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Abstract. We describe a program for computing the Morava K-theory of
certain iterated loop spaces of spheres, based on a hypothetical duality with
the computation of that of the Eilenberg-MacLane spaces by Wilson and the
author [RW80]. Under this duality the duals of the bar spectral sequence
and facts about K(n)∗(BZ/p) used in [RW80] are the Eilenberg-Moore spec-
tral sequence and facts about K(n)∗(Ω2S2m+1) respectively. The program
depends on the existence of a new geometric structure in those loop spaces
dual to the cup product. We get a precise answer under these hypotheses.

Iterated loop spaces of spheres have played a central role in homotopy theory
for many years. They have been thoroughly studied but there are still some open
questions concerning them.

We will denote Ωm+1Ss+1 by Lm,s. Its homology has long been known for many
years and is given in [CLM76]. Its BP homology is known only for m ≤ 1; see
[Rav93]. Its Morava K-theory was computed for m = 1 by Yamaguchi [Yam88]
and for m = 2 by Tamaki (unpublished). In §5 we will describe a speculative pro-
gram to compute the Morava K-theory more generally in a way that is analogous
to the Ravenel-Wilson computation [RW80] of the Morava K-theory of Eilenberg-
MacLane spaces, which is reviewed in §4. It depends on a hypothetical new geo-
metric structure on the stable Snaith summands of iterated loop spaces.

1. Notation

• p is an odd prime. (See §5.4 for the case p = 2.)
• h denotes either ordinary mod p homology H or K(n).
• h∗,∗(X) = Torh∗(X)(h∗, h∗), the E2-term of the Eilenberg-Moore spectral

sequence converging (in favorable circumstances) to h∗(ΩX).
• For a loop space X, h∗,∗(X) = Torh∗(X)(h∗, h∗), the E2-term of the bar

spectral sequence converging to h∗(BX).
• Km = K(Z/(p), m).
• Lm,s = Ωm+1Ss+1 for 0 ≤ m < s.
• E(x) is the exterior algebra on x.
• P (x) is the polynomial algebra on x.
• T (x) is the truncated polynomial algebra of height p on x.
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2. Two old splitting theorems

2.1. The James splitting. We begin by recalling the splitting theorem of
James [Jam55]

ΣL0,s = ΣΩSs+1 '
∨

i>0

Ssi+1.(2.1)

This means projection onto the ith summand gives a map

ΣΩSs+1 −→ Ssi+1,

which is adjoint to

ΩSs+1
Hi

−−−−−−−−−→ ΩSsi+1,(2.2)

the ith James-Hopf map. James also showed that ΩSs+1 is homotopy equivalent
to a CW complex with a single cell in each dimension divisible by s. He identified
the ks-skeleton as a certain topological quotient of the k-fold Cartesian product of
Ss. It is called the reduced product or the kth James construction and is denoted
by JkSs, i. e.,

JkSs = Ss ∪ e2s ∪ . . . ∪ eks ' (ΩSs+1)ks.

Earlier Hopf ([Hop30] and [Hop35]) studied the map of (2.2) for i = 2. When
s is odd, its fiber is Ss, i.e., we have a fibration

S2m−1 −→ ΩS2m −→ ΩS4m−1.(2.3)

Serre [Ser53] showed that this splits after localization at any odd prime p, i.e., that

ΩS2m
(p) ' S2m−1

(p) × ΩS4m−1
(p) ,

so

π2m+k(S2m
(p) ) ∼= π2m−1+k(S2m−1

(p) )⊕ π2m+k(S4m−1
(p) ).

In other words, from the point of view of computing homotopy groups, even dimen-
sional spheres are uninteresting at odd primes; one need only study odd dimensional
spheres.

James also identifed the p-local fiber of (2.2) when s is even and i is a power
of p. We get a fiber sequence

Jpj−1S
2s
(p) −→ ΩS2s+1

(p)

Hpj

−−−−−−−−−→ ΩS2spj+1
(p)

This is of particular interest for j = 1. We regard Jp−1S
2s
(p) as a p-local substitute

for S2s, and denote it by Ŝ2s. (Note that for p = 2, Ŝ2s is simply S2s
(2).) Thus we

have a p-local fiber sequence

Ŝ2s −→ ΩS2s+1
Hp

−−−−−−−−−→ ΩS2ps+1.(2.4)

Toda [Tod62] showed that there is also a p-local fiber sequence

S2s−1 −→ ΩŜ2s −→ ΩS2ps−1;(2.5)
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for p = 2 this coincides with (2.3). The long exact sequences of homotopy groups
associated with these two fiber sequences are called the EHP sequence. They give
us a wonderful inductive procedure for computing the homotopy groups of spheres.
Some additional references for this are [Whi53], [Mah67], [BCK+66], [Mah82],
[Gra84], [Gra85], [MR87], [Rav86, Chapter 1] and [MR93].

