QUASI-ELLIPTIC COHOMOLOGY

CHARLES REZK

This is an attempt to understand Ganter’s construction of power operations, in [Gan07].
The “quasi-elliptic cohomology” & I describe here is basically the same one she describes,
except her version is defined over Z[q] (and in fact, could be defined over Z[q]), while the one
I describe is only defined over Z[g*]. Inverting ¢ allows me to interpret some constructions
more easily in terms of extensions of groups over the circle; also, it will be clear that the
construction with ¢ inverted actually gives cohomology theory.

I also drop the condition that G be a finite group; the only advantage to doing this is
to give a direct interpretation of Er(pt) in terms of the Katz-Mazur group scheme. Al-
though amusing, this is not really the correct way to handle infinite groups. For instance,
things should be set up so that & takes values in sheaves on the object G,, /¢”, which is a
stacky group object defined over SpecZ[¢*]. Instead, we will only consider a construction
which takes values in modules on the Katz-Mazur group scheme T'(q) := (G, //¢%)tors Over
Spec Z[g*].

The term “quasi-elliptic” is used because Er is not naturally attached to an elliptic curve,
but after base change to Z((q)) we can attach the Tate curve to this theory.

1. EXTENDING GROUPS OVER THE CIRCLE

In what follows, we write T for the Lie group R/Z. Let ¢: T — U(1) be the isomorphism
t — e?™* We may think of ¢ as the tautological 1-dimensional representation of T, so that
we thus fix an identification

K%(%) = RT =~ Z[¢*].
More generally, given an non-zero integer n, we write T,, for the Lie group R/nZ. Then
we write ¢'/™: T,, — U(1) for the isomorphism ¢ — e2™/n and thus fix an identification
K%, (¥) = RT, =~ Z[g*"/"].

The choice is made so that the projection T, 24 T induces on representation rings the

evident inclusion Z[g%] =% Z[¢*1/"]. Thus the evident isomorphism T, 22" T induces
1/n
the isomorphism Z[qi] =, Z[qil/n]_
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1.1. The groups ég. Let G be a compact Lie group. Given an element o in the center of
G, we define the topological group G, to be the quotient of G x R by the subgroup generated
by (o, —1). Thus, there is an exact sequence

0oz 20 gyr o2l &0y

and thus éo sits in an extension
0] =~ gt~
1—-G 919 ]> G, lo ]H>11‘—>0.
If o is an element of finite order k, then we get a smaller extension

o@D~ T, (9:[t)—1g,t]

0— Z/kZ Gy — 1.

Note that there is a homomorphism v: R — G, defined by [t] — [e, ¢], whose image lies
in the center of G,. If o has infinite order, then v is injective, while if o has finite order k,
it descends to an injective homomorphism R/kZ — G, which fits in an exact sequence

0= R/kz 2 G 10029 gy

Thus, for torsion central elements o, the group G, is a U(1)-central extension of G/(c).

1.2. The groups é? The above construction admits the following mild variant. Given
an element o in the center of G, and m > 1 an integer, we define c?(,m to be the quotient
G x R/(c™,—m)%. When m = 1, this coincides with the construction described above.
In general, there is an isomorphism G™ ~ G,m given by [g,] — [g,#/m]. The difference
between é? and égm is thus purely notational, but we will have need to distinguish them
carefully.

There are exact sequences

0 R Z 1'—)(0’m,_m) G x R (gat)'_)[g7t] é;n N 1

and

1 g 220 Gm oot o g

If 0™ is an element of finite order k, there is an extension

As above, we define v: R — G™ by [t] — [e,t]. If 6™ has infinite order, then v is injective,
while if 0™ has finite order &, then -y descends to an injective homomorphism R/kZ — G7'
which fits into an exact sequence

—[e,t]

0 = z/kz 20, Gm 19129, Gy gmy .
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1.3. Representations of extensions over a circle. We refer to the map =: C:";z — T,
defined by 7([g,t]) = [t] as the tautological projection. It induces a map of representation
rings 7*: RT,, — RG™. We identify ¢'/™ € RT,,, with its image ©*(¢'/™) € RG™.

