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§1. Motivation. For any unital ring R, let Mod(R) denote the category
of (left) unitary R-modules, i.e. satisfying 1m = m for all elements m. This category
is important in many areas of mathematics such as ring theory, representation theory,
and homological algebra. The purpose of this paper is to extend the category Mod(R)
to nonunital rings A. In general there are several interesting ways to do this, but
in the idempotent case: A = A? they agree, yielding a nice abelian category M(A),
which gives rise to a theory of Morita equivalence for idempotent rings extending the
usual Morita theory in the unital case.

Let A be a nonunital ring, and let A denote the unital ring Z @ A obtained by
adjoining an identity. A module over A is the same thing as a unitary A-module, and
so the category of A-modules can be identified with Mod(A). This category is too big
for our purposes. For example, suppose A happens to be unital, and let e denote the
identity of A to distinguish it from the canonical identity 1 in A. Then

~

Mod(A) = Mod(A) x Mod(Z)

since any A-module has a canonical splitting M = eM @ (1 — ¢)M into a unitary
A-module and a module killed by A. This indicates that for a general A we need
to replace Mod([l) by either a suitable subcategory or quotient category in order to
generalize Mod(A) when A is unital. Both methods will be used and shown to coincide
for idempotent rings. '

Nonunital rings A occurring in practice are often algebras over some field k. It
is natural in this context to restrict attention to A-modules which have a compatible
k-module structure, i.e. which are unitary modules over the k-algebra k@ A obtained
by adjoining an identity to A. In order to handle this situation, we construct our
module category for a nonunital ring A starting with Mod(R), where R is any unital

ring containing A as ideal. We will show later that the resulting theory is independent
of the choice of R.

§2. Nil modules and firm modules. We fix a unital ring R and an ideal A in
R. Unless stated otherwise, the terms module and right module will mean objects of

Mod(R) and Mod(R?) respectively, where R’ means R equipped with the opposite
multiplication.

(2.1) Definition A module M such that A®M = 0 for some integer n > 1 will be
called an A-nil module, or simply a nil module when the ideal is clear from the context.
Let V(R, A), or simply N, denote the full subcategory of nil modules in Mod(R).




A module map will be called a nil isomorphism when its kernel and cokernel are
nil modules.

For example, the canonical multiplication map
(2.2) p:AQrM — M, a®m +— am

is a nil isomorphism, because its kernel and cokernel are killed by A. This is clear
for the cokernel M/AM, and if k = Y a;Q®m; belongs to the kernel, then ak =
> ea;Qm; =a® Y a;m; = 0.

(2.3) Definition By an A-firm module, or simply firm module when the ideal is clear,
we mean a module M such that the map p is an isomorphism. Let F = F(R, A) be
the full subcategory of firm modules in Mod(R).

The short exact sequence A —+ R — R/A yields the exact sequence

0 — Torf(R/A, M) — AQrM -5 M — M/AM — 0

hence M is firm iff Torf(R/A, M) =0 for § =0,1. In particular, a flat module F is
firm iff F = AF.

We next construct modules which are both firm and flat by an iteration method.

(2.4) Lemma If M satisfies M = AM , then there exists a firm flat module F mapping
onto M .

Proof. Assuming M = AM, we choose a surjection ¢ : P — M with P projective.
The restriction AP — M of g is surjective, hence there is a map f: P — P such that
gf =g and f(P) C AP. Let F be the colimit of the system (Pn)nzo, where P, = P
and P, — P,y is the map f for all n. Since F is a filtered colimit of projectives,
it is flat. Also F' = AF, since f maps P, into AP,,y, and hence F is firm. Finally,
there is a surjection F' — M given by g: P, — M for all n. O

(2.5) In general the module F' we have constructed may not be improved to a firm
projective module, since the only such module may be zero. For example, if R is a
local ring with maximal ideal A, then by a theorem of Kaplansky [K] any projective
R-module P is free, hence P < AP unless P = (. We note that such examples can
be found with A idempotent: A = A%, namely, rings of germs of continuous functions
and nondiscrete valuation rings. ,

Our next result characterizes firm modules M by means of the functor —® rM :
V= V®OrM from right modules to abelian groups. By abuse of language we say that
a functor T' inverts a morphism u when T'(u) is an isomorphism.

(2.6) Proposition The following properties are equivalent for a module M :
(a) M is firm.




(b) M is the cokernel of a map between firm flat modules.
(c) The functor —®gM : Mod(R*?) — Ab inverts A% -nil isomorphisms.

Proof. (a) = (b). Assuming M is firm, we know that M = AM and Torf(R/A, M) =
0. By the lemma there is a firm flat module F mapping onto M. If M; is the kernel,
then Torf(R/A, M) 3 My/AM,, so My = AM, and there is a firm flat module F
mapping onto M, proving (b).

(b) = (c). Let M be the cokernel of a map Fy — Fy of firm flat modules. By right
exactness of tensor product, —~®gM is the cokernel of the induced map of functors
from —®gF; to —Q®gFy. It thus suffices to show for F firm flat that —® rF inverts
nil isomorphisms between right modules. This follows from the exactness of this functor
and the fact that VA =0 and F = AF imply VQgF = 0.

