
Comparison of the regulators of Beil inson and of Borel

M. Rapoport

This contribution is the fruit of a collaboration with U.Stuhler. Although he in
the end refused to have his name appear as an author, he played an important part in
the preparation of this paper, which I consider as the result äf a joint effort. Our aim
hereis to give an exposition of A.Beilinson's proof ([1], App. to $2) that in the case of
a number field the Beilinson regulator map coincides with the Borel regulator map up
to a non-zero rational factor. This compatibility is needed in order to regard. Borel's
results [5] as a confirmation of the Beilinson conjecture in this particul", ,ure, and
thereby enters into Beilinson's proof of the Gross conjecture in the cyclotomic case
(compare [1], [17]). (In fact, Borel's results are stronger in a certain sense, compare
our remarks at the end of $1).

- The Beilinson regulator map is defined under very general circumstances and
behaves functorially in a pleasant way. However, it is hard to calculate explicitly, if
only because the source of this map is closely related to K-groups which are yery
poorly understood in general. In the case of a number field, k, the (rational) K-groups
can be explicitly determined, thanks to our knowledge of the cohomology of discrete
arithmetically defined groups [4]. Furthermore, the periods of an e*ptiiitty d.efined
differential form oYer homology cycles coming from the /f-group can be calculated [5].
This then leads to the definition of the Borel regulator map and to Borel's theorem
that the co-volume of the image of the n-thregulator map equals (;(1 -�n). We refer
the reader to [5] where in the introduction Borel gives a lucid. r*poriiiott oi his proof.

We now explain the plan of this article. In $1 we recall the definition of the
Beilinson regulator map in this special case and give the definition of the Borel regu-
lator map which uses continuous cohomology; a stightly d.ifferent way of constructing
the Borel regulator map appears at the end of $4. In $2 it is proved that the nor-
malization functor induces an equivalence of categories of reduced small co-simplicial
algebras and reduced small differential graded algebras. The coocept of smallness in-
troduced by BeilinsottGinvented forlhe proof of the comparison theorem. Recall
that in the simplicial context D.Quillen (Rational homotopy theory, Ann. of Math.



90' L969, p. 205-295) has proved that the normalization functor from the category
of reduced simplicial commutative algebras to the category of reduced commutative
differential graded algebras (over a field of characteristic zero) induces an equivalence
of the corresponding homotopy categories. By putting the smallness restriction on
the algebras in question (and working in the co-simplicial context) no homotopies
are needed. This result is used to define a kind of "de Rham complex" of a small
differential graded algebra, and thereby also to give a sufficiently canonical defini-
tion of the Weil algebra. We also recall the definition of Chern classes by means of
the Weil algebra. In $3 we present the second main ingredient of Beilinson's proof,
namely the interpretation of the van Est isomorphism in continuous cohomology as a
restriction map to the cohomology of an infinitesimal version of the classifying space,
namelythelargestsmallsimpliciaIsubsche*@intedouttousitseems
that again the concept of smallness allows one to avoid complications which occur
in Quillen's formal categories [16]. In $4 we then prove that the two regulator maps
essentially coincide.

In Beilinson's manuscript there is also a description of theorems of Bloch, Beilin-
son' Tsygan, and Feigin on additive K-theorR for which we refer the reader to the
original source. Thus we have tried here to give an account of the remaining 3 Ll2
pages. Even though these have expanded into some 20 pages we are not confident
that we have done them justice; one of the reasons is tha1, not being topologists
ourselves, we do not have suffi.cient insight into the deeper topological significance
of Beilinson's proof. On the other hand, we tried to fitt ,oorä gais in Beilinson's
argument

We wish to express our gratitude to F.Grunewald, T.Zink, and especially
R.Weissauer for very helpful conversations on these topics.

The notations used here are in conformity with the notation used elsewhere in
this volume, compare esp. [19].



$1. Definition of the two regulators

Let k be a finite number field and let X - Spec,b. We wish to recalt the definition
of Beilinson's regulator map in this special case,

r : H\(x, Q (")) - Hb(x/rn, rR(n))
Here n) L, and H\(X,a(")) is a certain piece of the K-group Kzn--t(k)Sa (t14].).

We remark that the complex IR(rz)2 on Spec C reduces for rz ) 0 to

and is isomorphic via ,rn-t lf:-i" liff?ä'fi;il. rr rouows that
r / f , (specc , lR( rz ) ) :1 tn (n  

-  1 )  i : r
l .  0  j * r

We consider the morphism of simplicial schemes given by evaluation

e : Spec t x B.Grry(C) -> B.GLNlt

Ilere on the left the simplicial set B.GLy(A) is considered as a scheme (disjoint
union of points) and the morphism is the obvious one. The rz-th Chern class cn €
HY(B.GLw,a(")) (1131) defines an element cn e H3@.GLN,lR(rz)) which yietds
by restriction and using the Künneth formula (legitimate since the coeffi.cient system
is a vector space over lR)

e* (cn) € nflpec C x B.GLy(C ), lR(n)) -

,! f/f,(Spec C , tR(rz)) S g2n-L (B .GLN(A ), IR)

p2n-7(B.GLN(A) ,  R(n -  1) )  -  H2n- t (Cr jV(C) ,  tR( rz  -  1) ) .

We note that the element obtained is invariant under the simultaneous action of
Gal(A/R) on the discrete group G.D1y(C) and the coefficient system lR(n - 1). This
construction is compatible with increasing trf which is to be taken large compared
to n. We now note that

g2n-t(cr'u(a),lR(rz - 1)) - Hom( Hzn-t(Grry(a ),Z),rR(n - 1))
composing with the Hurewicz map we obtain finally a map

(1.1.) Kzn-t(a) :  rr2n-L(BGL$.)*) -* Hz,,-t(GL(t),2) + tR(rz - 1) :

- Hb(Spec C, lR(rz))

Returning to our number field ,b, we write X /a. - Spec k e C

using the previous calculation

7(t - ] .

