups. Of course, picking things is non-canonical so we can form an alternative
by ‘quotienting’ out by the equivalence relation underlying the groupoid. Doing
this however is quite delicate. One way is to pick a tree in each component, then
kill this off, proving, eventually, that you get the same answer independently of
the tree chosen. Here we have a category not a groupoid, and in some sense that
makes what we have to do easier. Along some ‘inessential’ arrows the future and
past behaviour of the category (i.e. C(x,−) and C(−, x)) does not really change.
If we formally invert some such ‘inessential’ arrows to obtain a ‘compressed’
category of ‘components’ then the result will be much smaller yet contain the
same essential combinatorial/geometric information as the original. The only
problems are to decide what does ‘inessential’ mean and how to form a quotient
in this sense. We will recall this in the case of the ‘fundmental category’

→
π1 (X)

of a pospace, X. This is defined as

→
π1 (X) :=

→
π0 (diPaths(X)).

For the mutual exclusion models considered in the geometric analysis of PV
languages, this is the same as

→
π0 (DiPaths(X)).

The ‘inessential arrows’ may be determined in various ways. We will briefly
mention [23], but note that in subsequent work presented in [27,39], Goubault
and Haucourt would seem to have a neater approach to the same basic idea.
‘Inessential’ is taken to mean ‘weakly invertible’ or ‘Yoneda invertible’.

Definition: Given a small category, C, we say C is without loops if each non-
identity arrow in C has distinct source and target. We say C is a scwol (small
category without loops).

The notion is discussed in Bridson and Haefliger, [28]. (Some of the other
constructions and ideas in that source may, eventually, be useful in other parts
of this area of models for spaces of directed paths.) Our fundamental categories,
→
π1 (X), are examples of scwols.

Definition: Given a scwol C, we say an arrow σ : x→ y is weakly invertible
if the following conditions are satisfied

1. for each object z of C such that C(y, z) 6= ∅,

C(σ, z) : C(y, z)→ C(x, z)

is a bijection, i.e. σ is future weakly invertible and



2. for each object z of C such that C(z, x) 6= ∅,

C(z, σ) : C(z, x)→ C(z, y)

is a bijection, so σ is also past weakly invertible.

The condition ‘C(y, z) 6= ∅’ is a guard condition to avoid silly situations, since
there may be z reachable from x, but not from y, yet not essentially different
from either. For instance, if σ factors as x→ z → y with both x→ z and z → y
weakly invertible, we would expect C(y, z) to be empty, whilst C(x, z) is not, so
for such a z, C(σ, z) cannot be a bijection.

Although the idea is simple, there are still technical problems to solve, and
we refer the reader to the papers and notes previously cited for a much fuller
discussion.

In a causet, C(−, x) measures the past of x and C(x,−) its future, so weak
invertibility corresponds to ‘no large topology change along σ’. The significance
of weak invertibility for the case of C =

→
π1 (X) for a pospace X is discussed

in [23], so we will not explore it much here. By factoring out by the weakly

invertible arrows,
→
π1 (X), can be reduced in size considerably. Two objects x

and x′ will be identified if there is a directed path, a, from x to x′ along which
the ‘components’ of the past and future of the point a(t) do not change.

In the case of a pospace derived from a Morse function f : M → R, there is
a well known construction, the Reeb graph. This is a quotient of M × R by an
equivalence relation where (x1, f(x1)) ∼= (x2, f(x2)) if and only if f(x1) = f(x2)
and x1 and x2 are in the same component of f−1f(x1), the level set of f(x1).

Although of a similar nature, this graph encodes less about M and f than
does the component category of the pospaces. For instance, even in the example
of the torus, as illustrated earlier, each side tube contributes one edge to the
Reeb graph, but with directed paths we can find examples that wind their way
around the tube as many times as we like, corresponding to the fact that the
cross section is a circle, S1, and the standard fundamental group π1(S

1) is infinite
cyclic. The point is that the Reeb graph uses only the geodesic curves or gradient
flow lines to join representatives of each ‘component’.

The study of the component category construction is still in its infancy and
some of its complexities are still very mysterious.

8.2 Fundamental 2-categories

Given any S-category, C, we have found a small category
→
π0 (C), which in our

motivating examples will often be a scwol. Within that, we have defined weakly
invertible arrows, at least in the ‘scwol’ case. As is clear from the definition,
this notion can be split into two parts, the first being ‘σ induces an equivalence
of the futures of x and y’ and, of course, the second is a dual asking for past
equivalences. (The splitting of this into two separate notions is closely related
to the ideas considered in Raussen, [40], and Grandis, [20], but is also related
to the view of future and past ‘internally’ within a category, cf. Markopoulou,



[16] and Bell, [41].) For simplicity of exposition we will restrict attention to the
future, .... not dwelling on the past!

In terms of the original S-category, an arrow σ : x→ y gives a future weakly
invertible arrow of

→
π0 (C) if, for each z such that π0(C(y, z)) 6= ∅, π0(C(y, z))→

π0(C(x, z)) is a bijection, etc., thus C(σ, z) is a 0-equivalence of simplicial sets,
(i.e. it induces a bijection after application of π0). This is clearly just the first
of a sequence of variants of ‘future weakly invertible’. For instance, σ : x→ y is
‘future weakly 1-invertible’ if each π0(C(σ, z)) and Π1(C(σ, z)) are isomorphisms,
where Π1K indicates the fundamental groupoid of the simplicial set K. (We
note that the guard condition about non-emptiness would still be required here
to avoid silly situations.)

This idea is related to the fundamental 2-category, or more exactly, groupoid-
enriched category, of a pospace. This just applies the fundamental groupoid
functor to each C(x, y) of a S-category C, so can be applied to DiPaths(X) or
diPaths(X). It needs to be noted that it inverts the 1-simplices of C(x, y), so
does not observe ‘2-directional’ information. (In any case, at the present level of
knowledge and understanding, the exact meaning of such 2-directional informa-
tion is not at all clear.)

Again conjecturally, there should be a component 2-category, derivable by
this means, for any pospace, X. It would monitor the topology change at the
second level, that is, the way the 1-type of the view of the space at time t varied
with t. There is no reason to stop there as 2-groupoid enrichment is also possible,
see, for instance, [42]. Beyond that the situation gets more obscure, but other
derived enrichments are possible.

