Linear HoTT and Quipper

Mitchell Riley

CQTS

 $20\mathrm{th}$ April2024

Linear HoTT and Quipper

Mitchell Riley

- ▶ Add linear type formers \otimes, I, \multimap to DTT.
- ▶ Leave the rest of DTT exactly the same.

 $\mathsf{sym}:A\otimes B\simeq B\otimes A$

Proof.

To define sym : $A \otimes B \to B \otimes A$, suppose we have $p : A \otimes B$. Then \otimes -induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

sym :
$$\equiv \lambda p$$
.let $x \otimes y$ be $p \text{ in } y \otimes x$

Then to prove $\prod_{(p:A\otimes B)} \mathsf{sym}(\mathsf{sym}(p)) = p$, use \otimes -induction again: the goal reduces to $x \otimes y = x \otimes y$ for which we have reflexivity.

 $\mathsf{inv}:\equiv \lambda p.\mathsf{let}\; x\otimes y\;\mathsf{be}\; p\,\mathsf{in}\,\mathsf{refl}_{x\otimes y}$

 $\mathsf{sym}:A\otimes B\simeq B\otimes A$

Proof.

To define sym : $A \otimes B \to B \otimes A$, suppose we have $p : A \otimes B$. Then \otimes -induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

sym := λp .let $x \otimes y$ be $p \text{ in } y \otimes x$

Then to prove $\prod_{(p:A\otimes B)} \operatorname{sym}(\operatorname{sym}(p)) = p$, use \otimes -induction again: the goal reduces to $x \otimes y = x \otimes y$ for which we have reflexivity.

inv $:\equiv \lambda p.$ let $x\otimes y$ be p in refl $_{x\otimes y}$

 $\mathsf{sym}:A\otimes B\simeq B\otimes A$

Proof.

To define sym : $A \otimes B \to B \otimes A$, suppose we have $p : A \otimes B$. Then \otimes -induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

sym :
$$\equiv \lambda p$$
.let $x \otimes y$ be $p \text{ in } y \otimes x$

Then to prove $\prod_{(p:A\otimes B)} \mathsf{sym}(\mathsf{sym}(p)) = p$, use \otimes -induction again: the goal reduces to $x \otimes y = x \otimes y$ for which we have reflexivity.

$$\mathsf{inv}:\equiv \lambda p.\mathsf{let}\; x\otimes y\;\mathsf{be}\; p\;\mathsf{in}\;\mathsf{refl}_{x\otimes y}$$

We need to prevent terms like $\lambda x. x \otimes x : A \to A \otimes A$, so variable use needs to be restricted somehow.

• Every term a has a colour \mathfrak{C} .

- Every variable binding $x : {}^{\mathfrak{C}} A$ also has a colour \mathfrak{C} .
- ▶ A variable is only usable when its colour matches the colour of the term (roughly).

We need to prevent terms like $\lambda x.x \otimes x : A \to A \otimes A$, so variable use needs to be restricted somehow.

- Every term a has a colour \mathfrak{C} .
- Every variable binding $x :^{\mathfrak{C}} A$ also has a colour \mathfrak{C} .
- ► A variable is only usable when its colour matches the colour of the term (roughly).

Building a term, we need to keep track of the current colour. A context has the form

 $\Gamma \vdash_{\mathfrak{C}} a : A$

where $\Gamma \vdash \mathfrak{C}$ colour is an iterated tensor of 'primitive colours' bound in the context.

Each variable is a term of its own colour:

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{r}} x : A$$

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{b}} y : B$$

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{p}} z : C$$

Each colour has a copy of all ordinary type formers.

 $\sum_{(x:A)} B(x) \qquad \qquad \prod_{(x:A)} B(x) \qquad (\lambda x.b)$

 $ind_{+}(z.C, x.c_{1}, y.c_{2}, p)$ $ind_{=}(x.x'.p)$

Building a term, we need to keep track of the current colour. A context has the form

 $\Gamma \vdash_{\mathfrak{C}} a : A$

where $\Gamma \vdash \mathfrak{C}$ colour is an iterated tensor of 'primitive colours' bound in the context.

Each variable is a term of its own colour:

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{r}} x : A$$

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{b}} y : B$$

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{p}} z : C$$

Each colour has a copy of all ordinary type formers.

