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This document was created while I gave a series of lectures on “higher topos theory” in
Fall 2005. At that time the basic references were the papers of Toen-Vezzosi [TV05] and a
document of Lurie [Lura]; Lurie’s book on higher topos theory was not yet available. The
lectures were my attempt to synthesize what was known at the time (or at least, what was
known to me). I’ve revised them in small ways since they were written. (For instance,
I replaced the original term “patching” with the word “descent”, as suggested by Lurie.)
There are still some gaps in the exposition here.

1. Grothendieck topos

What follows is a quick sketch of Grothendieck’s theory of toposes. The emphasis may
seem strange; I’ll ignore applications to geometry or mathematical logic, and treat a topos
as a purely category theoretic object. Also, the definition I’ll give is a bit different than (but
is equivalent to) the usual one; equivalence with the usual definition is shown in §3. The
discussion is designed to make the definition of a model topos seem completely obvious.
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2 CHARLES REZK

1.1. Presheaves. Let C be a small category. The category PSh(C) of presheaves of sets
on C is the category of functors Cop → Sets.

The Yoneda functor y : C→ PSh(C) is the functor defined on objects by

y(C)(D) def= C(D,C).

The “Yoneda lemma” says that C(C,C ′) ∼−→ PSh(C)(y(C), y(C ′)), so that y induces an
equivalence between C and a full subcategory of PSh(C).

1.2. Definition of a topos. Let us define site to be pair consisting of a small category
C, together with a full subcategory of PSh(C), usually denoted by Sh(C), which is closed
under isomorphisms (i.e., if X → Y ∈ PSh(C) is an isomorphism, then X ∈ Sh(C) iff
Y ∈ Sh(C)), such that the inclusion functor i : Sh(C) → PSh(C) admits a left adjoint
a : PSh(C)→ Sh(C), with the property:

(T) the functor a commutes with finite limits.
We will refer to (C,Sh(C)) as a site, and the category Sh(C) as a category of sheaves on
the site.

Note: the notation “Sh(C)” is ambiguous; a given category C can admit many sites.
A topos is a category which is equivalent to some category of sheaves on a site. (This

defintion of “site” is different from, but equivalent to, the usual one; see §3 for a comparison.)

Example 1.3. Let X be a topological space, and let UX denote the category whose objects are
open subsets of X, and whose morphisms are inclusions of subsets. Let Sh(UX) ⊂ PSh(UX)
be the full subcategory consisting of objects F such that for every open set U , and every
open cover {Uα} of U , the diagram

F (U)→
∏
α

F (Uα) ⇒
∏
α,β

F (Uα ∩ Uβ)

is an equalizer of sets. The inclusion of Sh(UX) in PSh(UX) admits a left adjoint a, called
sheafification, which commutes with finite limits, so that Sh(UX) is a topos (see §3). We
usually write Sh(X) for Sh(UX).

1.4. Presentable categories. Property (T) is really the distinguishing property of a site. A
presentable category is a category equivalent to a subcategory Sh(C) ⊆ PSh(C) satisfying
all the properties of a site except (possibly) property (T). We will call such a subcategory a
pseudo-site of C, and we will refer to the objects of Sh(C) as pseudo-sheaves.

A topos is therefore a presentable category; however, there are many presentable categories
which are not toposes.

Example 1.5. Let A denote the category of abelian groups, and let C ⊂ A be a skeleton of
the full subcategory of finitely generated free groups. The evident functor R : A→ PSh(C)
sending A 7→ (C 7→ A(C,A)) identifies A with the full subcategory of PSh(C) consisting of
functors F such that F (C⊕C ′) ≈ F (C)×F (C ′). The functor R admits a left adjoint (which
sends a presheaf X to abelian group obtained by taking the coend of X : Cop → Sets with
the inclusion C → A), and therefore the inclusion Sh(C) → PSh(C) admits a left adjoint,
whence A is presentable. However, this left adjoint does not preserve finite limits, and one
can show that A is not a topos.
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Lemma 1.6. Let i : Sh(C) → PSh(C) be an inclusion of a pseudo-site of C. We have the
following.

(1) For every F ∈ Sh(C) the natural map a(i(F ))→ F is an isomorphism.
(2) Let F be object of PSh(C). The following are equivalent:

(a) F is an object of Sh(C);
(b) for all f : A → B ∈ PSh(C) such that a(f) : a(A) → a(B) ∈ Sh(C) is iso,

PSh(C)(B,F )→ PSh(C)(A,F ) is iso.
(c) F → i(a(F )) is an isomorphism in PSh(C);

Proof. Since i is fully faithful, Sh(C)(F,X) → Sh(C)(a(i(F )), X) ≈ PSh(C)(i(F ), i(X)) is
an isomorphism, whence a(i(F )) → F is iso. The second part of the lemma is straightfor-
ward: prove (a) implies (b) implies (c) implies (a). �

Remark 1.7. Given any set S of maps in PSh(C), let PSh(C)S denote the full subcategory
defined by F ∈ PSh(C)S iff PSh(C)(f, F ) iso for all f ∈ S. Then one can show that the
inclusion functor Sh(C)→ PSh(C) admits a left adjoint, and thus PSh(C)S is a presentable
category.

We’ll say that a category admits a small presentation if it is equivalent to a PSh(C)S

as above. In practice, the presentable categories one encounters usually have small presen-
tations, and it turns out that any topos has a small presentation (see §3). (Note: in the
literature, this notion is usually called local presentability.)

Proposition 1.8. A presentable category has all small limits and colimits.

Proof. It suffices to consider a full subcategory i : Sh(C) ⊂ PSh(C) which admits a left
adjoint. It is clear that Sh(C) has limits, which coincide with limits in PSh(C). To see
that Sh(C) has colimits, consider a functor F : J → Sh(C) from a small category J. It is
straightforward to check that

colimJ F ≈ a(colimJ i(F )).

�

1.9. Basic properties of a topos. The idea is that a topos is a category which has many
of the good property of the category of sets.

Proposition 1.10. Toposes are cartesian closed. That is, for any pair Y , Z of objects
in a topos E, there exists a function object ZY ∈ E with the property that there are
isomorphisms

E(X, ZY ) ≈ E(X × Y, Z),
natural in X ∈ E.

We can regard (1.10) as saying that the functor Eop → Sets given by X 7→ E(X×Y, Z) is
representable. It is a special case of a more general characterization of representable functors
from a presentable category.

Proposition 1.11. Let E be a presentable category. If F : Eop → Sets is a functor which
takes small colimits in E to limits in Sets, then F is representable by an object of E.

Note that (1.11) actually gives an equivalence of categories between E and the category
of functors Eop → Sets which take colimits to limits.
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Corollary 1.12. Let E be a presentable category, and let L : E → D be a functor to some
category D. Then L admits a right adjoint if and only if L preserves small colimits.

Proof of (1.11). First suppose that E = PSh(C). Given a functor F : PSh(C)op → Sets
which takes colimits to limits, define a presheaf X on C to be the functor taking the value
X(C) = F (y(C)) for an object C ∈ C. We claim that X represents the functor F .

The presheaf X is a colimit of some small diagram of representable presheaves; we have
X = colimy/X yU , where y/X is the slice category and U : y/X → C the functor which
forgets the map to X. Then

F (X) ≈ F (colimy/X yU) ≈ limy/X F (yU) ≈ limy/X PSh(C)(yU,X),

using the hypothesis on F . Tautologically, there is a map uc : yU(c)→ X for each object c ∈
y/X, and these fit together to give a canonical element u ∈ limy/X PSh(C)(U,X) ≈ F (X).

Consider the natural map

φ : PSh(C)(Y, X)→ F (Y )

defined by φ(f) = F (f)(u). I claim that φ is an isomorphism for all Y ∈ PSh(C). In fact,
it is tautologically an isomorphism when Y = y(C); since an arbitrary Y is a colimit of
representables, and since both F and PSh(C)(−, X) carry colimits to limits, we conclude
that φ is an isomorphism.

To prove the proposition, it suffices to prove the statement when E = Sh(C) is a pseudo-
site. Given a functor F : Eop → Sets taking colimits to limits, we can apply the part already
proved to get a presheaf X ∈ PSh(C) which represents the functor Fa : PSh(C)op → Sets.
If f : Y → Z is a map of presheaves such that af is iso, then φ : PSh(C)(f,X) ≈ F (af) is
iso, and so X is a pseudo-sheaf by (1.6). Clearly, if Y is a pseudo-sheaf, then Sh(C)(Y, X) ≈
PSh(C)(iY,X) ≈ F (aiY ) ≈ F (Y ), and so F is represented by the pseudo-sheaf X. �

Proof of (1.12). It is standard that if L is a left adjoint, then it commutes with colimits.
Assume then that L is a functor which preserves colimits. To construct a right adjoint
R : D→ E, it suffices to produce for each object Y ∈ D an object RY ∈ E such that

E(X, RY ) ≈ D(LX, Y );

that is, RY must represent the functor X 7→ D(LX, Y ) : Eop → Sets. Since L preserves
colimits, it is clear that this functor takes colimits to limits, and thus is representable by
(1.11). �

Proof of (1.10). We claim that the functor X 7→ X × Y : E → E preserves colimits. This
is clear in the category of sets, and thus the result follows if E is a category of presheaves.
To show this for general E, it suffices to show it for a site, and the claim is straightforward
using property (T). Thus, by (1.12), the functor X 7→ X × Y admits a right adjoint, which
is the desired functor Z 7→ ZY . �

1.13. Regular epimorphisms and epi/mono factorizations. In the category of sets,
any function f : X → Y can be factored (up to unique isomorphism)

X
p−→ I

i−→ Y

where p is an epimorphism and i is a monomorphism; we call I the image of the map f . In
particular, if f is both an epimorphism and a monomorphism, then it is an isomorphism.
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This property of sets does not hold for arbitrary categories. To repair this, we replace
epimorphisms with the notion of regular epimorphisms.

A regular epimorphism p : X → Y in a category D is a map which is a coequalizer;
that is, there exists a coequalizer diagram in D of the form

U ⇒ X
p−→ Y.

We say p : X → Y is an effective epimorphism if

X ×Y X ⇒ X
p−→ Y

is a coequalizer, where the parallel arrows are the two projections. Every effective epimor-
phism is a regular epimorphism.

Example 1.14. In Sets, the epimorphisms are regular epimorphisms are effective epimor-
phisms are surjective maps. To see this, note that if f : X → Y is a surjective function of
sets, then X ×Y X ⇒ X → Y is a coequalizer, where the parallel arrows are projections;
the set X ×Y X ⊆ X ×X is an equivalence relation on X. The same holds in categegories
of presheaves.

Example 1.15. We will soon see that any topos, epimorphisms are regular epimorphism are
effective epimorphisms. However, when we consider the homotopy theoretic analogues of
these ideas, the generalizations of these notions will diverge.

Example 1.16. In an abelian category, all epimorphisms are regular epimorphisms: if f : A→
B is an epimorphism, then 0 → ker(f) i−→ A

f−→ B → 0 is exact (by the axioms for abelian
category), and so

ker(f)
i //

0
// A

f
// B

is a coequalizer.

Example 1.17. In the category of commutative rings, the the inclusion Z → Q is an epi-
morphism, but not a regular epimorphism. The regular epimorphisms in this category are
precisely the surjections.

Proposition 1.18. Let D be a category.
(a) Suppose given a commutative square

A
f
//

p

��

X

i
��

B g
//

>>

Y

in which p is a regular epimorphism and i is a monomorphism. Then there exists a
unique dotted arrow making the diagram commute.

(b) If h : X → Y ∈ D is both a monomorphism and a regular epimorphism, then f is an
isomorphism.

(c) Let h : X → Y ∈ D be a map. Up to isomorphism, there is at most one factor-
ization h = ip, up to isomorphism, where i is a monomorphism and p is a regular
epimorphism.
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Proof. To prove (a), note that since p is a regular epimorphism, there is a coequalizer diagram

U
s //

t
// A

p
// B

We have ifs = gps = gpt = ift, and since i is a monomorphism, it follows that fs = ft.
Thus the dotted arrow exists and is unique.

Parts (b) and (c) are straightforward, using (a). �

Proposition 1.19. For any map f : X → Y in a topos E, there exists a factorization f = ip
where i is a monomorphism and p is a regular epimorphism (which is unique up to unique
isomorphism). Furthermore, p is the coequalizer of the pair of projections X ×Y X ⇒ X; in
particular, all regular epis are effective epis.

Proof of (1.19). First, note that this is true in Sets. In this case, the coequalizer of X ×Y

X ⇒ X is precisely the quotient of X by the equivalence relation: x1 ∼ x2 iff f(x1) = f(x2).
Next, note that the proposition is true in PSh(C), since everything is computed objectwise.
Now if f : X → Y ∈ Sh(C), there is a diagram

i(X)×i(Y ) i(X) ⇒ i(X)
q−→ A

j−→ i(Y )

in PSh(C), where q is the coequalizer of the pair and j is a monomorphism, and thus a
diagram

X ×Y X ⇒ X
a(q)−−→ a(A)

a(j)−−→ Y

in Sh(C), using the fact that ai ≈ id and that a preserves finite limits. Clearly a(q) is a
regular epimorphism in Sh(C), since it is obtained as a coequalizer in Sh(C). Furthermore,
a(j) is a monomorphism, since j is a monomorphism and a preserves finite limits. �

Corollary 1.20. Let f : X → Y and g : Y → Z be maps in a topos.
(a) If gf is a regular epi then so is g.
(b) If f and g are regular epis then so is gf .

Proof. Suppose gf is a regular epi. Consider an regular epi/mono factorization of g, and
use (1.18)(a) to show that the monomorphism in this factorization is an isomorphism. This
proves (a).

Suppose f and g are regular epis. Consider a regular epi/mono factorization of gf , and
use (1.18)(a) to show that the monomorphism in this factorization is an isomorphism. This
proves (b). �

Proposition 1.21. Let E be a topos. Consider a pullback square of the form

U

g

��

q
// X

f
��

V p
// Y

If f is a monomorphism/regular epimorphism/isomorphism then so is g, and the converse
holds if p is a regular epimorphism.
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Proof. By (1.18), the result for isomorphisms follows from the other two cases.
For the monomorphism case, is is clear that pullbacks of monos are monos. Thus we need

to show that if p is regular epi and g is a mono, then f is mono. This is straightforward
to check for sets, and thus for presheaves. Thus it will suffice to prove the result for a site
E = Sh(C).

Suppose that the pullback square is in Sh(C). Let i(p) = dv be the epi/mono factorization
of i(p) in PSh(C). Consider the diagram

iU
u //

ig

��

X ′ b //

f ′

��

iX

if

��

iV v
// Y ′

d
// iY

in PSh(C), where X ′ is the pullback of d along if . Since the left-hand square is a pullback,
ig is mono and v is regular epi, we have that f ′ is a monomorphism. We have p = ai(p) =
a(d)a(v) with a(v) mono and a(d) regular epi, and thus a(v) is an isomorphism by (1.18)(c).
Therefore f is isomorphic to ai(f ′) which is a monomorphism in Sh(C).

For the regular epimorphism case, if p and g are regular epi then pg = fq is regular epi,
and hence f is a regular epi, by (1.20). Thus it remains to show that if f is regular epi then
so is g. This is straightforward for sets, and hence for presheaves, so we have reduced to the
case of a site E = Sh(C). Consider

iU //

u
��

iX

b
��

V ′ //

v

��

Y ′

d
��

iV // iY

where i(f) = db is a epi/mono factorization in PSh(C), and V ′ is the pullback of the lower
square in PSh(C). Thus the map u is a pullback of the regular epi b, and thus is a regular
epi. Since a preserves colimits, a(u) is a regular epi. Note that since f = a(db) = a(d)a(b)
is a regular epi in Sh(C) then so is a(d) by (1.20). Since a(d) is mono it follows that a(d) is
iso by (1.18)(b). Since the bottom square is a pullback and a preserves finite limits, a(v) is
an isomorphism. Thus g = a(v)a(u) is regular epi. �

As a consequence, we have the following, which says that the regular epimorphisms are
the maps which “locally admit a section”.