The usefulness, or otherwise, of this encoding of the structure of the origi-
nal pospace, X, will depend, to some extent, on the structure of the simplicial
sets, DiPaths(X)(x, x′), and diPaths(X)(x, x′). The first would seem to be a Kan
complex, whilst the second is a ‘weak Kan complex’ or ‘quasi-category’, the idea
that we have mentioned several times earlier. We will not explore this further
here except to note once more the papers by Joyal, [37], on quasi-categories,
and Verity on complicial sets [43,44,31], which are models for weak infinity cate-
gories. (An introduction to some of the types of weak infinity category including
quasicategories and further information on the weakening of S-categories that
we met briefly earlier, the Segal categories, the reader is refered to the notes,
[45].) Another link with another type of weak infinity categories occurs via the
constructions in the next section.

9 Differential graded categories of Paths

In this and the following sections, we will continue to explore how to exploit these
S-categorical models, but by following a route suggested more by cohomology
than by homotopy. This also gives a tantalising possible link with aspects of
string theory and a set of possible tools for a ‘discrete’ differential geometry in
these contexts, including bundle-like structures.



9.1 Differential graded categories

The category of simplicial sets is not the only well structured monoidal category
that is useful for analysing ‘spaces’ of paths. Simplicial sets have a beautiful com-
binatorial structure coming from the different basic ways of combining simplices.
That structure is, however, non-commutative and computational techniques for
handling it are more complex than for, say, simplicial vector spaces where pro-
cesses adapted from numerical linear algebra can be used.

The basic structures for these enriched categories are outlined in the sections
of the appendix (sections 12 and 13). They include the following, which for
convenience will be briefly given here. We will be working over a fixed field K,
which will usually be thought of as R or C, (but this restriction is not at all
necessary).

– pre-graded vector space (pre-gvs): V =
⊕

p∈Z
Vp. The elements of Vp are said

to be homogeneous of degree p. If x ∈ Vp, we write | x |= p.
– graded vector space (gvs) : V is a pre-gvs which is non-negatively or non-

positively graded, that is, with V =
⊕

p≥0 Vp so Vp = 0 if p < 0, or V =
⊕

p≤0 Vp so Vp = 0 if p > 0. The non-negatively graded case tends to be
written with a superfix, i.e. V p = V−p for p ≥ 0.

– degree: if f : V → W is a K-linear map of pre-gvs, it is of degree p if
f(Vq) ⊆Wp+q for all q. A morphism of pre-gvs is of degree 0.

– Homp(V,W ) denotes the set of linear maps of degree p from V to W and

Hom(V,W ) =
⊕

p

Homp(V,W )

is a pre-gvs.
– r-suspension of V , sr(V )n = Vn−r. We mostly need s and s−1. If v ∈ Vp,

the corresponding element in sr(V )r+p will be denoted srv.
– duals: thinking of K as a gvs concentrated in degree 0,

#(V ) = Hom(V,K),

so #Vp ' V −p if V is of finite type, i.e. dim (Vp) <∞ for all p.
– the tensor product of two pre-gvs, V and W ,

(V ⊗W )n =
⊕

p+q=n

Vp ⊗Wq.

On morphisms we get

(f ⊗ g)(v ⊗ w) = (−1)|g||f |(f(v)⊗ g(w))

and is of degree |f |+ |g|.

Example: given a simplicial set, K, set K(K)p = spanK(Kp) to get a non-
negatively graded K-vector space. The dual of K(K) is a non-positively graded



gvs. If f : K → L is a morphism of simplicial sets, we get f∗ : K(K)→ K(L), a
morphism of gvs, and its dual / transpose, f∗ = tf∗ : #K(L)→ #K(K).

The key definition is that of a differential graded vector space or dgvs:
Definition A dgvs, (V, ∂), consists of a gvs V and a linear map

∂ ∈ Hom−1(V, V )

such that ∂ ◦ ∂ = 0. This endomorphism of degree -1 is called the differential or
boundary operator of the dgvs.

Morphisms of dgvs both preserve the grading (so are of degree 0) and are
compatible with the differential: f : V → W must satisfy ∂W f = f∂V . The
category of dgvs will be denoted dgvs.

The terminology ‘chain complex (of vector spaces)’ is usually considered to
be synonymous with ‘non-negatively graded dgvs’, whilst a cochain complex is
a ‘non-positively graded dgvs’. The notation used earlier extends so if (V, ∂) is
a cochain complex, ∂ : V p → V p+1.

Example continued: IfK is a simplicial set, C(K) will denote the simplicial
vector space, with the obvious structure, C(K)p = K(K)p, but also the dgvs with
the same vector spaces in each dimension but with a differential given by: for
σ ∈ Kp,

∂(σ) =

p
∑

i=0

(−1)idi(σ).

Dualising we will write C(K)∗ = #(C(K)) with differential given by the trans-
pose of the original ∂.

Of importance for the use we will make of these ideas is the following: for
simplicial sets K and L,

C(K × L) ∼= C(K)⊗ C(L),

as simplicial vector spaces, see Curtis, [7], for instance. The key result here is
the Eilenberg-Zilber Theorem, (see MacLane, [46], p.238). For simplicial Abelian
groups (or, more generally, simplicial modules or vector spaces), A and B, this
relates the dg-module, (A⊗B, ∂), with the tensor product, (A, ∂)⊗(B, ∂). There
are morphisms

(i) ∇ : (A, ∂)⊗ (B, ∂)→ (A⊗B, ∂),

given by a ‘shuffle’ formula:

∇(a⊗ b) =
∑

±(sβa⊗ sαb)

where a ∈ Ap, b ∈ Bq, p + q = n, and (α, β) is a (p, q)-shuffle of {0, . . . , n − 1}
(again see MacLane [46] or many other books on homological algebra), and (ii)
the Alexander-Whitney map,

f : (A⊗B, ∂)→ (A, ∂)⊗ (B, ∂),



where
f(a⊗ b) =

∑

p+q=n

dq+1 . . . dn−1dna⊗ d
q
0b.

(The Alexander-Whitney map is an ‘approximation to the diagonal’ if A = B;
see MacLane, [46], p.242.)

It is worth noting that for any simplicial module, A, there is not only the
differential graded module, (A, ∂) with ∂ given by the alternating sum of the
face maps, but also a normalised version, where the degenerate elements are
equated to zero. The two maps above induce maps on the normalised versions
and, there, the composite f∇ is the identity; see again MacLane for a discussion.
In general the Alexander-Whitney map is ‘associative’ in as much as, for A, B,
C, simplicial modules, the two ways of getting

(A⊗B ⊗ C, ∂)→ (A, ∂)⊗ (B, ∂)⊗ (C, ∂)

agree (up to the usual coherence isomorphisms between tensors). We will be
using this in its non-positively graded / cochain complex dual form as well.