 $\sum_{(x:A)} B(x) \qquad \qquad \prod_{(x:A)} B(x) \qquad (\lambda x.b)$

 $ind_+(z.C, x.c_1, y.c_2, p)$ $ind_=(x.x', y.c_2, p)$

Building a term, we need to keep track of the current colour. A context has the form

 $\Gamma \vdash_{\mathfrak{C}} a : A$

where $\Gamma \vdash \mathfrak{C}$ colour is an iterated tensor of 'primitive colours' bound in the context.

Each variable is a term of its own colour:

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{r}} x : A$$

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{b}} y : B$$

$$\mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x :^{\mathfrak{r}} A, y :^{\mathfrak{b}} B, z :^{\mathfrak{p}} C \vdash_{\mathfrak{p}} z : C$$

Each colour has a copy of all ordinary type formers.

$$\sum_{(x:A)} B(x) \qquad \prod_{(x:A)} B(x) \qquad (\lambda x.b)$$

 $ind_{+}(z.C, x.c_{1}, y.c_{2}, p)$

 $\mathsf{ind}_{=}(x.x'.p.C, x.c, p)$

- ▶ Formation: For closed^{*} A : U and B : U, there is a type $A \otimes B : U$.
- ▶ Introduction: Given a : A with colour \mathfrak{R} and b : B with colour \mathfrak{B} , there is a term

 $\boldsymbol{a}\otimes\boldsymbol{b}:\boldsymbol{A}\otimes\boldsymbol{B}$

with colour $\mathfrak{R} \otimes \mathfrak{B}$.

Elimination: Any term $p: A \otimes B$ of colour \mathfrak{P} may be assumed to be of the form $x \otimes y$ for some variables $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B$ where \mathfrak{r} and \mathfrak{b} are fresh colours, when constructing some other term c: C.

 $(\text{let } x \otimes y \text{ be } p \text{ in } c) : C[p/z]$

- ▶ Formation: For closed^{*} A : U and B : U, there is a type $A \otimes B : U$.
- ▶ Introduction: Given a : A with colour \mathfrak{R} and b : B with colour \mathfrak{B} , there is a term

 $\pmb{a}\otimes \pmb{b}:A\otimes B$

with colour $\mathfrak{R} \otimes \mathfrak{B}$.

Elimination: Any term $p: A \otimes B$ of colour \mathfrak{P} may be assumed to be of the form $x \otimes y$ for some variables $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B$ where \mathfrak{r} and \mathfrak{b} are fresh colours, when constructing some other term c: C.

 $(\det x \otimes y \text{ be } p \text{ in } c) : C[p/z]$

- ▶ Formation: For closed^{*} A : U and B : U, there is a type $A \otimes B : U$.
- ▶ Introduction: Given a : A with colour \mathfrak{R} and b : B with colour \mathfrak{B} , there is a term

 $\boldsymbol{a}\otimes\boldsymbol{b}:A\otimes B$

with colour $\mathfrak{R} \otimes \mathfrak{B}$.

• Elimination: Any term $p: A \otimes B$ of colour \mathfrak{P} may be assumed to be of the form $x \otimes y$ for some variables $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B$ where \mathfrak{r} and \mathfrak{b} are fresh colours, when constructing some other term c: C.

 $(\text{let } \boldsymbol{x} \otimes \boldsymbol{y} \text{ be } p \text{ in } c) : C[p/z]$

There is a function sym : $A \otimes B \to B \otimes A$

Proof.

Suppose $p: A \otimes B$. Then \otimes -induction on p gives $x : {}^{\mathfrak{r}} A$ and $y : {}^{\mathfrak{b}} B$.

We can form $y \otimes x : B \otimes A$ of colour $\mathfrak{b} \otimes \mathfrak{r}$...

But now we are stuck, the term $y \otimes x$ has colour $\mathfrak{b} \otimes \mathfrak{r}$ rather than \mathfrak{p} so we can't write

sym : $\equiv \lambda p$.let $x \otimes y$ be p in $y \otimes x$

There is a function sym : $A \otimes B \to B \otimes A$

Proof.

Suppose $p: A \otimes B$. Then \otimes -induction on p gives $x: {}^{\mathfrak{r}} A$ and $y: {}^{\mathfrak{b}} B$.

We can form $y \otimes x : B \otimes A$ of colour $\mathfrak{b} \otimes \mathfrak{r}$...