1.4. Lemma. Suppose o is an element of the center of G, and m > 1. Then, the map
m*: RT), — RCNT"(}z exhibits Ré? as a free RT,,-module.

In particular, there is an RTy,-basis of Ré? given by irreducible represations {V\}, such
that restriction Vy — V)|G to G defines a bijection between {Vy} and the set {\} of irreducible
representations of G. Furthermore, the set of all irreducible representations of é? 15 precisely
the set of all Vy ® ¢*/™, where k € Z.

Proof. As noted earlier, there is an isomorphism G’Z’ ~ é’(,m which is compatible via the tau-
tological projections with the evident isomorphism T,,, = T. Thus, without loss of generality
we may reduce to the case m = 1.

Consider the extension

0720 oy g @Dl &y

We claim that there exists a bijective correspondence between

(1) isomorphism classes of irreducible éa—representations V, and
(2) isomorhpism classes of pairs (W, x), where W is an irreducible G-representation, and
x: R — C* is a character such that 0 € G acts on W via scalar multiplication by
x(1).
The correspondence sends V to (Vg, x), where x(t) describes the action of [1,¢]. It is clear
that any pair as in (2) arises from a unique irreducible ég representation.

Conversely, an arbitrary n-dimensional é(, representation V must have the form A ® 7,
where \: G — GL(n,C) is an n-dimensional G-representation, and : R — GL(n,C) is a
homomorphism, such that A(s) = 5(1). If V is irreducible as a G, representation, then
n(t) = x(t)I for some scalar x(t) € C*, since [0,#] is central in G,. It follows that X is an
irreducible G-representation (since a decomposition of A would also be a decomposition of
V as a G,-representation). O

1.5. Positive energy representations. Recall the homomorphism v: R — é(,m defined
by v(t) = [e, t]; note that 7y: R — T,, = R/mZ is the tautological quotient map, sending
t— [t].

We say that a representation p: 5’? — GL(n,C) is a positive energy representation

if D, := % d(’(’ict)'y) lt=0 is positive semi-definite (i.e., its eigenvalues are all non-negative).

If p is an irreducible representation of ég”, then D, = E(p)I, and the scalar E(p) € R
is the energy of p. If ™ has finite order k in G, then E(p) € +Z C R. We have that
E(p ® ¢*/™) = E(p) + k/m for k € Z, and more generally if p and p' are irreducible, then

p ® p' is a direct sum of irreducibles, each of which has energy E(p)E(p'). Thus, we can
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regard the representation ring Ré? as a ring graded by energy, where for £ € R the E-
homogeneous summand of Ré”an consists of all formal linear combinations of irreducibles of
energy b.

Let RJFC:”;z C R@? denote the subgroup generated by positive energy representations;
equivalently, it is the subgroup spanned by the irreducible positive energy representations.
The /representa,tion ring R G of positive energy representations is an algebra over R, T,,, =
Zlg'™).

Fix m > 1. For each irreducible G-representation A\: G — GL(n,C), write A(o™) =
e?™MET for a (necessarily unique) E € [0,1/m), and set x(t) = €™t Then the repre-
sentation p of G, determined by the pair (), x) is irreducible with energy E(p) = E, and
in fact is the irreducible of G, of minimal energy which restricts to A. The collection of
such minimal positive energy irreducibles gives a canonical choice of Z[qﬂ/ M]-basis of Rég‘,
which is also a Z[¢"/™]-basis of R, G™.

If o is a central element such that ¢ has finite order k, there is an injective ring homo-
morphism

RGY' — RGlg*!/M),
obtained by restriction along the surjective homomorphism G x T, — ég defined by
(g,[t]) ~ [g,t], and using our standard identification RT,,; = Z[g="/™¥]. Under this map
an irreducible representation p is sent to (p|G)¢?(?). The image of this monomorphism can
be identified with the set of V(q) = 3 V;¢"/™ where each V; € RG is a formal linear
combination of irreducible representations \ for which A(¢™) = ?>7#/kT,

Even if ¢ is not of finite order, we can still construct an injective ring homomorphism of
the form B

RGT' — RG[¢“|c € R],
so that an irreducible p is sent to (p|G)¢?(?), and whose image is characterized in the same
way as above.