Finally, (c) = (a) by applying —®gM to the right module nil isomorphism A C R.
O

§3. Some abelian category theory. This section reviews some basic ideas pertain-
ing to the quotient abelian category .4/S of an abelian category by a Serre subcategory,
namely, perpendicular categories and (co-)localizing subcategories [GL]. These will be
applied when A = Mod(R) and S is either the category of A-nil modules, or the
category of A-torsion modules to be introduced later.

Let A be an abelian category and let S be a full subcategory, equivalently, a class of
objects in \A. The left perpendicular category +S is defined to be the full subcategory
of A consisting of objects satisfying the following conditions.

(3.1) Proposition The following are equivalent for an object M of A

(a) Ext'(M,N) =0 for j =0,1 and any N in S.

(b) Hom(M, —) inverts any map whose kernel and cokernel are (isomorphic to objects)
i

ndS.

Proof. We use the long exact sequence
0 — Hom(M, N') — Hom(M, N) — Hom(M, N") — Ext'(M, N') —

arising from a short exact sequence N’ — N — N”. This shows that Hom(M, —)
inverts any epimorphism N — N” with kernel in S, and also any monomorphism
N'— N with cokernel in §. Thus (a) implies (b).

Next assume (b) holds, and let N be in S. Applying (b) to the projection N &
M — M we see that Hom(M, N) = 0. If = is an element of Ext'(M, N), there is a
corresponding extension N — E — M such that in the long exact sequence

— Hom(M, E) — Hom(M, M) s Ext'(M, N) —

one has d(1y) = z. Applying (b) to the map E — M we find ¢ = 0, showing that
Ext'(M, N) = 0. Thus (b) implies (a). O




(3.2) Suppose now that S is a Serre subcategory of A, i.e. nonempty and such that if
M' — M — M" is a short exact sequence in A, then M is in S iff both M’ and M"
arein §.

Let A/S be the corresponding quotient abelian category. It has the same objects
as A, and its maps are obtained from the maps in A by formal inverting all S-
isomorphisms (i.e. those maps whose kernel and cokernel are in S). There is thus
a canonical functor j* : A — A/S, which is universal for functors defined on A
that invert S-isomorphisms. The functor j* is exact and J(M)~0iff Misin S.

Consequently any map inverted by j* is an S -isomorphism, since j* kills its kernel
and cokernel.

(3.3) Proposition If M is in *S, then
HomA(M, N) = HomA/,g(j*M,j*N)

for all N in A. In particular, denoting by ¢ : *S — A the inclusion functor, the
functor j*v: +*S — A/S is fully faithful.

Proof. We use the following description of maps in A/S as a filtered colimit:
(3.4) Hom/s(5*M, 3*N) = colim Hom4(M', N")

where M’ runs over subobjects of M and N” runs over quotient objects of N such
that canonical maps M’ — M and N — N” are S-isomorphisms. If M is in 1S ,
then applying condition (b) above to these S-isomorphisms, we see that M’ = M
and Homy (M, N) = Homa(M', N") for all M’, N'. Since the colimit is taken over a
directed set, the desired result follows. O

(3.5) Proposition The functor j*.:+S — A/S is an equivalence of categories iff for
every M in A there is an S-isomorphism My — M with My in +S.

Proof. < Given any object j*M in A/S, we have j*u(My) = J(Mg) = 5*M,
since 7* inverts S-isomorphisms. This shows j*¢ is essentially surjective, and since it
is fully faithful by the preceding proposition, it is an equivalence.

= If j*¢ is an equivalence, then for any M in A there is an My in +S and an
isomorphism j*(My) = j*M. By (3.3) this isomorphism comes from a unique map
My — M which must be an S-isomorphism, since it is inverted by 7*. O

(3.6) Definition When the conditions of (3.5) hold, S is called a colocalizing subcat-
egory of A. One has the following additional facts in this situation.

o The quasi-inverse for 3% is given by j*M s My . Consequently My is deter-
mined up to canonical isomorphism and is a functor of M inverting S -isomorphisms.




o . : 18 = A admits a right adjoint M s My such that the adjunction map
UMy) = M is an S-isomorphism for all M. Indeed, by (3.3) we have

Hom.5(L, My) = Homa(e(L), M)

for L in 18S.
® 7 admits a left adjoint ji : 7*M ~ My. This is clear from

Hom4(My, N) = Hom4/s(5*(My),*N) = Hom s (5" M, 7*N).

Conversely one can show that if either ¢ or j* admits such an adjoint, then S is
colocalizing.

(3.7) We briefly mention the more familiar dual version of the preceding. One has
the right perpendicular category St consisting of M such that Hom(—, M) inverts
S-isomorphisms. The functor §+ — A/S induced by j* is always fully faithful, and
it is an equivalence iff for every M there is an S-isomorphism M — M# with M# in
S*. In this case S is called a localizing subcategory.

§4. We now return to our unital ring R and ideal A and apply the preceding discussion
to the abelian category Mod(R) and the Serre subcategory N = |, Mod(R/A™) of nil
modules. We write M = M(R, A) for the corresponding quotient abelian category of
Mod(R).

The next result identifies the firm module category F with the left perpendicular

categories of both A and its subcategory Mod(R/A). This gives a characterization of
firm modules quite different from (2.6).

(4.1) Proposition The following are equivalent for a module M :

(a) M is firm.