But now we are stuck, the term $y \otimes x$ has colour $\mathfrak{b} \otimes \mathfrak{r}$ rather than \mathfrak{p} so we can't write

sym := λp .let $x \otimes y$ be p in $y \otimes x$

2-cells

We need a judgement describing how colours relate to each other. There will be an admissible principle

$$\begin{array}{c} \Gamma \vdash s : \mathfrak{C} \Rightarrow \mathfrak{D} \qquad \Gamma \vdash_{\mathfrak{D}} a : A \\ \text{REWRITE} & ---- & ---- \\ & \Gamma \vdash_{\mathfrak{C}} s^{*}(a) : s^{*}(A) \end{array}$$

With axioms:

sym : $\mathfrak{C} \otimes \mathfrak{D} \Rightarrow \mathfrak{D} \otimes \mathfrak{C}$ assoc : $(\mathfrak{C} \otimes \mathfrak{D}) \otimes \mathfrak{E} \Rightarrow \mathfrak{C} \otimes (\mathfrak{D} \otimes \mathfrak{E})$

 $s;t: \mathfrak{C} \Rightarrow \mathfrak{E} \text{ for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{D} \Rightarrow \mathfrak{E}$

 $s \otimes t : \mathfrak{C} \otimes \mathfrak{E} \Rightarrow \mathfrak{D} \otimes \mathfrak{F} \text{ for } s : \mathfrak{C} \Rightarrow \mathfrak{D}, t : \mathfrak{E} \Rightarrow \mathfrak{F}$

$$\operatorname{zero}:\mathfrak{C}\Rightarrow\mathfrak{D}$$

etc.

2-cells

We need a judgement describing how colours relate to each other. There will be an admissible principle

$$\begin{array}{c} \Gamma \vdash s : \mathfrak{C} \Rightarrow \mathfrak{D} \qquad \Gamma \vdash_{\mathfrak{D}} a : A \\ \text{REWRITE} & --- & -- & -- \\ & \Gamma \vdash_{\mathfrak{C}} s^*(a) : s^*(A) \end{array}$$

With axioms:

$$\begin{split} \mathsf{sym}: \mathfrak{C}\otimes\mathfrak{D} \Rightarrow \mathfrak{D}\otimes\mathfrak{C} & \quad \mathsf{assoc}: (\mathfrak{C}\otimes\mathfrak{D})\otimes\mathfrak{E} \Rightarrow \mathfrak{C}\otimes(\mathfrak{D}\otimes\mathfrak{E}) \\ & s;t:\mathfrak{C}\Rightarrow\mathfrak{E} \text{ for } s:\mathfrak{C}\Rightarrow\mathfrak{D}, t:\mathfrak{D}\Rightarrow\mathfrak{E} \\ & s\otimes t:\mathfrak{C}\otimes\mathfrak{E}\Rightarrow\mathfrak{D}\otimes\mathfrak{F} \text{ for } s:\mathfrak{C}\Rightarrow\mathfrak{D}, t:\mathfrak{E}\Rightarrow\mathfrak{F} \\ & zero:\mathfrak{C}\Rightarrow\mathfrak{D} \end{split}$$

etc.

2-cells

We need a judgement describing how colours relate to each other. There will be an admissible principle

$$\underset{\text{REWRITE}}{\Gamma \vdash s : \mathfrak{C} \Rightarrow \mathfrak{D}} \qquad \underset{\Gamma \vdash_{\mathfrak{C}} s^{*}(a) : s^{*}(A)}{\Gamma \vdash_{\mathfrak{C}} s^{*}(a) : s^{*}(A)}$$

With axioms:

$$\begin{split} \mathsf{sym}: \mathfrak{C}\otimes\mathfrak{D} \Rightarrow \mathfrak{D}\otimes\mathfrak{C} & \quad \mathsf{assoc}: (\mathfrak{C}\otimes\mathfrak{D})\otimes\mathfrak{E} \Rightarrow \mathfrak{C}\otimes(\mathfrak{D}\otimes\mathfrak{E}) \\ & s;t: \mathfrak{C} \Rightarrow \mathfrak{E} \text{ for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{D} \Rightarrow \mathfrak{E} \\ & s\otimes t: \mathfrak{C}\otimes\mathfrak{E} \Rightarrow \mathfrak{D}\otimes\mathfrak{F} \text{ for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{E} \Rightarrow \mathfrak{F} \\ & zero: \mathfrak{C} \Rightarrow \mathfrak{D} \end{split}$$

etc.

- ▶ Formation: For closed^{*} A : U and B : U, there is a type $A \otimes B : U$.
- ▶ Introduction: Given a : A with colour \mathfrak{R} and b : B with colour \mathfrak{B} , and a 2-cell $s : \mathfrak{P} \Rightarrow \mathfrak{R} \otimes \mathfrak{B}$, there is a term

 $a \otimes_s b : A \otimes B$

with colour \mathfrak{P} .