2.2. The Snaith splitting. In [Sna74] Snaith generalized (2.1) and gave a
stable splitting of Lm,s of the form

Σ∞Ωm+1Ss+1 '
∨

i>0

Σi(s−m)Di
m,s,(2.6)

where each stable summand Di
m,s is a certain finite spectrum with bottom cell

in dimension 0, defined in terms of configuration spaces. When an element x ∈
H∗(Ωm+1Ss+1) comes from the i the Snaith summand, we will say that its Snaith
degree, denoted by ||x||, is i.

By the James, splitting, Di
0,s = S0 for all i and s. One also knows that

D1
m,s = S0 for all m and s.

One also has pairings

Di
m,s ∧Dj

m,s −→ Di+j
m,s(2.7)

having degree one on the bottom cell.
These summands also have the following properties after localization at a prime

p.

• The stable summands of Ω2S2s+1 are

Dpi+e
1,2s =

{
pt. if e 6= 0, 1 mod (p)
Σ(p−2)iBi if e = 0 or 1,

(2.8)

where Bi is the ith Brown-Gitler spectrum. For p = 2 this fact is due to
Mahowald [Mah77] and Brown-Peterson [BP78]. For odd primes part of
it was proved by Ralph Cohen [Coh81] and the rest by David Hunter and
Nick Kuhn [HK].
• For every odd m, Di

m,2s is contractible unless i is congruent to 0 or 1 mod
p. The bottom p-local cell of Dpi

m,2s has dimension (p− 2)i. (For even m it
has dimension 0.)

• The top cell of Di
m,2s is in dimension m(i− αp(i)) where αp(i) denotes the

sum of the digits in the p-adic expansion of i.
• For fixed i and m, the p-local homotopy type of Di

m,2s depends only on
the congruence of s modulo pf(m) for a certain arithmetic function f . In
particular f(1) = 0 and f(2) = 1; see [CCKN83] for more information.
Using this fact we can define Di

m,2s for all integers s. In particular we can
define a ring spectrum

Lm =
∨

i≥0

Di
m,0.(2.9)
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3. Some new spectra

3.1. A colimit of Snaith summands. The pairings (2.7) with j = 1 give us
maps Di

m,2s → Di+1
m,2s. For even m we define

D∞
m,2s = hocolim−→

i

Di
m,2s.(3.1)

For odd m this would be contractible at odd primes, so we need to modify the
definition to get something interesting. Consider the composite

Sp−2 ∧Dpi
m,2s −→ Dp

m,2s ∧Dpi
m,2s −→ D

p(i+1)
m,2s .

This has degree 1 on the bottom cell, which lies in dimension (p− 2)(i + 1), so we
define

D∞
m,2s = hocolim−→

i

Σi(2−p)Dpi
m,2s.(3.2)

Question 1. What is the spectrum D∞
m,2s defined by (3.1) and (3.2)?

The James splitting (2.1) gives

D∞
0,2s = S0

and (2.8) gives

D∞
1,2s = hocolim−→

i

Bi = H/p,(3.3)

the mod p Eilenberg-MacLane spectrum. This latter fact plays a central role in
the proofs of the nilpotence theorem of Devinatz-Hopkin-Smith [DHS88] (see also
[Rav92, Chapter 9]) and of Nishida’s theorem [Nis73].

The spectrum D∞
1,2s can be identified with the Thom spectrum of certain p-local

spherical fibration over Ω2S3. For p = 2 it is the vector bundle given by the double
loop map Ω2S3 → BO extending the nontrivial map from S1. The identification of
the corresponding Thom spectrum with H/2 (which does not require knowing that
D2i

1,2s is a Brown-Gitler specturm) is originally due to Mahowald [Mah79].
To see (3.3) computationally, note that

H∗(Ω2S2s+1) =
{

P (e0, e1, . . . ) for p = 2
E(e0, e1, . . . )⊗ P (f1, f2 . . . ) for p odd

where |ei| = 2spi − 1, |fi| = 2spi − 2 and both generators have Snaith degree pi.
The action of the Steenrod algebra is given by the following formulas, with all other
operations on the generators being zero.

Sq1(ei+1) = e2
i for p = 2

β(ei) = fi for p odd
P1(fi+1) = fp

i .

In the mapping the Snaith summands to D∞
1,2s, we have

e0 7→ 1,

f1 7→ 1,

fi+1 7→ ξi,

and ei+1 7→ τi
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for odd primes (where ξi and τi denote the standard generators of the dual Steenrod
algebra) and

e0 7→ 1
and ei 7→ ξi

for p = 2.
We can use (3.3) to get information about D∞

2k+1,2s in the following way. We
have the 2k-fold suspension map

Ω2S2s−2k+1 −→ Ω2k+2S2s+1,

which induces maps of Snaith summands

Di
1,2s−2k −→ Di

2k+1,2s,

making the spectrum D∞
2k+1,2s a module spectrum over D∞

1,2s−2k, i.e. a generalized
mod p Eilenberg-Mac Lane spectrum.