– Homs of dgvs: if (V, ∂), and (V ′, ∂′) are two pre-dgvs,

Hom(V, V ′) =
⊕

p∈Z

Homp(V,W )

is a pre-dgvs if it is given the differential

Df = ∂′f − (−1)|f |f∂,

for f homogeneous.

We are now ready to start converting a simplicially enriched category, C,
into a differential graded category, that is a category enriched over dgvs (usually
non-positively graded).

First we note the somewhat less useful, non-negatively graded construction.
In this we are given an S-category, A, and we take for each pair x, y of objects,
the chain complex C(A(x, y)) to be our C(A)(x, y). The composition is induced
directly from that of A and causes no problem, giving a chain complex enriched
category, C(A).

Of more interest and potentially of more use is the ‘non-positively graded’ or
‘cochain complex’ construction. This is the analogue for the many object case, i.e.
‘paths’ rather than ‘loops’, of the cobar construction, which is well known from
differential homological algebra. It normally gives a differential graded algebra
from a differential Hopf algebra or more general coalgebra, (cf. Tanré, [47], for
instance). Here it leads to a differential graded category (dg-category).

The theory of dg-categories extends that of dg-algebras. This means that it
has the potential to extend constructions such as that of the de Rham complex
of a differential manifold. This way some ideas from differential geometry can
be introduced and adapted to this context. This leads to the so called discrete



differential calculus and discrete differential geometry, see, for instance, Forgy
and Schreiber, [48] or Raptis and Zapatrin, [49]. There is a considerable literature
on dg-categories and their generalisations, A∞-categories. These latter objects
are to dg-categories as Segal-categories are to S-categories, i.e. composition is
associative up to higher coherence, etc. We note Keller’s survey article, [50], and
also [51] or Lazaroiu’s paper, [52], which gives some indications of links with
string theory.

9.2 Cobar constructions for many object settings

Our aim here is to give the many object version of the cobar construction. (That
such a construction exists follows from more general categorical considerations
on operads, but the precise explicit formulations seem difficult to find in the
literature, so we will reproduce them here.)

Given a small simplicially enriched category, C, we get for each pair of objects
x, y of C, a simplicial set C(x, y) and hence a dgvs, C(C(x, y))∗. This thus is a
differential graded K-quiver in the terminology of, for instance, Lyubashenko
and Manzynk, [53], or, if we write O for the set of objects of C, and dgvs for
the category of differential graded vector spaces, it is an O-graph in dgvs in the
terminology, say, of May, [54]. We therefore will continue the development with
{C(x, y) | x, y ∈ O} being a general dg-quiver. Of course, we need analogues
of some of the above constructions in this many object setting. These are fairly
obvious, but do need specifying:

– Tensor product of dg-quivers, C ⊗D:

(C ⊗D)(x, y) =
⊕

z∈O

(C(x, z)⊗D(z, y));

– Tensor powers, TnC = C⊗n, giving

TnC(x, y) =
⊕

x=x0,x1,...,xn=y

C(x0, x1)⊗ . . .⊗ C(xn−1, xn)

with, by convention, T 0C(x, y) =

{

K if x = y
0 otherwise.

– Tensor cocategory : TC =
⊕

n≥0 T
nC.

The ‘cocategory’ structure comes from the ‘cut’ cocomposition

∆ : TC → TC ⊗ TC,

∆ : TC(x, y)→
⊕

z∈O

TC(x, z)⊗ TC(z, y)

with

∆(h1 ⊗ h2 ⊗ . . .⊗ hn) =
n

∑

k=0

(h1 ⊗ . . .⊗ hk)⊗ (hk+1 ⊗ . . .⊗ hn)



together with the counit

(ε : TC → K) = (TC
proj
→ T 0C = K).

We adopt the notation of, for instance, [53], and write K for the dg-quiver
concentrated in dimension 0 and at the ‘objects’, so

K(x, y)p =

{

K if x = y and p = 0
0 otherwise.

It is worth noting that ∆ decomposes an element into its parts in all possible
ways, and that elements in this tensor cocategory look like weighted labelled
paths through the quiver. Of course, in the case of interest to us, C will be best
behaved when each original C(x, y)n is finite, as then all the vector spaces will
be finite dimensional. Duality will work nicely and well behaved inner products
are available if needed. This is likely to be the case with situations coming from
causets, for instance, since these are ‘locally finite’, but in general other tools
may be needed.

In the single object case with a gvs V , TV has a natural ‘free’ algebra struc-
ture, the tensor algebra on V , given by concatenation of the tensors. In this
slightly more general case of a quiver, we get, of course, a free graded category
structure in exactly the same way.

We next abstract further from this ‘tensor cocategory’, which is the ‘free’
construction from a given dg-quiver, to consider an arbitrary dg-cocategory, i.e.
a dg-K-quiver, C, together with given structure

∆ : C → C ⊗ C,

ε : C → K,

that is, a diagonal or cocomposition

∆ : C(x, y)→
⊕

z∈O

C(x, z)⊗ C(z, y),

and a counit

ε : C(x, y)→

{

K if x = y
0 otherwise,

with the ‘obvious’ diagrams being commutative.
Of course, our main example is when C = C(C)∗ and we will usually impose

a ‘local finiteness’ condition that any non-zero f in any C(x, y) can only be
decomposed in finitely many ways as f = gh, g in some C(z, y) and h in the
corresponding C(x, z). If this condition is satisfied, then C gives a cocategory
with

∆f =
∑

{f1 ⊗ f2 | f2f1 = f}.



We also assume our dg-cocategory C is coaugmented, i.e. we have given a
coaugmentation

η : K→ C

picking out ‘the identity’ in each C(x, x). If C is as in our main example, this is
quite literally true, η(1) = Idx.

Assuming, as we have, that K is a field,

Coker η ∼= Ker ε = C,

the dg-quiver of non-identity elements of C.
The reduced diagonal ∆ is defined by

∆a = 1⊗ a+ a⊗ 1 +∆a,

so picks out the non-trivial decompositions. The quiver of primitives, P (C), is the
kernel of∆, so a ∈ P (C)(x, y) if and only if it has only the trivial decompositions.
(We will not be going deeply enough into the theory of the cobar construction
here to need to use P (C) very much, if at all, but its usefulness should be
clear from its definition and the intuitions behind it, so we have included its
definition.)