▶ Elimination: Any term p: A ⊗ B of colour 𝔅 may be assumed to be of the form x ⊗_s y for some variables x:^t A, y:^b B where t and b are fresh colours and there is a fresh 2-cell s: 𝔅 ⇒ t ⊗ b, when constructing some other term c: C.

 $(\mathsf{let}\; x \otimes_s y \mathsf{ be}\; p \mathsf{ in}\; c): C[p/z]$

- ▶ Formation: For closed^{*} A : U and B : U, there is a type $A \otimes B : U$.
- ▶ Introduction: Given a : A with colour \mathfrak{R} and b : B with colour \mathfrak{B} , and a 2-cell $s : \mathfrak{P} \Rightarrow \mathfrak{R} \otimes \mathfrak{B}$, there is a term

 $a \otimes_s b : A \otimes B$

with colour \mathfrak{P} .

Elimination: Any term p: A ⊗ B of colour 𝔅 may be assumed to be of the form x ⊗_s y for some variables x:^t A, y:^b B where t and b are fresh colours and there is a fresh 2-cell s: 𝔅 ⇒ t ⊗ b, when constructing some other term c: C.

 $(\det x \otimes_s y \text{ be } p \text{ in } c) : C[p/z]$

- ▶ Formation: For closed^{*} A : U and B : U, there is a type $A \otimes B : U$.
- ▶ Introduction: Given a : A with colour \mathfrak{R} and b : B with colour \mathfrak{B} , and a 2-cell $s : \mathfrak{P} \Rightarrow \mathfrak{R} \otimes \mathfrak{B}$, there is a term

 $a \otimes_s b : A \otimes B$

with colour \mathfrak{P} .

Elimination: Any term p: A ⊗ B of colour 𝔅 may be assumed to be of the form x ⊗_s y for some variables x:^t A, y:^b B where t and b are fresh colours and there is a fresh 2-cell s: 𝔅 ⇒ t ⊗ b, when constructing some other term c: C.

 $(\text{let } \boldsymbol{x} \otimes_s \boldsymbol{y} \text{ be } p \text{ in } c) : C[p/z]$

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \to B \otimes A$

Proof.

Suppose $p: A \otimes B$. Then \otimes -induction on p gives $x :^{\mathfrak{r}} A$ and $y :^{\mathfrak{b}} B$, so that $s: \mathfrak{p} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$. There is a 2-cell $(s; \operatorname{sym}) : \mathfrak{p} \Rightarrow \mathfrak{b} \otimes \mathfrak{r}$, so $y \otimes_{s;\operatorname{sym}} x : B \otimes A$.

 $\mathsf{sym} :\equiv \lambda p.\mathsf{let} \ x \otimes_s y \mathsf{ be } p \mathsf{ in } y \otimes_{s;\mathsf{sym}} x$

To prove $\prod_{(p:A\otimes B)} \operatorname{sym}(\operatorname{sym}(p)) = p$, use \otimes -induction again: the goal reduces to $\mathbf{x} \otimes_s \mathbf{y} = \mathbf{x} \otimes_s \mathbf{y}$ for which we have reflexivity.

inv := λp .let $x \otimes_s y$ be p in refl $_{x \otimes_s y}$

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \to B \otimes A$

Proof.

Suppose $p: A \otimes B$. Then \otimes -induction on p gives $x :^{\mathfrak{r}} A$ and $y :^{\mathfrak{b}} B$, so that $s: \mathfrak{p} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$. There is a 2-cell $(s; \operatorname{sym}) : \mathfrak{p} \Rightarrow \mathfrak{b} \otimes \mathfrak{r}$, so $y \otimes_{s;\operatorname{sym}} x : B \otimes A$.

sym := λp .let $x \otimes_s y$ be p in $y \otimes_{s;sym} x$

To prove $\prod_{(p:A\otimes B)} \operatorname{sym}(\operatorname{sym}(p)) = p$, use \otimes -induction again: the goal reduces to $x \otimes_s y = x \otimes_s y$ for which we have reflexivity.

inv := λp .let $x \otimes_s y$ be p in refl $_{x \otimes_s y}$

The Resource Interpretation

- ▶ Linear HoTT is a *bunched* type theory.
- ▶ There is no notion of 'linear variable' which may only be used once. Instead, colours denote permission to use a resource.
- ▶ When we have access to a variable, we can use it any ordinary way we like.