(b) Extz(M,N) =0 for j = 0,1 and any nil module N (resp. any module N such
that AN = 0).

(

c¢) Homg(M,—) inverts nil isomorphisms.

Proof. The two parts of (b) are equivalent because any nil module is a finite iterated
extension of modules killed by A. The conditions (b) and (c) are equivalent by (3.1).
The equivalence of (a) and (b) will be proved using the spectral sequence

E3? = Exthy,(Torl(R/A, M), N) = Extj(M, N)

where N is any R/A-module. When M is firm the Tor groups vanish in degrees
0,1, hence so does the abutment. Conversely, assume the abutment has this vanishing
property for all N, and take N to be any injective R/A-module. The spectral sequence
degenerates showing that the only maps from the Tor groups in degrees 0,1 to such
an NN are zero. Thus these Tor groups vanish, and M is firm. O




Since F =+ N, we know by (3.3) that
Hompg(M, N) = Homm(5*M, j*N)
when M is firm, and that j*: F C Mod(R) — M is fully faithful.

(4.2) Proposition Colimits exist in F. The functors ¢ : F — Mod(R) and j*¢: F —
M respect colimits.

Proof. Let k + M be a functor from a small category to F, and let M denote
its colimit in Mod(R). Then

Hompg(M, N) = lim; Homp(Mj, N)

where the functor of IV on the right inverts nil isomorphisms, hence M is firm. Re-
stricting N to be in F, we see that colimits exist in F and that ¢ respects colimits.
Then
Homm(3*M,5*N) = Homg(M, N)
= limk HomR(Mk, N)
= limy Homp(5* My, 7*N)
shows that the functor j*¢ respects colimits. O
We are going to show in the idempotent case A = A2 that j*. : F — M is an
equivalence of categories, in other words, the subcategory of nil modules is colocalizing.
We introduce the notation: A® = A® rA, and more generally A™ for the n-fold
tensor product-of the R-bimodule A.

(4.3) Proposition Assume A= A%. Then A®p— inverts any surjective nil isomor-
phism, and AP @p— inverts any nil isomorphism.

Proof. Note that when A = A? we have N' = Mod(R/A), hence the first assertion
follows from right exactness of tensor product, and the fact that A® kN = 0 when
A= A% and AN =0. It is then clear that APQp— = A®RrA®R~— inverts surjective
nil isomorphisms, so it remains to see that this functor inverts any injection i : M’ — M
with cokernel killed by A. We have a commutative square

AQRM' % A®pM
b
M = M
where the top arrow is surjective, and the vertical arrows are the multiplication maps

p. The kernel of 1 ® 1 is killed by A, since this is true for the ¢ map for M’ and ¢

is injective. Thus A® g— inverts the surjective nil isomorphism 1 ® ¢, so AAQz—
inverts 7. O

(4.4) Proposition Assume A = A%. If M = AM, then A®gM is firm. Morever,
ADQ®rM is firm for any M.




Proof. If AM = M, then 1 : AQgkM — M is a surjective nil isomorphism, so by
the preceding result the map ADQzM — A®RM, a1 Q@ a2 ® m + a; ® aym, is an
isomorphism. Since a; ® agm = aja; @ m, it follows that A® rM is firm. The second
assertion follows from the first and fact that M’ = A® g M satisfies AM' = M’ when
A= A% O

Finally, the composition ADQ@zM — AQrM — M of (4 maps is a nil isomor-
phism for any module M. Thus when A = A?, the second condition of (3.5) is satisfied
with My = A®D®zM, and we have established the following.

(4.5) Theorem If M is firm, then Homg(M, N) = Homa(7*M, j*N) for any module
N. In particular, the functor F = *N — M induced by j* is always fully faithful.

When A = A? it is an equivalence of categories, and the quasi-inverse functor is
M ADQpM.

(4.6) This theorem yields immediately that when A is idempotent, the category F
of firm modules is an abelian category. It is easy to see that a sequence 0 = M’ —
M — M" — 0 of firm modules is exact in the abelian category F iff it is right exact
in Mod(R) and the kernel of M’ — M is a nil module. More generally, an arbitrary
sequence of firm modules is exact in F iff it is a complex and the homology groups of
this complex in Mod(R) are nil modules.

(4.7) If two ideals A, A’ give rise to the same adic topology in the sense that A > A™
and A" D A" for some n > 1, then clearly their associated nil module categories are
the same, and similarly for firm modules since F = L+ A/, Consequently, the case where

A is essentially idempotent, i.e. A" = A" for some n > 1, reduces to the case of the
idempotent ideal A™.

§5. Closed modules. We discuss next a dual version of firm modules, based on the
functor Hompg(A, —) instead of A® p—.

For any module M we have a canonical map
(5.1) p' : M — Hompg(A, M), p'(m) = (a+ am)

in Mod(R), which is a nil isomorphism, since its kernel and cokernel are killed by A.
This is clear for the kernel, and if f € Hompg(A, M), then we have (@'f)(a) = f(ad') =
af(a’), ie. 'f = y'(f(a')), showing that the cokernel of ' is killed by A.

(5.2) Definition We say that M is A-closed, or simply closed when the ideal is under-

stood, when the map ' is an isomorphism. Let C = C(R, A) be the full subcategory
of closed modules in Mod(R).