1.6. The extended centralizers A(c) and A™ (o). Given an arbitrary element o of a
compact Lie group G, we define A(o) = Ag(o) := C(0),, where C(o) C G is the centralizer
of o in G.

1.7. Ezample. Let G = Z/N for N > 1, and let 0 € G. Given an integer k € Z which
projects to o € Z/N, let zj denote the representation of A(c) defined by

[a, ]~ [(a+kt)/N
—_

A(0) = (Z x R)/(Z(N,0) + Z(k, —1)) Lr/z=T%U(0)

Then zj is a 1l-dimensional representation of energy E(zy) = k/N, and RA(o) =
Zlg*, zx)/ (2l — ¢¥), where q represents A(c) = T 4, U(1). Observe that zp y = qzp.

The representations zj, each restrict to the fundamental representation Z/N M) R/Z =
T % U(1) of G. The set .
alg VRN =0, N~ 1,

is the Z[qT]-basis by minimal positive energy irreducibles.
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1.8. Ezample. Let G =T = R/Z, and let 0 € G. Given a number ¢ € R which projects to o,
let z. denote the representation of A(o) defined by

[x,t]—~[z+ct
—_—

A(o) = (R x R)/(Z(1,0) + Z(c, 1)) br/z =1 % U).

Then z. is a 1-dimensional representation of energy E(z.) = ¢, and RA(0) ~ Z[¢T, zF].
Observe that z.y1 = gz.. The representation z. restricts to the fundamental representation
T—T

T 2% T % U(1). The set
Aq U, jez,

is the Z[q™]-basis by minimal positive energy irreducibles.

Under the map ¢: Z/NZ FkIN, R/Z =T, if ¢ = k/N for k € Z, then the restriction
map RAr([c]) = RAz/nz([k]) sends 2. to .

More generally, we define A™(0) = A (o) := C/’?;):%
1.9. Ezample. Let G = T = R/Z and o € G, and choose ¢ € R which projects to 0. For
m > 1, let z. denote the representation of A™ (o) defined by

[x,t]—[z+ct
2

A™(0) = (R x R)/(Z(1,0) + Z(me, —m)) Lr/Z=T % U).

Then z is a 1-dimensional representation of energy E(z.) = ¢, and RA™(0) = Z[g='/™, zF],
and z.41 = qzc.

Likewise, if G = Z/NZ, and 0 € G is the image of k € Z, then let z; denote the
representation of A™(G) defined by

la,t]—[(a+kt)/N
—_

A™(0) = (Z x R)/(Z(N,0) + Z(mk, —m)) LR/Z=T % U).

Then E(zy) = k/N, and RA™(0) = Z[g*/™, i)/ (z) — ¢¥).

1.10. Products of extended centralizers. Given ¢ € G and 7 € H, we may consider the
fiber product A% (o) xr,, A}(0) of groups over the tautological projections to T,.

1.11. Proposition. The map [(g,h),t] — ([g,t], [h,t]) defines an isomorphism of groups
AR o (0,7) = AR (o) x1,, AT (T).

We have the following result on representation rings.

1.12. Proposition. The map RAJ(0) ®gr,, RAT (1) = RAZ, (0, T) which sends a tensor
product VW of representations to its restriction along the inclusion A%, (0, 7) = A (o)X
A (7) is an isomorphism.

Proof. This is a straightforward exercise using (1.4). O
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1.13. The maps a and 3. We describe homomorphisms
A"(0) & A™ (o) By A (o™)
for all m,n > 1 as follows.

Observe that there is a pullback square of groups

A (o) 20208 ()

Wl ﬂlw

Tmn S — )
[t]=[t]

and thus an extension

[0—1_1]

0 — Z/mZ 2270 Amn () & AM(6) s 1.