Corollary 1.22. In a topos, a map f is a regular epimorphism if and only if there is a
pullback square of the form

U

g

��

// X

f
��

V p
// Y

such that p is a regular epimorphism and g admits a section.
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Proof. For the only if part, take p = f , so that g : X ×Y X → X is a projection to a factor;
the diagonal map is a section of g.

For the if part, first note that if g admits a section s : V → U , then 1V = gs and so g is
regular epi by (1.20); that f is regular epi follows from (1.21). �

2. The descent properties of a topos

2.1. Descent. We say that a category E with small colimits and finite limits has weak
descent if the following four properties hold.
(P1a) Let {Xi}i∈I be a collection of objects of E indexed by a set I, and write X =

∐
i∈I Xi.

Let f : Y → X be a map in E, and let Yi = Xi ×X Y . Then the natural map∐
i∈I Yi → Y is an isomorphism.

(P1b) Let {fi : Yi → Xi} be a collection of maps in E indexed by a set I, and let f =∐
i∈I fi : X → Y be the coproduct of these maps. Then the natural maps Yi →

Xi ×X Y are isomorphisms.
(P2a) Let X1 ← X0 → X2 be a diagram in E, with colimit X. Let f : Y → X be a map in E,

and let Yi = Xi×XY for i = 0, 1, 2. Then the natural map colim(Y1 ← Y0 → Y2)→ Y
is an isomorphism.

(P2b) Let
Y1

f1

��

Y0
oo //

f0

��

Y2

f2

��

X1 X0
oo // X2

be a commutative diagram in E such that both squares are pullbacks, and let f : X →
Y be the map between the colimits of the rows. Then the natural maps Yi → Xi×X Y
are regular epimorphisms, for i = 0, 1, 2.

Note that property (P2b) only requires regular epimorphisms, where one might have expected
isomorphisms.

Proposition 2.2. A Grothendieck topos E has weak descent.

Proof. Sets has weak descent; the usual methods apply. �

Statements (P1a) and (P1b) amount to the following: there is an equivalence of categories

E/X �
∏
i∈I

E/Xi,

the functors being given by: pulling back along Xi → X, and taking coproduct, respectively.
That is, the category of objects over X can be completely recovered from the categories of
objects over “pieces” of X, where “pieces” mean summands.

One might hope that (P2a) and (P2b) give a similar equivalence between E/X and a
suitable category of diagrams of shape Y1 ← Y0 → Y2 in E which map to the diagram
X1 ← X0 → X2; it is clearly necessary to require that the squares be pullbacks, if we are
to use pullbacks along Xi → X to produce the Yi’s. However, even this doesn’t quite work,
since (P2b) in the end only gives us regular epis, rather than isomorphisms. We can see how
this happens in a simple example.
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Example 2.3. Let E = Sets, and fix a set X and a non-identity automorphism σ of X.
Consider the diagram

X

��

X qX
(id,id)
oo

(id,σ)
//

��

X

��
∗ ∗ q ∗oo // ∗

This satisfies the hypotheses of (P2b). The pushout of the bottom row is a one-point set,
while the pushout of the top row is the quotient X/ ∼ obtained by identifying x ∼ σ(x) for
all x ∈ X. The comparison maps at the ends are X → X/ ∼, which are surjections but not
isomorphisms.

If we think of sets as being discrete spaces, and we take homotopy pushouts, then from
this diagram we obtain a fiber bundle over the circle with fiber X. If we then pull back
along points, we obtain a set isomorphic to X itself, rather than a quotient. The moral is
that working in homotopy theory repairs the difficulty with (P2b).

If f : Y → X is a natural transformation of functors X, Y : C → E, we say f is
equifibered if for each morphism c : C → C ′ ∈ C, the square

Y (C)
Y (c)

//

f(C)

��

Y (C ′)

f(C′)
��

X(C)
X(c)

// X(C ′)

is a pullback. We can state a descent property for colimits of diagrams of any shape.

Proposition 2.4. Let E be a category with weak descent.
(1) Consider a functor X : C → E from a small category C, with X̄ = colim X in E,

and a map f : Ȳ → X̄ in E. Define Y : C→ E by

Y (C) def= X(C)×X̄ Ȳ .

Then the evident map colim Y → Ȳ is an isomorphism.
(2) Let f : X → Y be an equifibered natural transformation of functors X, Y : C → E

from a small category C. Define X̄ = colim X and Ȳ = colim Y , and let f̄ =
colim f : X̄ → Ȳ . Then for each object C ∈ C, the evident map g : Y (C)→ X(C)×X̄

Ȳ is a regular epimorphism. If the category C is a groupoid with at most one map
between any two objects, then g is an isomorphism.

Proof. A straightforward exercise using the weak descent properties. �

Part (2) of (2.4) can be improved if f is a monomorphism.

Proposition 2.5. Consider the situation of part (2) of (2.5), and suppose that
f(C) : X(C) → Y (C) is a monomorphism for each C ∈ C. Then f̄ is a monomorphism,
and the evident maps Y (C)→ X(C)×X̄ Ȳ are isomorphisms for all C ∈ C.
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Proof. By (2.4)(2), the map g : Y (C)→ X(C)×X̄ Ȳ is a regular epimorphism. The composite
of g with the projection X(C) ×X̄ Ȳ → X(C) is the map f(C), which by hypothesis is a
monomorphism. Therefore g must be an isomorphism by a straightforward argument using
(1.18)(a).

To show that h : Ȳ → Ȳ ×X̄ Ȳ is an isomorphism and thus that f̄ is a monomorphism,
note that we can use (2.4)(1) to show that the pullback of this map along each X(C)→ X̄
gives a map isomorphic to hC : Y (C)→ Y (C)×X(C) Y (C), which is iso since f(C) is mono.
Again, (2.4) shows that we can recover h as a colimit of the maps hC , and thus h is an
isomorphism. �

Let X be an object in some category D. A subobject of X is an isomorphism class of
monomorphisms of the form j : A→ X ∈ D. Write Sub(X) for the class of subobjects of X;
this is not necessarily a set. If D has finite limits, there is a natural map Sub(f) : Sub(Y )→
Sub(X) for each map f : X → Y , defined by taking pullbacks.

Proposition 2.6. If E is a topos, then Sub(X) is a set for each X ∈ E, and the functor
Sub: Eop → Sets is representable by an object Ω ∈ E.

In the category of sets, the subobject classifier is Ω = {0, 1}, and given a set X, the
function object ΩX is just the power set of X. Thus, toposes have an analogue of the power
set construction.

Proof. One checks that Sub(X) is a set if X ∈ PSh(C), and that for an object X in Sh(C)
the set SubSh(C)(X) injects into SubPSh(C)(iX), whence the collection of subobjects is always
a set.

Using (2.5) it is straightforward to check that Sub(colimI X) ≈ limI Sub(X(i)), where
X : I→ E is any functor from a small category I. The result now follows from (1.11). �

2.7. A Giraud-type theorem. One would like to have a theorem which characterizes
toposes without reference to a site. The following is a version of a theorem of Giraud.

Theorem 2.8. Let E be a category which has all small colimits and all finite limits. Then
E is a Grothendieck topos if and only if

(i) E contains a set of objects which generate E, and
(ii) E has weak descent.

A collection C of objects of E is said to generate E if for any pair f, g : X ⇒ Y of maps
in E one has f = g if and only if fc = gc for all C ∈ C and all c : C → X.

A proof is given in §2.17 below.

Corollary 2.9. Let E be a topos. For each object X of E, the slice category E/X is a topos.
For each small category D, the functor category ED is a topos.

Proof. It is clear that E/X has small colimits and finite limits, and that it satisfies the weak
descent properties. If C is a set of objects which generate E, then C/X

def= {c : C → X, C ∈
C} is a set of objects which generate E/X. Thus E/X satisfies properties (i) and (ii) of
(2.8).

The proof for ED is similar; in this case, if C is a set of generators for E, then {FC,D}
is a set of generators for ED, where for objects C ∈ C and D ∈ D, we let FC,D ∈ ED be
defined by FC,D(D′) =

∐
D(D,D′) C. �
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2.10. Geometric morphisms. A geometric morphism f : E→ F of toposes is a functor
f∗ : F → E which preserves small colimits and finite limits. By (1.12), the functor f∗

necessarily admits a right adjoint f∗ : E→ F.

Example 2.11. For each Grothendieck site Sh(C) ⊆ PSh(C), the sheafification functor defines
a geometric morphism PSh(C)→ Sh(C).

Example 2.12. Given a map f : X → Y of objects in a topos E, there is a geometric morphism
f : E/X → E/Y , given by setting f∗(B → Y ) def= (B×Y X → X); it is clear that f∗ preserves
limits, and the weak descent property shows that f∗ preserves small colimits.

Suppose Y = 1. Then the right adjoint f∗ : E/X → E is denoted sectX ; it associates to
a morphism f : A→ X the object of sections sectX(f). Note that sectX(X × Y → X) is
canonically isomorphic to the function object Y X of (1.10).

Example 2.13. Given a topos E, there is a geometric morphism π : E→ Sets, where π∗S =∐
S 1. The right adjoint is given by π∗X = E(1, X), the “global sections” functor.

Example 2.14. Given a small category C and an object C ∈ C, there is a geometric morphism
fC : Sets→ PSh(C) given by f∗C(X) = X(C).

Example 2.15. Given a topological space X and a point x ∈ X, there is a geometric morphism
i : Sets→ Sh(X) given by taking stalks at x, i.e., i∗F = colimU3x F (U).

Example 2.16. Given a continuous map f : X → Y of topological spaces, there is a geometric
morphism f : Sh(X)→ Sh(Y ), where for F ∈ Sh(Y ), f∗F is the sheafification of the presheaf
U 7→ colimV⊇f(U) F (V ) on X.

2.17. Proof of Giraud theorem. Here I give a proof of (2.8). The reader should skip
this section. We start by proving a number of facts which are true for categories with weak
descent; some of these we have already proved for toposes.

Proposition 2.18. Let E be a category with weak descent. Consider a pullback square of
the form

U

g

��

q
// X

f
��

V p
// Y

in which p is a regular epi. Then q is also a regular epi, and f is an isomorphism if and
only if g is an isomorphism.

Proof. Consider

W ×Y X //
//

h
��

U
q
//

g

��

X

f

��

W
//
// V p

// Y

where the bottom row is a coequalizer. The top row is obtained from the bottom row by
pulling back along f , and thus is a coequalizer by (2.4)(1). This proves that q is a regular
epi. If g is an isomorphism, then so is h since it is obtained from g by pullback, and thus
the map f between colimits is an isomorphism. �
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Proposition 2.19. Let E be a category with weak descent. For any map f : X → Y in E,
there exists a factorization f = ip where i is a monomorphism and p is a regular epimor-
phism, and p can be taken to be the coequalizer of the pair of projections X ×Y X ⇒ X. In
particular, all regular epimorphisms are effective epimorphisms.

Proof. Let I be the coequalizer of the projections, giving a diagram

X ×Y X //
// X

p
// I

i // Y.

Clearly, p is a regular epi, so we need only check that i is mono, i.e., that the pullback of i
along itself is iso. But since p is effective epi, it suffices by (2.18) to show that the pullback
of i along f = ip is iso. Thus we must show that j is an isomorphism in

X ×Y X ×Y X //
//

��

X ×Y X
q
//

��

X ×Y I
j
//

��

X

f

��

X ×Y X //
// X

p
// I

i // Y.

where the top row is obtained from the bottom row by pullback along f . Since pullbacks of
coequalizers are coequalizers by (2.4), q must be a coequalizer of the pair of arrows shown.
On the other hand, it is clear that jq is part of a split fork, and so is also a coequalizer of
the same pair of arrows. Hence j is an isomorphism, as desired. �

Corollary 2.20. Let E be a category with weak descent, and let f : F → G be a natural
transformation of functors J→ E with J a small category. If f(j) : F (j)→ G(j) is a regular
epimorphism for each j ∈ J, then colimJ F → colimJ G is a regular epimorphism.

Proof. By (2.19) and the fact that colimits commute with colimits, the diagram F ×G F ⇒
F → G is a coequalizer. �

Corollary 2.21. Let E be a category with weak descent, and let f : X → Y and g : Y → Z
be maps in E.

(a) If gf is a regular epi then so is g.
(b) If f and g are regular epis then so is gf .

Proof. The proof is identical to that of (1.20). �

Proposition 2.22. Let E be a category with weak descent. Then every epimorphism in E
is a regular epimorphism.

Proof. Using (2.19) and (2.21), it suffices to show that if f : A→ B is an epimorphism and a
monomorphism, then it is a regular epimorphism. Recall that f : A→ B is an epimorphism
if and only if colim(B ← A→ B)→ B is an isomorphism. Consider

A

f
��

A
1oo

f
//

1
��

B

1
��

B A
f
oo

f
// B

which is equifibered because f is a monomorphism. Taking colimits along rows recovers the
identity map 1B : B → B, and (P2b) therefore implies that f : A→ B×B B ≈ B is a regular
epimorphism, as desired. �
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Lemma 2.23. Let E be a category with weak descent. Let A, X, Y , and B be functors
J→ E from some small category J, and consider a pullback square

A //

��

Y

g

��

X
f
// B

of functors in which the natural transformations f and g are equifibered. Then the canonical
map colimJ A→ (colimJ X)×colimJ B (colimJ Y ) is a regular epimorphism.

Proof. Write B̄, X̄, Ȳ , and Ā for the colimits of B, X, Y , and A respectively. Set X ′(J) =
B(J)×B̄ X̄ and Y ′(J) = B(J)×B̄ Ȳ , and let

A′(J) = B(J)×B̄ (X̄ ×B̄ Ȳ ) ≈ X ′(J)×B(J) Y ′(J).

Then (2.4)(1) implies that

colimJ X ′ ≈ X̄, colimJ Y ′ ≈ Ȳ , colimJ A′ ≈ X̄ ×B̄ Ȳ .

Since taking colimits preserves regular epimorphisms (2.20), the lemma will be proved once
we show that each map A(J)→ A′(J) is a regular epimorphism.

Since f and g are equifibered, (2.4)(2) tells us that each of the maps X(J)→ X ′(J) and
Y (J)→ Y ′(J) are regular epimorphisms. Therefore, the composite map

A(J) ≈ X(J)×B(J) Y (J)→ X(J)×B(J) Y ′(J)→ X ′(J)×B(J) Y ′(J) ≈ A′(J)

is regular epi, since regular epis are preserved under pullback by (2.18), and are closed under
composition by (2.21)(b). �

We will prove (2.8) by proving two propositions.

Proposition 2.24. Let E be a category which satisfies hypotheses (i) and (ii) of (2.8); that
is, it has weak descent, and contains a small generating, full subcategory C. There is an
adjoint pair

` : PSh(C) � E : r
where r is defined by (rX)(C) = E(C,X), and `r → 1 is a natural isomorphism, whence E
is equivalent to a full subcategory of PSh(C).

Proposition 2.25. Let C be a small category. Let Sh(C) be a full subcategory of PSh(C)
which is closed under isomorphisms, and such that the inclusion functor i : Sh(C)→ PSh(C)
admits a left adjoint a : PSh(C)→ Sh(C). Suppose that the yoneda functor y : C→ PSh(C)
factors through the subcategory Sh(C), and that C→ Sh(C) is a full and faithful embedding.
If Sh(C) has weak descent, then a preserves finite limits.

Thus (2.24) says that any category E satisfying the hypotheses of (2.8) is equivalent to a
subcategory Sh(C) of PSh(C) satisfying the hypotheses of (2.25), which gives the result.

Proof of (2.24). The adjoint pair is a straightforward hom-tensor adjunction: the left adjoint
` sends a presheaf F : Cop → Sets to its tensor product with the inclusion C→ E.
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Note that `rX is given by the coequalizer∐
C′→C→X

C ′ ⇒
∐

C→X

C → `rX,

where the second coproduct is over all maps C → X ∈ E with C ∈ C, and the first coproduct
is over all sequences of maps C ′ → C → X ∈ E with C,C ′ ∈ C. We need to show that the
evident map f : `rX → X is an isomorphism. Let U =

∐
C→X C. Since C generates E, the

map U → X is an epimorphism, and hence is an effective epimorphism by (2.22), and hence
is the coequalizer of the pair of projections U ×X U ⇒ U by (2.19). Consider∐

C′→C→X

C ′
//
//

��

∐
C→X

C g
// `rX

f

��∐
D p

// U ×X U //
// U // X

where the coproduct on the bottom line is over all commutative squares

(2.26)

D
d //

d′

��

C

c

��

C ′
c′
// X

with D, C, and C ′ in C. Since, by weak descent, U ×X U ≈
∐

C ×X C ′, the map p is an
epimorphism.