The ‘obvious’ thing to do in order to model paths in the quiver C would
now be to form T (C), however if C is concentrated in degree 0, the resulting
tensor dg-category will itself also be concentrated there and there will be no link
between the degree of an element and the length of the ‘path’ it represents, so
in the cobar construction, which was originally developed to model loop spaces
in topology, the tensor cocategory construction is applied to the ‘desuspension’,
s−1C, not to C itself. We therefore form T (s−1C), so

T (s−1C)(x, y) =
⊕

n≥0

TnC(x, y)•+1,

e.g. if, for some quiver / directed graph A, C(x, y)n = spanKA(x, y) if n = 0
and is 0 in all other degrees, then, for x 6= y,

s−1C(x, y)n =







0 if n = 0
spanKA(x, y) if n = 1
0 if n ≥ 2,

and (Tn(s−1C)(x, y))p = 0 unless p = n, in which case it is isomorphic to
⊕

spanK(A(x0, x1) × . . . × A(xn−1, xn)), the sum being over all (x0, . . . , xn) ∈
On+1 with x0 = x, xn = y. For x = y, as T o(s−1C)(x, x) = K, we get extra
terms.

Aside: This use of the shift suspension is completely analogous to the shift
in dimensions of the generating simplices x ∈ Kn+1 for G(K)n in section 5. It is
closely related to the use of the décalage functors Dec : S → S, which strips off
the zeroth face map and zeroth degeneracy map of a simplicial set, then shifts



dimension (so Dec(K)n = Kn+1) and shifts indices on the structural maps down
by 1. This is a beautifully structured functor and yields yet another way in which
paths can be modelled; (see Duskin’s AMS memoir, [55]).

We now have a differential graded cocategory T (s−1C), but have not com-
pletely specified the differential. There is clearly a differential inherited from
that of the dg-quiver, but there is also one coming from the ‘conerve’ of the ‘co-
category’ structure. The total differential is thus made up of two types of term.
The first comes from the tensor product being of differential objects: we have:

∂I(s
−1c1⊗ . . . s

−1cn) = −
n

∑

i=1

o(i−1)s−1c1⊗ . . .⊗s
−1ci−1⊗s

−1∂ci⊗ . . .⊗s
−1cn,

where o(i) = (−1)
� i

k=1
|s−1ck|.

For instance, any tensor square D ⊗D for a dg-quiver D has

(D ⊗D)(x, y)n = ⊕z(D(x, z)⊗D(z, y))n

= ⊕z ⊕p+q=n D(x, z)p ⊗D(z, y)q

and each homogeneous a⊗ b, with a ∈ D(x, z)p and b ∈ D(z, y)q has ‘boundary’
determined by the Leibniz rule, ∂a⊗b+(−1)pa⊗∂b, with a ± sign determined by
the degrees of a and b. In our example, in which D = s−1C and C = spanK(A),
we have a = s−1c1 and b = s−1c2, |c1| = |c2| = 0, so |s−1c1| = |s

−1c2| = 1, and

∂I(s
−1c1 ⊗ s

−1c2) = −s−1∂c1 ⊗ s
−1c2 + s−1c1 ⊗ s

−1∂c2.

Of course, when C is concentrated in a single degree, it will have zero differential
and this type of term will be trivial.

Lemma 2. ∂I is a differential on T (s−1C). �

This is well known and standard in the single object case and the proof extends
easily. A trial evaluation shows to some extent ‘why it is true’:

∂I∂I(s
−1c1 ⊗ s

−1c2) = ∂I(−s
−1∂c1 ⊗ s

−1c2) + ∂(s−1c1 ⊗ s
−1∂c2)

= s−1∂2c1 ⊗ s
−1c2 − s

−1∂c1 ⊗ s
−1∂c2 + s−1∂c1 ⊗ s

−1∂c2 − s
−1∂2c1 ⊗ s

−1∂2c2

and as ∂2 = 0, the first and last terms are trivial, whilst the middle terms cancel.
(This indicates the importance of the signs of the terms in the expressions.)

The second differential reflects the ‘path structure’ in the quiver or more
exactly, the cocategory structure:
∂E(s−1c1 ⊗ . . .⊗ s

−1cn)
= −

∑n
i=1 o(i − 1)

∑

µ(−1)|ciµ|+1(s−1c1 ⊗ . . . ⊗ s−1c′iµ ⊗ s
−1c′′iµ ⊗ . . . ⊗ s

−1cn),

where ∆ci =
∑

µ c
′
iµ ⊗ c

′′
iµ decomposes ci.

Whilst ∂I stayed within the same part of the direct sum decomposition of
T (s−1C)(x, y), ∂E changes the index, so checking it is a differential involves more
properties of the diagonal/cocomposition structure and we will not attempt to
give it in any generality here. Again in the single object case, it is well known.



It is clear that ∂I∂E = ∂E∂I , so ∂ = ∂I+∂E is a differential on T (s−1C) and it
is then easy to check that the classical proofs of compatibility with multiplication
extend from the single object case to this many object one with respect to
the (categorical) composition. We have therefore a cobar construction from dg-
cocategories to dg-categories and, hence, combining this with the functor from
the base S to dgvs, we get a dg-category from any (locally finite) S-category. If
C is a dg-cocategory, we will denote the corresponding dg-category by Ω(C) :=
(T (s−1C), ∂). (The notation suggests that, in some sense, Ω acts a bit like the
analogue of the de Rham complex of differential forms on a manifold. Collapsing
the objects to a point does give a variant of the discrete differential manifold
algebras used by some researchers in quantum cosmology, cf. [49], for instance.
Classically it also recalls the notation ΩX for the loops on a space, X.)

Not all the classical theory generalises, however, from the ‘single object’ case.
If V is a graded vector space, T (V ) is a commutative dg-algebra for the shuf-
fle product. Of course, T (V ) is a graded algebra for the usual ‘tensor’ algebra
product, corresponding to concatenation, and that generalises, as we noted, to
the many object case. The shuffle product on T (V ) is given by

(v1 ⊗ . . . vp) ∗shuff (vp+1 ⊗ . . .⊗ vn) =
∑

σ

ε(σ)vσ−1(1) ⊗ . . .⊗ vσ−1(n),

where the sum is over all (p, n − p)-shuffles, i.e. permutations, σ, of n-elements
retaining the original order on the two parts (1, . . . , p) and (p + 1, . . . , n) into
which n is partitioned, and ε(σ) is the Koszul sign of the permutation σ. This
gives a Hopf algebra structure to T (V ), but depends on being able to form the
product on the right of that expression and the analogue of this in the many
object case is not at all clear, although it would seem likely that some analogues
may exist in special cases.