1.14. Proposition. The commutative square

RA™(5) £ RA"(0)

| [

RTpy «—— RT,

is a pushout square in the category of A-rings. In particular, there is a canonical isomorphism
of A\-rings

~

RA™(0)[¢"/™] = RA™ (o),
where “A[q'/™]” is shorthand for “\-ring pushout of Z[q*] — A along Z[¢*] C Z[¢gF/™]”.

Proof. This is straightforward given the description of the irreducibles of RA(c) and RA™ (o).
Recall that pushout in A-rings coincides with the pushout of the underlying commutative
rings. O

Note that there if 6™ has finite order k, there is a commutative diagram of rings
RA™(0) —— RC(0)[g""/""]
wl |
RA™(0) — RC(0)[g*"/"™"]

where the horizontal maps are the inclusions we have defined above, and the right-hand
vertical map is the evident inclusion.
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The homomorphism g: A™"* (o) — A™(c™) is defined to be the one in the following square
(which is not generally a pullback square)

]
> T

~
Tmn

[t]—[t/m)] "

Note that § is an isomorphism if C'(¢") = C(o). We observe that the induced homomor-
phism

RA™(o™) 225 RA™™ (5)
on representation rings is a A-ring homomorphism which sends g/ — gt/™n 1f o has finite
order k, there is a commutative diagram of rings

RAn(Um) SN RC(Um)[q:tl/kn]

o

RAmn(U) SN RC(O_)[q:tl/kmn]

where the horizontal maps are the inclusions we have defined above, and the right-hand
vertical map is defined using ¢k — g /kmn and the map on representations induced by the
inclusion C(o) C C(c™).

1.15. Ezample. Let G = R/T, and let o = [¢| for some ¢ € R. Under the identifications
A™(0) = Z[gF/™, 2] described earlier, the maps RA"™ (o) RN RA™ (o) i RA™(0™) are
described by ring homomorphisms

ZigF /", 2] 2 Zg ™ 2] 2 ZgH", 2,
where Ra sends ¢'/" — ¢'/" and 2z, +— z., while RS sends ¢!/™ — ¢'/™" and 2. — 2.
1.16. Ezample. Let G = Z/NZ, and let o = [k] for some k € Z. Under the identifications

A™(0) = Z[g*V™, 2k)/ (2l — ¢¥) described earlier, the maps RA™ (o) RN RA™ (o) K
RA™(0™) are described by ring homomorphisms

R Rp
2= w) /(2 — dF) = Z[e ] /(@) — ¢F) = ZIgT " e [ (g — ),
where Ra sends ql/n — ql/n and zj — z, while B3 sends ql/n — ql/m” and x,p — Tg.
2. QUASI-ELLIPTIC COHOMOLOGY

Given a space X with an action by G, and o € G, we let the group A™ (o) act on the
fixed point space X? C X in a way that extends the natural action of C(c), namebly by

[9,t] z:=g-z.
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We note that an element v € G induces by conjugation an intertwining x, of the actions
A(o) ~ X7 and A(uou™') ~ X% " By this, we mean the homomorphism

Ku: Mo) = Auou™), ku(lg,1]) = [ugu™", 1]
and the map
Kyt X7 — XU Ky (z) = uz,
which satisfy x,([g,t] - ) = ku([g,t]) - Ku(x). Such data induces an evident isomorphism
* * ou~1 * a
Hu: KAm( _1)(Xu u )—>KAm(U)(X ),

*
v

uou

and note that xj,, = k) K

u

2.1. Definition of quasi-elliptic cohomology. Let G be a compact lie group. The quasi-
elliptic cohomology of a G-space X is defined to be

G
o= (11 Kior)”
o-thors
where G'°™ C @G is the set of torsion elements of G, and G acts on the product as follows:
an element u € G sends © = (z,) to z-u defined by (z-u), = K} (z,5u-1). Given a set Gf:g‘;lsj

of representatives of G-conjugacy classes in G'°', we can write

~ [] KinX,

0.€Gtors

conj

where G C @ is the set of torsion elements of G, and G'égflsj is a set of representatives of

G-conjugacy classes in G'°'S. The factor KZ(U)X 9 is the usual equivariant K-theory of X¢
as a A(o)-space. The functor X — £5(X) defines an equivariant cohomology theory on the
category of G-CW complexes, taking values in graded commutative rings.