The rows are coequalizers, and therefore f is an epimorphism. Thus, we will be done if
we can show that f admits a retraction, i.e., if g : U → `rX equalizes the pair U ×X U ⇒ U .
The map g is determined by a collection of maps gc : C → `rX for each c : C → X; the
fact that g equalizes the parallel arrows

∐
C′→C→X C ′ ⇒ C means that gcc

′ = gcc′ for

every triangle C ′ c′−→ C
c−→ X. Therefore for every commutative square (2.26), we have

gcd = gcd = gc′d′ = gc′d
′. Because p is an epimorphism, g must equalize the pair U×XU ⇒ U ,

and we are done. �

Proof of (2.25). We call an object of PSh(C) a “pseudo-sheaf” if it is contained in Sh(C);
these are presicely the presheaves X such that X → iaX is an isomorphism. Note that
by hypothesis, the representable presheaves y(C) lie in the full subcategory, and so are
pseudo-sheaves.

The terminal object 1 ∈ PSh(C) is automatically a pseudo-sheaf, and thus 1 ≈ a1 is
the terminal object in pseudo-sheaves. thus, to prove the result, it suffices to show that a
commutes with pullbacks. That is, we need to show: (*) that

a(X ×B Y )→ aX ×aB aY

is an isomorphism for all objects X, Y , B in PSh(C). We prove property (*) by a sequence
of reductions.

(a) Property (*) holds if X, Y , B are pseudo-sheaves. In this case, the presheaf pullback
is already a pseudo-sheaf.
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(b) Property (*) holds if Y and B are pseudo-sheaves. Since representable presheaves are
pseudo-sheaves, every presheaf is a colimit (in the category of presheaves) of pseudo-
sheaves. Thus, suppose X ≈ colimJ U for some functor U : J → Sh(C) ⊆ PSh(C)
from a small category J. For each j ∈ J we have a sequence of pullback squares

U(j)×B Y //

��

X ×B Y //

��

Y

��

U(j) // X // B

By (2.4)(1) in PSh(C), colimJ U ×B Y ≈ X×B Y . Since U(j) is a pseudo-sheaf, part
(a) shows that aU(j)×aB aY ≈ a(U(j)×B Y ) for each j ∈ J. Now (2.4)(1) applied
to Sh(C) shows that colimJ(aU ×aB aY ) ≈ (colimJ aU) ×aB aY in Sh(C); hence,
a(X ×B Y ) ≈ colimJ a(U ×B Y ) ≈ colimJ(aU ×aB aY ) ≈ aX ×aB aY , as desired.

(c) Property (*) holds if B is a pseudo-sheaf. This is proved exactly as in (b), except
that we can drop the hypothesis that Y is a pseudo-sheaf by making use of (b).

(d) The functor a preserves products. This follows from (c) and the fact that the terminal
object is a pseudo-sheaf.

(e) The functor a preserves monomorphisms. Let X → Y be a monomorphism
of presheaves. Write Y = colimJ V , where V : J → Sh(C) ⊆ PSh(C). Let
U(j) = V (j) ×Y X, and let f : U → V denote the evident natural map. By (c)
proved above, the maps af(j) : aU(j)→ aV (j) give an equifibered natural transfor-
mation between functors to pseudo-sheaves, and each map af(j) is a monomorphism.
Therefore by (2.5) applied to Sh(C), the map of colimits aX → aY is a monomor-
phism.

(f) Property (*) holds for general X, Y , and B. Note that the map h : X×B Y → X×Y
is a monomorphism for general reasons. The composite map

a(X ×B Y )
f−→ aX ×aB aY → aX × aY

is isomorphic to ah by (d), and therefore is a monomorphism by (e). It follows that
f is a monomorphism. Thus, it will suffice to show that f is regular epi.

Write B = colimJ W , where W : J → Sh(C) ⊆ PSh(C) is a functor from a small
category J. Let U(j) = W (j) ×B X and V (j) = W (j) ×B Y . Then (2.4)(1) in
PSh(C) implies that X ≈ colimJ U and Y ≈ colimJ V , and that colimJ U ×W V ≈
X ×B Y . Using (c), we see that both aU → aW and aV → aW are equifibered
transformations; therefore (2.23) applied to E gives that

a(X ×B Y ) ≈ a(colimJ U ×W V ) ≈ colim aU ×aW aV → aX ×aB aY

is a regular epimorphism, as desired.
�

3. Grothendieck topologies

Above, I defined a site to be a small category C, together with a full subcategory Sh(C)
of PSh(C) satisfying certain properties; this is not the usual definition. In this section, I will
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show that the notion of site I used is equivalent to the more usual notion of a “Grothendieck
site”, namely a small category C equipped with a Grothendieck topology.

3.1. Definition of a Grothendieck topology. Recall the yoneda embedding y : C →
PSh(C) which associates to each object C ∈ C the representable functor defined by
y(C)(−) = C(−, C). Given an object C ∈ C, a sieve over C is a subfunctor S � y(C)
of y(C). A sieve can be thought of as a collection FS =

⋃
C′∈C S(C ′) of morphisms with

codomain C, which is closed under composition on the right: for any composable pair of
maps f, g ∈ C, f ∈ FS implies fg ∈ FS .

Given a map f : C ′ → C ∈ C, and a sieve s : S � y(C) over C, we define sieve f−1S �
y(C ′) over C ′ by taking the pullback of s along y(f):

f−1S //

��

��

S��

��

y(C ′)
y(f)

// y(C)

In other words, Ff−1S consists of functions g : C ′′ → C ′ such that fg ∈ FS .
A Grothendieck topology τ on C is a set of sieves S � y(C) over objects of C satisfying

the following three properties.
(G1) For each C ∈ C, the identity map 1: y(C)→ y(C) is in τ .
(G2) For each f : C ′ → C ∈ C, if S � y(C) ∈ τ then f−1S � y(C ′) ∈ τ .
(G3) Let s : S � y(C) be a sieve. If T � y(C) ∈ τ , such that for each C ′ ∈ C and

f ∈ T (C ′) the sieve f−1S � y(C ′) is contained in τ , then s ∈ τ .
The elements of τ are called covering sieves; we will write τC for the set of covering sieves
over a given object C ∈ C.

Remark 3.2. Note that if {Ci → C} is some collection of morphisms in C with codomain
C, then there is a smallest sieve S over C generated by this set. Say that such a set of
morphisms is a covering family if it generates a covering sieve. It is possible (and usual)
to reformulate the notion of a Grothendieck topology in terms of covering families. It is
also possible (and usual) to suppose that the category C has finite limits; this implies that
if {Ci → C} is a family of maps generating a sieve S, and if f : C ′ → C is a map, then
{Ci ×C C ′ → C ′} is a family of maps generating the sieve f−1S.

Example 3.3. Let UX be the category of open subsets of a topological space X. A sieve S
on an open set U ∈ UX corresponds to what is usually called a filter, namely a collection
F of open subsets of U such that W ⊆ V ∈ F implies W ∈ F . If we let τU correspond
to the collection of filters F over U such that U =

⋃
V ∈F V , then we obtain the “usual”

Grothendieck topology on X. In this case, the covering families of an open set U correspond
precisely to the open covers of U .

3.4. Grothendieck sites and sheafification. A Grothendieck site consists of a small
category C and a Grothendieck topology τ on C. A sheaf is a presheaf X ∈ PSh(C) such
that for every covering sieve s : S � y(C) ∈ τ , the evident map

PSh(C)(y(C), X)→ PSh(C)(S, X)
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is a bijection. We write Sh(C, τ) for the full subcategory of sheaves.

Proposition 3.5. The category Sh(C, τ) is a site in the sense of §1.2.

Proof. I will sketch the proof. For more details, see [MLM94, Ch. III] for example.
It is clear that Sh(C, τ) is closed under isomorphism, so it remains to produce a left

adjoint a : PSh(C) → Sh(C, τ) to the inclusion functor i : Sh(C, τ) → PSh(C), and show
that a preserves finite limits.

To do this, one defines a functor X 7→ X+ : PSh(C) → PSh(C) together with a natural
transformation η : X → X+, satisfying the following properties:

(a) X 7→ X+ preserves finite limits of presheaves,
(b) for any sheaf F , the map PSh(C)(X+, F )→ PSh(C)(X, F ) induced by η is a bijec-

tion, and
(c) for any presheaf X, the presheaf (X+)+ is a sheaf.

Given this, it is easy to see that the functor X 7→ (X+)+ lands in sheaves, and defines a left
adjoint to inclusion which preserves finite limits.

The functor X 7→ X+ is constructed as follows. For each C ∈ C, let τC denote the set
of covering sieves over C. The set τC is actually a directed set, by reverse inclusion; the
intersection of two covering sieves is a covering sieve. Set

X+(C) def= colimS∈τC
PSh(C)(S, X).

Since the identity map 1: y(C)→ y(C) is a covering sieve, we get a function

η(C) : X(C) = PSh(C)(y(C), X)→ X+(C).

One shows, using the properties of the Grothendieck topology, that X+ is a presheaf and η
a map of presheaves.

Property (a) follows from the fact that directed colimits are left exact.
Property (b) can be easily checked directly; it is also an immediate consequence of (3.6)

below, which gives another description of X+ and η.
Call a presheaf X a separated presheaf if PSh(C)(y(C), X) → PSh(C)(S, X) is a

monomorphism for each covering sieve. Property (c) follows from two observations: the
functor X 7→ X+ takes presheaves to separated presheaves, and takes separated presheaves
to sheaves. �

Lemma 3.6. Given a presheaf X, let τ/X denote the category whose objects (f, s) are
diagrams

X
f←− S

s−→ y(C)
in PSh(C) with s ∈ τ , and whose morphisms (f, s)→ (f ′, s′) are commutative diagrams

X S
f
oo

��

// s // y(C)

��

S′
f ′

__>>>>>>>>
//

s′
// y(C ′)

Let F,G : τ/X → E denote the functors sending F (f, s) = S and G(f, s) = y(C). Then the
evident map colimτ/X F → colimτ/X G is naturally isomorphic to η : X → X+.
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Proof. First we note a general fact about colimits of sets. Let K : D→ Sets be some functor
from a small category. Let PK be the category whose objects are pairs (D, a), with D and
object of D and a ∈ K(D); morphisms (D, a) → (D′, a′) are maps f : D → D′ ∈ D such
that K(f)(a) = a′. Then

colimD K ≈ π0 nerve(PK).
Let D = τ/X, and let evC : PSh(C)→ Sets denote the functor of evaluation at the object

C ∈ C. The category PevC F has as objects tuples ((f, s), u), where X
f←− S

s−→ y(D) is an
object of τ/X and u ∈ S(C); I will also regard the element u as a map u : y(C) → S.
Consider the full subcategory P0

evC F of PevC F consisting of objects ((f, idC), ιC) where
idC : y(C)→ y(C) is the trivial sieve over C, and ιC ∈ y(C)(C) is the element corresponding
to the identity map of C. The inclusion functor P0

evC F → PevC F admits a right adjoint,
which sends an object ((f, s), u) to ((fu, idy(C)), ιC).

y(C) id //

fu

}}{{
{{

{{
{{

u

��

y(C)

su

��

ιC ∈ y(C)(C)
_

��

X S
f

oo
s
// y(D) u ∈ S(C)

Thus, nervePevC F ≈ nerveP0
evC F . Since the only morphisms of P0

evC F are identity maps,
and the objects correspond to elements of X(C), we see that colimτ/X evC F ≈ X(C).

The category PevC G has as objects tuples ((f, s), v), where X
f←− S

s−→ y(D) is an object
of τ/X and v ∈ y(D)(C); I will also regard v as a map v : y(C) → y(D). Consider the
full subcategory P1

evC G of PevC G consisting of objects ((f, s), ιC) where s : S → y(C) is a
sieve over C, and ιC ∈ y(C)(C) the element corresponding to the identity map of C. The
inclusion functor P1

evC G → PevC G admits a right adjoint, which sends an object ((f, s), v)
to ((fu, t), ιC) defined by

v−1S
t //

u

��

fu

}}{{
{{

{{
{{

{
y(C)

v

��

ιC ∈ y(C)(C)
_

��

X S
f

oo
s
// y(D) v ∈ y(D)(C)

where the square is a pullback.
Thus, nervePevC G ≈ nerveP1

evC G. The components of nerveP1
evC G are in one-to-one

correspondence with X+(C) (and each component is the nerve of a filtered category and
thus contractible). Thus colimτ/X evC G ≈ X+(C). �

3.7. Grothendieck sites are sites.

Proposition 3.8. A subcategory Sh(C) ⊆ PSh(C) is a site (as defined in §1.2) if and only if
it is equal to the category of sheaves on the Grothendieck site (C, τ), for some Grothendieck
topology τ .

I’ll give a sketch of the proof here.
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Let C be a small category, Sh(C) ⊆ PSh(C) a site as defined in §1.2, and let a : PSh(C) �
Sh(C) : i be the associated adjoint pair. Let τ denote the set of all sieves s : S � y(C) in
PSh(C) such that a(s) is an isomorphism. It is a straightforward exercise to show that τ is
a Grothendieck topology on C.

Let Sh(C, τ) denote the full subcategory of sheaves with respect to the topology τ . Write
aτ : PSh(C) � Sh(C, τ) : iτ for the adjoint pair associated to the Grothendieck site (C, τ).

We want to show that Sh(C) = Sh(C, τ). It is clear from the definitions that Sh(C) ⊆
Sh(C, τ). The result will thus follow when we prove for any morphism f : X → Y ∈ PSh(C),
that

(*) a(f) is an isomorphism implies aτ (f) is an isomorphism.
Let f ∈ PSh(C) such that a(f) is iso. We can factor f = ip where i is a monomorphism and
p is a regular epimorphism (in PSh(C)). Since a preserves limits, a(i) is a monomorphism
in Sh(C). Since a(f) is iso, this implies that a(i) and a(p) are iso. Thus we have reduced
the problem to showing (*) in the special cases of (a) f is a monomorphism, and (b) f is a
regular epimorphism.

(a) Proof of (*) for f a monomorphism. Write the presheaf Y as a colimit Y = colimJ Yα,
where the Yα are representable presheaves. Let Xα

def= Yα ×Y X. Since f is a
monomorphism, the maps fα : Xα → Yα are sieves. Since a commutes with pullbacks,
a(fα) is an isomorphism. Thus fα ∈ τ . Any s ∈ τ has the property that aτ (s) is
an isomorphism, and so in particular aτ (fα) is an isomorphism. Since aτ preserves
colimits and X ≈ colimJ Xα, aτ (f) is an isomorphism.

(b) Proof of (*) for f a regular epimorphism. Since aτ preserves colimits, aτ (f) is
a regular epimorphism. To complete the proof, we need to show that aτ (f) is a
monomorphism as well. Let g : X → X ×Y X be the diagonal map associated to f ;
the map g is a monomorphism of presheaves. Since a preserves pullbacks and a(f)
is iso, we must have that a(g) is iso. By case (a), it follows that aτ (g) is iso, and
thus aτ (f) is a monomorphism since aτ preserves finite limits.

4. Model Categories

In this section, I give a brief exposition of results from the theory of model categories
which I will need. Most proofs are omitted.

Given a category M and a subcategory W, which we will call the category of “weak-
equivalences” in M, the category of fractions is category HoW M and a functor γ : M→
HoW M which is initial among functors from M which send morphisms of W to isomor-
phisms. We write HoM for HoW M when W is understood. In particular, any functor
F : M → D which takes weak equivalences to isomorphisms factors uniquely through a
functor Ho F : HoM→ D.