 $f: A \otimes B \to A \otimes (B \times B \times B)$ $f:\equiv \lambda p.\mathsf{let} \ \mathbf{x} \otimes \mathbf{y} \mathsf{ be } p \mathsf{ in } \mathbf{x} \otimes (\mathbf{y}, \mathbf{y}, \mathbf{y})$

$$g: A \otimes B \to (A \otimes B) \times (A \otimes B)$$
$$g:\equiv \lambda p.\mathsf{let} \ \mathbf{x} \otimes \mathbf{y} \ \mathsf{be} \ p \ \mathsf{in} \ (\mathbf{x} \otimes \mathbf{y}, \mathbf{x} \otimes \mathbf{y})$$

$$\overset{\otimes\text{-FORM}}{\longrightarrow} \frac{ \begin{array}{c} \Gamma, \mathfrak{l} \vdash_{\mathfrak{l}} A \text{ type } & \Gamma, \mathfrak{r} \vdash_{\mathfrak{r}} B \text{ type } \\ \Gamma \vdash_{\mathfrak{C}} A \otimes B \text{ type } \end{array} }{ \Gamma \vdash_{\mathfrak{C}} A \otimes B \text{ type } } \\ & \overset{\otimes\text{-INTRO}}{\longrightarrow} \frac{ \begin{array}{c} \Gamma \vdash_{\mathfrak{L}} a : A[\mathfrak{L}/\mathfrak{l}] & \Gamma \vdash_{\mathfrak{R}} b : B[\mathfrak{R}/\mathfrak{r}] \\ \hline \Gamma \vdash_{\mathfrak{C}} a \otimes_{s} b : A \otimes B \end{array} }{ \Gamma \vdash_{\mathfrak{C}} a \otimes_{s} b : A \otimes B } \\ & \overset{\Gamma, z : \mathfrak{D}}{\longrightarrow} A \otimes \vdash_{\mathfrak{C}} C \text{ type } \\ & \overset{\Gamma, \mathfrak{l}, \mathfrak{r}, s : \mathfrak{D} \Rightarrow \mathfrak{l} \otimes \mathfrak{r}, x : {}^{\mathfrak{l}} A, y : {}^{\mathfrak{r}} B \vdash_{\mathfrak{C}} c : C[x \otimes_{s} y/z] \\ \hline \Gamma \vdash_{\mathfrak{D}} p : A \otimes B \end{array} }{ \begin{array}{c} \Gamma \vdash_{\mathfrak{D}} p : A \otimes B \end{array} } \end{array}$$

Pros:

- ▶ No more baroque rules for "splits".
- Simpler crisp induction principles without complicated pattern matching.
- ▶ No context clearing/manipulation in modal rules.

Cons:

- Explicit 2-cell manipulation.
 - ▶ Mostly inferable?
- Conversion checking seems harder.

• E.g., $(\mathsf{sym} \otimes \mathsf{id})^*((a \otimes b) \otimes c) \equiv \mathsf{sym}^*(a \otimes b) \otimes c$

▶ Bad judgement states.

 $\blacktriangleright \text{ E.g. } x :^{\mathfrak{r}} A \vdash_{\mathfrak{r} \otimes \mathfrak{r}} x \otimes x : A \otimes A$

► Still pretty ad-hoc.

Pros:

- ▶ No more baroque rules for "splits".
- Simpler crisp induction principles without complicated pattern matching.
- ▶ No context clearing/manipulation in modal rules.

Cons:

- ► Explicit 2-cell manipulation.
 - ► Mostly inferable?
- ▶ Conversion checking seems harder.

► E.g., $(\mathsf{sym} \otimes \mathsf{id})^*((a \otimes b) \otimes c) \equiv \mathsf{sym}^*(a \otimes b) \otimes c$

▶ Bad judgement states.