However, the homotopy type of D∞
m,2s for even m is far less obvious. D∞

2,0 is
the Thom spectrum for the complex vector bundle induced by the composite

Ω3
0S

3 = Ω3
0SU(2) −→ Ω3

0SU = BU.

Thus MU is a module spectrum over D∞
2,0, which is not an Eilenberg-Mac Lane

spectrum. In §6 we will see that certain telescopes are module spectra over it.
For odd primes we have

H∗(Ω3S2ps+1) = P (uk : k ≥ 0)⊗ E(xi,j : i > 0, j ≥ 0)⊗ P (yi,j : i > 0, j ≥ 0),

with

|uk| = 2spk+1 − 2

||uk|| = pk

|xi,j | = 2spi+j+1 − 2pj − 1

||xi,j || = pi+j

|yi,j | = 2spi+j+2 − 2pj+1 − 2

||yi,j || = pi+j+1,

where ||x|| denotes the Snaith degree of x. For p = 2 we have a similar description
with yi,j = x2

i,j .
For odd primes the action of the Steenrod algebra A is given by

β(ui) = xi,0 for i > 0

Ppk

(ui) =
{

up
i−1 if k = 0

0 otherwise
β(xi,j) = yi,j−1 for j > 0

Ppk

(xi,j) =
{

xi−1,j+1 if k = j
0 otherwise

β(yi,j) = 0

Ppk

(yi,j) =
{

yi−1,j+1 if k = j + 1
0 otherwise.
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For p = 2 we have

Sq2k

(ui) =





xi,0 if k = 0
u2

i−1 if k = 1
x2

i−k+1,k−2 otherwise

Sq2k

(xi,j) =





x2
i,j−1 if k = 0 and j > 0

xi−1,j+1 if k = j + 1
0 otherwise.

More generally, D∞
2m,2s is the Thom spectrum for the stable complex vector

bundle induced by the composite

Ω2m+1
0 S2m+1 −→ Q0S

0 = BΣ+
∞

(s−m)ρ
−−−−−−−−−→ BU

where ρ denotes the standard complex representation of the infinite symmetric
group Σ∞. (For the equivalence of Q0S

0 = BΣ+
∞, see [Ada78].) It follows that

MU is a module spectrum over each D∞
2m,2s.

3.2. A colimit of dual Snaith summands. It is convenient here to restate
the p-local stable Snaith splitting [Sna74]

Lm,2s '
∨

i>0

Σ2siCi
m,2s(3.4)

where Ci
m,2s is a certain suspension of the summand Di

m,2s of (2.6). It has top cell
in dimension −mαp(i), where αp(i) is the sum of the digits in the p-adic expansion
of i. As before the p-local homotopy of Ci

m,2s for fixed m and i depends only on the
congruence of s modulo pf(m). When s is divisible by pf(m), we abbreviate Ci

m,2s

by Ci
m. Lm will denote the spectrum

∨

i>0

Ci
m.

Knowing its cohomology is equivalent to knowing that of the space Lm,2s for s
highly divisible in light of the Snaith splitting. We can use this isomorphism to
define cup products in h∗(Lm).

The Hopf map

Lm,2s

Hp−−−−−−−−−→ Lm,2ps,

induces maps

Cpi
m,2s −→ Ci

m,2ps

having degree 1 on the top cell. For m = 1 and p = 2 this is due to [CMM78],
and the general case is due to [Kuh]. For s highly divisible by p this gives us

Cpi
m −→ Ci

m.

This leads to an inverse system of spectra, but we want to look instead at the
homotopy direct limit of the Spanier-Whitehead duals. Let

K̃m = hocolim−→
DH

DCpj

m .

It has bottom cell in dimension m.
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Conjecture 1. For p = 2 the spectrum K̃m has the suspension spectrum of
the Eilenberg-MacLane space Km as a retract. For an odd prime p K̃m has a
nontrivial retract of the suspension spectrum of the Eilenberg-MacLane space Km

as a retract.

For m = 1 and p = 2 this can be deduced from a theorem of Carlsson [Car83],
which is needed for Miller’s proof of the Sullivan conjecture [Mil84]. Kuhn [Kuh]
has recently shown that H∗(K̃m) is an unstable A-module having H∗(Km) as a
summand for all m, and has identified the other summands as well.