Applying Hompg(—, M) to the short exact sequence A — R — R/A yields the




exact sequence

0 — aM — M -5 Homp(A, M)M — Exty(R/A, M) — 0

where 4M means Homgp(R/A,M) = {m € M|Am = 0}. Thus M is closed iff
Extp(R/A,M) = 0 for j = 0,1. In particular, an injective module Q is closed iff
AQ =0.

Our next result, the analogue of (2.6), identifies C with the right perpendicular
category N'L.

.3) Proposition The following conditions are equivalent:

5
a) M is closed.
b

) M is the kernel of a map Q° — Q' between closed injective modules.
c¢) Hompg(—, M) inverts nil isomorphisms.

(

(

(

(
This is proved in virtually the same way as (2.6), using the following analogue of

(2.4).

(5.4) Lemma If 4M =0, then M can be embedded in a closed injective module ().

Indeed, if @ is the injective hull of M, then 4QNM = 4M =0, so AQ =0, as @
1s an essential extension of M.
Since C = N+, we know by the dual version of (3.3) that
Hompg(N, M) = Homum(5*N, 7* M)

when M is closed, and that 7*.:C C Mod(R) — M is fully faithful. The following is

analogous to (4.2) and has the same sort of proof.

(5.5) Proposition Limits exist in C. The inclusion functor ¢ : C — Mod(R) and
J5t: F = M respects colimits.

We consider next the analogue of Theorem (4.5). For any module M put M#* =
Homp(A®, M). There is a nil isomorphism

M — Hompg(A, M) — Hompg(A, Homg(A4, M)) = M*
given by the composition of two /' maps (5.1). We have the adjoint functor relation
Homp(A® ®@RrN, M) = Homg(N, M*).
Assuming A = A?, the left hand side considered as a functor of N inverts nil isomor-

phisms by (4.3), hence M# is closed by (5.3). Thus A is localizing, and we obtain
the following.




(5.6) Theorem If M is closed, then Hompg(N, M) = Hompm(5* N, j*M) for any mod-
ule N. In particular, the functor C = N'* = M induced by 5* is always fully faithful.

When A = A? it is an equivalence of categories, and the quasi-inverse functor is
J*M — Homp(A® M).

§6. M in the idempotent case. In this section we assume A = A?, and we
discuss properties of the quotient abelian category M. We have seen that there are
equivalences F 5 M and C = M induced by j*. It is natural to regard M as more
fundamental than the other two, since it contains them as full subcategories in the
general case. In the idempotent case F and C then provide alternative pictures of the
basic category M.

In the firm picture the functor j7* and its left adjoint 7 : 7*M — AP ® g M become
M+~ A®@rM from Mod(R) to F and the inclusion in the opposite direction. In the
closed picture j* and its right adjoint j, become M + Homp(A®), M) from Mod(R)
to C and the inclusion.

(6.1) The firm picture is convenient for describing colimits in M, while limits are
treated better using closed modules. Combining (4.2) with the equivalence F M,
we see that colimits in M exist, and they are calculated as usual module colimits in
the equivalent category F. Similarly limits exist in M, and they are calculated as
usual module limits in the closed picture.

The next result shows that the firm (resp. closed) picture is convenient for describ-
ing projective (resp. injective) objects in M.

6.2) Proposition The functor j* induces an equivalence o categories between firm
q

projective modules and projective objects in M, and between closed injective modules
and injective objects in M.

Consequently, M has enough injectives by (5.4), but it may not have enough
projectives by (2.5).

Proof. Up to isomorphism any object of M has the form J*M with M firm, and
we have

Hompg(M, N) = Homp(j*M, j*N).

Assuming j*M is projective, the right hand side is an exact functor of N ,80 M is a
projective module. For the converse we use the fact that any short exact sequence in
M is isomorphic to one lifting to a short exact sequence in Mod(R). It follows that
when M is projective, the right hand side is an exact functor of J*N, and so 7*M is
a projective object of M. The injective case is handled similarly. O3

(6.3) Roos [R] has characterized abelian categories equivalent to M(R, A) for some
unital ring and idempotent ideal as abelian categories .A having a generator and sat-
isfying the axioms AB4* and AB6 of Grothendieck [Gr]. These axioms mean exactly




that A has the following properties:

¢ Sums and products exist in A.

® The product of a family of epimorphisms is an epimorphism.

e Forany M in A, index set J, and family indexed by J € J of (increasing) directed
sets {Mji}rek, of subobjects of M, the canonical map

UN My = N U My
v jed jeJ kek;

where u runs over [];c; Kj;, is an isomorphism.

(6.4) We have seen that Mod(R/A) for an idempotent ideal A is a bilocalizing (i.e.
both colocalizing and localizing) subcategory of Mod(R). In fact, we obtain in this
way a one-one correspondences between idempotent ideals of R and such subcategories
S.

To see this, we note first that because S is colocalizing, it is a Serre subcategory
closed under products. Indeed, the canonical functor j* : Mod(R) — Mod(R)/S
admits a left adjoint j;, hence j* respects limits, and so S, the subcategory of modules
killed by j*, is closed under products.