 $\blacktriangleright \text{ E.g. } x :^{\mathfrak{r}} A \vdash_{\mathfrak{r} \otimes \mathfrak{r}} x \otimes x : A \otimes A$

▶ Still pretty ad-hoc.

$$\begin{split} \flat_{\text{-INTRO}} & \frac{\Gamma \vdash s : \mathfrak{C} \Rightarrow \mathsf{f}(\mathfrak{D}) \qquad \Gamma \vdash_{\mathfrak{D}} a : A}{\Gamma \vdash_{\mathfrak{C}} \flat(a) : \flat A} \\ & \Gamma, z^{\mathfrak{D}} : \flat A \vdash_{\mathfrak{C}} C \text{ type} \\ & \Gamma, \mathfrak{l}, s : \mathfrak{D} \Rightarrow \mathsf{f}(\mathfrak{l}), x :^{\mathfrak{l}} A \vdash_{\mathfrak{C}} c : C[\flat(x)/z] \\ & \frac{\Gamma \vdash_{\mathfrak{D}} p : \flat A}{\Gamma \vdash_{\mathfrak{C}} \text{ let } \flat(x^{\mathfrak{l}}) \text{ be } p \text{ in } c : C[p/z]} \end{split}$$

This "b" is not left-exact! Variables created by $\flat\text{-ELIM}$ cannot interact.

func :
$$\flat(A \to B) \to \flat A \to \flat B$$

func $(h, u) :\equiv \mathsf{let} \, \flat(f^{\mathfrak{l}}) \mathsf{ be } h \mathsf{ in } \mathsf{let} \, \flat(a^{\mathfrak{r}}) \mathsf{ be } u \mathsf{ in } \flat(f(a))$

VAR	⊗-INTRO		
	$\Phi, \Gamma_1 \Vdash M : A \qquad \Phi, \Gamma_2 \Vdash N : B$		
$\Phi, x: A \vdash x: A$	$\Phi, \Gamma_1, \Gamma_2 \Vdash M \otimes N : A \otimes B$		
⊗-ELIM			
$\Phi, \Gamma_1 \Vdash M : A \otimes B$	$\Phi, \Gamma_2, x : A, y : B \Vdash N : C$		
$\overline{\Phi,\Gamma_1,\Gamma_2 \Vdash let\; x \otimes y \; be\; M in N : C}$			
!-intro	!-ELIM		
$\Phi \Vdash M : A$	$\Phi,\Gamma \Vdash M: !A$		
$\overline{\Phi \Vdash \mathbf{lift} M: !A}$	$\overline{\Phi,\Gamma \Vdash \mathbf{force} M:A}$		

VAR	⊗-INTRO	
	$\Gamma_1 \Vdash M : A$	$\Gamma_2 \Vdash N : B$
$\overline{x:A\vdash x:A}$	$\Gamma_1, \Gamma_2 \Vdash M \otimes$	$N:A\otimes B$

 $\begin{array}{c} \otimes \text{-ELIM} \\ \hline \Gamma_1 \Vdash M : A \otimes B & \Gamma_2, x : A, y : B \Vdash N : C \\ \hline \Gamma_1, \Gamma_2 \Vdash \text{let } x \otimes y \text{ be } M \text{ in } N : C \\ \\ \hline & & \vdots \Vdash M : A \\ \hline & & \vdots \Vdash \text{lift } M : !A \end{array} \qquad \begin{array}{c} !\text{-ELIM} \\ & & \Gamma \Vdash M : !A \\ \hline & & \Gamma \Vdash \text{ force } M : A \\ \hline & & \Gamma \Vdash \text{ force } M : A \end{array}$

Translating from Quipper

A Quipper term $x : A, y : B \Vdash c : C$ is translated to

$$\phi: {}^{\mathfrak{c}_{\phi}}I, x: {}^{\mathfrak{c}_{x}}\llbracket A \rrbracket, y: {}^{\mathfrak{c}_{y}}\llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}}\llbracket c \rrbracket : \llbracket C \rrbracket$$

 $\llbracket x \rrbracket :\equiv \mathsf{let} \ \mathtt{m}_i \ \mathsf{be} \ \phi \ \mathsf{in} \ \mathsf{unitor}_i(x)$

$$\begin{split} \llbracket A \otimes B \rrbracket &:= \llbracket A \rrbracket \otimes \llbracket B \rrbracket \\ \llbracket (M, N) \rrbracket &:= \llbracket M \rrbracket \otimes_{\mathsf{id}} \mathsf{unitorinv}_i(\llbracket N \rrbracket [\mathtt{m}_i / \phi]) \\ \llbracket \mathsf{let} \ (x, y) \ \mathsf{be} \ M \ \mathsf{in} \ N \rrbracket &:= \mathsf{let} \ x^{\mathfrak{c}_x} \otimes_s y^{\mathfrak{c}_y} \ \mathsf{be} \ \llbracket M \rrbracket \ \mathsf{in} \ (\mathsf{id} \otimes s)^*(\llbracket N \rrbracket [\mathtt{m}_i / \phi]) \end{split}$$