A Quillen model category is a pair (M,W) as above, together with a “model category
structure”; this consists of two additional subcategories of M, the subcategories of fibra-
tions and the cofibrations, which satisfy a number of properties, which I will not list here;
[DS95] is the best introduction to this subject. It may be useful to note that given (M,W),
the class of fibrations is determined by the class of cofibrations, and vice versa, so that to
specify a model category structure, only one of these two classes needs to be described.
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Quillen gave the original axioms for a model category in [Qui67] and [Qui69] (which are
those followed by [DS95]). Since then it has been found useful to require some additional
properties; in particular, that a model category be complete and cocomplete, and that it
has “functorial factorizations”. I will take this formulation (as in [DHKS04], [Hov99], and
[Hir03]) as the definition of a model category.

A pair (M,W) can admit more than one model category structure.

Example 4.1. Let M = sPSh(C) be the category of simplicial presheaves, i.e., the cate-
gory consisting of functors Cop → C, where C is a small category and S is the category of sim-
plicial sets. Let W denote the class of maps f : X → Y ∈M for which f(C) : X(C)→ Y (C)
is a weak equivalence of simplicial sets for all C ∈ C.

The pair (M,W) admits at least two model category structures: the Bousfield-Kan
model structure (or projective model structure), in which f is a fibration if and only
if each f(C) is a fibration of simplicial sets, and the Heller model structure (or injective
model structure), in which f is a cofibration if and only if each f(C) is a cofibration of
simplicial sets, or what is the same thing, if f is a monomorphism.

4.2. Derived functors. Model categories are a machine for constructing derived functors.
A left-derived functor LF : HoM→ D of F : M→ D is an initial object in the category
of pairs consisting of a functor F ′ : HoM → D and a natural transformation F → F ′ ◦ γ.
Likewise a right-derived functor RG : HoM → D of G : M → D is a final object in
the category of pairs consisting of a functor G′ : HoM → D and a natural transformation
G′ ◦ γ → G.

Derived functors on model categories are constructing using cofibrant or fibrant replace-
ment; for an object X of a model category these are objects Xcof and Xfib and together
with maps

0 cof−−→ Xcof W−→ X X
W−→ Xfib fib−→ 1

which are cofibrations, fibrations, or weak equivalences as labelled. The cofibrant and fibrant
replacements play the same role that projective and injective resolutions play in homological
algebra. Given a functor F : M → D, a left-derived functor LF : HoM → D can be
defined if F takes weak equivalences between cofibrant replacements to isomorphisms, so that
LF (X) ≈ F (Xcof), and a right-derived functor RF : HoM → D can be defined if F takes
weak equivalences between fibrant replacements to isomorphisms, so that RF (X) = F (Xfib).

4.3. Quillen pairs. A Quillen pair between model categories is a pair of adjoint functors
F : M � N :G such that F preserves cofibrations and G preserves fibrations. In this case,
there are total derived functors LF : M→ N and LG : N→M defined by

LF (X) def= F (Xcof) LG(Y ) def= G(Y fib),

where X 7→ Xcof and Y 7→ Y cof are functorial cofibrant (resp. fibrant) replacement functors
in M (resp. N). The total derived functors take weak equivalences to weak equivalences,
and thus pass to an adjoint pair of functors

Ho LF : HoM � HoN : Ho LG

on homotopy categories. In later sections it will be usually understood that we are talking
about total derived functors, and thus I will often drop the symbols L and R.
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A Quillen equivalence is a Quillen pair which induces equivalences of the corresponding
homotopy categories. It is the correct notion of “weak equivalence” of model categories.

4.4. Constructions of model categories. A nice feature of model categories, is that
categories related to a model category are also model categories.

(a) If M is a model category, then the opposite category Mop is also a model category,
with the same weak equivalences, and the fibrations and cofibrations switched. If Mi

are model categories for i = 1, 2, the product category M1×M2 is a model category,
in which the classes of fibrations, cofibrations, and weak equivalences in the product
are the products of those classes of the Mi.

(b) If X is an object of M, then the slice category M/X inherits a model category
structure; the weak equivalences, fibrations, and cofibrations are the maps (A →
X) → (B → X) such that the underlying map A → B in M is a weak equivalence,
fibration, or cofibration.

(c) Similarly, X\M inherits a model category structure.
(d) For a small category I, let MI denote the category of functors I → M. Under

suitable hypotheses on I or M (for instance, if the nerve of I is a finite simplicial
set, or if M is cofibrantly generated), the category MI admits a model category
structure, with weak equivalences the natural transformations η : F → G such that
η(i) : F (i)→ G(i) is a weak equivalence in M for every object i ∈ I.

Remark 4.5. There is a subtlety involving examples (b) and (c), which I’ll illustrate for (b).
If f : X → Y is a map in M, there is an induced Quillen pair F : M/X � M/Y :G, where
F (g : U → X) = (fg : U → Y ) and G(h : V → Y ) = (V ×Y X → X). One might expect
that if f is a weak equivalence, then (F,G) is a Quillen equivalence, but this is not always
the case. It is true that if X and Y are fibrant objects, then a weak equivalence f gives rise
to a Quillen equivalence of slice categories. In other words, the Quillen equivalence type of
M/X is not necessarily a homotopy invariant of X, unless we restrict attention to fibrant
object X.

For this reason, when I speak of the slice category M/X, I’ll implicitly assume that X is
to be replaced by a fibrant object, if it is not already so.

A model category is called right proper if arbitrary weak equivalences X → Y induce
Quillen equivalences M/X � M/Y . There is a dual notion of left proper.

4.6. Homotopy limits and colimits. An important example of derived functors are ho-
motopy limits and colimits. Thus, the composite of the colimit functor colim: MI → M
with γ : M → HoM has a left derived functor denoted L colim: MI →M. Under suitable
hypotheses on M (i.e., if it is a model category with functorial factorizations), there is a
homotopy colimit functor hocolim: MI → M which is the total left derived functor of
colim; also, there is a homotopy limit functor holim: MI → M which is the total right
derived functor of lim.

4.7. Derived mapping space. The set HoM(X, Y ) of homotopy classes of maps between
two objects in M is actually the set of path components of a certain space (simplicial set),
which I’ll call the derived mapping space. I refer the reader to [Hov99] for the construction
of these derived mapping spaces, which exist for any model category.
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We write mapM : Mop ×M → S for the derived mapping space construction. It has the
following properties:

(a) π0 map(X, Y ) ≈ HoM(X, Y ).
(b) If F : M � N :G is a Quillen pair, then there is a weak equivalence

mapN(LFX, Y ) ≈ mapM(X, RGY ).

(c) If F : M � N :G is a Quillen equivalence, then mapM(X, Y ) ≈ mapN(FX, FY ) and
mapN(X, Y ) ≈ mapM(GX,GY ).

(d) For a functor F : I→M from a small category I, we have weak equivalences

mapM(hocolimI F, Y ) ≈ holimI mapM(F, Y )

and
mapM(X, holimI F ) ≈ holimI mapM(X, F ).

4.8. Simplicially enriched model categories. Although map is a functor in each of its
variables, it is not in general composable; in general, there is no natural composition map
map(X, Y )×map(Y, Z)→ map(X, Z). It would be nice to be able to associate to a model
category a category enriched over simplicial sets.

A category M is enriched over simplicial sets if for every pair of objects X, Y ∈ M
there is a simplicial set hom(X, Y ) (the “function complex”), whose vertices are precisely the
morphisms in M, and which has associative composition maps hom(X, Y ) × hom(Y, Z) →
hom(X, Z). We say that an enriched model category M is a simplicial model category if

(a) M has enriched limits and colimits, and
(b) if for every cofibration i : A→ B and fibration p : X → Y in M, the induced map

hom(B, Y )→ hom(A,X)×hom(A,Y ) hom(B, Y )

of simplicial sets is a Kan fibration, and is a weak equivalence of one of i or p is a
weak equivalence.

The main point is that if X and Y are fibrant-and-cofibrant objects, then hom(X, Y ) is
weakly equivalent to the derived mapping space map(X, Y ). Thus the full simplicially en-
riched subcategory of M consisting of fibrant-and-cofibrant objects gives us what we want.

Not every model category is simplicial; however, the presentable model categories of the
next section are always simplicial model categories. This includes (up to Quillen equivalence)
all the examples of model categories we are interested in.

5. Universal model categories and presentable model categories

5.1. Universal model categories. For a small category C, let sPSh(C) denote the cate-
gory of simplicial presheaves on C equipped with the Bousfield-Kan model category structure
(4.1).

In [Dug01b], Dugger proves the following result.

Theorem 5.2. Let M be a model category, and γ : C → M a functor from a small cat-
egory C; let y : C → sPSh(C) denote the yoneda embedding. Then there exists a functor
L : sPSh(C)→M and a natural transformation η : L◦y → γ, such that L is the left adjoint
of a Quillen pair sPSh(C) � M, and η gives a weak equivalence when evaluated at any



TOPOSES AND HOMOTOPY TOPOSES (VERSION 0.15) 23

object of C. Furthermore, the choice of (L, η) is essentially unique, in the sense that the
category of such data (L, η) has contractible nerve.

In Dugger’s terminology, this makes sPSh(C) the “universal model category” on the small
category C.

As a consequence, if F : sPSh(C) → M is any functor to a model category M which
carries weak equivalences to weak equivalences and preserves homotopy colimits, the above
theorem shows that there is a Quillen pair U : sPSh(C) � M :V such that F is naturally
weakly equivalent to the total derived functor LU .

5.3. Localization model categories. Let M be a model category, and let S be a class
of morphisms of M. We say an object W of M is S-local if, for each f : A → B ∈ S, the
induced map map(B,W ) → map(A,W ) on derived mapping spaces is a weak equivalence.
Write LSM for the collection of S-local objects.

We say a class of morphisms S is saturated if
(a) all weak equivalences are in S,
(b) if the composite gf exists, and any two of f, g, gf are in S, then so is the third,
(c) if

X //

f

��

X ′

g

��

Y // Y ′

is a homotopy pushout square, and f ∈ S, then g ∈ S,
(d) if f : F → G is a natural transformation of functors I→M from a small category I,

such that f(i) ∈ S for all i ∈ I, then hocolimI f ∈ S.
Given a class S of morphisms M, its saturation S̄ is the smallest saturated class containing
S. It is a formal consequence of the definitions that if W ∈ LSM and f : X → Y ∈ S̄, then
map(Y, W )→ map(X, W ) is a weak equivalence.

Given a class of maps S in a model category M, a localization model category struc-
ture on M is a new model category structure on M, denoted MS , such that

(a) the weak equivalences of MS are precisely the saturation S̄ of S, and
(b) the identity functors id : M � MS : id are a Quillen pair.

Under certain hypotheses on M, if S is a set, then a localization model category struc-
ture always exists (see especially [Hir03]). Localization model categories have the following
properties.

(a) Let us write a : M � MS : i for the adjoint Quillen pair described above; both are
actually the identity functor on the underlying category. Then the natural transfor-
mation (Ho a)(Ho i)→ 1 of endofunctors of HoMS is an equivalence.

(b) The right adjoint Ho i : HoMS → HoM induces an equivalence between HoMS and
the full subcategory HoLSM of S-local objects of M.

(c) Furthermore, the “embedding” Ho i is homotopically full and faithful, in the
sense that

mapM((Ho i)X, (Ho i)Y ) ≈ mapMS
(X, Y ).

(d) A morphism f ∈ S̄ if and only if mapM(f,W ) is a weak equivalence for all W ∈ LSM.
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5.4. Small presentation. Let C be a small category, and let sPSh(C) be the category of
simplicial presheaves on C, equipped with the Bousfield-Kan model category structure.

Given a set S of maps in sPSh(C), there is a localization model category structure,
denoted sPSh(C)S . Recall (§5.1) that given any functor γ : C→M to a model category M,
there exists an essentially unique Quillen pair extending γ, with left adjoint L : sPSh(C)→
M. It is straightforward to check that L factors through a Quillen pair with left adjoint
L : sPSh(C)S →M if and only if the total derived functor LL carries elements of S to weak
equivalences in M. Thus, it is tempting to regard sPSh(C)S as being given by “generators”
and “relations”, where the generators are the small category C, and the relations are the
set of maps S.

Dugger [Dug01b] defines a small presentation of a model category M to be a Quillen
equivalence of the form

sPSh(C)S � M
where C is a small category and S is a set of maps in sPSh(C). Dugger shows that any
model category which is Quillen equivalent to one with a small presentation also has a
small presentation. He also proves [Dug01a] that a very large class of model categories (the
“combinatorial model categories”) admit a small presentation.

We will need to consider the following variation on these ideas. Let C be a small, simpli-
cially enriched category; that is, there are simplicial sets of maps homC(X, Y ) for each pair
of objects. Let sPSh(C) denote the category of simplicial functors from Cop to simplicial
sets. We will define a small simplicial presentation of a model category M to be a sim-
plicial category C, a set of maps S in sPSh(C), and a Quillen equivalence sPSh(C)S � M.
It is not hard to show that a model category admits a small presentation if and only if it
admits a small simplicial presentation (the main point is that even for a simplicial category
C, sPSh(C)S is a combinatorial model category, so Dugger’s theorem applies to show that
sPSh(C)S is presentable.)

5.5. Left-exact localization. Let M be a model category, let S be a set of maps for which
we can define a localization model category structure MS , and let S̄ denote the saturation
of S. We say that localization with respect to S is left-exact if the left-derived functor La
of a : M→MS preserves finite homotopy limits. Since such a localization always preserves
the terminal object, this condition amounts to the requirement that La preserve homotopy
pullbacks. Equivalently, if we write L = Ri ◦ La for the localization functor, localization is
left-exact if and only if L preserves finite homotopy limits.

Proposition 5.6. Let M be a model category, and MS be a localization model category
structure on M with respect to a set S. The localization is left-exact if and only if the
saturation S̄ is closed under homotopy base change.

Proof. Let L : M → M denote the localization functor, and let ηX : X → LX denote the
coaugmentation. We know that S̄ = { f | L(f) is a weak equivalence } so that ηX ∈ S̄ for all
X. Furthermore, if L is left-exact, it is clear that S̄ is closed under homotopy base change.
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Suppose now that S̄ is closed under homotopy base change. Consider a homotopy pullback
square

P //

��

Y

��

X // B

in M. To show that L carries this to a homotopy pullback, it will be enough to show that
the evident map P → LX ×h

LB LY is in S̄. Let X ′ = B ×h
LB LX and Y ′ = B ×h

LB LY , let
P ′ = X ′ ×h

B Y ′, and consider the diagram

P //

��

P ′ ×h
Y ′ Y

//

��

Y

��

S̄

��
@@

@@
@@

@@
@

P ′ ×h
X′ X //

��

P ′ //

��

Y ′

��

// LY

��

X //

S̄ ''NNNNNNNNNNNNN X ′ //

��

B

S̄
CCC

C

!!C
CCC

LX // LB

in which every quadrilateral is a homotopy pullback square. The labelled maps are in S̄.
Using the two-of-three property of S̄ and the fact that S̄ is closed under homotopy base
change, we see that P → P ′ ≈ LX ×h

LB LY is in S̄, as desired. �

6. Model topos

6.1. Definition of a model topos. A model site is defined to be a pair (C, S), consisting
of a small simplicial category and a set of maps S in sPSh(C), such that the left adjoint
a : sPSh(C) → sPSh(C)S is left exact; that is, localization with respect to S preserves
homotopy pullbacks.

A model topos is a model category which is Quillen equivalent to sPSh(C)S for some
model site.

Example 6.2. Topological spaces, with its usual model category structure, is model topos; of
course, so are simplicial sets. The simplicial presheaf categories sPSh(C) are clearly model
toposes. We will soon see that if E is a model topos, then so are its slice categories E/X.

Example 6.3. The Joyal-Jardine model category of simplicial (pre-)sheaves on a Grothendieck
site is a model topos; see [Jar87] and [Jar96].

Remark 6.4. Note that in the definition of model topos we allow C to be a simplicial category,
and not merely a discrete category. This is necessary to ensure that the Giraud theorem
(6.9) below holds; see (11.9) for an explanation.