Since the direct sum for modules is a submodule of the product, S is closed under
direct sums, and hence it is determined by the family of all cyclic modules R/l which
are in §. The product of these cyclic modules contains R/A as a submodule, where A
is the intersection of these left ideals /. Because S is closed under products, R/A isin
S, and it follows easily that S is the full subcategory of modules satisfying AM = 0.
Then A is an ideal, as A kills R/A, and A is idempotent since R/A?, being an

extension of R/A by A/A?,isin §. Thus S has the desired form. This argument
proves the following.

(6.5) Proposition A Serre subcategory of Mod(R) is bilocalizing iff it is colocaliz-
ing off it is closed under products. There is a one-one correspondence between these
subcategories and idempotent ideals given by A — Mod(R/A).

§7. A-torsion modules. In this section and the next we discuss what can be said in
general about firm and closed modules with respect to an ideal A. For example, the
category of closed modules is always abelian, in fact, it is the Grothendieck category
arising naturally from a torsion theory on Mod(R) associated to A. This material is
not essential for the rest of the paper, which concerns the idempotent case we have
already treated.

We recall that a torsion theory on Mod(R) may be defined as a Serre subcategory
§ which is closed under direct sums in Mod(R). Modules in S are the torsion modules
for the torsion theory, and a module is torsion-free when the only torsion submodule
is zero. Such a subcategory S is the same as a localizing subcategory. The quotient
abelian category Mod(R)/S is a Grothendieck category (i.e. having a generator and
exact filtered colimits), and in particular it has enough injectives. Furthermore, every
Grothendieck category arises in this way by the Gabriel-Popescu theorem.

10




(7.1) Definition Let 7 = T(R,A) be the smallest Serre subcategory of Mod(R)
closed under direct sums and containing R/A, hence all nil modules. A module in T
will be called an A-torsion module, or simply a torsion module when the ideal is clear.

If A is essentially idempotent: A™ = A™! for some n > 1, then T = N =
Mod(R/A™) is the nil module category for the idempotent ideal A, and we have the
bilocalizing situation discussed already. On the contrary, if A® > A™! for all n, then
@, R/A" is a torsion module and not a nil module, so A < 7 in this case.

Our next result gives some interesting descriptions of torsion modules.

(7.2) Proposition M is torsion iff the following equivalent conditions hold:

(a) For any submodule M' < M, we have 4(M/M') # 0.

(b) There exists a (weakly) increasing filtration of M by submodules M, for a <4,
where 7 s an ordinal, such that My = 0 and M, = M, such that Myy,/M, is killed
by A for any a < v, and such that M, = Us<a Mg for any limit ordinal o < 7.

(c) V®rM =0 for all right modules V such that V =V A.

(d) (T-nilpotence condition) For any m € M and sequence ay,dz,... in A, there is
an n such that a,---a;m =0,

Proof. We first show these conditions are equivalent.

(a) = (b). Consider the canonical filtration constructed using transfinite induction
such that My =0, My /M, = 4(M/M,), and such that M, is the union of Mg for
B < aif a is alimit ordinal. Assuming (a) holds, this is a strictly increasing filtration
until one has M, = M; such a point must be reached by cardinality reasons.

(b) = (c). We take a filtration as in (b) and prove V®pzM, = 0 by transfinite
induction. As V = AV, the functor V® g— kills M,y1/M,. The induction step from
a to a+1 and the step to a limit ordinal follow from the fact that this functor is right
exact and respects colimits.

(c) = (d). Given ay,as,... in A, then

(7.3) F = colim(R.&R_@_‘)...)
is a flat right module such that F = FA. We have
F®rM = colim (M—“L>M_“2_>)

By (c) this vanishes, which implies for any m € M that a,, --- aym = 0 for some n,
proving (d).

(d) = (a). Assume (a) false, i.e. for some M’ < M we have A(M/M") = 0.
The T-nilpotence condition for M implies the same condition holds for any quotient
module, so we can assume 4M = 0. Choose m # 0 in M. As Am # 0 there is
an a; € A such that aym # 0. Then as Aaym # 0 there is an a; € A such that
azaym # 0. Repeating yields a sequence in A showing (d) is false.

11




Finally we show these conditions are equivalent to M being torsion. Let 77 be
the full subcategory of modules satisfying these conditions. Using the T-nilpotence
condition (d), one can check that 7 is a Serre subcategory closed under direct sums
in Mod(R) and containing R/A. This also follows from the fact that 77 consists
of those modules killed by the exact functors F® r— for a family of firm flat right
modules F', namely the ones constructed above from sequences in A. Consequently
T' contains the smallest such Serre subcategory 7.

On the other hand, since 7 is closed under quotient modules and direct sums, any
module M has a largest torsion submodule M;. Moreover we have A(M/My;) = 0,
otherwise we could enlarge M; using the fact that 7 is closed under extensions and
contains all B/A modules. Consequently, if M is in 7", then (a) implies M = M, is
in 7. Thus 7 =T, completing the proof of the proposition. O

(7.4) Corollary Any nonzero torsion module M satisfies 4 M # 0. Consequently, a
module N 1is torsion-free iff 4N = 0.

(7.5) Corollary One has T = Mod(R) iff A is left T-nilpotent, i.e. for every sequence

a1, @z, ... in A, there exists n such that a,---a; = 0.

‘We now relate torsion modules to closed modules introduced in §5. The next result
improves the property (c) of (5.3) for closed modules and shows that C = T+,

(7.6) Lemma If M is closed, then Homg(—, M) inverts torsion isomorphisms.