-  n  Candf ind
ozk-'+(

HL(x 1*, rnlrr;; : I O ^Hf,(Spec C, tR(rz,,l 
""ttn''*'

Lo:,t"-r1f, I

f 1 Gal([/1ft)
- 

1*9.rR(rz-t)l



(The dimension of this vector space is thus equal to 12, resp. \ * rz according as
n is even or odd, where 11 and 12 have the customary meaning.) The regulator
map is now defined by first extending scalars from Q to C and then taking in every
component the map (1.1.) defined by the n-th Chern class above. As a matter of
fact, the Chern character (which really is the regulator) is the product of this map
with the rational number (-t;'-t l@- 1)!; but this will be of no importance to us.

We next give the definition of Borel's regulator [5]. We base ourselves on [1b]. We
need some preparation. Let G be a Lie group and V a continuous G-module. There
is a cohomology theory of continuous G-modules which is defined just as Eilenberg-
Maclane cohomology for discrete G-modules, but using continuous cochains. In
practice these cohomology groups can in fact be computed using C*-cochains ([6],
p.276).

Let K C G be a ma":rimal compact subgroup. Denoting as usual by ̂ 9'(G lK) the
de Rham complex with real C--coefficients we obtain a homomorphism of co*pie*es
in the category of continuous G-modules

(1 .2 . ) rR -+ s'(G I K) : [50 (G I K)-* ,S1 (G I K) --+ ...]

Using the fact that GIK is diffeomorphic to a euclidean space, (1.2.) may be shown
to be a resolution in a suitable sense ([6],p.2?9). On the other hand, G-modules like
S'(G/IO ate i"je.tive in a strong sense ([6], p.278)so that the continuous cohomology
of S'(G lK) may be computed by simply taking G-invariants, so thatl)

(1 .3 . )

Here the last term is the relative Lie algebra cohomology group which we now proceed
to recall

Let g be a Lie algebra over a field of characteristic zeto and let V be a g-module.
The Lie algebra complex C'(S,Ir) is

C o ( g , V )  : H o m ( A q g , v ) -  ^ n g '  a  Y  r  Q  : 0 , 1 , . , .

(g' - duat vector space), with difierentiat d , Co(g,V) - Qa+r(S,V)given as follows:

d f  ( * r , . . . , xq )  :  
I (  

_ t ) r r r f ( r o ,  . . . , i i ,  . . . , nq ) *

f  f  -  r  I  
i +  i  f  ( 1 ,  ; ,  *  i l  t  n  0  t  . . . ,  a  ; ,  . . . ,  f r  i ,  . . . ,  n  q ) .

i< j

The relative cohomotogy groups for a sub Lie algebra k C g are the cohomology
groups of the sub-complex

Cn(s,k;  Y)  -  Homp(^o(e/k) ,V)  ,

1) All this holds for more general G-modules than the trivial module lR.



where the action of k on Avo(glk) is induced by the adjoint action. In the above chain
of isomorphisms we used the isomorphism

S'(G I  K) t  = C' (e,k;  lR)

given by assigtitg to a differential form its value at the identity. The isomorphism
between continuous cohomology and relative Lie algebra cohomology is called the
van Est isomorphism.

We need to calculate the relative Lie algebra cohomology in the case of interest.
Let G be areductive Lie group. Let g - kOp be the Cartan decomposition cor-
responding to k andlet g., - kOip C ggC be the compact form. Extension of
scalars defines canonical isomorphisms (in the middle is Lie algebra cohomology over
C with trivial coefficients)

(1 .4 . )  H" (g ,k ;  lR)  I  C  -  H* (g6 ,kc)  =  H*(g , ,k ;  tR)  g  C

Denoting by G., the Lie group corresponding to g., we have as before

(1.5.)  H* (gu,  k ;  lR)  -  H* (S ' (G. l  K)G-)  :  H* (S ' (G" I  K))  :
- Hbuu;(G"lK;IR)

Here the second isomorphism is obtained by an average argument using the fact that
G, is compact, and the third. isomorphism is the de Rham isomorphism. Similarly
H*(9,, lR) = Hb"rrr(G;,lR).

Combining now (1.3.) - (1.5.) we obtain a canonical isomorphism
"r : Hb"rr;(G,l K; lR) I C : HI"^,(G, lR) O C

It does not carry the lR-cohomology into one another since under the isomor-
phism (1.4.) the lR-cohomology in degr; m is carried into i* . H^(g.,,k; lR). This
is due to the fact that in the definition of g, there is an i standing in iront of the p
so that H*(g*, k; lR) : H*(Homl(Äf . p, lR)).

We now apply these considerations to the case where G - GI;y(C), with maxi-
mal compact subgroup K : (f N, the unitary group. In this case we may identify G,
with UxxUN, with Utv embedded diagonally. Expticitln denotingby o: X -, -tT
the Cartan involution on g with respect to k we obtain a C-lio.". isomorphism

g 8 C  - - - + g O g

X e Ä'-' (ÄX, Äa(X))
In terms of this identification, the action of complex conjugation with respect to the
real form g of g A C becomes

(ff i) - (a(xz),a(x1))
and the Cartan involution

o(Xt, Xz) :  (Xz, Xr )
Therefor€ 8.,, which is the fixed space under the product of these two involutions is

(1 .6 . )

(1.7.)

with k embedded diagonally.

B , : k g k c g o g  )



We identify
G"lK 3Ux
( * r y ) ä n . y - t

We note that the action of GaJ(A/R) on .ä*(g,k; lR) which under the van Est
isomorphismcorresponds to the obvious action on Hlon (GrlR) is the one induce,C by
conjugation on p. This action corresponds to the action by conjugation on p, and
hence also by conjugation on LIly : G u I K. Therefore under the isomorphism

HI".,(G, C) = ä.([!y, C)

the actions of Gat(A/R) by simultaneous conjugation correspond to one another.

The cohomology of [Iy, say with coeffcients in Q is the free exterior algebra
generated by the cohomology classes of odd spheres, coming from the action of l/ry
on Ct  ( . .g. ,  [3 ] ,  9.1. )

Hb.rrr(u *,Q ) : 
$("r 

t1tr3 t ...,uzx-t)

The action of Ulü on CN is compatibte with complex conjugation, i.e. s, . a - E D and
complex conjugation on C" induces a homeomorphism of degree (-1)' on S2n-1. It
follows that

(1 .8 . )

We consider

uzn- t  -  ( -1 ) '  .?Lzn-L

(2rri)*u2n-L e H'*;l(n*, tR(zz)) c H*;l(nlv, c) .