 $\llbracket !A \rrbracket :\equiv I \times \natural (I \to \llbracket A \rrbracket)$ $\llbracket \texttt{lift} M \rrbracket :\equiv (\phi, (\lambda s. \llbracket M \rrbracket [s/\phi])^{\natural})$ $\llbracket \texttt{force} M \rrbracket :\equiv \mathsf{let} (\phi', f) \mathsf{ be} \llbracket M \rrbracket \mathsf{ in} f_{\natural}(\phi')$

Translating from Quipper

A Quipper term $x : A, y : B \Vdash c : C$ is translated to

$$\phi: \stackrel{\mathfrak{c}_{\phi}}{:} I, x: \stackrel{\mathfrak{c}_{x}}{:} \llbracket A \rrbracket, y: \stackrel{\mathfrak{c}_{y}}{:} \llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}} \llbracket c \rrbracket : \llbracket C \rrbracket$$

 $[\![x]\!] :\equiv \mathsf{let} \ \mathtt{m}_i \ \mathsf{be} \ \phi \ \mathsf{in} \ \mathsf{unitor}_i(x)$

$$\begin{split} \llbracket A \otimes B \rrbracket &:= \llbracket A \rrbracket \otimes \llbracket B \rrbracket \\ \llbracket (M, N) \rrbracket &:= \llbracket M \rrbracket \otimes_{\mathsf{id}} \mathsf{unitorinv}_i(\llbracket N \rrbracket [\mathtt{m}_i / \phi]) \\ \llbracket \mathsf{let} \ (x, y) \ \mathsf{be} \ M \ \mathsf{in} \ N \rrbracket &:= \mathsf{let} \ x^{\mathsf{c}_x} \otimes_s y^{\mathsf{c}_y} \ \mathsf{be} \ \llbracket M \rrbracket \ \mathsf{in} \ (\mathsf{id} \otimes s)^*(\llbracket N \rrbracket [\mathtt{m}_i / \phi]) \end{split}$$

 $\llbracket !A \rrbracket :\equiv I \times \natural (I \to \llbracket A \rrbracket)$ $\llbracket \texttt{lift} M \rrbracket :\equiv (\phi, (\lambda s. \llbracket M \rrbracket [s/\phi])^{\natural})$ $\llbracket \texttt{force} M \rrbracket :\equiv \texttt{let} (\phi', f) \texttt{ be } \llbracket M \rrbracket \texttt{ in } f_{\natural}(\phi')$

A Quipper term $x : A, y : B \Vdash c : C$ is translated to

$$\phi: {}^{\mathfrak{c}_{\phi}} I, x: {}^{\mathfrak{c}_{x}} \llbracket A \rrbracket, y: {}^{\mathfrak{c}_{y}} \llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}} \llbracket c \rrbracket : \llbracket C \rrbracket$$

 $[\![x]\!] :\equiv \mathsf{let} \ \mathtt{m}_i \ \mathsf{be} \ \phi \ \mathsf{in} \ \mathsf{unitor}_i(x)$

$$\begin{split} \llbracket A \otimes B \rrbracket &:= \llbracket A \rrbracket \otimes \llbracket B \rrbracket \\ \llbracket (M, N) \rrbracket &:= \llbracket M \rrbracket \otimes_{\mathsf{id}} \mathsf{unitorinv}_i(\llbracket N \rrbracket [\bowtie_i / \phi]) \\ \llbracket \mathsf{let} \ (x, y) \ \mathsf{be} \ M \ \mathsf{in} \ N \rrbracket &:= \mathsf{let} \ x^{\mathfrak{c}_x} \otimes_s y^{\mathfrak{c}_y} \ \mathsf{be} \ \llbracket M \rrbracket \ \mathsf{in} \ (\mathsf{id} \otimes s)^*(\llbracket N \rrbracket [\amalg_i / \phi]) \end{split}$$

 $\llbracket !A \rrbracket :\equiv I \times \natural (I \to \llbracket A \rrbracket)$ $\llbracket \mathbf{lift} \ M \rrbracket :\equiv (\phi, (\lambda s. \llbracket M \rrbracket [s/\phi])^{\natural})$ $\llbracket \mathbf{force} \ M \rrbracket :\equiv \mathsf{let} \ (\phi', f) \ \mathsf{be} \ \llbracket M \rrbracket \ \mathsf{in} \ f_{\natural}(\phi')$