The definition of model topos we have given here is basically one given in [TV05].
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6.5. Descent. Let M be a model category, and I a small category. A natural transformation
f : X → Y of functors X, Y : I →M will be called equifibered if for each map i → i′ ∈ I,
the induced square

X(i) //

��

X(i′)

��

Y (i) // Y (i′)

is a homotopy pullback.
We will say that M has descent (or sometimes homotopical patching, or just patch-

ing), if the following conditions (P1) and (P2) hold:
(P1) Let I be a small category, X : I→M a functor, and X̄ = hocolimI X. Let f : Ȳ → X̄

be a map in M. Form a functor Y : I →M by Y (i) def= X(i) ×h
X̄

Ȳ for i ∈ I. Then
the evident map hocolimI Y → Ȳ is a weak equivalence.

(P2) Let I be a small category, f : Y → X an equifibered natural transformation. Let
f̄ : Ȳ → X̄ be the induced map between homotopy colimits Ȳ = hocolimI Y and
X̄ = hocolimI X. Then for each object i ∈ I the natural map Y (i)→ X(i)×h

X̄
Ȳ is

a weak equivalence.
Roughly, “descent” says that for any functor X : I →M with X̄ = hocolimI X, there is an
equivalence between the homotopy theory of M/X̄, and the homotopically full subcategory
of equifibered objects in MI/X.

It is a standard fact of homotopy theory that the model category of spaces has descent.
To prove this, it is enough to check the axioms for two shapes of diagrams: (1) arbitrary
coproducts, and (2) pushouts. Case (1) is easy, while case (2) is well known; I think it was
first proved explicitly in [Pup74].

From this, it follows that every simplicial presheaf category has descent. It is clear that
any left exact localization of a model category with descent also has descent. Thus we have
proved

Proposition 6.6. A model topos E has descent.

We will need the following.

Proposition 6.7. Let E be a model category with descent. If

A //

��

Y

g

��

X
f
// B

is a homotopy pullback square of natural transformations A,X, Y, B : J→ E such that f and
g are equfibered, then the evident map

hocolim A→ (hocolim X)×h
hocolim B (hocolim Y )

is a weak equivalence.
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Proof. Write B̄, X̄, Ȳ , and Ā for the homotopy colimits of B, X, Y , and A respectively. Set
X ′(J) = B(J)×h

B̄
X̄ and Y ′(J) = B(J)×h

B̄
Ȳ , and let

A′(J) = B(J)×h
B̄ (X̄ ×h

B̄ Ȳ ) ≈ X ′(J)×h
B(J) Y ′(J).

Then (P1) implies that

hocolimJ X ′ ≈ X̄, colimJ Y ′ ≈ Ȳ , hocolimJ A′ ≈ X̄ ×B̄ Ȳ .

The proposition will be proved once we show that each map A(J) → A′(J) is a weak
equivalence.

Since f and g are equifibered, (P2) tells us that each of the maps X(J) → X ′(J) and
Y (J)→ Y ′(J) are weak equivalences. Therefore, the composite map

A(J) ≈ X(J)×B(J) Y (J)→ X(J)×B(J) Y ′(J)→ X ′(J)×B(J) Y ′(J) ≈ A′(J)

is a weak equivalence, as desired. �

6.8. Giraud theorem.

Theorem 6.9. A model category E is a model topos if and only if
(a) E admits a small presentation, and
(b) E has descent.

This has as an easy consequence

Corollary 6.10. If E is a model topos, so are the slice categories E/X.

Proof sketch. If E is a model topos, it certainly admits a small presentation. As noted above,
every model topos has patching.

Now suppose that E is a model category satisfying (a) and (b). Since E has a small
presentation, we can replace it with a Quillen equivalent one which is a simplicial model
category. The first step is to choose a set C of fibrant-and-cofibrant objects of E with the
following property: if we let C be the full simplicial subcategory of the simplicial enrichment
of E with object set C, then the induced adjoint pair sPSh(C) � E identifies E with a
localization of sPSh(C), i.e., there is a set of maps S is sPSh(C) so that sPSh(C)S � E
is a Quillen equivalence. This can be proved by ideas similar to those used by Dugger in
[Dug01a] (if it is not proved there already).

Given such a simplicial presentation, the simplicial yoneda embedding y : C→ sPSh(C)S

factors through E, and thus each y(C) is an S-local object of sPSh(C). Thus, without loss
of generality, we may assume that E = sPSh(C)S , and that y : C → sPSh(C)S factors
through the full subcategory of S-local objects.

Write P = sPSh(C). I’ll write a : P � E : i for the adjoint pair, and I will not usually
bother to distinguish between a and i and their total derived functors. A “pseudosheaf”
will be an S-local object of P. Since every object of P is a homotopy colimit of a dia-
gram of representable presheaves, we have that every object of P is a homotopy colimit of
pseudosheaves.

I need to show:
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(*) For each homotopy pullback square

P //

��

Y

��

X // Y

in P, the induced square

aP //

��

aY

��

aX // aY

is a homotopy pullback in E.

I’ll prove this in several steps.
(a) Property (*) holds if Y , B, and X are pseudosheaves. The homotopy limit in P of

a diagram a pseudosheaves is a pseudosheaf, and this computes the homotopy limit
in E.

(b) Property (*) holds if Y and B are pseudosheaves. Every X ∈ P is a homotopy colimit
of pseudosheaves. Thus, suppose X ≈ hocolimJ U for some functor U : J→ sPSh(C)
from a small category J, such that each object U(j) is a pseudosheaf. For each j ∈ J
we have a sequence of homotopy pullback squares

U(j)×B Y //

��

X ×B Y //

��

Y

��

U(j) // X // B

By descent in P, hocolimJ U ×B Y ≈ X×B Y . Since U(j) is a pseudo-sheaf, part (a)
shows that aU(j)×h

aB aY ≈ a(U(j)×h
B Y ) for each j ∈ J. Now descent in E implies

that hocolimJ(aU ×h
aB aY ) ≈ (hocolimJ aU) ×h

aB aY in E; hence, a(X ×h
B Y ) ≈

hocolimJ a(U ×h
B Y ) ≈ hocolimJ(aU ×h

aB aY ) ≈ aX ×h
aB aY , as desired.

(c) Property (*) holds if B is a pseudo-sheaf. This is proved exactly as in (b), except
that we can drop the hypothesis that Y is a pseudo-sheaf by making use of (b).

(d) Property (*) holds for general X, Y , and B. Write B = hocolimJ W , where
W : J→ P lands in pseudosheaves. Let U(j) = W (j)×h

B X and V (j) = W (j)×h
B Y .

Then descent in P implies that X ≈ hocolimJ U and Y ≈ colimJ V , and that
hocolimJ U ×h

W V ≈ X ×h
B Y . Since U → W and V → W are obtained by ho-

motopy pullback from X → B and Y → B respectively, these are both equifibered
natural transformations. Using (c), we see that both aU → aW and aV → aW are
equifibered transformations; therefore (6.7) in E gives that

a(X ×h
B Y ) ≈ a(hocolimJ U ×h

W V ) ≈ hocolim aU ×h
aW aV → aX ×h

aB aY

is a weak equivalence, as desired.
�

Both Toën-Vezzosi [TV05] and Lurie [Lura] give versions of a “Giraud theorem” in which
descent is replaced with the following three statements:

(A) Formation of homotopy colimits commutes with homotopy pullback.
(B) Homotopy coproducts are disjoint.
(C) Segal groupoid objects are effective.
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These three statements are actually equivalent to descent; I’ll explain why descent implies
(A), (B), and (C); the converse is proved in [Lurb].

Property (A) is really just a restatement of (P1).
Property (B) says that if {Xα}α∈I is a collection of objects of E, then for each β 6= γ in

I the square
0 //

��

Xγ

��

Xβ //

∐h

α

Xα

is a homotopy pullback; 0 denotes the initial object. To prove this using descent, let

Yα =

{
0 if α 6= γ,
Xγ if α = γ.

Then the evident natural transformation Y → X is (trivially) equifibered, and thus for each
β ∈ I the square

Yβ //

��

∐h

α

Yα

��

Xβ //

∐h

α

Xα

is a homotopy pullback. We have
∐h

α
Yα ≈ Xγ , and the result follows.

Let X : ∆op → E be a simplicial object in E. Say that X is a Segal category in E if for
each n > 1 the map

f : Xn → holim(X1
d0−→ X0

d1←− . . .
d0−→ X0

d1←− X1),

corresponding to the collection fi : [1]→ [n] of maps sending (0 < 1) to (i−1 < i), is a weak
equivalence. That is, X “looks like” the nerve of a category.

Say that a Segal category object X is a Segal groupoid if in addition, the map

X2
(d0,d1)−−−−→ holim(X1

d0−→ X0
d1←− X1)

is a weak equivalence. That is, X “looks like” the nerve of a groupoid.
Let Q = hocolim∆op X. There is an augmentation ε : X0 → Q. We say that a Segal

groupoid is effective if the map

X1
(d1,d0)−−−−→ holim(X0

ε−→ Q
ε←− X0)

is a weak equivalence; this condition implies that Xn ≈ X0 ×h
Q · · · ×h

Q X0 for all n ≥ 0. I’ll
sketch the proof that descent implies that all Segal groupoids are effective.

Consider the functor j : ∆→ ∆ defined by j([n]) = [n + 1], such that a map f : [k]→ [n]
is sent to the function j(f) : [k + 1] → [n + 1] defined by j(f)(i) = f(i) if 0 ≤ i ≤ k,
and j(f)(k + 1) = n + 1. The functions [k] → [k + 1] defined by i 7→ i define a natural
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transformation 1 → j. If X : ∆op → E is a functor, we obtain a map η : X ◦ j → X of
simplicial objects. It is not hard to show that η : X ◦ j → X is equifibered if and only if
X is a Segal groupoid. Furthermore, it is a standard fact that hocolim(X ◦ j) ≈ X0 (the
augmented simplicial object X ◦ j has a contracting homotopy to X0). Thus, if X is a Segal
groupoid, descent implies that

(X ◦ j)0 //

η

��

hocolim∆op(X ◦ j)

η

��

X0
// hocolim∆op X

is a homotopy pullback. Unwinding the definitons gives that X1
(d1,d0)−−−−→ holim(X0

ε−→ Q
ε←−

X0) is a weak equivalence, so that X is an effective Segal groupoid, as desired.

6.11. Morphisms of model toposes. Let us define a geometric morphism f : E → F
of model toposes to be a functor f∗ : F → E, which has a total left derived functor Lf∗

which preserves homtopy colimits and finite homotopy limits.

Example 6.12. If E has a small simplicial presentation by sPSh(C)S � E, the “sheafifica-
tion” on sPSh(C) produces a morphism E→ sPSh(C) of toposes.

Example 6.13. If E is a model topos and f : X → Y a map in E, the functor f∗ : E/Y →
E/X defined by pullback along f produces a geometric morphism E/X → E/Y ; clearly
f∗ preserves homotopy limits, and f∗ preserves homotopy colimits exactly by the descent
condition (P1).

If a : sPSh(C)S � E : i is a small presentation for E, and f∗ : E → F is the functor
associated to a geometric morphism, Dugger’s universal model category formalism [Dug01b]
allows one to contstruct an adjoint Quillen pair sPSh(C)S � F with the property that the
left adjoint of this pair is connected by a chain of weak equivalences to the composite f∗ ◦ a.
If we abuse notation and write f∗ : sPSh(C)S → F for this composite, then we see that
there is a right adjoint f∗ : F→ sPSh(C). Thus, up to Quillen equivalence, every geometric
morphism E→ F of model toposes is part of a Quillen pair f∗ : F � E : f∗.

6.14. Internal function objects. Let Y be an object of a model topos E, and let
f : E/Y → E denote the geometric morphism associated to f : Y → 1 ∈ E, as in (6.13). We
write sectY (B → Y ) def= f∗(B → Y ), and call it the object of sections over Y .

Let hom(Y, Z) def= sectY (Y ×Z → Y ). We call hom(Y, Z) the internal function object.

7. Truncation

7.1. k-truncated objects and maps. Let X be a space. Say that X is k-truncated
(k ≥ −1), if for every choice of basepoint x ∈ X, we have πq(X, x) = ∗ for all q > k. We
will also say that X is −2-truncated iff it is contractible.

Thus, X is −1-truncated iff X is either empty or contractible; X is 0-truncated if it is
weakly equivalent to a discrete space; X is 1-truncated if it is weakly equivalent to a disjoint
union of K(π, 1)s; and so forth.
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Let M be a model category, and X ∈ M and object. We say that X is k-truncated if
for every Y ∈M, the derived mapping space map(Y, X) is k-truncated. (If M is spaces, this
agrees with the original notion.)

We say a morphism f : Y → X in M is k-truncated if it is k-truncated as an object in
M/X.

Example 7.2. Let f : X → Y be a map of spaces. Then f is k-truncated if for every y ∈ Y ,
the homotopy fiber of f over y is a k-truncated space.

We also have that f is k-truncated iff for each x ∈ X, πq(X, x) → πq(Y, y) is an isomor-
phism for q > k + 1, and a monomorphism for q = k + 1. Thus, f is −1-truncated iff it
induces a weak equivalence between X and a union of some of the path components of Y ; f
is 0-truncated if it is weakly equivalent to a covering map.

Given a map f : X → Y in E, we write ∆(f) : X → X ×h
Y X for the evident diagonal

map. A useful criterion is a map to be truncated is the following.

Proposition 7.3. Let k > −2. A map f : X → Y in M is k-truncated iff ∆(f) : X →
X ×h

Y X is (k − 1)-truncated. In particular, f is −1-truncated iff the square

X //

��

X

f
��

X
f
// Y

is a homotopy pullback.

Remark 7.4. Sometimes we call a morphism a homotopy monomorphism if it is −1-
truncated; this is the precise analogue in homotopy theory of the notion of a monomorphism
in category theory.

There is an analogous notion of homotopy epimorphism, obtained by dualizing the
above notion, of which we will have no need. It is an amusing exercise to classify the
homotopy epimorphisms in spaces.

Proposition 7.5. If M is a model category which admits a small presentation, there is for
each k ≥ −2 a truncation functor τk : M → M, with a natural transformation η : 1 → τk,
such that τkX is k-truncated for each X ∈ M, and such that for each k-truncated Y in
M, the map map(τkX, Y ) → map(X, Y ) induced by η is a weak equivalence. Furthermore,
f : X → X ′ is such that τkf is a weak equivalence if and only if map(X ′, Y ) → map(X, Y )
is a weak equivalence for all k-truncated Y .

Proof. Without loss of generality, we can set M = sPSh(C)S . Let T = {gC} be the set of
maps in M, where for an object C ∈ C the map gC : Sk+1 × yC → Dk+2 × yC is the evident
inclusion. It is easy to see that thet T -local objects of M are precisely the k-truncated
objects. We can form a localization model category MT = sPSh(C)S∪T ; the localization
functor we obtain this way is exactly τk. �

We will sometimes write τX
k for the k-truncation functor on M/X; this functor associates

to each morphism f : Y → X a factorization Y → τX
k f

g−→ X of f in which g is k-truncated.
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Proposition 7.6. If f : F→ E is a geometric morphism of model toposes, then f∗ : E→ F
commutes with truncation, in the sense that there is a weak equivalence f∗τE

k ≈ τF
k f∗.

In particular, given a homotopy pullback square

A //

a

��

B

b
��

X // Y

in E, there is a homotopy pullback square

τX
k a //

��

τY
k b

��

X // Y

Proof. It is clear that since f∗ is left exact, it takes k-truncated objects to k-truncated
objects, by (7.3). Thus in the square

f∗X
f∗η

//

η

��

f∗τE
k X

∼
��

τF
k f∗X // τF

k f∗τE
k X

the right hand side is a weak equivalence, and thus we need only show that the bottom side is
a weak equivalence, i.e., that for all k-truncated Y in F, mapF(f∗τE

k X, Y )→ mapF(f∗X, Y )
is a weak equivalence. But f∗ is left adjoint to a f∗ : F → E, and so this map is equivalent
to mapE(τE

k X, f∗Y )→ mapE(X, f∗Y ). Since f∗ preserves homotopy limits, it also preserves
k-truncated objects, and the result follows. �

7.7. Effective epimorphisms and the Cech complex. In a model topos, there is a direct
construction of −1-truncation, by means of a “Cech complex”.