Its image under the isomorphism ? (1.6.) lies in n|:;'(G, lR(rz - 1)) an6 is invariant
under the action of Gal(A /lR):

(1.9.) bzn_t - 1((2ri\.n .11,2n_!) e n?:;r(Cr,*(C), tR(rz _ 1))

Its image under the natural map from continuous to discrete cohomology (: forget
the topoloey)

n3:*t(crry(a), R(rz - 1)) -, H2n-t(Gr.,*(a), R(rz - 1))

is the Borel regulator element. Just as for the Beilinson regulator it defines a homo-
morphism

K z " " - t ( A ) - l R ( n - 1 )

and, in case ,t is a finite number field, the Borel regulator map

(1.10.)  Kz,-r (&)8Q -nb(xtrn, tR(n))

We refer to the end of $4 for a slightly different construction of the Borel regulator
map.



We conclude this section with two remarks. It follows from the localization sequence
and the fact that the higher K-groups of a finite field are finite that for n ) 1

Kz'"-r(o*) s Q - K2n-r(e) g Q

On the other !and, Borel [5] has shown that for n ) 1 the homomorphism (1.10.)
is injective, defines a Q-structure on ,Hf,( X/n, lR(n)) and that the co-volume of its
image is equal (modulo Q.) to (;(1 - rr)t), whereas Beilinson,s conjecture predicts
the comesponding facts for a suitable piece HI(Xra(")) of the K_group. However,
it follows from the compatibility of the Chern character with the Äda-t op.rators
(compare [t8]) that Borel's result implies that

Kzn-t(k)sa - Hh!;-,a("))

This reasonin8 (i.e., using [18] as a reference for the compatibitity of the regulator
map with the Adams operators) presupposes of course that the Beilinson t.gol"tot
and the Borel regulator coincide. The result also holds for n - l.

1) In fact, Borel's result is stated d.ifferently but boils d.own to the above.



$2 Some auxili""y considerations

So as not to interrupt the later discussions we collect here some definitions and facts
which wilt be needed. Let Ic be a field of characteristic zero and let ,4 be a ,t-linear
8-category with unit object ll. We assume that EndTl - k. One has the concepts of
algebra objects in A (an object x with morphisms Il * x,x a x -> x satisfying
certain obvious a:rioms), of graded objects of A, of. complexes in "4 (here always with
differentials of degree 1) of differential graded algebras (DGA for short - always in
non-negative degree).

Let X' be a co-simpliciat algebra in A (i..., a co-simplicial object in the category
of algebras in "4). We have the standard cup product (..g., [16], p.7, but translate
from simplicial to co-simplicial)

XP g Xq -+ yn*t

ü t A  s U y  -  i l n * t  o . . . o  d P + L ( r ) . d , 0  o . . . o d o ( y )

,This product is associative. The normali zatiion lfx' is the DGA

N X P - n K e r s i  z X p - X p - |  ,
with difierential induced from d, : De]), d,, z Xp _, Xp*l and prod.uct induced
from the cup product. F,ven when X'is a commutative co-simpticialalgebra, ItX'is
not necessarily a graded-commutative DGA. This leads to the following definitions.

2.L. Definitions (Beilinson):

a) A co-simplici,al algebra X' i,n A i,s called small if X' is a commutati,ae algebra wi,th
unit which 'i,s generatgd by X0 and Xt (in the sense of the cup product) and, such that
the i,deal Ker so C Xl has square zero

b) A DGA Y' is called smery ü Y' i,s grad,ed-commutati,ue anil i,s generated, by Yo
and Yt (as an algebra)

^ For simplicity we shatl gtly consider reduced co-simpticial algebras X' (i...,
x0 - 1l-, so that d,0 : d,7 : x0 -, xl and x1 - x0 o rrxi) and reduced DGA y-
( i . . . ,  Yo -  1,  so that  d,o :0:  Yo *  y t ) .

2.2. Proposit ion:

The normali,zati,on functor induces an equi,aalence of categories between the category
of reduced small eo-si,mpli,ci,al alg:ebras i,n A and the category of reiluced, small DGA
in A.

For simplicity of exposition we shall d.o as if Awas the category of k-vector spaces,
in particular calculate with elements. We shatl need the following lemmas.

2,g. Lemma:

Let X' be a reduced commutati,ae co-si,mpli,ci,al algebra in A. Then X' is generated,
by X' if and only if NX' is generated, by Nyt. 

-

\Me postpone the proof for a while and explain first the strategy of the proof of
2-2-. We shall need some facts about co-simplicial objects X and their associated.



(2.4.)

complex X- and normalized subcomplex IfX C X-. We translate from simplicial
theory into co-simplicial theory. Denote by A(X x y) the diagonal co-simplicial object
in the bi-co-simplicial object X x Y (: Xp @ Yq in degree (p,q), with obvious mor-
phisms). There are natural homomorphisms of complexes, the Alexander-Whitney
map and the shuffie map (comp. [10], p.T, or [10], VI, $12)

x- 8 x- A\ a(x x x)-
( 2 . 5 . )  A ( X x X ) -  s , X - B X -

Here AW is given componentwise by
Xp g Xq _+ yn*t 6 ){n+a

x & A dP+q...dP+t (r) e ao .. .d0 (y) ,
and ,S is given componentwise, for each (p, q) with p * q : TL, by

X n @ X "  X P g X q
x&y  r ->  t  e (p rv ) s "o . . . s ' r t@s4n . . . sP rA

0",')
The sum ranges over.tl (p,q)-shuffies (p,z) with sign e(p,r). Both maps respect
the normalized complexes, i.e., for 2.4. N X A IfX is carried into I[A(X x X) and
similarly for 2.5..Using the Alexander-Whitney map the definition of the cup product
may now be rephrased as follows. A co-simplicial algebra in Ais a co-simplicial object
X together with a morphism'

A ( X x X )  + X
satisfying certain conditions. The morphism induces homomorphisms of complexes