9.3 Twisting cochains

The cobar construction applied to coalgebras has a significant role to play in
‘classifying’ twisting cochains. These are the analogue of the twisting functions,
τ : K → G, from a simplicial set to a simplicial group. These correspond either
to a simplicial map K → WG or equivalently to G(K) → G, a morphism of
simplicial groupoids. Recall, for any simplicial set, Y with an action of G on
it, we get a twisted Cartesian product K ×τ Y , together with a natural map
K ×τ Y → K which is a simplicial fibre bundle. We are now operating in the
dual dg-category setting, so we can expect a somewhat dual theory.

Let, therefore, C be a coaugmented dg-cocategory, considered as a dg-quiver
on an object set O and let A be an augmented dg-category, which, for simplicity,
we will assume is also defined on O. (The general case where A is defined on a
different object set can be reduced to this one by means of a pullback construc-
tion.) Consider the complex Hom∗(C,A), whose nth component consists of the
homogeneous K-linear maps, f , of degree n, of the underlying dg-quivers from
C to A. The differential in Hom∗(C,A) is the usual one on Hom-complexes, i.e.



that from homological algebra, cf. page 30 above, so if f : C → A with |f | = n,
then

Df = ∂Af − (−1)nf∂C .

If f, g : C → A are two such maps, then we can form a composite

C
∆
→ C ⊗ C

f⊗g
→ A⊗A

µ
→ A,

where µ : A⊗A → A is the composition in the dg-category A. This composite
is called the convolution of f and g and will be denotes f ∗ g.

Definition A homogeneous K-linear map τ : C → A is called a twisting
cochain if it is homogeneous of degree -1 and satisfies the Maurer-Cartan equa-
tion,

D(τ) + τ ∗ τ = 0

and the composite
K→ C

τ
→ A→ K

is the zero map. Here the first map is the coaugmentation of C, whilst the third
map is the augmentation of A. Let Tw(C,A) denote the set of twisting cochains.
(It is functorial in both C and A, but we will be looking mostly at a fixed C.)

Proposition 5. The functor Tw(C,−) is representable, being represented by the
dg-category Ω(C), so there is a natural isomorphism

Tw(C,A) ∼= dg−Cat(Ω(C),A.

�

The proof is fairly routine, generalising that in the single object case. The only
problem is the question of the ‘signs’. As different sources in the literature may
use different sign conventions, it is better to try to use ‘elementless’ arguments
wherever possible. This can be helped by the following observation.

Corollary 1. (i) The universal twisting cochain in Tw(C, Ω(C)) is given by

s−1 : C → s−1C → T (s−1C).

(ii) The second differential ∂E of Ω(C) is −µ(s−1 ⊗ s−1)∆, i.e. −s−1 ∗ s−1.

Proof: The second statement is a consequence of the representability as

Tw(C, Ω(C)) ∼= dg−Cat(Ω(C), Ω(C))

with the universal twisting cochain corresponding to the identity dg-functor.
Given any twisting cochain τ : C → A, the corresponding dg-morphism τ :
Ω(C)→ A satisfies τ(s−1c) = τ(c), (what else could it be?), so in the case where
τ is the identity, τ(c) = s−1c. From this it follows that ∂Ω(C)(s−1c) + s−1∂Cc+
s−1∗s−1 = 0, which gives the value of ∂Ω(C) on generators, since s−1∂Cc = −∂Ic.
(Miraculously the signs do all agree!) The result follows. �



We thus do have a neat elementless description of ∂E as (−1)s−1 ∗ s−1 and
this could have been used in the definition, but it also needs unpacking in the
form we initially gave it in order to see what it is doing. For the single object
case, this is, of course, well known, and a definition of the differential of the
cobar in this form is given by Baues, [56].

9.4 ‘Directed’ vector bundles, modules and comodules

It is well known and ‘classical’ that in the correspondence between manifolds
and the function algebras defined on them, a vector bundle on X corresponds to
a module over the algebra of continuous (real or complex valued) functions on
X. For the situation we have with evolving spaces, pospaces, etc., the analogue
of bundles has yet to be investigated in any detail, but within the dg-category
and dg-cocategory settings modules and comodules are easily defined.

Definition: Let A be a dg-category on the object set O. A right A-module,
M is an O-indexed family of differential graded vector spaces, {M(x) : x ∈ O},
together with K-linear maps

M(x)⊗A(x, y)
µ
→M(y)

satisfying the analogues of the usual module axioms, for instance,

– (associativity) for all x, y, z ∈ O,

M(x)⊗A(x, y)⊗A(y, z)
µ⊗A //

M⊗µ

��

M(y)⊗A(y, z)

µ

��
M(x)⊗A(x, z)

µ
//M(z)

commutes (where indices have been left off the maps for simplicity);
– an identity axiom:

M∼=M(x)⊗K
M⊗η
→ M(x)⊗A(x, x)

µ
→M(x)

is the identity.

Extending our previous notation, we will usually writeM⊗A for the family
{⊕xM(x)⊗A(x, y) : y ∈ O}, so µ :M⊗A→M.

It should be fairly clear that this version of the definition of module can be
rephrased as a dg-functorM from A to the dg-category dgvs. We give it in this
form as it makes it clear what a comodule over a dg-cocategory must be:

Definition: Let C be a dg-cocategory. A right comodule,M, over C is given
by a family {M(x) : x ∈ O} of differential graded vector spaces together with a
coaction

∆ :M→M⊗C,



thus, for each x ∈ O, we have

M(x)
∆
→ ⊕wM(w)⊗ C(w, x),

so that if x ∈ O, the diagram

M(x)
∆ //

∆

��

⊕wM(w)⊗ C(w, x)

∆⊗C

��
⊕vM(v)⊗ C(v, x)

M⊗∆ // ⊕v,wM(v)⊗ C(v, w)⊗ C(w, x)

is commutative, and if η : C → K denotes the coidentity then

M(x)
∆
→ ⊕wM(w)⊗ C(w, x)→M(x)⊗K

is the natural isomorphism.

Now assume L is a right module for an augmented dg-category A and τ :
C → A is a twisting cochain, (so we need C to be coaugmented). We examine
the family

L ⊗ C = {(L ⊗ C)(x) : x ∈ O} = {⊕vL(v)⊗ C(v, x) : x ∈ O}.