Proposition 7.8. Let X ∈ E be an object in a model topos. Let U be the simplicial object
in E defined by Un = Xn+1. Let Y = hocolim∆op U . Then the map X = U0 → Y is weakly
equivalent to the −1-truncation map X → τ−1X.

Proof. First, I need to show that Y is−1-truncated; that is, Y → Y ×Y is a weak equivalence.
It is equivalent to show that the projection pr2 : Y × Y → Y is a weak equivalence. We
have Y × Y ≈ Y × (hocolim U) ≈ hocolim(Y × U). Thus, we need to show that each
pr2 : Y × Un → Un is a weak equivalence; since pr2 : Y × U → U is equifibered, it is enough
to show that pr2 : Y ×X = Y × U0 → U0 = X is a weak equivalence.

We have Y ×X ≈ (hocolim U)×X ≈ hocolim(U×X). The projection map pr2 : U0×X =
X ×X → X factors through U0 ×X → Y ×X, and is an augmentation for the simplicial
object U ×X which admits a contracting homotopy. Thus hocolim(U ×X)→ Y ×X → X
are weak equivalences, as desired.

Next, I need to show that if Z is −1-truncated, then map(Y, Z) → map(X, Z) is a weak
equivalence. But

map(Y, Z) ≈ map(hocolim U,Z) ≈ holim map(U,Z);
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since Z is −1-truncated, each space map(Un, Z) is either empty or contractible. If map(X, Z)
is non-empty, the result is clear. If map(X, Z) is non-empty, then each map(Un, Z) is non-
empty and thus contractible, and the homotopy limit is contractible. �

We say that a map f : X → Y in a model topos is an effective epi if τY
−1(f) ≈ Y , or

equivalently, if the natural map hocolim∆op X•+1
Y → Y is a weak equivalence. (Lurie calls

such maps “surjections”.) Thus, every effective epi with codomain Y is associated to a Cech
complex which resolves Y .

Here is a nifty criterion for a map to be an effective epi, given by Lurie. Given X ∈ E,
let Sub(X) denote set of weak equivalence classes of −1-truncated objects in E/X. (This is
a set; there is a set-worth of weak equivalence classes of −1-truncated objects of sPSh(C).)
The set Sub(X) naturally has the structure of a poset; say A ≤ B if mapE/X(A,B) is non-
empty. In fact, Sub(X) is a lattice; the meet of A and B is the homotopy pullback A×h

X B,
viewed as an object over X.

Lemma 7.9. A map f : X → Y in a model topos E is an effective epi iff the map
f∗ : Sub(Y )→ Sub(X) defined by homotopy pullback is injective.

Proof. The function f∗ preserves meets, so it is injective iff f∗A = f∗B implies A = B for
all A ≤ B ∈ Sub(Y ).

If f is effective epi, then Y ≈ hocolim∆op X•+1
Y . Furthermore, if A→ Y is −1-truncated,

then f∗A ≈ hocolim∆op(X•+1
Y ×h

Y A). In particular, if g : A → B is a map of −1-truncated
objects of E/Y such that the pullback over X is a weak equivalence, then g is a weak
equivalence.

Conversely, suppose f∗ is injective. There is a map g : τY
−1(X) → Y of −1-truncated

objects of E/Y . The square
X //

��

X

f

��

τY
−1(X) g

// Y

is a homotopy pullback, and thus since f∗ is injective, we conclude that g was a weak
equivalence. �

Proposition 7.10.
(a) The homotopy pullback of an effective epi is effective epi.
(b) If f and g are effective epis and gf is defined, then gf is effective epi.
(c) If f and g are maps such that gf is defined, and if gf is effective epi, then g is

effective epi.
(d) If f : X → Y is effective epi, g : A→ Y a map, and h : X ×h

Y A→ X the homotopy
pullback of g along f , then h is a weak equivalence/k-truncated/effective epi if and
only if g is.

Proof. Part (a) is immediate from (7.6). Part (b) and (c) follow from (7.9). Part (d) is
proved by an argument using the Cech complex of (7.8) and descent. �
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8. Connectivity

8.1. k-connected objects and maps. An object X ∈ E is said to be k-connected if
τkX → 1 is a weak equivalence. A morphism f : Y → X ∈ E is k-connected if it is k-
connected as an object in E/X, i.e., if τX

k (Y )→ X is a weak equivalence.
In particular, every map is −2-connected; a map is −1-connected if and only if it is an

effective epimorphism.

Example 8.2. For a space, this notion of k-connectedness coincides with the usual one. A
space X is −1-connected if and only if it is non-empty. A space X is k-connected (k ≥ −1)
if and only if it is non-empty, and πq(X, x) ≈ ∗ for all x ∈ X and all q ≤ k.

Under our formulation, a map f : Y → X of spaces is k-connected if and only if all of
its homotopy fibers are k-connected. This differs by one from the usual topological usage,
where a map f : Y → X is called k-connected if it can be modelled by a CW-pair (L,K) such
that the complement L−K is a union of open cells having dimensions greater than k. The
topological notion of k-connectivity corresponds to what we are calling (k− 1)-connectivity.

Proposition 8.3. A map f : Y → X is k-connected if and only if for every k-truncated map
g : Z → X, the map on derived mapping spaces mapE/X(X, Z) → mapE/X(Y, Z) is a weak
equivalence.

Proof. Without loss of generality, assume X ≈ 1. Then τk(Y ) ≈ 1 if and only if
mapE(Y, Z) ≈ 1 for every k-truncated Z in E, by the characterization of truncation. �

Proposition 8.4. In a model topos, the class of k-connected maps is closed under homotopy
base change and homotopy cobase change.

Proof. The statement about homotopy base change follows from the fact that relative trun-
cation is compatible with homotopy pullback (7.6). The statement about homotopy cobase
change is easily derived from (8.3). �

Proposition 8.5. For a morphism f : X → Y in a model topos E, the k-truncation aug-
mentation η : X → τY

k f is k-connected. In particular, the relative k-truncation construction
produces a factorization of a map into a k-connected map followed by a k-truncated map.

Proof. Without loss of generality, we may assume Y ≈ 1, and so show that η : X → τkX is
k-connected.

Given a k-truncated map g : Z → τkX, we must show that mapE/τkX(τkX, Z) →
mapE/τkX(X, Z) is a weak equivalence. Consider the commutative square

mapE(τkX, Z) //

α

��

mapE(X, Z)

β
��

mapE(τkX, τkX) // mapE(X, τkX)

induced by the maps η and g. Since g is a k-truncated map and τkX is a k-truncated
object, the composite Z → τkX → 1 is k-truncated. Thus the horizontal maps in the square
are weak equivalences by (7.5). The space mapE/τkX(τkX, Z) is weakly equivalent to the
homotopy fiber of α over the point id ∈ mapE(τkX, τkX). Likewise, mapE/τkX(X, Z) is
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weakly equivalent to the homotopy fiber of β over the point η ∈ mapE(X, τkX). This gives
the desired equivalence. �

Lemma 8.6. Let f : Y → X be an `-truncated map in a model topos E, and let k > `. Then

Y //

f

��

τkY

��

X // τkX

is a homotopy pullback.

Proof. Identify E with a simplicial presentation sPSh(C)S . Consider the square

iY //

i(f)

��

τ ′kiY

��

iX // τ ′kiX

where τ ′k denotes truncation in the presheaf category sPSh(C). The map i(f) is an `-
truncated map of presheaves, and a straightforward argument using homotopy groups shows
that the square is a homotopy pullback of presheaves. By (7.6), sheafification is compatible
with truncation, and we get the desired result. �

Proposition 8.7. Let f : Y → X be a map in a model topos E.
(1) If f is k-connected, then τkf is a weak equivalence.
(2) If τkf is a weak equivalence, then f is (k − 1)-connected.

Proof. To prove (1), note that if Z ∈ E is a k-truncated object, then pr1 : X × Z → X is a
k-truncated map. The result follows easily using mapE(Y, X) ≈ mapE/X(Y, X × Z).

To prove (2), we need to show that if g : Z → X is a (k − 1)-truncated map, then
α : mapE/X(X, Z)→ mapE/X(Y, Z) is a weak equivalence. Up to weak equivalence, we can
identify the map α with

β : mapE/τkX(X, τkZ)→ mapE/τkX(Y, τkZ)

since Z ≈ X×h
τkX τkZ by (8.6). Since the objects τkX and τkZ are k-truncated, an argument

similar to that in the proof of (8.5) shows that we can replace the domains with their
truncations, i.e., the map β is equivalent to

γ : mapE/τkX(τkX, τkZ)→ mapE/τkX(τkY, τkZ).

Since τkf is an equivalence, the map γ is a weak equivalence. �

Proposition 8.8. Let f : X → Y , g : Y → Z be maps in a model topos E.
(1) If f and g are k-connected, then so is gf .
(2) If f and gf are k-connected, then so is g.
(3) If g and gf are k-connected, then f is (k − 1)-connected.

Proof. Statements (1) and (2) are straightforward using the mapping space characterization
of k-connected map. Statement (3) follows from (8.5) applied to the slice category E/Z. �
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8.9. Connectivity theorems.

Proposition 8.10. Let f : A→ B be a map in a model topos E. The following are equiva-
lent.

(1) For all k-truncated maps g : X → Y in E, the induced map

h : mapE(B,X)→ mapE(A,X)×h
mapE(A,Y ) mapE(B, Y )

of spaces is a weak equivalence.
(2) f is k-connected.

Proof. Let g : X → Y be a map. Note that for every map j : B → Y , the diagram of spaces

mapE/Y (B,X) //

hj

��

mapE(B,X)

h
��

mapE/Y (A,X) //

��

mapE(A,X)×h
mapE(A,Y )

mapE(B, Y )

π2

��

{j} // mapE(B, Y )

consists of homotopy pullback squares.
Since h is a weak equivalence if and only if hj is a weak equivalence for every j ∈

mapE(B, Y ), the result follows from (8.3). �

Next, we give an internal version of (8.3).

Proposition 8.11. A map f : Y → X is k-connected if and only if for every k-truncated
map g : Z → X, the map on internal function objects h : homE/X(X, Z)→ homE/X(Y, Z) is
a weak equivalence in E/X.

Proof. Suppose f is k-connected. To show that h is a weak equivalence, it suffices to show
that for all maps a : A→ X, the induced map

p = mapE/X(A, h) : mapE/X(A,homE/X(X, Z))→ mapE/X(A,homE/X(Y, Z)

is a weak equivalence. The map p is equivalent to the map

p′ : mapE/X(A×h
X X, Z)→ mapE/X(A×h

X Y, Z).

Since connectedness is preserved under base change, A×h
X X → A×h

X Y is k-connected, and
thus p′ is an equivalence by (8.3), as desired.

Conversely, if h is a weak equivalence, apply mapE/X(X,−) and use (8.3). �

Suppose given maps f : A→ B and g : X → Y in E. Let uf,g denote the map

hom(B,X)→ hom(A,X)×h
hom(A,Y ) hom(B, Y ).

Lemma 8.12. The map ∆(uf,g) is weakly equivalent to uf,∆(g), where ∆(h) denotes the
diagonal of the map h, as in §7.1.

Proof. This is a straightforward exercise, using the fact that hom commutes with homotopy
limits in the second variable. �
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Proposition 8.13. Let f : A → B be a map in a model topos E, and let k ≥ −2. The
following are equivalent.

(1) For all m ≥ −2, and all m-truncated maps g : X → Y in E, the induced map uf,g in
E is (m− k − 2)-truncated if m ≥ k, or is an equivalence if m ≤ k.

(2) For all k-truncated maps g : X → Y in E, the induced map uf,g in E is a weak
equivalence.

(3) f is k-connected.

Proof. It is clear that (2) is a special case of (1), using m = k.
Te show that (2) implies (3), apply (8.10) to mapE(1, uf,g).
It remains to show that (3) implies (1). Suppose that f is k-connected, and consider an

m-truncated map g : X → Y . We must then show that uf,g is (m− k − 2)-truncated.
Suppose that m ≤ k. Then in particular g is k-truncated, and we must show that uf,g

is a weak equivalence. It suffices to show that for each object T in E that mapE(T, uf,g) is
a weak equivalence. A straightforward argument shows that mapE(T, uf,g) is equivalent to
the map

h : mapE(B × T,X)→ mapE(A× T,X)×h
mapE(A×T,Y ) mapE(B × T, Y ).

Since connectivity is preserved by base change, f × T : A× T → B × T is k-connected, and
it follows that h is an equivalence by (8.10).

Now suppose g is m-truncated with m > k, and that we have already proved the claim for
maps of lower truncation. Since g is m-truncated, ∆(g) : X → X×h

Y X is (m−1)-truncated,
by (7.3). By induction, the map uf,∆(g) is (m − k − 3)-truncated. But by (8.12), uf,∆(g)

is equivalent to ∆(uf,g). Thus we conclude that uf,g is (m − k − 2)-truncated using (7.3)
(which we can apply since m− k − 2 > −2), as desired. �

Lemma 8.14. Let f : A → B, g : A′ → B′, h : X → Y . Then uf,ug,h
≈ uf�g,h, where f�g

denotes the evident map

hocolim(A×B′ A×g←−−− A×A′
f×A′−−−→ B ×A′)→ B ×B′.

Proof. Straightforward. �

Proposition 8.15 (Join theorem). Let

A //

��

Y

g

��

X
f
// B

be a homototpy pullback square in a model topos E. Let C
def= hocolim(X ← A → Y ), and

let h : C → B denote the induced map. If f is m-connected and g is n-connected, then h is
(m + n + 2)-connected.

Proof. Without loss of generality, we may assume that B is the terminal object of E, in
which case A ≈ X × Y , and C may be thought of as the “join” of X and Y .

By (8.13), to show that h is (m + n + 2)-connected, it suffices to show that uh,q is an
equivalence for all (m + n + 2)-truncated q : U → V . Note that h ≈ f�g, so that we have
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uh,q ≈ uf�g,q ≈ uf,ug,q . We have that ug,q is (m + n + 2) − n − 2 = m-truncated, whence
uh,q ≈ uf,ug,q is a weak equivalence, using (8.13) twice. �

Proposition 8.16 (Triad connectivity theorem). Let

A
g
//

f
��

Y

��

X // B

be a homotopy pushout square in a model topos E. Let D
def= X ×h

B Y , and let h : A → D
denote the induced map. If f is m-connected and g is n-connected, then h is (m + n)-
connected.

Proof. Without loss of generality, assume that E is a model site sPSh(C)S . Choose a fac-

torization A
f ′−→ X ′ f ′′−→ X of f in sPSh(C) so that f ′ is m-connected and f ′′ is m-truncated

as maps of simplicial presheaves. The sheafification functor sPSh(C)→ E preserves connec-

tivity, from which we conclude that f ′′ ∈ S̄. Similarly, choose a factorization A
g′−→ Y ′ g′′−→ Y

so that g′ is n-conneced as a map of simplicial presheaves, and g′′ ∈ S̄. Then the homotopy
pushout square

A
g′
//

f ′

��

Y ′

��

X ′ // B

in sPSh(C) is equivalent to the original square in E. Thus, it suffices to show that A→ D′

is (m+n)-connected as a map of simplicial presheaves, where D′ ≈ X ′×h
B Y ′, the homotopy

limit being taken in simplicial presheaves. This in turn follows from the classical triad
connectivity theorem in spaces. �

9. The topos of discrete objects and homotopy groups

9.1. The topos of discrete objects. Given a model category M, write τkM for the full
subcategory of k-truncated objects in M. Write Ho(τkM) for the full subcategory of HoM
spanned by the k-truncated objects.

We call an object of M (homotopy) discrete if it is 0-truncated. If X, Y ∈ τ0M, the de-
rived mapping space map(X, Y ) is weakly equivalent to the set (discrete space) HoM(X, Y ).
Thus, all the “homotopical” infomation about maps between discrete objects is already seen
by the homotopy classes of maps. In particular, τ0M is “rigid”, in the sense that any functor
F̄ : I→ Ho(τ0M) can be lifted (in a way which is unique up to weak equivalence) to a functor
F : I→ τ0M ⊆M.