X - 6 l X - A r y A ( X x x ) -  - > X -  ,
i.e., an algebra structure on X-, and similarly an algebra structure on IfX. This is
the cup product. We shall use the shufle map to make a co-simplicial algebra out of
a DGA. To this end we shalt use the Dold-Puppe theory which shows that I[ indubes
an equivalence of categories between the category of co-simplicial objects in A and.
the category of complexes in A concentrated in non-negative d.egree. .4 quasi-inverse
K is given as follows. It associates to a complex Y the co-simpücial object

(KY)^ - o Yf
/ : [0,a]-+r[0,p]

where the sum is indexed by the surjective monotonic maps / and where Yf - yn.
If u : [0, *] * [0, rz] is a monotonic map then to each diagram

[0' m]

n J

j* 
[0, "]

J r

[0, P]
(note that j is uniquely determined by

[0, q] 'L
where / and g are surjective and j injective
/ and g) we associate the morphism

K(u)g, f  ,Yno -Yf

equal to the identity if p - Q, to the differential d : Yp-r + YP if. j - d0 and equal to
zero in all other cases. For pairs (g, /) not occurring in such a diagram.the component
K(u)n,r is put equal to zero.
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(2.6.)

It is easy to see ([11] , p.222) that N KY - f where Yp lies in (Ky)p as yfo.
F\rrthermore' .galljng DP C (KY1-n the remaining direct summands we have, as one
checks easily ([11], 3.18)

p-t

D p _ f m a ,
i=0

Since K is an equivalence of categories we have for all co-simplicial objects X

X - :  D ' O I f '  ,

a d'ecomposition into subcomplexes. With respect to the cup product D is a left ideat
in X-. Indeed this follows from the formula for n e. Xp and y e Xq-L

(2.7) ru d"(y) -  (dn+t o . . .  o dp+t(r))  . ( (do)od,t(y))  _
- (di+n4n*a-t o ... o dp+t (r)) . 1ai+n6o)r(y))
_ gi+n 7a U y)

We now show how to produce a co-simpliciat algebra from a DGA. Let I' be a DGA,

r 8 Y  + Y

Applying the functor K we obtain homomorphisms of complexes

,n fA ( / ( y  x  KY)  4 ,n f f yA  NKY -Y  Ay  +Y  -NKY

which since -l[ is an equivalence of categories conesponds to a morphism of co-
simplicial objects

L ( K Y x K Y ) + K Y

The properties of the shufi.e map (comp. [10] VI, $12) show that the associativity
law holds and furthermore (in cotttrast to tUe iunctor lf ; tn"t KY is a commutative
co-simplicial algebra if y is graded-commutative.

2.8. Lemma:

a) If X i,s a reduced small co-si,mplici,al algebra i,n A, then IfX i,s a reiluced, small
DGA i,n A.

b) If Y i,s a reduced smallDcA in A, then KY is a reiluced small co-si,mpli,cial algebra
in A and NKY -Y.

Assuming this lemma as well for the moment we prove the proposition 2.2. asfollows.
By lemma 2.8. we know that K is a fully faithful functor between red.uced. small
algebras and it remains to show the essential surjectivity. Let A(X x X) 3 X be a
reduced small co-simplicial algebra. Since K o N is isomorphic to the identity functor
of the category of co-simplicial objects we obtain, neglecting this isomorphisffir &
new structure of a reduced small co-simpticial algebra on X which ind.uces the same
algebra structure by cup product on trflX as the algebra structure with which we
started (use lemma 2.8.),

A ( x x x )  4 x



1 1

We show first that the two cup product structures on X- coincide. Since X- is
generated by Xr (both in the sense of the first and the second cup product) and
using the associativity laws we need to show only that the linear maps

P:l)

x l  8 . . . B x l  1 ,  * ,
P' :u t

are identical for all p. We decompose Xr as X1 - ll @ Irrt (a special case of the
decomposition 2.6.), which then defines a decomposition of the tensor product above.
The restriction of p or i to the summand .l[1 I ... A 1l g .,. g .nfl (factor 1l in the
positions fr (

(2 .9 . )  l r (a r  I  . . .818  . . .A  ao) :  6 i r - t4 i , - r -1  . . .d i ' - t ( r ,  U  . . .  U  r r )  ,

as follows by a repeated application of the identity (2.7.). An obvious induction shows
that p - F' , so that the two cup product structures on X- are identical. To show
that the two co-simplicial algebra structures on X coincide and since X1 generates
X, it suffices to show that the two maps

nz(u,u)

( x t  4 . . . 8 x l )  o  ( x t  a . . . o x r )  :  x e
rr '"  (U'rU')

(twice p factors) coincide. This follows from the bi.multiplicativity of the cup product
(which holds since X is commutative for either algebra structure)

( r  u  v) .  @'  vy ' )  -  (x  .  d)u (s  .  s , )
and the obvious fact that on Xl both algebra structures coincide.

It remains to prove lemmas 2.3. and 2.8..

Proof of 2.3.: The argument is similar to the above. We have to consider

p i Xt.6 ... I X1 -> XP

and its restriction p to the summand JV1 8...6If 1 in the direct sum decomposition of
the tensor product induced from the decomposition Xl - 1l O.nf 1. Then the image of
p lies in l[p. trbom the identity (2.9.) *. conclude that p maps all direct summands
other than I[1 8... A I[1 into Dp. Therefore p is surjective if and only if the image
of tt, is all of .f[P.

Proof of 2.8.: a) It is obvious that N X is red.uced and by 2.3. N X is generated by
lf 1. It remains to show that IfX is commutative. Since If t g.o.rates IfX it suffices
to show that r U r : 0 for c € -nfl. Consider

p 2 X t  8 X l  ! Y z

This map is surjective. Since (t(-1)td')(*) € If2, it is by the argument in the proof
of.2.3. the image of an element o € .nfl g I[1,

a'@) : d,o(r) + a'@) + p(u)



L2

Since l[1 is an ideal of squar e zero we get

o  -  d r  ( * ' )  -  ( d ' ( r ) ) '  -  2 .  r n  x

b) That KY is reduced is obvious, that it is commutative follows from the properties
of the shufi.e map which have been mentioned earliei, and that KY is generated by
KYt folows from 2.3.. Thereforc KY is a small co-simplicial algebra, since an easy
calculation using the definition of the algebra structure on KY shows that N KYL
has square zero. The last assertion follows from the commutative diagram

Y A Y
s f

nrA(/(r x KY)
A W I

N K Y A N K Y

lt
Y A Y

---+ Y

l l
---+ N KY

t l
-+ NKY

l l
Y

in which the first and last horizontal arrows are identical since on the normal co-
chains the composition S o AW is the identity morphism ([12], II, Th*21^a,)).