Here we are mainly interested in the case when G is a finite group, in which case G*°*8 = G.
When G is not a finite Lie group, the product defining £; will be an infinite product. It will
be convenient in this case to regard £5(X) as a pro-ring, topologized as an inverse limit of
finite products. As we noted in the introduction, this is not the optimal extension of this
theory to infinite compact Lie groups.

The cohomology of a point is given by

Ee=¢xt) = [] RA@)UU.

Uectors

conj
The projection maps m: A(c) — T give ring homomorphisms Z[¢¥] = K%(pt) —
KR(U) (pt) — Kg(U)X", and so £4(X) is naturally a Z[g*]-algebra. By (1.4), we see that
EL(pt) is a flat Z[g*)-algebra; when G is finite, £5(pt) is a finitely generated free Z[g*]-
module.
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2.2. Kiinneth map. We define a Kiinneth map EE(X)(EA@%E}'}(Y) = ELyg(X xXY) as

follows. Given o € G and 7 € H, recall the tautological isomorphism of groups Agx g (o, 7) =~

Ag(o)xTAp (1) C Ag(o) x Ag (1), defined by [(g, h), t] — ([g, ], [h,t]). Thus we obtain maps
K/*\G(ff) (X7) ®OK; KXH(T)(YT) - KKG(J)XTAH(T) (X7 xY7) ~ K/*\GxH(U,T) (X x Y)(UJ)

which fit together to give the desired Kiinneth map. Note that the symbol “®” is meant to
represent a suitable completed tensor product, so that

* s * def * o * T
EG(X) Qi3 (V) = I[I  EinX @K Ki, oY
(O',T)E(GX H)tors

If either G or H is a finite group, we can omit the completion.
The Kiinneth map is in some cases an isomorphism, in particular, we see using (1.4) that

55@95;5;1 ~ EGx-
2.3. Change of groups. Given a homomorphism ¢: H — G and an G-space X, and writing
¢* X for the H-space obtained by restricting the group action along ¢, we obtain an induced
ring map
9" EG(X) = €y (¢ X)
characterized by the commutative diagrams

E5(X) ———— (¢ X)

%(T)l J” T

* T ) * T
K} () (X)) —= K, () (X97)

of ring homomorphisms by means of the evident group homomorphisms ¢p: Ag(7) —
A (o(7)), sending [h,t] — [p(h),t].
If H is a closed subgroup of G, and if X is an H-space, then we obtain a change-of-group
map
Pl E6(G X X) = E(X),
defined as the composite

EL(G % X)L (G xn X) D Ep(X),

where ¢: H — G is the inclusion homomorphism and i: X — G xg X is the H-equivariant
map defined by i(z) := [e, z].

2.4. Proposition. The change of group map is an isomorphism.

Proof. We will construct a ring isomorphism

@ xaX)= ] Kiyo(@xaX)?) 5 I KiomAa(r) xaym X7)
Uegtors Tthors

conj conj
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with the property that the composite

i -
EGxuX) D [ Kigm@a(r) xapym X)) —= ] Ki,n(X7) =En(X)
TEHL TEHL

of v with the product of K-theoretic change-of-group isomorphisms coincides with the change-
of-group map for £-theory.

Recall that Gf:g‘;lsj and Hggﬁj are sets of representatives of conjugacy classes. Given 7 €

H_nj, there exists a unique o, € Gconj such that 7 = gro,g, ! for some ¢, € G. Fix a choice
of g, for each 7; any two such choices differ by right-multiplication by an element of C¢(0).
We have maps

AG(7) Xpyr) X7

The first map is Ag(7) equivariant, and the second map is equivariant with respect to the
homomorphism ¢y, : Ag(o) = Ap(7) sending [u,t] — [grug;!,t]. Taking a coproduct over
the set of H-conjugacy classes in H which are G-conjugate to o, we obtain an isomorphism