4. The Ravenel-Wilson computation of K(n)∗(Km)

Conjecture 1 implies that K(n)∗(K̃m) and K(n)∗(Km) have a common non-
trivial summand. In this section we will describe the computation of the latter by
Wilson and the author [RW80]. The approach used there is also good for comput-
ing the ordinary homology of the Eilenberg-MacLane spaces, and with it one can
get complete information with no prior knowledge of Steenrod operations. For more
details, see Wilson’s primer [Wil82]. In the next section we will suggest a way in
which this approach might carry over to a computation of K(n)∗(Lm,2s) .

We have the bar spectral sequence with

E∗,∗
2 = h∗,∗(Km) =⇒ h∗(Km+1).

It always collapses for h∗ = H∗ but not for h∗ = K(n)∗. Since K1 = BZ/p is an
S1-bundle over CP∞, h∗(K1) can be also calculated with the Gysin sequence. This
result implies that in the bar spectral sequence for m = 0 there are both nontrivial
differentials and multiplicative extensions at E∞.

A key computational ingredient for this bar spectral sequence is the cup product
map

K` ∧Km −→ K`+m,

(induced by the cup product of the fundamental classes in H∗(K` × Km)) which
induces a spectral sequence pairing

h∗(K`)⊗ h∗,∗(Km) −→ h∗,∗(K`+m)(4.1)

known as the circle product. The image of x ⊗ y under this map is denoted by
x ◦ y.

This enables us to determine the behavior of the bar spectral sequence for each
m > 0 once we know it for m = 0. In particular we find that

K(n)∗(Km) = 0 iff m > n,

and it is concentrated in even dimensions for m ≤ n.
In more detail, K0 is the discrete group of order p so h∗(K0) is its group ring

over h∗, which is isomorphic to T (u). It follows that for each h,

h∗,∗(K0) = E(s)⊗ T (ai : i ≥ 0)(4.2)

with |s| = 1 and |ai| = 2pi. The bar spectral sequence collapses for h = H, and for
h = K(n), there is a differential

dr(an) = vns, with r = 2pn − 1,(4.3)
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which gives

E0h∗(K1) = E∞ = T (ai : 0 ≤ i < n).(4.4)

There is a multiplicative extension

ap
n−1 = vna0.(4.5)

Now here is a useful mnenomic device not used in [RW80]. We can ignore
the multiplicative extension and still get the right answer in the spectral sequence.
We pretend that E∞ = h∗(K1), and find that the resulting Tor group (using our
transpotent formula τ(V (x)) = a0 ◦ x) is

E(s ◦ ai : 0 ≤ i < n)⊗ T (aj ◦ ai+j+1 : 0 ≤ j, 0 ≤ i < n).

We can regard this as the E1-term of the bar spectral sequence. Our formulas give
differentials

dr(an−1−i ◦ an) = −vns ◦ an−1−i

(this is a d1 for i = n− 1) which leads to the correct value of E∞.
For h = H the bar spectral sequence collapses and we have

H∗(K2) = H∗,∗(K1) = T (bi : i ≥ 0)⊗ T (aj ◦ ai+j+1 : i, j ≥ 0)(4.6)

with |bi| = 2pi. The element bi is in the image of the map CP∞ → K2 and it is
the dual (with respect to basis described below) of P∆ix2, where xm ∈ Hm(Km)
is the fundamental class. The element aj ◦ ai+j+1 is dual to QjQi+j+1x2. The
basis in question is that of monomials in generators obtained by the action on xm

of suitable Milnor basis elements of the Steenrod algebra.

5. A speculative computation of K(n)∗(Lm)

5.1. A possible analog of the cup product.

Conjecture 2. The cup product pairing

K` ∧Km −→ K`+m

has an analog

K̃` ∧ K̃m −→ K̃`+m

which also has degree one on the bottom cell and similar formal properties.

I had hoped for a similar copairing

Ci
` ∧ Ci

m ←− Ci
`+m

but this cannot exist as the following example illustrates. Let p = 2 and i = 2.
Then

Ci
k = Σ−kRP 0

−k

and the desired map up to suspension is

RP 0
−` ∧RP 0

−m ←− RP 0
−`+m,

which cannot exist for A-module reasons. Perhaps there is a copairing of the form

Ci
` ∧ Cj

m ←− Ci+j
`+m.
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The ‘dual’ of the bar spectral sequence is the Eilenberg-Moore spectral se-
quence, in which we have

E∗,∗
2 = h∗,∗(Lm) =⇒ h∗(Lm+1).

Tamaki ([Tam94] and [Tam]) has shown that it converges for Morava K-theory.
Like the bar spectral sequence, it collapses for all m for h∗ = H∗ but not for
h∗ = K(n)∗.