In what follows we shall be interested in only two O-categories.
1) The category Vec6 of ,t-vector spaces. In this case the concepts of co-simpticial
algebras and DGA are the usual ones. We shall call them c-algebras resp. d-algebras.

2) The category C2_s(Vec6) of complexes of vector spaces in degree ) 0. In this case
we shall call a co-simplicial algebra a cd-algebra and a DGA a dd-ügebra. It is clear
that a cd-algebra is simply a co-simpliciat DGA, whereas a dd-algebra is a bigraded
algebra in .A*" with two differentials d* and d of. degree (1,0) and (0, 1) respectively,
with d,d,* : d* d and which are graded derivations with respect to the first resp. the
second degree.

There is an obvious functor

C>o(Vec6) ---+ Vecn

which assigns to a complex its zero'th component. Correspondingly we have functors

red.uced small cd-algebras --+ red,uced. small c-algebras
reduced small dd-atgebras -) reduced small d-algebras

These functors have left-adjoints, to be denoted by CI.

ExplicitlR if R' is a red.uced small c-algebra one associates as follows to R'
a reduced small cd-algebra 0*(A') with a homomorphism -R' 0.(A') with the
required universal property.

0. (R') : o* (R') I cd - ideal spanned. by

[Kerso : O*(nt) --+ f,]*(no)]'
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Here 0.(A') : frh.lx is the de Rham complex of .R'. trbom the fact that trf is
an equivalence of categories (Proposition 2.2.) we obtain a natural isomorphism of
functors 

rfCI - f,1r

We shall now apply these concepts to an explicit example. Let g be a Lie algebra
over k and let C'(g) - C'(S, k) be the Lie algebra complex with values in the triviat
representation (see $1). Then C'(g) is a reduced small d-algebra. We consider the
complex which is concentrated in degrees L and 2,

d| : id: g' --- g,

where as before g' denotes the dual vector space. We form the free graded-commu-
tative DGA' 

w -�A(s, -* g,) - ^g(g,) e A(s,)

Then W is graded in an obvious way (totat degree), but also graded according to the
word length in terms of generators, i.e., the direct summand.

Wi , i _S t (g , )O l i - t ( e , )

has total degree 2i+ i -i - i*j, and word length i + (j -i) - j. The differentiat
d* extends uniquely as a graded derination w.r.t. the ntst degree. It is the Koszul
differential ([7], $9,3.) d* : Wi,i + Wi*t,i

d*(* r . . . t ;  B  g t  A . . .  Ay; - ; )  -

I f  
- t l ' y " t t . . . t ; g  g r  A . . .  Aü "A . . .  Ay j - i

on the other hand there is a canonical embedding A'g, + w0,'and., as one checks
easily, the difierential in the Lie complex extends in a unique way into a differential
d : W*" -> W*"*1 such that dd,* : d* d, and indeed. d induces on iry;,' the difierential
in the Lie complex C'(g,St(g')). It is obvious from the construction that W*'' has a
universal propertyl) which implies that

W*": O*(c'(e))

W*'' is called the Weil algebra.

The Koszul complex W*'' is acyclic in degree ) 0 and a resolution of k in degree
0 ([7], $9,3, Pro-n. 3.). We therefore obtain thJfirst statement in the following leJma
(cohomology of the simple ssmplex associated to a double complex).

2.10. Lemma:

a)  Hi(W*")  :  A for j  > 0 and,  Ho(W.: . ) :  k .
b) H'^(W>n' ')  -  (S'g')8.

1) In fact, W*,' has the universal property
not just reduced small ones.

within all graded-commutative DGA,
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Proof of b): Since Wi'i - 0 for i < j we obtain

H'-(W>n") - Ker(S'(g') I Aog' 4 S*(9') I Atg')
- Ho (e, S^(g')) : ,5'(g')B

From now on G is a reductive algebraic group over & with Lie atgebra g. Extending
scalars from ,k to C and using the existence of a compact form we deduce from the
results of $1 that

(2.11.) HbnG) : fr.(e)
The isomorphism is induced by restricting a differential form to the identity.

2.12. Lemma:

TIt ere is one and only one ri,ng homomorphi,sm

H'ö^(B.G) - S.(g')8

whi'ch i,s functorial in G and such that for G - G- it identi,fies g' : ,St (s')B with
the space of i,naari,ant di,fferentials on G -- BtG (f,rst component of B.C). Thi,s
homomorphism i,s an i,somorphi,sm.

Proof: The last condition means the following. The edge homomorphism

Hbn(B.c) - * nbnq)
which appears in the Eilenberg-Moore spectral sequence ([g], 9.1.b)

Elo : HLnGr) ==1 HP;;(B.G)

is -an isomorphism for G - G,-. Under the identification of Hba@.G-) with
ää"(G-) the morphism in the statement of 2.L2. becomes thi- iiomorphism
flf,"(G,)3[o(G,,",ol) : g'. Let T c G be a ma:rimal torus. The first asser-
tion follows from the diagram in which, W is the Weyt group.(not the Weil algebra!)
(. .s. [e],  6.1.6.)

H2;n@.G) -+ H4R@.T)

S.(g ' )8 : ,5* ( t ' ) -  ^9 . ( t ' )
The second assertion follows from the strong form of the splitting principle which
identifies ään( B.G) with the W-invariants in .H| n(8.") (loc.cit.).

We next consider the following chain of homomorphisms defined via 2.10.. Let n > 0.