This has a natural C-comodule structure in which the coaction

∆ : (L ⊗ C)(x)→ ⊕w(L ⊗ C)(w)⊗ C(w, x)

is just

⊕vL(v)⊗ C(v, x)
L⊗∆
→ ⊕v,wL(v)⊗ C(v, w)⊗ C(w, x)

and so is the obvious map induced by the cocomposition on C.
This comodule, of course, comes with a usual differential namely ∂L ⊗ C +

L⊗ ∂C , but we can ‘deform’ or ‘twist’ this using the twisting cochain τ : C → A,
by using the composite

L ⊗ C
L⊗∆
→ L⊗ C ⊗ C

L⊗τ⊗C
→ L⊗A⊗ C

µ⊗C
→ L⊗ C,

which we will denote by ∂τ and we set

∂ = ∂L ⊗ C + L ⊗ ∂C + ∂τ .

We write L ⊗τ C for L ⊗ C with this differential.

Lemma 3. L ⊗τ C is a dg-comodule over C.

Proof: Again this is a straightforward generalisation of the single object case.
The important thing to note is that it is the Maurer-Cartan equation that guar-
antees that ∂2 = 0. �



That construction used the twisting cochain to go from A-modules to C-
comodules. Suppose instead we are given a C-comodule, M = {M(x) : x ∈ O}
with coaction

∆ :M→M⊗C.

We can form a family, M⊗A, in the obvious way by taking

(M⊗A)(x) = ⊕vM(v)⊗A(v, x)

and not surprisingly we get an A-module structure on it using

(M⊗A)(x)⊗A(x, y) = ⊕vM(v)⊗A(v, x)⊗A(x, y)
M⊗µ
→ ⊕vM(v)⊗A(v, y) = (M⊗A)(y)

This A-module comes, of course, with a differential much as in the dual con-
struction: ∂M ⊗A+M⊗ ∂A, but also has a twisted term

∂τ = (M⊗ µ)(M⊗ τ ⊗A)(∆⊗A)

i.e. the composite

M⊗A→M⊗ C ⊗A →M⊗A⊗A →M⊗A.

Thus given mv ⊗ avx with ∆mn =
∑

mu ⊗ cuv, then

∂τ (mv ⊗ avx) =
∑

mu ⊗ τ(cuv)avx.

Again we have that ∂ = ∂M ⊗ A +M ⊗ ∂A + ∂τ deforms the basic differential
ofM⊗A yielding an A-module,M⊗τ A, the twisted tensor product of M and
A.

We will not use this construction below since, as yet, its applications are still
not clear and it is included mainly to point out that the classical ‘undirected’
theory does generalise easily. To clarify applications, we will need a good reserve
of examples of modules and/or comodules. To this end we look at alternative
ways of defining them.

The above approach is not the only way to introduce modules and comodules
in this setting. Suppose M = {M(x) | x ∈ O} is an O-indexed family of
differential graded vector spaces. Now if M and N are two such, we set, for
a, b,∈ O,

Hom(M,N )(a.b) = Hom(M(a),N (b)).

This gives a dg-quiver Hom(M,N ) and we set End(M) = Hom(M,M) to get
a dg-category on O with composition

Hom(M(a),M(b))⊗Hom(M(b),M(c))→ Hom(M(a),M(c))

given in the obvious way. If A is a dg-category, then an A-module structure on
the family M corresponds to a morphism of dg-categories

actM : A → End(M).



Of course, this is getting very close to being a dg-functor from A to dgvs and
that link could be explored further - but will not be here.

Example: We will look at an obvious type of module on A, namely, a rep-
resentable one, so for an object a ∈ A, consider the functor A(a,−) : A → dgvs.
The corresponding family is, of course, {A(a, y) | y ∈ O} and the action is
given by the composition in A. More generally take a finite direct sum of such
modules, i.e. pick a finite set {ai : i = 1, . . . , k} of objects of O and define

M(y) =
⊕k

i=1A(ai, y) with the obvious action.
In the case of a generating S-category, C with A = Ω(C), i.e. the cobar

construction applied to the cocategory C(C)∗, the module M with M(y) =
A(a, y) is generated by the basic future tangent directions at a If we need to
consider an embedded ‘space’, then we can restrict to specifying a single such
tangent direction for a subset of the objects of C. It is interesting to see that
something along these lines has been put forward in the work of Lazaroiu, [52].
He studies a slightly more specialised form of dg-category, but then looks at
the situation where a set S ⊂ O is given together with a set of degree one
elements qab ∈ A(a, b)1, for a, b,∈ S. (This can, of course, be also viewed as a
family, {qab | a, b ∈ O} by setting qab = 0 if either a or b is not in S.) Such a
situation is considered in [52] with the, for us, very interesting extra ‘tadpole
condition’ ∂qab +

∑

qacqcb = 0. As Lazaroiu points out, this is just the Maurer-
Cartan condition in this setting. It would seem fairly clear that this defines
not only a deformation of the basic theory represented by the dg-category A
as discussed in [52], but also a twisting cochain in the sense we have discussed
above. (I have not checked this in detail, nor attempted, as yet, to explore what
consequences beyond the most elementary ones this observation gives us, but
it is very suggestive of other constructions within discrete differential geometry
which have interpretations that may be useful in our search for tools for handling
evolving spatial contexts using S-categorical machinery in both the physical
‘space-time’ setting and the pospace one.

It is feasible to define two sided modules and comodules, to consider deriva-
tions and to relate them to intuitions of vector fields and even, to some extent,
to mimic Lie theory in this context, but as that research is still far from being
in anything like in its ‘definitive’ presentable form and its relevance to directed
space theory is still to be investigated, we will not pursue this further.

10 Conclusion

The aim of this paper was to suggest that the machinery of S-category theory
may provide a useful addition to the tools available for the study of such con-
texts as pospaces, evolving spaces and related contexts from physics. We have
developed a reasonable amount of algebraic topological machinery in this con-
text with fundamental group analogues, etc., and have sketched the development
of a discrete differential geometry for this setting using a variant of the cobar
construction. There is a lot left to do, initially to evaluate the cobar construction



and its relationships to other constructions such as those used by Raptis and
Zapatrin, [49], and to interpret these constructions back in the directed space
context, but many of the intuitions of directed spaces, space-times etc. do seem
to have a useful model in this S-enriched, or dg-enriched, settings.

References

1. Leitch, R.D.: The homotopy commutative cube. J. London Math. Soc. 9 (1974)
23 – 29

2. Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topo-
logical spaces. Springer-Verlag, Berlin (1973) Lecture Notes in Mathematics, Vol.
347.