Yo 1T Ac(T) Xpy ) X755 (G xy X)°

{7€Hconjlor=0}

[u,z]

-1
ERERTEN [aholrual, (o v

(G X H X)T

which is equivariant with respect to cgf. We thus define v as the composite of the map

11 K} (o) (G X1 X)° = I Kauer ( ]_[ Ag(7) xAH(T)XT>

Uthors o€ Gtors { 7.efltors |0.1__0. }

conj conj conj

defined by the ~,, followed by the product isomorphism on cohomology. It is straightfor-
ward to check that the composite of v with the change-of-group isomorphisms for K-theory
recovers our definition of the change-of-group map for £. O

3. QUASI-ELLIPTIC A-RING STRUCTURE

3.1. The variant £, (X). We define

Ebrm(X) - (H Kiim () ”>~ IT &i,oX°

o-thors O.GGtors

conj
It is clear that £, is a multiplicative cohomology theory, taking values in Z[q*'/™]-algebras,
that it is equipped with natural Kiinneth maps and change-of-group isomorphisms.

Recall from (1.14) the natural isomorphisms of A-rings
RA™(0)[q"/™) = RA™(0) ®gjg1/m) Zlg*'/™"] = RA™ (o).
It follows that for an arbitrary G/(o)-space Y, the induced map
(Kanoy V"™ = Kjn ()Y
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is an isomorphism of A-rings; both sides are cohomology theories on the category of G/{o)-
CW complexes. Furthermore, the map is an in isomorphism of Z[g=!/™"]-algebras. We thus
have an natural isomorphism

E4(X)[g"™] = E4(X) ®rr BTy = E& 1 (X).

3.2. The operations p™. Since £2(X) is a product of conventional equivariant K-theory
rings, it evidently comes with the structure of a A-ring. We now produce A-ring homomor-
phisms p™: 5(X) — E5(X)[g"/™].

The map u™: £5(X) — £5(X)[¢"/™] will be a map

* o * g
II KX = Il K.0Xx"
Uthors O.GGtors

conj conj

We thus define 4 to be the map whose projection to the o-coordinate of the target is given
by

[1&iX° T K0 X7

| l

K} (om X7 5 Kimn X7 ——— Kim( X’

where the map * is induced by the homomorphism 3: A, () — A(c™) defined by S([g, t]) =
[g,t], and the second maps on the bottom is restriction along X% C X o,
It is immediate that with this definition, ;4™ is a map of A-rings, and that p™(q) = qt/m.

3.3. Quasi-elliptic \-rings. Recall that if A is a Z[q*]-algebra, we set A[q'/™] := A®gzq#
Z[g*Y/™]. If A is a A-ring and Z[¢*] — A is a A-ring homomorphism, then A[¢'/™] acquires
an evident A\-ring structure. We can regard the construction A — A[ql/ ™] as a functor
from A-rings under Z[¢*] to A-rings under Z[¢g='/™]. Furthermore, there are evident natural
isomorphisms A[g'/™][¢"/"] ~ A[g"/™"] of \-rings under Z[g*'/™"].

A quasi-elliptic \-ring is a A-ring A equipped with a A-ring homomorphism Z[¢g*] — A,
together with A-ring homomorphsms

P A= Alg™, o m>1,

with ™ (q) = ¢/™, such that u' = id4, and such that for all m,n > 1 the composite

m nlal/m
A Al ™ S Alg Mg~ Al
is equal to p™".

3.4. Proposition. The operations p™: E4(X) — EL(X)[¢"/™] defined above give the
sturcture of a quasi-elliptic A\-ring on E5(X).