(S'g')B - H2^(W>n,') :  l !2n-r11trV*, ' lW>*, ')  + gtn-r(W*, '11ry2t ' )  :

: !{2n-t (s)

Let
p ' . (g)  : ,S*(e ' )g/ (S2t(e ' )B .  S '>1(s,)g)

be the factor space of indecomposable elements and let Prim*(g) b. the sub-space
of primitive elements in If.(g). The following theorem is due to H.Cartan [8]; for a
proof we refer to [1a] ,6.L4.
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2.L3. Theorem:

The abooe hornornorphism induceE on isornorphism

p'*(s) -, pri*2'-t(g)

We now apply the results to G -, GLx over Q. In this case, as is well known,
the Chern class cn e H$"@.G /e) defines via 2.!2. a generator of the vector space
P2^(g/e) which thus hai to go uoäer the isomorphismin 2.13. to a generat or a2n-1 of

l_riT"_t(s), which via 2.11. is also a generator of primffit(GlE) c n\;t(Glq).
Under the comparison isomorphism

Hbn(e ß) : Hb"rr;(G(A ), A )

the subspace P'fft (G rc) goes into n?.;rl(G(G ), Q (")). Indeed, this follows ftp*
[5], 4.3., using the restriition isomorphism

Eb"rr;(G(A ), A ) + Eh"ui(K, A)

Here as in $1, K - UN is the maximal compact subgroup of GIry(C). Making use
of the element 7r2n-r introduced in $1, at least up to a rational factot, *. roo.lod.

2.t4. Corollary:

Let G be GLy1g. The image azn-t of the n'th chern class cn e Hgh@.G) und,er
the homomorphism

HTn@.G)'Ü'S'(g')8 "9' g2n-t(s) : g2n-t (k, c)

is equal to o non-zero rational tnultip,le of the image of (2tri,)orl2n-t e E';";l(/f,A)
uniler the comparison isomorphisrn Hbn(K) O G = Hb"tr(K,G).

We conclude this section with two questions which are raised by the preced-
ing considerations. Let G be a reductive atgebraic group over G. Then the edge
homomorphismin the Eilenberg-Moore spectral sequence ([g], g.i..b.) gives for z > 0

H*rrr(B.G(A),Q) - El. '2n-r :  n2ärrl(C(C),e) .

Does this homomorphism correspond under the comparison isomorphism between
Betti cohomology and de Rham cohomology to the map defined in 2.!4.?

Let G be a reductive group over an arbitrary field of characteristic z,eto. Is the
isomorphism in (2.13.) the inverse of the transgression homomorphism associated to
the Leray spectral sequence in de Rha,m cohomology of the universal G-bundle over
B.G? This is stated without proof by Beilinson, [1], A 9.1.
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$3. Beilinson's version of the van Est isomorphism

Let G be an algebraic group over lR. Let 3.6Q) be the largest simplicial closed
subscheme of B.G with first component the first infinitesimal neighbourhood of the
identity, G(1).

p t  = 6 r ( r ) =  B z G e )  =  
'

We thus have inductively (inverse images inside of. BoG)

BrGQ) - .Ä^ @;1-t(Bp_tc(t))r  
i : o t  r

Clearly B7GQ) g 5l(t) x ... x 5l(t), but this is in general a strict inclusion. On the other
hand, 3.gQ contains the first infinitesimal neighbourhood of the identity in each
component. The simplicial scheme B.GG) is the largest small simplicial subscheme
in B .G. Beilinson's interpretation of the Borel regulator is based on the following
lemma.

3.1. Lemma:

There i,s a canoni,cal i,somorphi,sm of reduced DGA

Iff/0 (B.GQ),,S0) :  N H0 (A.C<t> ,O) = C'(e)

Proof: We are dealing here with the cohomology of (simplicial) analytic spaces over
fR ( [13]  ,2.L. ) .c tear ly  Ho(Br6r( t ) ,o) :  Ho(Br5r( t ) ,so)  -  tR @g,,  wi th gtbeing the
augmentation ideal of square zero. Therefore both sides coincide in degrees 0 and
1, and we shall show that there is a unique extension to an isomorphism of DGA.
Uniqueness is clear.

Let 0 be the completion of the local ring at the identity element of. G, so that
lß g g' - Ö lrn', with m denoting the ma:rimal .ideat. Choose an isomorphism
O t! A[[Xt , ..., Xnf] such that the formal group law of G is described by ??, power
series in 2n variables Gr (L,Y), ..., G^(X, Y) with

G{X-,I) : x; * Y +D ti* xtxp mod d.eg 3

By definition, the affine ring of. Bz6l(t) is the ring

(Öltn' a Ölrn')l t,

where J2 is the image of d'(*'), i.e., of the ideal generated by the products Gi. Gi
i nösö  -n l6 , f l l .  Bu r

G; .Gi: (x; +Y + t "!tx1,Ya)(xi *yi + I c!tx1,v) mod deg B
- X;Yj +YXi in Ö lrn' A Ö 1rrr?

For the normalization we obtain

N2 H0(.B.ct t l , ,So) :  N2 H0 (B.GQ),0) :  g,  g g,  lJ ,  -

: gt g g, lSy*, g, : Arg,
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Recalling the definition of the face and degeneracy operators in higher d.egree we
see that the left hand side in 3.1. in degree p is the factor space of g,oo by the
symmetrizet subspace of two consecutive variables, i.e., ̂ pgt. To see that the vector
space isomorphism thus obtained respects the DGA structures it suffi.ces to show
that it is multiplicative in degree L and that the first differentials coincide. The
multiplicative structure on C'(g) is given by the wedge product. To srU eg, there
is associated the alternating bilinear form on g

n ̂  v(€,r i l  :  c({) .  y(rü - x(r i .  y(€)

The multiplicative structure on N0(B.G(r)) is induced by the cup prod.uct, so that
for / : o € g',g : y egt we obtain the element / u g - s gye gi eg, lJr, io which
corresponds the alternating bilinear iorm ß A g on g. Thus multiplicativity is clear.
It remains to compare the first difierentials and for this we use the following formula
for the Lie bracket io g (comp. [20], exercise L.44., p.20), Let €; e g be the dual
basis corresponding to the coordinates X;. Then

[{r,{z] : f(rkt _ ,!r).e, .
i

The difierential on the left side

d r g ' - - * g ' 8 g ' l J z

is given by
d(x;) - x; - (xt +V+ f "!tx1,Y2) + Umod./z

- 
t c!2x1,y2 ,

to which comesponds the alternating bilinear form on g

d,(X;X€r,{r): -(r!t - "!*)
- -xi([€r,{c])

Recalling the definition of the differential in the Lie complex ($1) this proves the
assertion.