By abuse of notation, we write τ0E for Ho(τ0E).

Proposition 9.2. If E is a model topos, then τ0E is a Grothendieck topos.

Example 9.3. If E = S/X for some space X, then τ0E ≈ PSh(C), where C is the fundamental
groupoid of the space X. Note that this shows that distinct (i.e., non-Quillen equivalent)
model toposes can have the same topos of discrete objects.
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Proof. We use the Giraud theorem for Grothendieck toposes. Identifying E with a small
presentation sPSh(C)S , the collection of objects {τ0(yC)}C∈C is a set of generators for τ0E.
Thus, it remains to show that τ0E has weak descent (in the non-homotopy theoretic sense).

First, I claim that τ0E is complete and cocomplete. Given a functor F : I→ τ0E, we can
lift to F̃ : I→ E. The homotopy limit holimI F̃ is discrete, and one checks that it computes
the limit of F in τ0E. The homotopy colimit hocolimI F̃ need not be discrete in general, but
one can check that τ0 hocolimI F̃ computes the colimit of F in τ0E. In the special case where
I is a discrete category, so that the hocolim is a homotopy coproduct, then the homotopy
coproduct of homotopy discrete objects is already homotopy discrete; this is related to the

fact that homotopy coproducts are disjoint. Thus,
∐h

F̃ (i) computes
∐

F (i).
It remains to check the weak descent properties (P1a), (P1b), (P2a), (P2b). This is mostly

straightforward given the above remarks and the descent properties of E. I’ll prove (P2b),
which is more subtle that the others.

We start with an equifibered diagram

Y1

��

Y0
//oo

��

Y2

��

X1 X0
//oo X2

of discrete objects in E. Let Ȳ → X̄ be the map obtained by taking homotopy colimits of
the rows. I claim that for each i = 0, 1, 2 that the map Yi → Xi ×h

τ0X̄
τ0Ȳ is an effective epi

in E.
Let P

def= X̄ ×h
τ0X̄

τ0Ȳ be the homotopy pullback in E. The projection P → τ0Ȳ is
pulled back from the 0-connected map X̄ → τ0X̄, and thus is 0-connected by (7.6). Since
Ȳ → τ0Ȳ is also 0-connected, we have that Ȳ → P is (−1)-connected by (8.8)(3). The map
Yi → Xi ×h

τ0X̄
τ0Ȳ is obtained from Ȳ → P via base change along Xi → X̄, and thus is

(−1)-connected, as desired.
Finally, note that if A→ B is a (−1)-connected map between discrete objects in E, then

it is a regular epimorphism viewed as a map in τ0E. �

Remark 9.4. As we will soon see, every topos arises as the 0-truncation of a model topos.

Remark 9.5. In a similar way, we may consider the category τ−1E of (−1)-truncated objects
in E; this category is itself a full subcategory of τ0E. An argument much as above shows
that τ−1E is an example of a locale (in the sense of “pointless” topology), and one can show
that every locale arises in this way.

9.6. Homotopy groups. Let X be an object in a model topos E. For k ≥ 0, the k-th
homotopy sheaf of X is an object πkX in the topos τ0(E/X), defined to be the 0-truncation
of the map XSk → X in E/X corresponding to evaluation at some chosen point x ∈ Sk.

The projection map Sk → {x} determines a canonical section of πkX. For k ≥ 1, the
coproduct map Sk → Sk ∨ Sk determines a map XSk ×h

X XSk → XSk
over X, which makes

πkX into a group object in τ0(E/X); if k ≥ 2, it is abelian.
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Given a map f : X → Y in a model topos E, the k-th relative homotopy sheaf of
f is an object πkf in τ0(E/X), defined to be the the k-th homotopy sheaf of the object
(X → Y ) ∈ E/Y . This means that πkf is the 0-truncation of the map XSk ×h

Y Sk Y → X.

Example 9.7. If X is a space, then the object πkX defined above coincides with the usual
notion of k-th homotopy group, viewed as a functor of the fundamental groupoid of X.

If f : X → Y is a map of spaces, then πkf corresponds to the functor which associates to
each x ∈ X the set πk(hofibf(x)(f), x).

If f : X → Y is a map in E, then for any morphism g : U → Y we have πk(f∗(g)) ≈
f∗(πk(g)) ∈ τ0(E/X). More generally, the formation of homotopy sheaves is compatible
with the left adjoint functor of any geometric morphism.

If f : X → Y is a map in E, there is a sequence

· · · f∗πk+1(Y )→ πk(f)→ πk(X)→ f∗πk(Y )→ · · ·
of pointed objects in τ0(E/X) which is exact in the usual sense.

Proposition 9.8. Let f : X → Y be a morphism in E. Let k ≥ −1.
(1) Suppose f is m-truncated for some m ≥ −1. Then f is k-truncated if and only if

πq(f) ≈ ∗ for all q > k.
(2) The map f is k-connected if and only if it is (−1)-connected and πq(f) ≈ ∗ for all

q ≤ k.

Proof. Let X ∈ E be an object in a model topos, and let η : X → τkX. First note that
πq(X)→ η∗πq(τkX) is an isomorphism for all q ≤ k; this is clear in a presheaf category, and
thus follows for a general topos using the fact that everything is compatible with sheafifica-
tion.

To prove either part of the proposition, we may assume without loss of generality that
Y ≈ 1.

To prove (1), we must show that if X is m-truncated for some m, then X is k-truncated
if and only if πq(X) ≈ ∗ for all q > k. The key observation is that if X is m-truncated, then
X → XSm

is a (−1)-truncated map, and therefore that X is (m−1)-truncated iff X → XSm

is (−1)-connected iff XSm → X is 0-connected iff πm(X) ≈ ∗.
To prove (2), we must show that X is k-connected if and only if it is (−1)-connected and

πq(X) ≈ ∗ for all q ≤ k. First, suppose X is k-connected. Then πq(X) ≈ η∗πq(τkX) ≈
η∗πq(1) ≈ ∗ for all q ≤ k. Conversely, if πq(X) ≈ ∗ for all q ≤ k, we have ∗ ≈ πq(X) ≈
η∗πq(τkX); since η is (−1)-connected, it follows that πq(τkX) ≈ ∗ for q ≤ k. Part (1)
then shows that τkX is (−1)-truncated. Since X is (−1)-connected this implies τkX is also
(−1)-connected, and thus τkX ≈ 1, as desired. �

10. t-completion

10.1. ∞-connected maps and t-completion. We say a map f : X → Y is∞-connected
if it is k-connected for all k. Equivalently, f is (−1)-connected and πq(f) ≈ ∗ for all q ≥ 0.

Example 10.2. In spaces, or presheaves of spaces, or in the Joyal-Jardine model category of
simplicial (pre-)sheaves, the ∞-connected maps are precisely the weak equivalences. This is
not true in a general model topos.
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Let C∞ denote the class of ∞-connected maps in a model topos E.

Proposition 10.3. The class C∞ is saturated. The class C∞ is closed under homotopy base
change. The class C∞ is the saturation of a set of maps S.

The localization model category ES ≈ EC∞ obtained by inverting the ∞-connected maps is
a model topos, and the adjoint Quillen pair E � ES defines a geometric morphism ES → E.

We call the model topos ES the t-completion of E, and write tE for it.

Proof. Let Cτk
= { f ∈ E | τkf is a weak equivalence }; this is a saturated class of maps.

Thus C∞ =
⋂

Cτk
by (8.7), and so is saturated.

Let Ck = { f ∈ E | f is k-connected }. Then C∞ =
⋂

Ck, and we have shown that Ck is
closed under homotopy base change.

The proof that C∞ is the saturation of a set of maps is a cardinality argument; see [Lurb].
To show that ES is a model topos, it suffices to show that the localization functor E→ ES

preserves finite homotopy limits, and this in turn is a straightforward consequence of the
fact that the saturation S̄ of S is closed under homotopy base change. �

10.4. Hypercovers. Let M be a model category, and consider the category M∆op
of simpli-

cial objects in M. Let ∆≤k denote the full subcategory of ∆ consisting of objects [0], . . . , [k];
there is a restriction functor uk : M∆op →M∆op

≤k . The (derived) right adjoint to uk is called
the kth coskeleton functor, and is denoted coskk : M∆op

≤k →M∆op
.

By abuse of notation, we will write coskn : M∆op → M∆op
for the composite functor

coskn ◦ u∗. The adjunction provides a natural transformation ηn : X → cosknX. Since
∆≤k is a full subcategory of ∆, the map Xj → (coskkX)j is a weak equivalence for j ≤ k.
Furthermore, when j ≤ k the map coskj(ηk) : coskjU → coskjcoskkU is a weak equivalence,
while if j ≥ k the map ηj : coskkX → coskjcoskkX is a weak equivalence.

Let E be a model topos. A hypercover in E is a simplicial object U ∈ E∆op
such that

for each n ≥ −1, the evident map (ηn)n+1 : Un+1 → (cosknU)n+1 is (−1)-connected. (Note
that for n = −1, this means that the map U0 → 1 should be (−1)-connected.) For an object
Y ∈ E a hypercover of Y is a hypercover in E/Y .

Lemma 10.5. Let U ∈ E∆op
be a hypercover of E. Then for all q, the object coskqU ∈ E∆op

is also a hypercover.

Proof. We must show that if U is a hypercover, then (ηn)n+1 : (coskqU)n+1 →
(coskncoskqU)n+1 is (−1)-connected for any n and q. If n ≥ q, then this map is already a
weak equivalence, so suppose n < q. Consider the commutative diagram

Un+1
(ηq)n+1

//

(ηn)n+1

��

(coskqU)n+1

(ηn)n+1

��

(cosknU)n+1
(cosknηq)n+1

// (coskncoskqU)n+1

The bottom horizontal map is a weak equivalence since n < q, and the left-hand horizontal
map is (−1)-connected, since U is a hypercover. Therefore the right-hand vertical map is
(−1)-connected by (7.10)(c). �
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The following is based on a clever argument from Dugger-Hollander-Isaksen [DHI04, Prop.
A.4].

Proposition 10.6. Let U ∈ E∆op
be a hypercover of E. Then for all n, the map

hocolim∆op cosknU → 1 is a weak equivalence.

Proof. By (10.5), it is enough to prove the result for hypercovers U such that there exists
n ≥ −1 for which ηn : U → cosknU is an equivalence. We will prove this by induction on n.

For n = −1, cosk−1U ≈ 1 in E∆op
, and the result follows.

Now suppose that U is a hypercover such that U ≈ coskn+1U , and let V = cosknU . By
(10.5) we have that V is also a hypercover, and thus the inductive hypothesis gives that
hocolim∆op V ≈ 1.

Next, I claim that (ηn)q : Uq → Vq is (−1)-connected for all q. For q ≤ n the map is
already an isomorphism. Let q > n, and consider the commutative square

Uq //

(ηn)q

��

∏
Un+1

Q
(ηn)n+1

��

(cosknU)q
//
∏

(cosknU)n+1

where the products in the right-hand column are taken over the set of non-degenerate (n+1)-
simplices of the standard q-simplex, and the horizontal maps are induced by the correspond-
ing simplicial operators. Because U ≈ coskn+1U , the square is a homotopy pullback square.
(This is an expression of the way that the simplicial set skn+1∆q is obtained from skn∆q by
attaching some (n+1)-simplices along their boundary.) The claim now follows from the fact
that (−1)-connected maps are preserved under finite products and homotopy base change.

Now define a double complex Z : ∆op ×∆op → E by

Zp,q
def= Up ×h

Vp
· · · ×h

Vp
Up

q + 1 times

.

Fixing p, the fact that Up → Vp are (−1)-connected gives that hocolim∆op Zp,• ≈ Vp, so
hocolim∆op×∆op Z ≈ hocolim∆op V ≈ 1.

Let D : ∆op → E be the diagonal of Z, defined by Dk = Zk,k; thus hocolim∆op D ≈
hocolim∆op×∆op Z ≈ 1. We define maps U

f−→ D
g−→ U as follows. The map f is given by the

diagonal map fp : Up → Up ×h
Vp
· · · ×h

Vp
Up = Dp. The map g : D → U is adjoint to the map

h : D|∆op
≤n+1

→ U |∆op
≤n+1

defined as follows. For q ≤ n, Dq = Uq ×h
Vq
· · · ×h

Vq
Uq ≈ Uq since

Uq = Vq in these degrees. For q = n+1 we define hn+1 : Dn+1 = Un+1×h
Vn+1
· · ·×h

Vn+1
Un+1 →

Un+1 by projection to the first factor. One checks that this is indeed well-defined.
We have that gf = 1U , so that U is a retract of D, whence hocolim∆op U is a retract of

hocolim∆op D ≈ 1, whence hocolim∆op U ≈ 1 as desired. �

Lurie proves the following.

Proposition 10.7. A map f : X → Y ∈ E is ∞-connected if and only if it is weakly
equivalent to one of the form hocolim∆op U → Y for some hypercover U of Y .

In other words, t-completion amounts to “formally inverting hypercovers”.
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Proof. It is enough to show that an object X ∈ E is ∞-connected if and only if it is weakly
equivalent to hocolim∆op U for some hypercover U in E.

Let X be an ∞-connected object in E, and let U be the constant simplicial object in E,
with Un = X. I claim that X is a hypercover in E. Since U is a constant simplicial object, it
is straightforward to show that (cosknU)n+1 ≈ XSn

. Thus we need to show that X → XSn

is an effective epimorphism for all n ≥ −1. This amounts to the fact that πnX ≈ ∗ for all n.
Next, we need to show that for a general hypercover U in E, the realization X ≈

hocolim∆op U is ∞-connected. That is, for all n ≥ 0 and all (n − 1)-truncated Y ∈ E,
we must show (8.3) that

map(1, Y )→ map(X, Y ) ≈ map(hocolim∆op U•, Y ) ≈ holim∆ map(U•, Y )

is a weak equivalence of spaces.
It is a standard fact that if A• is a cosimplicial space such that each space Aq is (n− 1)-

truncated, then holim∆ A• only “depends” on the spaces A0, . . . , An, in the sense that if B•

is another cosimplicial spaces with this property and f : A• → B• a map which is a weak
equivalence is degrees less than or equal to n, then holim∆ A• ≈ holim∆ B. We can apply
this observation to the map of cosimplicial spaces map((cosknU)•, Y ) → map(U•, Y ), and
thus it is enough to show that

map(1, Y )→ map(hocolim∆op cosknU, Y )

is a weak equivalence when Y is (n − 1)-truncated. This is an immediate consequence of
(10.6), which says that hocolim∆op cosknU ≈ 1. �

11. Construction of model toposes

11.1. The model topos of sheaves on a site. Let (C, τ) be a Grothendieck site; that is,
a small category C with a Grothendieck topology τ . We can regard the category PSh(C)
of presheaves of sets as a full subcategory of the simplicial presheaf category sPSh(C), by
identifying sets with discrete spaces.

With these identifications, we can regard the Grothendieck topology τ (which is a collec-
tion of sieves S → yC ∈ PSh(C)) as consisting of a set of maps in sPSh(C), by identifying
sets with discrete spaces. We define

sSh(C, τ) def= sPSh(C)τ ,

the localization of simplicial presheaves with respect to the set of covering sieves of τ . This
localization is discussed in [DHI04, App. A]; the following theorem is due to Lurie [Lura] in
the ∞-category context.

Proposition 11.2. The model category sSh(C, τ) is a model topos with 0-truncation
τ0(sSh(C, τ)) ≈ Sh(C, τ).

I’ll call this the model topos of sheaves on (C, τ); this should not be confused with
the actual topos of sheaves of sets on (C, τ), nor with the Joyal-Jardine model category of
simplicial sheaves on (C, τ).

Proof. The result will follow if we can produce a functor L : sPSh(C) → sPSh(C) and
natural transformation X → LX such that

(1) LX is τ -local for all X ∈ sPSh(C);
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(2) for all τ -local Y , map(LX, Y )→ map(X, Y ) is a weak equivalence; and
(3) L preserves finite homotopy limits.