Proof. This is largely straightforward. To prove the identity p" [ql/ Mo p™ = pmn ... O
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3.5. Sg(l)(pt) as a quasi-elliptic \-ring. We use the evident identification U(1)%*™ =
U(1)% ~ Q/Z. Thus, we have ring isomorphisms

conj "~
S S
6'[0](1) ~ <H RA(eQ’”C)> = (H Z[qi,zgc]) .
ceQ ceQ
The two terms on the right are the invariant subrings under a certain endomorphism S.
For the middle term, S is the ring endomorphism defined on =z = (z.) € [ RA(e*™¢) by
(8z)c 1= S(xcq1) (since €2™ct1) = ¢27i¢ in {7(1)). In terms of the right-hand expression, in
which z.: A(e?™¢) — U(1) is the representation defined by z.([u,t]) = e*™*'y, the map S is
given by
(SF)e(qs ze) = fer1(q, 2e+1) = fela qze),

where we write f = (f.(q, z¢)), where the f. are Laurent polynomials in two variables.
The A-ring structure is characterized by

(" )e(q, 2e) = feld", 2)-

The p™ operations are given by

(1" felg, ze) = fmc(ql/myzc)~
3.6. EY /nz(Pt) as a quasi-elliptic A-ring.

4. QUASI-ELLIPTIC COHOMOLOGY FOR ORBIFOLDS

Given a space X with an action by a compact Lie group G, the torsion inertia groupoid
I'°"(X//G) is a groupoid in spaces, with
e objects are the space [] cqtors X7,
e morphisms the space [[, ,cqions C(0,0') x X7, where C(0,0") is the subspace
{9eG|go=0'g} CG.
We write (o, ) for a typical object. A point (g,z) € C(0,0") x X7 is viewed as a morphism
(0,7) = (o', ga).

Observe that a complete set of representatives for isomorphism classes of objects in
I'(X//G) is given by []|,) X7, where [o] ranges over conjugacy classes of G'™®, and that
C(o,0) is the centralizer of o in G.

For each pair 0,0’ € G%*™, we define the space Ag(0,0’) = A(0,0’) to be the quotient of
C(0,0') x R under the action of Z, where the action of the generator of Z is given by

(g,t) = (go, t +1) = (o'g,t + 1).
We write [g,t] € A(o,0’) for the orbit of the pair (g,t).

We thus let A(X/G) be the groupoid with the same objects as I'°"*(X /@), and with
morphisms [[, ,/cgiors Alo,0") x X7, A point ([g,#],2) € A(o,0") x X7 is viewed as a
morphism from (o,z) — (0/,gz). Composition is defined by the rule [g1,t1] - [go,t2] =
(9192, 1 + t2].

Let m: A(X//G) — T be the functor which sends the morphism [g, ] to [t] € T.
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We can then define o
EH(X) = Kin(MX)G)).

If we choose representatives for conjugacy classes of elements in G*°® then we have

E&(X) = [[ Kanm X7
[0]

The theory described above for abelian Lie groups carries over in this case, in most cases
without change. To show that &£ (X) is a quasi-elliptic A-ring, it is convenient to argue
a little differently. First, for each pair 0,0’ € G%™, let A,(0,0’) denote the quotient of
C(o,0') X R under the action of Z, where the action of the generator of Z is given by

(9,t) = (90", t +1) = (o""g,t + 1).
Then define for n > 1 a groupoid A, (X/G) with
e objects the space [] cqtors X,
e morphisms the space [], ,/cgtors An(0,0') x X°.
A point ([g,t],z) € Ap(0o,0") x X7 is viewed as a morphism (o,z) — (¢’,gx). As before,
there is a functor 7: A, (X/G) — T sending [g, t] to [t].
We define two functors «, 5: Ap(X/G) — A(XJG). The functor « is given on objects
and morphisms by
(0,2) = (0,2),  [g,t] = [g,nt].
The functor 3 is given on objects and morphisms by
(0,2) = (6" z),  [g,1] = [g,1].
Observe that
An(X)G) —— MX/G)
wl l”
_
T [t]—[nt] T
is a pullback square in groupoids. Then show using (1.4) that

Kom(A(X/G)) =2 Ko (A (X))

T

Korb(*//T) E— Korb(*//T)

is a pushout square in A-rings, and so induces a natural isomorphism

~

b (AX GG = Koy (A (X ) G)).
Then p™ is defined to be the map

sH(AX)G)) L Ko (M (X)) = Koy (MX)G))[g"/ ™).
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5. NORM CONSTRUCTION