\Me now return to the definition of the Borel regulator which was based on the
continuou6 group cohomology HI".r(G(lR),lR).(In fact we shall take g : .Rc naGlx).Since continuous cohomology may be calculaied by C*-coetrains we have

(3.2.) HI",r(G(tR), tR) _ H* (8.G, ,So)

Ilere on the right side is the cohomology of the simplicial scheme over lR with values
in the sheaf of real-valued C--functions (cf. t13]). The restriction homomorphism
and lemma 3.1. now define a homomorphism

HI".,(G(lR), lR) - H* (8.G, S0) ---+ H. (B.G(1), g0 I 4 : If .(g, tR)

Here J C 5o d.enotes the simplicial ideat generated by m2 in degree 1, so that
S o l J : S $ . c , . , .
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3.3. Theorern:

The aboae homomorphi,sm i,s the composi,ti,on of the aan Est isomorphism anil the
canonical map fro* the relatiae Li,e algebra cohomology to the absolite Li,e algebra
cohomology.

By construction, this composition is obtained. as follows. Consider the homo-
morphism of complexes

tR --* [^go(G) -,St(G) -, . . . ]

It induces a homomorphism in continuous cohomology,

HI"^r(G(lR), lR) --+ HI".r(G(lR),S'(c)) :  H*(S'(c)c(n))

I/.(g, tR) .

If. M is a continuous G(l[)-module we associate to it a simplicial ̂ 9o-module sheaf on
B.G, to be denoted by M . ExplicitlS tet

1fon - Map6"" (Go, M)

(or rather "sheafification of"), with arrows di : Ii[p * Ii[p+l given by

(  f k h . . . t 9 p t l t )  i : o
d i ( f ) (g r . . . tnp* r ) :  {  f (g . t . . . tg ig i * l r . . . , lp * i  i  <  j  <p

t g ; t ' f b t , . - - , e p )  j - p * r

Then just as in (3.2.) we have HXo*r(G(lR), M): H*(B.G,tit1.

We denote by I;[Q the she af. Ift g So I J on B.G(l). We need the following
generalization of lemma 8.1..

3.4. Lemma3

tr,Ho(g.Ctt l  , [ [( t)) _ C.(e ,M)

Proof: Both sides are modules in the difierential graded sense over the DGA
NHI(B-Gg,O) - C'(g) and are generated by their zero'th component, which is
M in both cases. F\rrthermore, as graded vector spaces we have

NHu(a.Crt l  , rh{Gl1 _ NHl(a.crr l  ,O)oM ,
C(s,M):  C(e) a M

Hence both sides are isomorphic as graded vector spaces. Since the d.ifierentials on
both sides agree in degree zero, the two moduler ur. isomorphic.

Denoting as before bV Ö,the completion of the local ring at the identity we put

f [  -  M uso(qö



H.(B.G(1) ,^90 l4 -  H*(B.G(1) ,^ i0(C; f t l  - *  ^91(G)(r )  - r . . . )

Jlv
H.(C'(e, lR)) -> H*(c'(e,^s0(c))T" ,*,^9r(c)) -r . . .)

I+
H.(C'(e, io(c)) - C'(e, i ' (c)) -+ . . .)

I+
H. (C'(g, Hom(U(d,lR)) -+ C' (e,Hom(Z/(s), Als')) * ...)
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Then there is a natural identification ([20], p.21)

SiG) - Hom(U(e),^rg') ,

where U(d denotes the universal enveloping algebra. It follows that (Shapiro iso-
morphism)

ä*(s, sj(G)) :  H*(g, Hom (u(ü,Ajs')) -  Ajg'[O]

The assertion now follows from the commutativity of the following diagram (here
commutativity means that isomorphisms going the "wrong way" have to be inverted).

HL. i (G( lR), lR)  -  HXon(G(tR),  So(G) -*  ^g1(G) *  . . . )  - r  H.(S-(q G0R))

J,-, l l
f/.(g, lR)H*(B.G,So) - -+ H.(8.G,^90(C) -*  51(G) *  . . . )
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$4. Equality of the two regulator maps

We continue with the set-up of $3. On B.G(1) we consider the following analogue of
the Deligne complex

A(n)o - (CI2' @ A(n) -, O.)[1] .

Here o* _ n"(q@.G(t))) is the value of the functor o* on the reduced small c-
algebra O(.B.G( 1))' *hich we may also consider as a complex of sheaves on g.g0) .
Clearly gi (B.GQ) , A(n)) : 0 for j > 0. On the other trana we deduce from lemma
3.1. that

s i (B.G(1) ,O.)  -  1t i1NO*) -  Ei (R.(  No(B.G( ' ) ) )  _ Hi(R.(c. (s)) )  :

_ H i ( W * , . ) _ 0  f o r  X > 0

by the results of $2. We thus obtain for n ) 0 an isomorphism

H'^(8.6(t) ,  A@)o) -3 Hr.(B.6r(t),  O2')

We now have a commutative diagram (the upper horizontal arrow is an isomorphism
(compare [tr]))

Hy(n.?,t(") ) -, 82.(B:G, Fn) _ Hgh@.G)
J J 

--Jo
H,^(8.6r(t) ,  A@)r) - Hr"(B.6r(r),  R>') _ ,z.1i7>rz,.)

Ilere the vertical arrows are defined using the maps (comp. $2)

Oäc * Oäc(1) -' 0* : Oär,r, lrd - ideal generated by

[Kerso : O* (tl1g{tl)) -* lR]2

4.1. Proposit ion:

The compositi,on of ö: Hgh@.G) -> f[2n(w>.,') wi,th the i,somorphi,sm of 2.10.,
H'^(w>n'') = S'(gr18, coiici'i,iles with the isomorphi,sm of lemma 2.12.

Proof: Indeed, the construction of d is clearly functorial and for G _
required isomorphism.