If Conjecture 2 holds, one could hope for spectral sequence pairings

h∗(L`)⊗ h∗,∗(Lm) −→ h∗,∗(L`+m),

analogous to (4.1), which I will refer to as the cocircle product. Again we denote the
image of x⊗ y by x ◦ y As in the Ravenel-Wilson computation, these should enable
us to use the behavior of the spectral sequence for m = 0 to determine its behavior
for all m > 0. This leads to an explicit description of K(n)∗(Lm) in all cases. It
agrees with results of Yamaguchi for m = 1 and with an unpublished computation
of Tamaki for m = 2. We will give more details in the next subsections.

5.2. An analog of the Ravenel-Wilson computation. I believe that the
computation of h∗(Lm) by induction on m via the Eilenberg-Moore spectral se-
quence, which converges by Tamaki’s theorem, is parallel to that of h∗(Km) by the
bar spectral sequence. To emphasize this analogy, I will use notation for elements
in h∗(Lm) similar to that for the corresponding the elements in h∗(Km), except
that there will be an extra index in the former related to the Snaith degree.

Here is a table illustrating this. It includes a description of the Verschiebung
V when it is nontrivial. Our indexing convention is the following. All indices are
assumed to be nonnegative, with any additional conditions stated explicitly. When
there are two subscripts, the Snaith degree is determined by their sum, and the
Verschiebung lowers the first index.

Eilenberg-Mac Lane spaces Loop spaces of spheres
u ∈ h0(K0) uj ∈ h0(L0)

||uj || = pj

V (uj+1) = uj

H(uj) = uj+1

s ∈ h1(K1) sj ∈ h−1(L1)
||sj || = pj

H(sj) = sj+1

ai ∈ h2pi(K1) ai,j ∈ h−2pi

(L1)
||ai,j || = pi+j+1

V (ai+1) = ai V (ai+1,j) = ai,j

H(ai,j) = ai,j+1

bi ∈ h2pi(K2) bi,j ∈ h−2pi

(L2)
b0 = s ◦ s b0,j = sj ◦ sj

||bi,j || = pi+j

V (bi+1) = bi V (bi+1,j) = bi,j

H(bi,j) = bi,j+1

By James’ theorem, L0 is a wedge of 0-spheres, and

h∗(L0) = T (uj).
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The element uj is the unit for the cocircle product in Snaith degree pj .
The following formulas should be compared with (4.2–4.5). We have

h∗,∗(L0) = E(sj)⊗ T (ai,j)(5.1)

The Eilenberg-Moore spectral sequence collapses for h = H, and for h = K(n),
there is a differential

dr(an,j) = vnsn+j+1,(5.2)

which gives

E∞ = E(sj : j ≤ n)⊗ T (ai,j : i < n).(5.3)

This is compatible with Yamaguchi’s computation [Yam88] of K(n)∗(L1). There
is a multiplicative extension (proved in [Rav93] )

ap
n−1,j = vna0,j+n.(5.4)

As before, (5.4) can be ignored when computing Tor. Using (5.3) as a substitute for
h∗(L1), and assuming that a generator V (x) of Snaith degree pj has desuspension
sj ◦ V (x), and transpotent a0,j ◦ x, we get

h∗,∗(L1) = T (bi,j : j ≤ n)⊗
E(si+j+1 ◦ ai,j : i < n)⊗
T (ak,i+j+1 ◦ ai+k+1,j : i < n).

(5.5)

There are differentials and extensions formally implied by (5.2) and (5.4), and we
get

h∗(L2) = T (bi,j : j ≤ n)⊗
E(si+j+1 ◦ ai,j : i + j < n)⊗
T (ak,i+j+1 ◦ ai+k+1,j : i + k + 1 < n).

(5.6)

Note that bi,j is a permanent cycle because there is no suitable target for a nontrivial
differential on it. The resulting value of K(n)∗(Ω3Sodd) is equivalent to Tamaki’s
(unpublished).

In ordinary cohomology we have

H∗(L1) = E(sj)⊗ T (ai,j)
H∗(L2) = Γ(b0,j)⊗ E(si+j+1 ◦ ai,j)

⊗Γ(a0,i+j+1 ◦ ai+1,j)
= T (bk,j)⊗ E(si+j+1 ◦ ai,j)

⊗T (ak,i+j+1 ◦ ak+i+1,j)
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In terms of Dyer-Lashof operations acting on the fundamental class x−m ∈
H−m(Lm),

sj is dual to Qj
1x−1,

ai,j is dual to Qi
0βQj

1x−1,

bk,j is dual to Qk
0βQj

1x−2,

si+j+1 ◦ ai,j is dual to Qi
1βQj

1x−2 and

ak,i+j+1 ◦ ak+i+1,j is dual to Qk
0βQi

1βQj
1x−2.

5.3. A computational conjecture. Now I will state a conjecture about the
structure of the ‘Hopf Ring’ K(n)∗(L∗).

Here is some more notation. For a sequence of n zeroes and ones

I = (i0, i1, . . . in−1),

let

λ(I) = max(s : is > 0),
|I| = i0 + i1 + . . . + in−1,

and ||I|| = i0 + pi1 + . . . + pn−1in−1.