Using the notation of §3.4, we define a functor X 7→ X+ : sPSh(C) → sPSh(C) and a
natural transformation η : X → X+, by

X+(C) def= hocolimS∈τC
maps PSh(C)(S, X).

(It requires some care to get a well-defined construction which has the right homotopical
properties. Perhaps the easiest solution is to define X+(C) = colimS∈τC

homs PSh(C)(S, X ′),
where hom denotes the simplicial mapping space, and X ′ is the “Heller fibrant replacement”
of X; we say a presheaf is Heller fibrant if it has the right-lifting property with respect to
the class of maps which are both monomorphisms and weak equivalences.)

We define for each ordinal λ a functor sλ : sPSh(C)→ sPSh(C) and natural transforma-
tion X → sλ(X); for a succesor ordinal, take sλ+1(X) = (sλ(X))+, and for a limit ordinal,
take sλ(X) = hocolimµ<λ sµ(X).

We claim that
(1) there exists an ordinal κ such that sκ(X) is τ -local for all simplicial presheaves X;
(2) for any τ -local object Y , map(X+, Y )→ map(X, Y ) is a weak equivalence;
(3) X 7→ X+ commutes with finite homotopy limits.

Given this, we can take L = sκ, which shows that localization is left exact.
For (1), we need to choose κ so that for each covering sieve S � yC and each k ≥ 0,

the functor PSh(C)(∂∆k × S,−) commutes with κ-filtered colimits. (Except for some very
trivial cases, κ will need to be infinite.) Lurie shows how to do this.

(2) is more difficult, and I can’t find a proof in [Lura]. I think a generalization of the
argument sketched in §3.4 will work.

(3) is clear, since directed homotopy colimits of spaces commute with finite homotopy
limits. �

11.3. An example of a non-t-complete model topos. I learned about the following
example from [DHI04, App. A].

Let C denote the small category with objects {tk, uk, vk}k≥0 and with the following shape
u0

~~}}
}}

}}
}}

u1

~~}}
}}

}}
}}

u2

~~}}
}}

}}
}}

����
��

��
��

t0 t1

``AAAAAAAA

~~}}
}}

}}
}}

t2

``AAAAAAAA

~~}}
}}

}}
}}

t3

``AAAAAAAA

~~}}
}}

}}
}}

· · ·

v0

``AAAAAAAA
v1

``AAAAAAAA
v2

``AAAAAAAA

^^<<<<<<<<

so that all diagrams commute in C; in particular, there is at most one morphism between
any two objects of C. We define a topology τ on C so that:

(1) the only covering sieves for uk and vk are the trivial ones;
(2) the only non-trivial covering sieve for tk is the one generated by the pair of maps
{uk → tk, vk → tk}.

Let E = sPSh(C, τ). Thus, a simplicial presheaf F ∈ sPSh(C) is a sheaf iff for each k ≥ 0,
F (tk+1)→ F (uk)×h

F (tk) F (vk) is a weak equivalence.
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It is straightforward to show that the “plus construction” has the property that for a
presheaf X, we have

X+(tk+1) ≈ X(uk)×h
X(tk) X(vk), X+(uk) ≈ X(uk), X+(vk) ≈ X(vk).

Furthermore, sheafification is given by iterating the plus construction a countable number
of times, since the only non-trivial covering sieve is isomorphic to S = yuk

∪h
ytk+1

yvk
→

ytk , and sPSh(C)(S,−) commutes with countable directed colimits. That is, sω computes
sheafification.

Let X ∈ sPSh(C) be the object defined by

D0
+

  
AA

AA
AA

AA
D1

+

  
AA

AA
AA

AA
D2

+

  
AA

AA
AA

AA

S0

>>}}}}}}}

  
AA

AA
AA

AA
S1

>>}}}}}}}

  
AA

AA
AA

AA
S2

>>}}}}}}}

  
AA

AA
AA

AA
S3

AA���������

��
;;

;;
;;

;;
;

· · ·

D0
−

>>}}}}}}}
D1
−

>>}}}}}}}
D2
−

>>}}}}}}}

I claim that aX is a sheaf which is ∞-connected but not contractible, proving that E is not
t-complete.

It is easy to see from the plus-construction that (sωX)(tk) ≈ hocolim ΩiSk+i, which
is certainly not contractible. To show that the truncations of LX are contractible, we
recall that truncation computes with sheafification, so it is enough to show that sω(τnX) is
contractible, where τnX denotes truncation in presheaves. In fact, τnX takes contractible
values at all objects uk and vk and at all objects tk with k > n, and thus sn+1(τnX) is
already a contractible presheaf, whence sω(τnX) is contractible.

11.4. Examples of t-complete model toposes. In some cases, the construction
sSh(C, τ) leads to a model topos which is t-complete. Given a topological space X, write
sSh(X) for sSh(UX, τ), where UX is the category of open subsets of X and τ is the usual
topology.

Theorem 11.5 (Brown-Gersten [BG73]). Let X be a topological space such that
{open subsets} and {irreducible closed subsets} both satisfy the ascending chain condition.
Then sSh(X) is t-complete.

Lurie [Lura, Ch. 5] proves other results along these lines.
Given a model topos E, we say a set of objects {Uα} generate E if a map f : X → Y ∈ E

is a weak equivalence if and only if map(Uα, X)→ map(Uα, Y ) is for all elements of the set.
(For instance, if E = sPSh(C)S , the image of the yoneda embedding is a generating set.)

Lemma 11.6. Suppose that {Uα} is a set of generators for a model topos E. Then E is
t-complete if and only if every ∞-connected map F → Uα in E admits a section (up to
homotopy).

Proof. It is clear that if E is t-complete, any∞-connected map F → Uα is a weak equivalence
and so admits a section.
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We need to show that if f : X → Y is ∞-connected, then map(Uα, X)
f∗−→ map(Uα, Y )

is a weak equivalence. Equivalently, for every map g : Sq → map(Uα, X) such that f∗(g) is
homotopic to a constant map, there exists a homotopy of g to a constant map.

If f : X → Y is ∞-connected, then for each q ≥ 0 the map fq : XDq → XSq−1 ×h
Y Sq−1 Y Dq

is ∞-connected. (In general, if f : X → Y is k-connected, then ∆(f) : X → X ×h
Y X is

(k − 1)-connected, by (8.8); the map fq is weakly equivalent to ∆q(f).) Thus, to give a
dotted arrow in the commutative diagram

Sq−1 //

��

map(Uα, X)

��

Dq //

88

map(Uα, Y )

is the same as giving a lift in

XDq

��

Uα

88

// XSq−1 ×h
Y Sq−1 Y Dq

which exists by hypothesis. �

Proof of (11.5). Note that since the space X is Noetherian, every closed subset of X is a
finite union of closed irreducible subsets.

The yoneda embedding UX → E = sSh(X) is subcanonical, so we may as well identify
an open set U with its representable functor. In particular, the (−1)-truncated objects of E
correspond exactly to open subsets of X. Furthermore, if U and V are open sets, then

U ∩ V //

��

V

��

U // U ∪ V

is a homotopy pushout square in E.
In particular, if F is a fibrant object in sSh(X), then F (U) is weakly equivalent to the

space of lifts
F

��

U

??

// 1
(When referring to F (U), I’ll implicitly assume that F is fibrant.)

Note that we can explicitly compute τ−1F for any F ; it is the sheaf associated to the union
of open sets V for which F (V ) 6= ∅. In particular, if F → U is an ∞-connected map to an
open set U , so that τ−1F ≈ U , then it admits sections “locally in U”, i.e., the collection of
open sets V such that F (V ) 6= ∅ form a cover of U .
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In general, we will say that F is∞-connected over Y if Y is an open set of X such that
F × Y → Y is ∞-connected. Thus, by (11.6), we need to show that if F is ∞-connected
over Y then F (Y ) is non-empty.

Let D denote the class of all triples (Y, U, F ), where U ⊆ Y ⊆ X are open subsets, F ∈ E
is ∞-connected over Y , and U is maximal among open subsets of Y with respect to the
property that F (U) 6= ∅. Note that since X is Noetherian, then given Y and F there always
exists a U ⊆ Y such that (Y, U, F ) ∈ D.

To prove the claim, we need to show that (Y, U, F ) ∈ D implies Y = U . If Y 6= U , then
the closure Y − U of Y −U in X is a finite union of irreducible components C1, . . . , Cr with
r > 0, and for each i = 1, . . . , r, Ci ∩ Y 6= ∅ while Ci ∩ U = ∅.

Say that a closed irreducible C ⊆ X is bad if there exists (Y, U, F ) ∈ D such that C∩Y 6= ∅
and C ∩U = ∅. The components Ci of Y − U described above are clearly bad; thus, we will
have proved Y = U if we can show there are no bad sets.

Suppose there are bad sets, and let C be a maximal bad subset (which exists since closed
irreducibles have the ascending chain condition); we’ll derive a contradiction.

Let (Y, U, F ) ∈ D such that C∩Y 6= ∅ and C∩U = ∅. Since F has sections locally, there
is an open V ⊆ Y which touches C and such that F (V ) 6= ∅. Choose elements α ∈ F (U)
and β ∈ F (V ), and define G by the homotopy pullback

G //

��

V

β
��

U α
// F

Note that G is ∞-connected over U ∩ V , since each of U , V , and F are. Let W ⊆ U ∩ V
be maximal among open subsets such that G(W ) 6= ∅. Let D be the irreducible component
of X −W which contains C. Then D ∩ (U ∩ V ) 6= ∅ (since D touches U and V , and D
is irreducible), while D ∩W = ∅. Therefore D is bad, since (U ∩ V,W,G) ∈ D, and thus
D = C since C is maximally bad. Thus C is one of the irreducible components of X −W .

Let B be the union of the irreducible components of X −W other than C, and let V ′ =
V −B. We have that (U∩V ′)∩(X−W ) = U∩V ′∩(C∪B) = (U∩V ′∩C)∪(U∩V ′∩B) = ∅,
so U ∩ V ′ ⊆W . Therefore, G(U ∩ V ′) is nonempty.

Using any element γ ∈ G(U ∩V ′), we can construct a section of F over U ∪V ′, extending
the sections α|U∩V ′ and β|U∩V ′ . But by hypothesis U is maximal among open subsets of Y
over which F is non-empty, so we must have V ′ ⊆ U , and so V ′ ∩ C ⊆ U ∩ C = ∅.

But if V ′∩C = ∅, then V ∩C ⊆ B. But since C is irreducible and touches V , C = V ∩ C ⊆
B, which contradicts the hypothesis that C is one of the components of X−W = C∪B. �

11.7. Simplicial Grothendieck sites, and the classification of t-complete model
toposes. Let C be a small category enriched over simplicial sets. I’ll write homC(C1, C2)
for the simplicial set of maps from C1 to C2 in C. Let π0C denote the discrete category
with the same objects as C, and π0C(C1, C2) = π0(homC(C1, C2)).

A simplicial Grothendieck site is a simplicial category C together with a Grothendieck
topology τ0 on π0C.

For an object C ∈ C, let yC ∈ sPSh(C) denote the evident representable functor yC(C ′) =
homC(C ′, C), and let π0yC denote the functor π0yC(C ′) = π0 homC(C ′, C), where this set
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is thought of as a discrete simplicial set. For a sieve S � π0yC the pullback square

S̃ //
s̃ //

��

yC

��

S // s
// π0yC

is a homotopy pullback square; let τ denote the set of maps s̃ obtained by such a pullback
from s ∈ τ0. Define

sSh(C, τ) def= sPSh(C)τ .

A straightforward generalization of the argument given above shows that this is a model
topos.

Theorem 11.8 (Toën-Vezzosi [TV05]). Every t-complete model topos is Quillen equivalent
to one of the form t(sSh(C, τ)) for some simplicial site (C, τ).

Sketch proof. Let E = sPSh(C)T be a left-exact localization of a simplicial presheaf category
on a simplicial category C. Let τ0 be the collection of sieves s : S → π0yC in π0C with the
property that their lift s̄ : S̄ → yC is in T̄ , and let τ denote the set of such lifts. It is easy
to show that τ0 is a topology on C, and that τ̄ ⊆ T̄ . I am going to show that elements of
T̄ are actually ∞-connected maps in sPSh(C)τ and thus become weak equivalences after
t-completion. This shows that E ≈ t(sPSh(C)τ ) if E is t-complete.

Let f : X → Y ∈ T̄ ; we want to show that f is k-connected in sPSh(C)τ for all k. Let
g : τY

k f → Y be the relative truncation of f in sPSh(C). Then g is weakly equivalent in
sPSh(C)τ to the relative truncation of f in sPSh(C)τ , since truncation commutes with
sheafification. For the same reason, g ∈ T̄ . Thus, we have reduced to showing that k-
truncated maps in T̄ are in τ̄ for all k.

We prove if f ∈ T̄ is k-truncated, then f ∈ τ̄ , by induction on k. f : X → Y ∈ T̄ is
(−1)-truncated, we can write Y as a colimit of representable presheaves, and thus write f

as a colimit of (−1)-truncated maps S̃ → yC over representables, i.e., by elements of τ . This
implies that f is in τ̄ .

Now let k ≥ 0. Suppose f : X → Y is a k-truncated map of presheaves contained in
T̄ . Consider g : X → X ×h

Y X, which is (k − 1)-truncated and also in T̄ , and therefore is
in τ̄ by the inductive hypothesis. This means that f is (−1)-truncated when viewed as a
map in the model category sPSh(C)τ , and thus there exists a map f ′ of presheaves which
is (−1)-truncated and is weakly equivalent to f in the sPSh(C)τ model structure. Since
τ̄ ⊆ T̄ , the maps f and f ′ are weakly equivalent in the sPSh(C)T model structure, and so
f ′ ∈ T̄ . By the case already proved, f ′ ∈ τ̄ , and thus f ∈ τ̄ . �

Remark 11.9. Note that the above proof shows that for any model site E = sPSh(C)T , the
homotopically full subcategory τkE of k-truncated objects (for any k) depends only on the
simplicial site (C, τ) where τ is the collection of sieves in T̄ .

In particular, if C is a discrete category, this means that τkE is determined by τ0E ≈
Sh(C, τ). This explains why we must consider simplicial categories C in the definition of
model topos: we want to allow model toposes whose k-truncations are different while their
0-truncations are the same. An example of this phenomenon are S and S/X, where S is
spaces and X is any simply connected space.
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Finally, we mention

Theorem 11.10 (Dugger-Hollander-Isaksen [DHI04]). For a Grothendieck site (C, τ), the t-
complete model topos t(sSh(C, τ)) is Quillen equivalent to the Joyal-Jardine model category
of simplicial presheaves on (C, τ).

Remark 11.11. This way of listing the results is not especially historically accurate. Dugger-
Hollander-Isaksen [DHI04] show that the Joyal-Jardine model category associated to (C, τ)
([Jar87], [Jar96]) is Quillen equivalent to a localization of sPSh(C) with respect to certain
set of basic hypercovers constructed from τ . Toën-Vezzosi [TV05] show that all t-complete
model toposes can be obtained from simplicial sites by a generalization of the Dugger-
Hollander-Isaksen construction.

Dugger-Hollander-Isaksen [DHI04][App. A] discuss the localization sPSh(C)τ , and note
that localizing further by inverting basic hypercovers actually formally inverts all hyper-
covers; they never explicitly discuss the notion of model topos. Lurue [Lura] essentially
shows that sPSh(C)τ is a model topos, and that inverting hypercovers is the same as t-
completion (except that he does not work in the language of model categories, but rather
with (∞, 1)-categories).

Brown-Gersten [BG73] gave (I think) the very first example of a closed model structure
on an interesting category of simplicial sheaves; namely, simplicial sheaves over a topological
space X as in the hypotheses of (11.5). Their weak equivalences are maps which induce
local isomorphisms of homotopy groups, so that their model structure is a special case of the
later Joyal-Jardine model structure; however, their proof relies on the fact [BG73, Thm. 1]
that in their setting a simplicial sheaf with trivial local homotopy groups which has descent
for covers must be contractible, which in our terms in precisely the claim that the model
topos of sheaves (in Lurie’s sense) is t-complete.
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