Proof. If () is a closed injective module, i.e. satisfying 4¢) = 0, then the modules
killed by Homg(—, @) form a Serre subcategory closed under direct sums and contain-
ing R/A. Hence this functor kills all torsion modules, and as it is exact, it inverts
torsion isomorphisms. By (5.3) any closed module M is the kernel of a map Q° — Q!
between closed injective modules, hence Hompg(~, M ) inverts torsion isomorphisms.
O

We next show that 7 is localizing, i.e. for any module M there is a torsion
isomorphism M — M# with M# in 7+ = C. This follows from general theory [Gal,
but the argument merits a brief description. Using (5.4) we embed M modulo its
largest torsion submodule into a closed injective °, and then embed the cokernel
of M — Q° modulo its largest torsion submodule into a closed injective @!. Then
M# = Ker(Q° — Q) is closed by (5.3), and the obvious map M — M# is a torsion
isomorphism.

Let M* = M*(R, A) denote the quotient abelian category Mod(R)/T and j* the
canonical functor Mod(R) — M?*. This preceding discussion vields the following,

showing that closed modules always form an abelian category, in fact a Grothendieck
category.

(7.7) Proposition One has an equivalence of categories C = T+ 5 M? induced by
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We remark that aspects of the closed picture: C = M in the idempotent case hold
in general with M?* in place of M. Thus injectives objects of C = M? are closed
injective modules, and limits in C are calculated as usual module limits.

Unless A is essentially idempotent, M? is a strictly smaller quotient category of
M. For example, if A is T-nilpotent but not nilpotent, then Mt = 0 by (7.5) and

M #0. Thus, although M? has nice properties, it contains less information about A
than M.

§8. Firm modules and M¢.

(8.1) Although the canonical functor F — M is fully faithful, this need not be true
when M is replaced by M. For example, let A be a ring which is left T-nilpotent but
not right T-nilpotent, and let R be a unital ring containing A as ideal, e.g. R = A.
The standard example of such an A is infinite strictly upper triangular matrices with
finite support over a unital ring. Then M* = 0 by (7.5), but F = 0, since there is a
sequence a, such that a;---a, # 0 for all n, and hence the colimit of

R =4 R %

is a nonzero firm flat module.

On the other hand suppose A is right T-nilpotent but not left T-nilpotent. Then
M?* # 0 and every right module is torsion, i.e. in T(R?, A°?). The latter implies
F = 0, because if M nonzero and firm, then R®rM = 0 contradicts R being a
torsion right module by condition (c) of (7.2).

This shows that in general there is no relation between M* and the firm module
category F. However, there is a close relation given by tensor product between M?
and the firm right module category F(R°?, A°?), which we now discuss.

(8.2) Definition A functor from Mod(R) to the category Ab of abelian groups is said
to be right continuous when it respects colimits, equivalently, when it respects direct
sums (hence is additive) and is right exact.

We recall that there is an equivalence of categories

(8.3) Mod(R™) =~ rtcontfun(Mod(R), Ab)

between right modules and right continuous functors given by V ++ V®g— and F s
F(R). We are going to derive an analogous equivalence with Mod(R) replaced by the
quotient category M.

(8.4) Lemma The functor

rtcontfun(M’, Ab) — rtcontfun(Mod(R), Ab), G — Gj*
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gives an isomorphism between the former category and the full subcategory of the latter

consisting of functors inverting torsion isomorphisms. Furthermore G is ezact iff Gg*
s ezact.

Proof. Let G': M* — Ab be a functor. We check that G is right continuous (resp.
exact) iff the same is true for Gj*. The only if part is clear, as j* is right continuous
and exact. Since any family of objects in M? lifts to a family in Mod(R), it follows
that Gj* respects direct sums if G' does. Similarly one sees that Gy* is right exact
(resp. exact) if the same holds for G, using the fact that any short exact sequence in
M? is isomorphic to the image of a short exact sequence in Mod(R).

Since M"* is obtained from Mod(R) by formally inverting torsion isomorphisms,
G — Gj* gives a one-one correspondence between functors defined on M?* and functors
inverting torsion isomorphisms defined on Mod(R). Moreover, using the fact that any
map in M? is a composition of maps coming from Mod(R) and inverses of such maps,
we have a one-one correspondence between maps of functors G — G’ and @ 7= G'5*.
This proves the lemma. O

We will need the following the improvement of condition (c) of (2.6).
(8.5) Lemma If V is firm, then VQgr— inverts torsion isomorphisms.

Proof. Using the fact that a firm module is the cokernel of a map of firm flat right
modules and right exactness of tensor product we reduce to the case where V is a firm
flat right module. Then V ® gp— is exact and kills torsion modules by (7.2), (c), hence
this functor inverts torsion isomorphisms. O

(8.6) Proposition One has an equivalence of categories
F(R?, AP) ~ rtcontfun(M*(R, A), Ab).

sending V' to the unique functor G such that G5* = VQg—, and G to G(7*R).

Furthermore, under this equivalence firm flat right modules correspond to ezact right
continuous functors.

Proof. The second lemma shows that F(R°, A°) is the full subcategory of Mod(R°?)
consisting of V' such that V® g~ inverts torsion isomorphisms. The desired equiva-

lence is obtained by restricting the equivalence (8.3) to this full subcategory and the
one described in (8.4). O

(8.7) We conclude this section with some unsolved problems. The following questions

have affirmative answers for A idempotent, and it would be interesting to know the
answers in the general case.