For t ≥ λ(I), let

aI,t = a◦i00,t ◦ a◦i11,t−1 ◦ · · · a◦in−1
n−1,t+1−n ∈ K(n)−2||I||(L|I|)

For a sequence of n + 1 nonnegative integers

J = (j0, j1, . . . jn),

let

λ(J) = max(s : js > 0),
|J | = j0 + j1 + . . . + jn,

and ||J || = j0 + pj1 + . . . + pnjn.

For t ≥ λ(J), let

bt,J = b◦j0t,0 ◦ b◦j1t−1,1 ◦ · · · ◦ b◦jn

t−n,n. ∈ K(n)−2||J||(L2|J|).

Conjecture 3.
⊗

m≥0

K(n)∗(Lm) = E(st ◦ bt,J ◦ aI,t−1 : t ≤ n)⊗ T (bt,J ◦ aI,t−1)

with all possible values of I, J and t, subject to the multiplicative extension of (4.5).
If I and J consist entirely of zeroes, then t ≥ 0, and st ◦bt,J ◦aI,t−1 and bt,J ◦aI,t−1

are understood to be st and ut respectively. For n = ∞ (ordinary homology) this
should lead to the usual description of H∗(Lm).

Now consider the Hopf map H : Lm,2s → Lm,2ps. For m ≡ 0 this induces maps
Cpi

m → Ci
m. In cohomology we have

si 7→ si+1,
ai,j 7→ ai,j+1,

and bi,j 7→ bi,j+1.
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Since sj and bi,j are trivial for j > n, only the generators in the limit

lim−→
i

h∗(Cpi

m )

are m-fold cocircle products of ai,js, so the limit contains a summand isomorphic
to the vector space spanned by the generators of K(n)∗(Km), as one would expect
in light of Conjecture 1.

Next we note that Conjecture 3 leads to a description of K(n)∗(Lm,2s) for
general s as follows. In the Snaith splitting 3.4, each summand Ci

m,2s is up to
suspension the Thom spectrum of a certain complex vector bundle over a certain
configuration space. The stable fiber homotopy type of this bundle depends only
on the congruence class of s module pf(m) for a known function f . Our divisi-
bility condition on s meant that we were considering the cases where the bundle
is fiber homotopically trivial. Since K(n) is complex orientable, it follows that
K(n)∗(Ci

m,2s) is Thom isomorphic to K(n)∗(Ci
m), which is described in principle

by Conjecture 3.
It may be possible to prove Conjecture 3 without proving the other two. The

former describes the answer in the language (the cocircle product) provided by
Conjecture 2. Without this language it could be translated into a description
of the differentials and multiplicative extensions occuring in the Eilenberg-Moore
spectral sequence. Without the cocircle product we still have a spectral sequence
of Hopf algebras which must respect the Snaith splitting and the Hopf map. The
conjecture says that there all the differentials are formally implied (via the Hopf
algebra structure or the Hopf map) by those occuring in Snaith degree pn+1. The
differentials in Snaith degree pn+1 may be detected by the Milnor operation Qn.
The absence of any other differentials could be forced on us by all the structure at
hand if we do the required bookkeeping carefully enough.

5.4. Computations for p = 2. In this section we will describe the computa-
tion for p = 2. Again it is understood that all indices range over the nonnegative
integers unless otherwise specified. The notation here is simpler. The table of §5.2
gets replaced by

Eilenberg-Mac Lane spaces Loop spaces of spheres
u ∈ h0(K0) uj ∈ h0(L0)

||uj || = 2j

V (uj+1) = uj

H(uj) = uj+1

ai ∈ h2i(K1) ai,j ∈ h−2i

(L1)
||ai,j || = 2i+j

V (ai+1) = ai V (ai+1,j) = ai,j

H(ai,j) = ai,j+1

bi = ai ◦ ai bi,j = ai,j ◦ ai,j

In the odd primary case we had ai ◦ ai = 0 and ai,j ◦ ai,j = 0 due to sign consider-
ations. For p = 2 these products need not vanish, and it is convenient to use the
indicated notation for them.
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In ordinary homology we have

H∗(K0) = E(u)
H∗(K1) = H∗,∗(K0) = Γ(a0)

= E(ai : i ≥ 0)

where ai ∈ H2i(K1) is dual to Sq∆ix1 ∈ H2i

(K1), with xm ∈ Hm(Km) being the
fundamental class. More generally we have

H∗(Km) = Γ(a0 ◦ ai1 ◦ ai1+i2 ◦ . . . ◦ ai1+···+im−1)
= E(ai0 ◦ ai0+i1 ◦ ai0+i1+i2 ◦ . . . ◦ ai0+···+im−1)

where

ai0 ◦ ai0+i1 ◦ ai0+i1+i2 ◦ . . . ◦ ai0+···+im−1 ∈ H2i0+2i0+i1+...+2i0+...+im−1 (Km)

is dual to

Sq∆i0+∆i0+i1+...+∆i0+...im−1 xm.