Let p: X — Y be a finite covering map between G-spaces, where G is a compact Lie
group. I want to produce a norm map N: é’gX — SgY. This will work as follows. Given
Ve EgX we want to produce NV =W € EgY. Thus, we have

e for each 0 € G and z € X7, a vector space V7, and
e for each [g,t] € A(0,0"), a map [g,t]: V.7 — Vi 1,

and using this we must produce similar data W7 and [g,t]: W] — Wg;* B

We first make an observation. If 0 € G, and if z € X is such that the o-orbit of = has
size n, then we can canomcally identify the vector spaces x, , as ' ranges over the o-orbit
of z. That is, whenever 2/ = ¢"z for some r € Z, we have an isomorphism

(0", ) VI S VIS =V
when r = 0 mod n this isomorphism is precisely the identity map of V", and these

isomorphisms are compatible, in the sense that the composite of canonical isomorphisms
Vo' Vz‘Tn — Vz‘T,n is the canonical isomorphism identifying the spaces for z and z”.

Let 0 € G and y € Y°. The fiber p~'(y) is preserved by the action of the element o.
Choose a list z1,...,z4 of representatives of the o-orbits in p~!(y), and let n; = |{o)x;| be
the size of each orbit. Set

d
wy € Qe
i=1
By the above remarks, this does not truly depend on the choice of representatives. That is,
if we choose representatives z; = o"iz;, then we have a canonical choice of isomorphism

d ®[0’Ti 7’_1] d

n; ‘M ns
Rvi T @y
1
i=1 =1

Now suppose [g,t] € A(o,0’); we must define [g, t]: Wy — W' where o' = gog~'. Note

9y
that action by g gives a bijection p~'(y) — p~'(gy), and thus a bijection (o)\p~'(y) —
o')\p~'(gy). Therefore 2§ = gz1,...,2!, = gz, are representatives of the o’-orbits in
L. ok . |
The map [g,t]: W] — W, is then defined by

®9,t/nl] ®V‘”—>®Vg” vt @ .

We must check that thls is well—deﬁned. In partlcular, we must check: that it does not
depend on the integers r;, but only on the residue mod n; of r;; that it does not depend on
the representative of the element of A(o,o’); and that it does not depend on the choice of
representatives of o-orbits in p~!(y) and p~!(gy).
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5.1. Another description. Given p: X — Y a finite covering map between (G-spaces,
define groupoids A(p) and B(p) as follows.
Let A(p) be the groupoid with the following data.
e The objects A(p) are tuples (o,v, f,s) where 0 € G, y € Y7, f: S — p~l(y) is a
function from a finite set S such that f(S) C p~!(y) contains exactly one element in
each g-orbit of p~1(y), and s € S.
e The morphisms (o,y, f,s) — (¢',y, f',s') are elements [g,t] € A(o,0’) such that
o =gog~l, y = gy, and gf(s) = o' f'(s') for some r € Z.
Then B(p) is the groupoid with the following data.
e The objects A(p) are tuples (o,y, f) where 0 € G, y € Y, and f: S — p~'(y) is
a function from a finite set S such that f(S) C p~!(y) contains exactly one element
in each o-orbit of p~1(y).
e The morphisms (o,y, f) — (¢',y/, f') are elements [g,t] € A(o,0’) such that o' =
gog~ ", y' = gy.
There is an evident functor 7: A(p) — B(p). We also define a functor i: A(p) — A(X/G),
which on objects sends
(07 y7 f7 s) H (O'TL’ y)’
where n = [{o)s|, and on morphisms sends [g,t]: (o,y, f,s) — (o',y', f', ') to [0¢""g, (t +
r)/n] = [go", (t +r)/n], where f'(s") = ™ f(s).
We define a functor j: B(p) — A(Y//G), which on objects sends (o,y, f) — (0,y), and an
morphisms sends [g,t]: (o,y, f) = (o/,4/, f') to [g,1]: (0,y) = (', ¢/).
Now we can define a norm map by

0 * 0 Nx 0 J* 0
Ko(AX)G)) 55 KO (Alp) Y= KO (B(p) & Ko (MY ).
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