¢ Is the category of firm modules always abelian?
e Can (8.6) be turned around to recover M? as right continuous functors on firm
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right modules, i.e. is the functor
M?* — rtcontfun(F (R, A7), Ab)

given by tensor product an equivalence? This functor is faithful, because the firm flat
right modules (7.3) constructed from sequences detect nontorsion modules.

§9. Independence of the embedding into a unital ring. In this section we
show that the categories M, M*, F,C associated to the pair (R, A) depend up to
equivalence only on the (nonunital) ring A.

We consider the canonical unital ring homomorphism A — R extending the inclu-
sion A C R.

(9.1) Proposition One has an equivalence of categories M(A, A) ~ M(R, A) induced
by extension and restriction of scalars with respect to the canonical homomorphism
A — R. The same is true for the M? categories.

Proof. Let F': M — R® ;M be the extension of scalars functor from Mod(A) to
Mod(R) associated to this homomorphism. Although F need not be exact, it is exact

modulo N'(R, A). Namely, a short exact sequence M' — M — M" yields an exact
sequence

Torf (R, M") & R® ;M' — R® ;M — R® ; M" — 0
1 A A A

where the Tor group is killed by A, since left multiplication by @ on R factors through
A. We note that if M is killed by A, then so is F(M) = R® M, since a(r®m) =
1®(ar)m. Consequently, 5*F : Mod(A) — M(R, A) is exact and kills A(4, A), so
there is a unique functor F : M(A4, A) - M(R, A) such that Fj* = j*F.

Next, let G be the restriction of scalars functor from Mod(R) to Mod(A). Then
G is exact, and it carries V(R, A) into N'(A4, A), so we have a unique G : M(R, A) —
M(A) satisfying Gj* = 7*G.

The functors F' and G are naturally adjoint, where the canonical adjunction maps
a: FG—1and 8:1— GF are given by

a:R® ;N = N, reQni—rn
B:M— R®; M, m— 1p @ m.

it is easily seen that o is surjective with kernel killed by A, hence « is a nil isomorphism

for any R-module N. Moreover, from the commutative diagram

M L ReoM
wd v e
M £ Re;M

where u(r @ m) = (ar)m, we see that multiplication by a kills the kernel and cokernel
of #. Thus f is a nil isomorphism for any A-module M ,
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We recall that M(R, A) has the same objects as Mod(R) and that every map in
the quotient category is a composition of maps coming from module maps and inverses
of such maps. It follows that o : FG — 1 determines a unique map of functors & from
FG to the identity functor of M(R, A) satisfying &.5* = j*.a. Similarly 8:1—GF
induces a map  from the identity functor of M(A, A) to GF. By the preceding
paragraph @ and B are isomorphisms. This proves the assertion concerning the M
categories. The same arguments work in the M* case, once we know that F and
carry 7(A, A) and T (R, A) into each other, and this can be proved using the filtrations
given by (7.2), (b). O

The next result shows that various module categories associated to the pair (R, A)
depend only on the ring A.

(9-2) Proposition Restricting scalars from R to A gives a one-one correspondence
between firm module structures on any abelian group for the pairs (R,A) and (A, A).
Consequently this functor induces an isomorphism (in particular an equivalence) be-
tween the categories of firm modules for the pairs (R, A) and (4, A). The same is true
for firm flat modules, closed modules, and closed injective modules.

Proof. Suppose given W in Mod(R?) and M in Mod(R). If AM = M, then we

have a canonical isomorphism
(9.3) W®AM—N—‘>W®RM, w® sm = w® gm.

Indeed, wr® zam = wra® jm = w® zram shows that w® zm is R-bilinear, hence
we have a map in the opposite direction such that w® gm — w® im. In particular
A® M = A®QrM, so M is in F(R, A) iff M is in F(A, A).

On the other hand, suppose given M in F(A, A), so that AQ ;M = M. The
source of this isomorphism has an R-module structure given by rla®@m) =ra®m,
and so M has an R-module structure given by r(am) = (ra)m. It follows that M
has a unique R-module structure extending its A-module structure. By the preceding
paragraph M is in F(R, A), which proves the part of the proposition concerning firm
modules.

When M is A-flat, the left side of the isomorphism (9.3) is an exact functor of
the right R-module W, hence M is R-flat. Conversely, assume M is flat over R and

let V! -+ V — V" be any short exact sequence of A-modules. We have an exact
sequence of R°?-modules

Torf(V",R) = V'® ;R — V® ;R
where the Tor group is A°P-nil, because right multiplication by a on R factors through
A. Applying the exact functor —®rM , we see that VI® 1M — V'® ;1M is injective,

whence M is flat over A. This proves the assertion about firm flat modules.
Similar proofs can be given for closed modules and closed injective modules, e.g.
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one replaces (9.3) by
Hompg(N, M) = Hom 4(N, M)

if N,M are R-modules and 4M = 0. However, the essential result that the closed
module categories for (R, A) and (A, A) are equivalent can be obtained immediately
from the equivalence C = M? and the M"* part of (9.1). The equivalence of the closed

injective module categories then follows, since these modules are the injective objects
inC. O

(9.4) Corollary If the ideal A is unital as a ring, then the categories M, M*, F,C
associated to the pair (R, A) are all equivalent to Mod(A).