3. Vogt, R.M.: Homotopy limits and colimits. Math. Z. 134 (1973) 11–52

4. Cordier, J.M.: Sur la notion de diagramme homotopiquement cohérent. Cahiers
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Appendix:
In this appendix, we collect up some background material for the convenience

of the reader.

11 S-categories

We assume we have a category A whose objects will be denoted by lower case
letter, x,y,z, . . . , at least in the generic case, and for each pair of such objects,
(x, y), a simplicial set A(x, y) is given; for each triple x, y, z of objects of A, we
have a simplicial map, called composition

A(x, y)×A(y, z) −→ A(x, z);

and for each object x a map,

∆[0]→ A(x, x),



that ‘names’ or ‘picks out’ the ‘identity arrow at x’ in the set of 0-simplices of
A(x, x). This data is to satisfy the obvious axioms, associativity and identity,
suitably adapted to this situation. Such a set up will be called a simplicially
enriched category or more simply an S-category. Enriched category theory is a
well established branch of category theory, see Kelly, [57] for a detailed technical
treatment.

Warning: Some authors use the term simplicial category for what we have
termed a simplicially enriched category. There is a close link with the notion
of simplicial category that is consistent with usage in simplicial theory per se,
since any simplicially enriched category can be thought of as a simplicial object
in the ‘category of categories’, but a simplicially enriched category is not just
a simplicial object in the ‘category of categories’ and not all such simplicial
objects correspond to such enriched categories. That being said that usage need
not cause problems provided the reader is aware of the usage in the paper to
which reference is being made.

Examples: (i) S, the category of simplicial sets:
here we take, for simplicial sets, K, L, S(K,L) to be the simplicial set with

S(K,L)n := S(∆[n]×K,L)

and face and degeneracy maps induced from their duals between the ∆[n]s.
Composition : for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n] × K → L, g :
∆[n]× L→M ,

g ◦ f := (∆[n]×K
diag×K
−→ ∆[n]×∆[n]×K

∆[n]×f
−→ ∆[n]× L

g
→M);

Identity : idK : ∆[0]×K
∼=
→ K,

(ii) T op, ‘the’ category of spaces (of course, there are numerous variants but
you can almost pick whichever one you like as long as the constructions work):
T op(X,Y ) is the simplicial set with

T op(X,Y )n := Top(∆n ×X,Y ).

Composition and identities are defined analogously to those in (i).

(iii) For each X, Y ∈ Cat, the category of small categories, then we similarly
get Cat(X,Y ),

Cat(X,Y )n = Cat([n]×X,Y ).

We leave the other structure up to the reader.

In general any category of simplicial objects in a ‘nice enough’ category has a
simplicial enrichment, although the general argument that gives the construction
does not always make the structure as transparent as it might be without a deal
of ‘unpacking’.

There is an evident notion of S-enriched functor, so we get a category of
‘small’ S-categories, denoted S−Cat. Of course, none of the above examples are
‘small’ unlike those in the body of this paper.



12 Graded and Differential Graded Vector Spaces

Here we will gather together some of the basic ideas and terminology of graded
and differential graded algebras and their many object analogues. We will work
over a fixed field, K, which we usually think of as being R or C. Many of the ideas
would work over a commutative ring. We start by repeating, and expanding on,
some of the definitions from earlier, so as to have them immediately available
here.

Definition:

(i) A pre-Z-graded vector space (sometimes abbreviated to pre-gvs) is a direct
sum V =

⊕

p∈Z
Vp of vector spaces. The elements of Vp are said to be

homogeneous of degree p. If x ∈ Vp, write |x| = p. Sometimes it may be
convenient to write x̄ = (−1)|x|x and V+ =

⊕

p>0 Vp. Another very useful
piece of notation is V p = V−p.

(ii) A graded vector space (often abbreviated to gvs) is a positively or neg-
atively graded pre-graded vector space, that is, either V =

∑

p≥0 Vp or
V =

∑

p≤0 V
p.

(iii) We consider the field K to be a pre-gvs with (K)0 = K, and (K)p = 0 if
p 6= 0. We say a gvs,V , is of finite type if dim(Vp) <∞ for all p.

(iv) A linear map f : V → W between pre-gvs is of degree p if f(Vq) ⊆ Wp+q

for all q. (Note this may also occur as f(V q) ⊆W q−p.)
(v) A morphism f : V →W is a linear map of degree zero.
(vi) Pregraded vector spaces and the morphisms between them define the cat-

egory pre−gvs. More importantly we have subcategories of graded vector
spaces, denoted gvs.

(vii) The set of all linear maps of degree p from V to W will be denoted
Homp(V,W ) and we set

Hom(V,W ) =
⊕

p

Homp(V,W ).

Of course, we now have two notations for the same object, pre−gvs(V,W ) =
Hom0(V,W ).

Duals:
The dual of a (pre-)gvs V is #V defined by

(#V )p := Homp(V,K)
∼= Vect(V−p,K)
∼= #(V−p)

= #(V p).

If f : V →W is of degree |f |, then

tf : #W → #V



is given by
(tf)(ψ)(x) = (−1)|f ||ψ|ψf(x),

for ψ ∈ #W and x ∈ V . Thus if V
f
→W

g
→ X, then

t(g ◦ f) = (−1)|f ||g|(tf ◦ tg).

In particular, for f an isomorphism

(tf)−1 = (−1)|f | t(f−1).

Duality:
Let V be a gvs, by convention in the duality

〈 ; 〉 : V ↔ #V,

we will usually assume V is non-negatively graded (so V =
⊕

p≥0 Vp), whilst the
right hand side is non-positively graded.

If V is of finite type then ##V ∼= V , of course. The suspension of the dual
s(#V ) can be identified with #(s−1V ) and similarly s−1(#V ) = #s(V ). These
identifications are via the rules:

〈s−1z; su〉 = (−1)|z|〈z;u〉,
〈sz; s−1u〉 = (−1)|z|+1〈z;u〉.

This sign convention is needed to ensure that ss−1 = id.

Tensor products:
The tensor product of two pre-gvs, V and W , is V ⊗W , where

(V ⊗W )n =
⊕

p+q=n

Vp ⊗Wq.

On morphisms

(f ⊗ g)(v ⊗ w) = (−1)|g||f |(f(v)⊗ g(w))

and is of degree |f |+|g|. In particular there is a natural injection (#V )⊗(#W )→
#(V ⊗W ), and this is an isomorphism if either V or W is of finite type.