A Quipper term $x : A, y : B \Vdash c : C$ is translated to

$$\phi:^{\mathfrak{c}_{\phi}}I,x:^{\mathfrak{c}_{x}}\llbracket A\rrbracket,y:^{\mathfrak{c}_{y}}\llbracket B\rrbracket\vdash_{\mathfrak{c}_{\phi}\otimes\mathfrak{c}_{x}\otimes\mathfrak{c}_{y}}\llbracket c\rrbracket:\llbracket C\rrbracket$$

 $[\![x]\!] :\equiv \mathsf{let} \ \mathtt{m}_i \ \mathsf{be} \ \phi \ \mathsf{in} \ \mathsf{unitor}_i(x)$

$$\begin{split} \llbracket A \otimes B \rrbracket &:= \llbracket A \rrbracket \otimes \llbracket B \rrbracket \\ \llbracket (M, N) \rrbracket &:= \llbracket M \rrbracket \otimes_{\mathsf{id}} \mathsf{unitorinv}_i(\llbracket N \rrbracket [\bowtie_i / \phi]) \\ \llbracket \mathsf{let} \ (x, y) \ \mathsf{be} \ M \ \mathsf{in} \ N \rrbracket &:= \mathsf{let} \ x^{\mathfrak{c}_x} \otimes_s y^{\mathfrak{c}_y} \ \mathsf{be} \ \llbracket M \rrbracket \ \mathsf{in} \ (\mathsf{id} \otimes s)^*(\llbracket N \rrbracket [\amalg_i / \phi]) \end{split}$$

$$\llbracket !A \rrbracket :\equiv I \times \natural (I \to \llbracket A \rrbracket)$$

$$\llbracket \mathbf{lift} \ M \rrbracket :\equiv (\phi, (\lambda s. \llbracket M \rrbracket [s/\phi])^{\natural})$$

$$\llbracket \mathbf{force} \ M \rrbracket :\equiv \mathsf{let} \ (\phi', f) \ \mathsf{be} \ \llbracket M \rrbracket \ \mathsf{in} \ f_{\natural}(\phi')$$

Then

```
\llbracket \mathbf{H} \rrbracket : I \times \natural (I \to (\mathsf{Qubit} \multimap \mathsf{Qubit}))\llbracket \mathbf{circuit} \rrbracket : I \times \natural (I \to (\mathsf{Qubit} \otimes \mathsf{Qubit} \multimap \mathsf{Qubit} \otimes \mathsf{Qubit}))
```

The Simplest Translation

Generally, there is a map $\mathbf{e}: I \times \mathfrak{t}(I \to (A \multimap B)) \to (A \to B)$

 $e(\llbracket \mathbf{circuit} \rrbracket) = ... = \lambda p.$ let $x \otimes y$ be p in $e(\llbracket \mathbf{H} \rrbracket)(x) \otimes y$

Then:

 $\mathsf{e}(\llbracket \mathbf{circuit} \rrbracket) \circ \mathsf{e}(\llbracket \mathbf{circuit} \rrbracket)$

= ...

 $= (\lambda p.\mathsf{let} \ x \otimes y \ \mathsf{be} \ p \ \mathsf{in} \ \mathsf{e}(\llbracket \mathbf{H} \rrbracket)(x) \otimes y)$

 $\circ (\lambda p.\mathsf{let} \ {m x} \otimes {m y} \ \mathsf{be} \ p \ \mathsf{in} \ \mathsf{e}(\llbracket {f H}
rbracket))({m x}) \otimes {m y})$

 $\lambda = \lambda p$.let $x \otimes y$ be (let $x' \otimes y'$ be p in e($\llbracket H \rrbracket)(x') \otimes y'$) in e($\llbracket H \rrbracket)(x) \otimes y$

- $\lambda = \lambda p.$ let $x' \otimes y'$ be p in (let $x \otimes y$ be $e(\llbracket \mathbf{H} \rrbracket)(x') \otimes y'$ in $e(\llbracket \mathbf{H} \rrbracket)(x) \otimes y$
- $\equiv \lambda p.\mathsf{let}\; \underline{x'} \otimes \underline{y'}\; \mathsf{be}\; p \,\mathsf{in}\, \mathsf{e}(\llbracket \mathbf{H} \rrbracket)(\mathsf{e}(\llbracket \mathbf{H} \rrbracket)(\underline{x'})) \otimes \underline{y'}$
- $\lambda = \lambda p.$ let $x' \otimes y'$ be p in $x' \otimes y'$

$$=\lambda p.p$$

Thanks!

References I