Indeed, these categories agree up to equivalence for (R, A) and (A A).

We conclude this section by deriving an unpublished result of Wodzicki which
completes his treatment of universal flatness [W].

(9.5) Corollary Let A be a ring such that A = A%. Then for every embedding of A
as an ideal in a unital ring R it is true that A is a flat R-module, provided that this
is true for some embedding of A in a unital ring.

Indeed, the firm flat part of part of (9.2) says that A is R-flat iff it is A-flat,
because once A is known to be flat the firmness follows from A = A?. Wodzicki’s
proof is based on the linear equations criterion for flatness, using A = A? to replace
equations with coefficients in R by equations with coefficients in A.

§10. Reduced modules and the Jacobson radical. In this section we examine
another type of module that is in a sense intermediate between firm and closed module.

These modules are suggested by the colimit formula (3.4) for maps in M, which yields
immediately the formula

(10.1)  Homp(M, N) = Homp(;*M,j*N), if M = AM and 4N = 0.

(10.2) Definition We say that a module M is reduced when 4 M = 0 and M/AM =0,
l.e. when M has no nil submodule or quotient module other than 0. Let R = R(R, A)
be the full subcategory of reduced modules in Mod(R).
(10.3) Proposition The canonical functor R — M is fully faithful. When A is

idempotent, this functor is an equivalence of categories.

Proof. The first assertion is clear from (10.1). To prove the second, it suffices to
show the functor is essentially surjective. Given j*M in M, let M' = M/,M and
M" = AM'. Since A = A? by hypothesis, we have 4M’ = 0 and M" = AM".
Also s4M" =0 as M" C M, so M" is reduced. Since there are nil isomorphisms
M — M > M", we have 7*M ~ j*M". O
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The following analogue of (9.2) shows that the category R(R, A) depends only on
the ring A.

(10.4) Proposition Restricting scalars from R to A wyields a one-one correspon-
dence between reduced module structures on any abelian group for the pairs (R, A)

and (A4, A).

Proof. Given an R-module M, it is clear that M in R(R, A) iff after restricting
scalars M is in R(A, A). Thus it suffices to show any M in R(A, A) has a unique
R-module structure extending the A-module structure. The uniqueness follows from
the relation r(am) = (ra)m. The existence follows from the fact that M is the image
of the map

A® ;M — Homj(A, M), a®m ++ (a’ — da’'am)

which is naturally an R-module map. O

(10.5) One reason for introducing reduced modules is that they arise in connection
with simple modules and the Jacobson radical.

Let M be a simple (unitary) R-module. Then the submodules AM and 4M must
be 0 or M, hence M is either killed by A, or we have AM = M and 4M = 0. Thus
a simple module is either killed by A or is reduced.

Next, let M be an object of R(R, A), equivalently by (10.4), an object of R(A, A).
Clearly M simple over A implies M simple over R. Conversely, assume M simple
over R, and let M’ be a A-submodule of M. Then AM’ is an R-submodule, so either
AM' =0, whence M’ =0 as 4M =0, or AM’' = M, whence M’ = M. Thus M is
simple over A. This shows that reduced simple modules for (R, A) and (A, A) are the
same in the sense that the analogue of (10.4) holds.

Let us define the Jacobson radical J(A) to be the ideal of a € A such that aM =0
for all reduced simple modules M for (R, A). The foregoing shows that J (A) depends
only on the ring A, so J(A) is well-defined.

Taking A to be the unit ideal R of R, we see that J(R) for a unital ring R is the
ideal of r € R such that rM = 0 for all simple R-modules M.

We note that simple A-modules are either reduced simple modules for (fl, A) or
simple Z-modules killed by A. Since J(Z) = 0, it follows that J(A) = J(A).

Now AN J(R) is the ideal of a € A killing all reduced simple modules for (R, A),
since the other simple R-modules are killed by A. Thus we have the relation J (A) =
ANJ(R) whenever A is an ideal in a unital ring R. Applying this in the case R = B,

we obtain Jacobson’s theorem [J]: J(A) = AN J(B), whenever A is an ideal in a ring
B.

References

18




[Ga]  P. Gabriel, Des catégories abéliennes. Bull. Math. Soc. France 90 (1962)
323-448.

[GL] W. Geigle and H. Lenzing, Perpendicular categories with applications to rep-
resentations and sheaves. J. Algebra 144 (1991) 273-343.

[Gr]  A. Grothendieck, Sur quelques points d’algebre homologique. Tohoku Math. J.
9 (1957) 119-221.

[J]  N. Jacobson, Structure of rings. Colloquium Publication, vol. 37, Amer. Math.
Soc., Providence 1964.

[K] I Kaplansky, Projective modules. Ann. of Math. 68 (1958) 372-377.

[R] J.-E. Roos, Caracteérisation des catégories qui sont quotients de catégories de
modules par des sous-categories bilocalisantes. C. R. Acad. Sc. Paris 261 (1965)
4954-4957.

[W] M. Wodzicki, Homological properties of rings of functional-analytic type. Proc.
Natl. Acad. Sci. USA 87 (1990) 4910-4911.

19