Similarly for loop spaces we have

H∗(Lm) = E(ai0,i1+...+im ◦ ai0+i1,i2+...+im ◦ . . . ◦ ai0+...+im−1,im)

where ai,j ∈ H−2i

(L1) has Snaith degree 2i+j . In terms of Dyer-Lashof operations
on the fundamental class x−m ∈ H−m(Lm), the element

ai0,i1+...+im ◦ ai0+i1,i2+...+im ◦ . . . ◦ ai0+...+im−1,im

is dual to

Qi0
0 Qi1

1 . . . Qim
m x−m.

For h = K(n) we have differentials

dr(an+1) = vna0

and dr(an+1,j) = vna0,i+n+1,

and multiplicative extensions

a2
n = vna1

and a2
n,j = vna1,n+j .

Thus we have (using the same mnemonic device as before)

h∗(K0) = E(u)
h∗,∗(K0) = E(ai : i ≥ 0)

E0h∗(K1) = E(ai+1 : 0 ≤ i < n)
h∗,∗(K1) = E(ai0 ◦ a1+i0+i1 : i1 < n)

E0h∗(K2) = E(a1+i0 ◦ a2+i0+i1 : i0 + i1 < n− 1)
...

E0h∗(Km) = E(a1+i0 ◦ a2+i0+i1 ◦ . . . ◦ am+i0+...+im−1 :
i0 + . . . + im−1 < n + 1−m).

Note that the conditions on the subscripts cannot be satisfied for m > n, so in that
case Km is K(n)-acyclic.



14 DOUGLAS C. RAVENEL

We can show that ai ◦ai = 0 by induction on i as follows. Since a1 is primitive,
a1 ◦ a1 is primitive and there are no primitives of its dimension in K(n)∗(K2).
Inductively ai ◦ ai is primitive and hence zero.

For loop spaces we have

h∗(L0) = E(uj)
h∗,∗(L0) = E(ai,j)

E0h∗(L1) = E(a0,j : j ≤ n)⊗ E(a1+i,j : i < n)
h∗,∗(L1) = Γ(a0,j ◦ a0,j : j ≤ n)⊗ Γ(a0,1+i1+j ◦ a1+i1,j : i1 < n)

= E(bi0,j : j ≤ n)⊗ E(ai0,1+i1+j ◦ a1+i0+i1,j : i < n)

E0h∗(L2) = E(bi0,j : j ≤ n)⊗ E(a0,1+i1+j ◦ a1+i1,j : i1 + j < n)
⊗E(a1+i0,1+i1+j ◦ a2+i0+i1,j : i0 + i1 < n− 1)

...

Notice that the last factor of E0h∗(L1) and of E0h∗(L1) resemble E0h∗(K1) and
E0h∗(K2) respectively, but the other factors in the former have no analogs in the
latter.

6. Triple loop spaces and telescopes

In this section we will outline the computation of h∗(L2) without relying on
the conjectures stated above. We want to do this for some additional homology
theories h which we now describe. The first is k(n), connective Morava K-theory.

The next is y(n), which for p = 2 is the Thom spectrum associated with the
composite map

ΩJpn−1(S2)→ Ω2S3 → BO

Here Jk(S2) denotes the kth James reduced product on S2 (which is the same
as the 2k-skeleton of ΩS3), and the last map is the double loop map induced by
the nontrivial element of π1(BO). For odd primes y(n) is the Thom spectrum
associated with a certain p-local spherical fibration induced from one over Ω2S3

which Thomifies to H/p.
Then we have

H∗(y(n)) =
{

P (ξ1, . . . , ξn) for p = 2
E(τ0, . . . τn−1)⊗ P (ξ1, . . . , ξn) for p odd

as comodule algebras over the dual Steenrod algebra. There is a map y(n)→ k(n)
inducing a surjection in ordinary mod p homology. It is an equivalence through
dimension 2pn+1 − 4.

The spectrum Y (n) is the telescope obtained from y(n) by iterating a map

vn : Σ2pn−2y(n)→ y(n),

which is obtained as follows. We have a fiber sequence of spaces

Ω3S2pn+1 → ΩJpn−1(S2)→ Ω2S3

which Thomifies to a stable map

Ω3S2pn+1 → y(n).
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The bottom cell of the source gives us an element of vn ∈ π2pn−2(y(n)) which (since
y(n) is a ring spectrum) gives us the desired self map. This map makes Y (n) a
module spectrum over D∞

2,0.
Note that K(n) and k(n) are module spectra over Y (n) and y(n) respectively,

while Y (n)∗ and y(n)∗ are (unnaturally) modules over K(n)∗ and k(n)∗.
Now consider the Atiyah-Hirzebruch spectral sequence for h∗(L1), where we

have

E2 = H∗(L1, h
∗).