4.2. Corollary:

G* is the

The Beili,nson regulator and the Borel regulator are identi,cal maps (up to a factor i,n
Q . /

Kz'"-t(A) - R(rz - 1) ,

In this proof we shall have to distinguish whether we consider the Lie algebra g

:f 
G - GL-N1a as a real or complex Lie algebra; correspondingly we write gÄ or g.

By proposition 4-1. the composition of the following homomorphisms coinciääi with
the map considered before 2.18.

H';n@.q 3 H'-(w>??' ')  3 E2n-t(w*, ' lw>n,')  -  H2n-t(w*,. lwzt,-) -

: J{2n-t(s) - H,;;t(C)
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Therefore the image of the rz-th Chern class is the canonical primitive element
ozn-t e H':-t(g). We consider the commutative d.iagram where ;r ;JJ ;;:, :
lR(rz)l> --+ tR(rz)12 denotes the natural homomorphism to the "real version" of the
Deligne complex (t131)

:

HT:(B.G,R(r))':; 'rr'(4.6,R(r,)p) -172n-r(B,G,S'(r-1)/r') -112n-r(B.G,So(n-1))

I
I' +

I
|  |  r r t n - r

t H"^-t(glnR(r - t)) = ,z^-t1a.G(r), So/J(n 1))
I

Ö I ' l , f r

l  t ' - '

\ rr'(r.G'(')iF(n)";

I

gzn7ty2n,.) Hz'r-L (w. ,. lw>nf)

f
I

F2n-r(g).

Here the interesting arronrs come by projecting Q* resp. ^9' on its zero,th
component. Now the n-th Chern class cn may be considered as an element in
HY(B.G, lR(rz)). By what we saw already the image of c,-in E2n-t(e) is the element
o2n--t On the other hand, the homoirorphism

e* z Hf (B.G;R(n)) -, H2n-r(a.a.,rry(C), tR(rz - 1))

may be factored as the composition of

ET(n.G, tR(n)) --r a2n-L(B.G,,so(, - 1))

and the forget-the-topology-map

n\:;t(crry(a), tR(z - 1)) 7 Hzn-t(cl,u(c), tR(rz - 1)) ,
" where the first map is the composition of the maps in the upper horizontal line in
the diagram above. Therefore, to conclude the proof, since the-map

H*(g,k; lR) :  E*(sl1y(a), uiv; tR) -+ E*(gr*(a), rR) - .H.(g7p, rR)

,f-i.ju:live ([5] P.2.),it suffices to show that the ima ge6zn-r of u2n-tund.er rrn-t ig2n-t (e) -* g2n-t (sl,*,lR(n - 1)) coincides with the image of the Borel regulator
element bz'"-�t under the injection g2n-t(g,k; lR(rz - 1)) - HLn-t(g, lR(n - 1)).

The first map is the composition of the map '

ö , H*(S) --* fl.(glrn; C) ,

gzn-r(r/{t,.lw>t11
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which comes about by considering a C-multilinear form on g as an lR-multilinear
form, and the projectiotL 7rn-1on the coeff.cients. In terms of the isomorphism.(1.7.)

8 c  = g O g

and identifying H.(g/n;C) with I/.(gn), the map / is induced. by the projection on
the first factor, i.e., under the Künnetf isomorphism

I/.(ec) = H*(g e s) = ä.(e) I ä.(s)

the map / sends x to c I 1. We were unable to show the equality of b2n-1 and
bzn-t, but less is required to prove 4.2.. Indeed, the imag. oi the Hur ewicz map
Tr2n-r(BGLN-(C)*)On -> Hzn-r(Grr1C), lR) is contained L the primitive subspace
(compare [18]) which is dual to the factor space of indecomposable elements in the
cohomology. It therefore remains to show that the imag.r ofö2n-r and,6zn-1 in the
indecomposable quotient coincide

On I/. (gc ) there is a canonical rational structure induced from the Künneth
decomposition. The algebra map induced from the diagonal g --+ g o g,

d:  H*(gn) =* I / . (g)  ,

is defined over Q and is surjective. F\rrthermore, there is an exact sequence of spaces
of indecomposables in (relative) Lie algebra cohomology (compare [b], b.2.).

0 + P*(gc,kc)  *  p. (gc )  1 p.(S)  -*  0

In degre 22n-Lthe middle space has dimensi on2and the space on the right d.imension
1. our claim therefore follows from the following lemma.

4.3. Lemma3

The images of bzn-r and,6z.-..t in P*(*n) are both rati,onal, non-zero, and, lie in the
kernel of d. 

' v-

Proof: We first con'side r bzn-t Applnng the comparison isohorphism, its image in
P-(gc) comes from the composition of maps

Hbtettr(GulK,q + Hb"rrt(G,, C)
1-

Hb.ni(K,A.)

Since these are induced from continuous maps they preserve rational cohomology.
Therefore the rationality of bzn-t follows just as in i.t+. from [b], 4.3. The other
assertions about bzn_t are trivially true.

We now consid'e r 6z'-..t Thlt also gives another description of the Borel regula-
tor' The involution on fy'*(Sl,*, €) induced. by complex conjugation on the coeffcient
system correspond's to the involution on f/*(gn) which is induced by the involution
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on the complex A.gb which sends a multilinear form .f or gC to the multi-linear
form c/ with

(" f)(Xr, . . . ,Xr) -m ,
where a: gC * gc is induced fromXgÄ --+ XAI, i.e., in terms of the isomorphism
(1.7.) ,

(Xt, Xr) * (-'Xr, -tft)

Let r : X -> -t 7S be the canonical outer automorphism of g. It is defined over Q .
Since on k we have X - ,(x), we conclude from (1.g.) and (zl+.1that

r ( a z n - t ) :  ( - 1 ) n . r r n - ,

Since 'u2n-r is real we therefore obtain

c ( a z n - t  S  1 ) : 1 9  r ( a z n _ t )  :  ( - 1 ) ' . 1  g u z n _ t

and hence, since lrn_t - Id, + (-1)'-r",

(4-4 . )  6rn- ,  -  ( Id+ ( -1) ' - t " ) (orn- r  81)
: ' o z n - ! 8 1 - L s - u z n - r

Now all required properties of 6rn-rare obvious.
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