Differential (pre-)graded vector spaces:
Definition: A differential (pre-)graded vector space, (dgvs), is a pair (V, ∂),

where V is a (pre-)graded vector space and ∂ ∈ Hom−1(V, V ) satisfies ∂ ◦∂ = 0.
This endomorphism, ∂, of degree -1 is called the differential or sometimes the
boundary operator of the dgvs.

Given any dgvs, H(V, ∂), a gvs defined by

H(V, ∂)q =
Ker(∂ : Vq → Vq−1)

Im(∂ : Vq+1 → Vq)



in the usual way.

Let (V, ∂), (V ′, ∂′) be two pre-dgvs

Hom(V, V ′) =
⊕

p∈Z

Homp(V, V
′)

is a pre-dgvs with differential

Df = ∂′ ◦ f − (−1)|f |f ◦ ∂

for f homogeneous. A degree r linear morphism f is compatible with the differ-
entials if it is a cycle for this differential D, i.e., Df = 0 or ∂′f = (−1)rf∂.

A morphism between pre-dgvs is a linear morphism of degree 0 that is com-
patible with the differentials:

f : (V, ∂)→ (V ′, ∂′).

This induces H(f) : H(V, ∂)→ H(V ′, ∂′).
We get a category pre - dgvs and, of course, a subcategory dgvs of differential

graded vector spaces, then H is a functor H : pre−dgvs→ pre−gvs.

Chains and cochains: terminology. If (V, ∂) is a pre-dgvs with ‘lower
grading’ that is the summands are written Vp, then (V, ∂) may be called a chain
complex and terms such as cycle, boundary, homology are used with the usual
meanings. If (V, ∂) is presented with the ‘upper grading’, so V p, then the corre-
sponding words will have a ‘co’ as prefix, cochain complex, cocycle, etc. There
is no real distinction between the two cases in the abstract, but in applications
there is often a fixed ‘dimensional’ interpretation and then the ‘natural’ and
‘geometric’ aspects determine which is more appropriate or useful. (Baues has
suggested using the terminology ‘chain algebra’ for positively graded differential
algebras (see below) and ‘cochain algebras’ for the negatively graded ones. This
is a good convention but I have not used it here as I have, in general, been
following Tanré, [47] for notation and teminology.)

13 Differential graded algebras

Pre-graded algebras: A pre-graded algebra (pre-ga) or Z-graded algebra is a
pre-gvs, A, together with an algebra multiplication satisfying Ap.Aq ⊆ Ap+q
for any p, q. The relevant morphisms are pre-gvs morphisms which respect the
multiplication. This gives a category pre-ga. There are also graded algebras cor-
responding to graded vector spaces, of course. All the definitions below work in
both pre-graded and graded versions.

An augmentation of a pre-ga, A, is a homomorphism ε : A → K. The aug-
mentation ideal of (A, ε) is Ker ε and will also be denoted Ā. The pair (A, ε)
is called an augmented pre-ga. A morphism f : (A, ε) → (A′, ε′) of augmented



pre-gas is a homomorphism f : A→ A′ (thus of degree zero) such that ε = ε′f .
The resulting category will be written pre-εga.

Tensor product: If A, A′ are two pre-gas, then A⊗A′ is a pre-ga with

(a⊗ a′)(b⊗ b′) = (−1)|a
′||b|ab⊗ a′b′

for homogeneous a, b ∈ A, a′, b′ ∈ A′.
If ε, ε are augmentations of A and A′ respectively, then ε⊗ ε′ is an augmen-

tation of A⊗A′.

Derivations: (These have not been used in the main text but are included
here to suggest a generalisation whose details have yet to be fully worked out.)

Let A be a pre-ga. An (algebra) derivation of degree p ∈ Z is a linear map
θ ∈ Homp(A,A) such that

θ(ab) = θ(a)b+ (−1)p|a|aθ(b)

for homogeneous a, b ∈ A.
A derivation θ of an augmented algebra, (A, ε), is an algebra derivation which,

in addition, satisfies εθ = 0.
LetDerp(A) be the vector space of derivations of degree p ofA, thenDer(A) =

⊕

pDerp(A) is a pre-gvs.
N.B. In the case of upper gradings, an element of Derp(A) sends An into

An−p.

Pre-DGAs: and DGAs
A differential ∂ on an (augmented) pre-ga (ga) is a derivation of the (aug-

mented) algebra of degree -1 such that ∂ ◦ ∂ = 0. The pair (A, ∂) is called a
pre-differential graded algebra (pre-dga). If A is augmented, then (A, ∂) will be
called an augmented pre-dga (pre-εdga).

If (A, ∂) and (A′, ∂′) are pre-dgas, then (A, ∂)⊗(A′, ∂′), with the conventions
already noted, is one as well.

A morphism of pre-dgas (or pre-εdgas) is a morphism which is both of pre-
gdvs and of pre-gas (with ε as well if used). This gives categories pre-DGA and
pre-εDGA.

14 Differential graded categories

It is standard that K-linear categories are the ‘many object analogue’ of K-
algebras, or put more precisely a K-linear category having only one object is
‘the same as’ a K-algebra. The same is true for differential graded algebras and
differential graded categories.

Definition: A graded (K-)category A, is a category enriched over the cat-
egory of graded vector spaces, with the tensor product giving the monoidal
structure. We thus have that the A(x, y) are graded (K-)vector spaces and the
compositions

µyx,z : A(y, z)⊗A(x, y)→ A(x, z),



are degree zero maps. Alternatively, these compositions can be specified as bi-
linear maps,

A(y, z)×A(x, y)→ A(x, z).

Using the tensor product of quivers introduced earlier the composition is a
map

µ : A⊗A → A,

obeying associativity and identity axioms, of course.
There is also an identity map made up of a family η(x) : K → A(x, x), or

merely η : K → A, where as we will often do, we indicate families rather than
the individual components.

(Note: As most of the sources that we have used themselves use functional
composition order, we have adopted the same convention in these contexts.)

Any homogeneous u ∈ A(x, y) has a grade | u |∈ Z and for compositions

| uv |=| u | + | v | .

Definition: A differential graded (or dg) category A is one enriched over
dgvs, so the A(x, y) now, in addition, have a differential ∂ of degree 1, ∂∂ = 0,
and for the composition, the Leibnitz rule

∂(uv) = ∂u.v + (−1)|u|u.∂v,

holds.
We have been considering mainly negatively graded dg-categories.


	Enriched categories and models for spaces of dipaths.
	Tim Porter