For each theory other than H∗ the first differential is induced by the Milnor oper-
ation Qn, and we have (modulo vn-torsion for h = y(n) and k(n))

E2pn = E(sj : j ≤ n)⊗ T (ai,j : i < n).

We want to show that there are no other differentials. Note that this spectral
sequence has the following structure.

• All differentials must respect the Snaith splitting, i.e., they must preserve
Snaith degree.
• It is a spectral sequence of Hopf algebras. If sj or ai,j supports a nontrivial

differential, its target must be a linear combination (over h∗) of other such
generators of the same Snaith degree.

• Differentials must commute with the Hopf map H, which raises the index j
by one.

Concerning the Hopf map, we remark that Tamaki’s spectral sequence for the ho-
mology of a space of the form Ω3Σ3X is functorial on X while the Hopf map is not.
However Tamaki has shown [Tam] that his spectral sequence coincides from E2

onward with the Eilenberg-Moore spectral sequence, which is natural with respect
to all loop maps including the Hopf map H.

Now the primitives of Snaith degree pk surviving to E2pn are
{ {sk, a0,k−1, a1,k−2, . . . ak−1,0} for k ≤ n
{a0,k−1, a1,k−2, . . . an−1,k−n} for k > n.

Thus within each Snaith degree the dimensions of these elements are within 2pn−1

of each other, so there is no room for any more differentials. Hence we have (subject
to the multiplicative extensions of (5.4))

Y (n)∗(L1) = Y (n)∗ ⊗K(n)∗ K(n)∗(L1)
= E(sj : j ≤ n)⊗ T (ai,j : i < n)

and y(n)∗(L1) = y(n)∗ ⊗k(n)∗ k(n)∗(L1)
modulo vn-torsion.

Now we can proceed to the computation of h∗(L2). We will study Tamaki’s
formulation of the Eilenberg-Moore spectral sequence. In the case h∗ = Y (n)∗,
h∗(L1) is a free module over the coefficient ring, so the E2-term is Tor as before. In
the case h∗ = y(n)∗ we can make similar computations modulo vn-torsion. With
this understanding we have

E2 = Γ(σsj : j ≤ n)⊗ E(σai,j : i < n)⊗ Γ(τai,j : i < n).

We expect differentials

d2pn−i−1−1(γpn−i−1(τai,j)) = vnσan−i−1,i+j+1 for i < n.(6.1)
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If we can prove this for j = 0, the Hopf map will give it to us for j > 0. The element
γpn−i−1(τai,0) has Snaith degree pn+1, and there are no differentials (in either the
Atiyah-Hirzebruch spectral sequence or the Eilenberg-Moore spectral sequence) in
lower Snaith degrees. In ordinary cohomology one can show that

Qnγpn−i−1(τai,0) = σan−i−1,i+j+1,

so a similar differential occurs in the Atiyah-Hirzebruch spectral sequence. The
failure of such a differential to occur in the Eilenberg-Moore spectral sequence
would lead to the wrong description of h∗(Cpn+1

2 ), so the differentials of (6.1) must
occur.

This means that E2pn−1 is a subquotient of

T (γpk(σsj) : j ≤ n)⊗ E(σai,j : i + j < n)⊗ T (γpk(τai,j) : k + i < n− 1).(6.2)

In Snaith degree p` for ` ≥ n + 1, the generators listed are

{γp`−i−j−1(τai,j) ∈ h−2p`−j−2p`−i−j−2p`−i−j−1
: i < n− 1, `− j < n}⋃ {γp`−j (σsj) ∈ h−2p`−j

: j ≤ n};(6.3)

The dimensions shown are the ones the elements would have if they survived. Dif-
ferentials in this spectral sequence raise dimensions. Elements in the first family
are in dimensions so high that they cannot support any nontrivial differentials.

Elements of the second family of (6.3) (where there is no restriction on ` − j)
occur in lower dimensions. Each is annihilated by some iterate of the Hopf map,
so it cannot support a differential hitting an element of the first family. The only
remaining possibility is a differential of the form

dr(γp`−j1 (σsj1)) = xγp`−j2 (σsj2)

for some x ∈ h∗ and j1 < j2. Since we have a spectral sequence of Hopf algebras,
the target of the first such differential must be primitive. (This is dual to the
statement that a pth power can support a differential only if its pth root supports
an earlier differential.) However since j2 ≤ n and ` ≥ n + 1 the target above is
never primitive.

It follows that no other differentials can occur so E∞ (modulo vn-torsion) is
the Hopf algebra of (6.2).
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