Linear HoTT and Quipper

Mitchell Riley

CQTS

20th April 2024

The Goal

- Add linear type formers \otimes, I, \multimap to DTT.
- Leave the rest of DTT exactly the same.

The Symmetry Proof We Want

Proposition
sym : $A \otimes B \simeq B \otimes A$
Proof
To define sym : $A \otimes B \rightarrow B \otimes A$, suppose we have $p: A \otimes B$.
Then \otimes-induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

$$
\text { sym }: \equiv \lambda p . \text { let } x \otimes y \text { be } p \text { in } y \otimes x
$$

Then to prove $\prod_{(p: A \otimes B)} \operatorname{sym}(\operatorname{sym}(p))=p$, use \otimes-induction again: the goal reduces to $x \otimes y=x \otimes y$ for which we have reflexivity.

$$
\text { inv }: \equiv \lambda p \text {.let } x \otimes y \text { be } p \text { in refl }_{x \otimes y}
$$

The Symmetry Proof We Want

Proposition
sym : $A \otimes B \simeq B \otimes A$
Proof.
To define sym : $A \otimes B \rightarrow B \otimes A$, suppose we have $p: A \otimes B$. Then \otimes-induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

$$
\text { sym }: \equiv \lambda p . \text { let } x \otimes y \text { be } p \text { in } y \otimes x
$$

Then to prove $\prod_{(p: A \otimes B)} \operatorname{sym}(\operatorname{sym}(p))=p$, use \otimes-induction again: the goal reduces to $x \otimes y=x \otimes y$ for which we have reflexivity.

$$
\text { inv }: \equiv \lambda p \text {.let } x \otimes y \text { be } p \text { in refl }_{x \otimes y}
$$

The Symmetry Proof We Want

Proposition

```
sym : A\otimesB\simeqB\otimesA
```

Proof.
To define sym : $A \otimes B \rightarrow B \otimes A$, suppose we have $p: A \otimes B$. Then \otimes-induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

$$
\text { sym }: \equiv \lambda p . \text { let } x \otimes y \text { be } p \text { in } y \otimes x
$$

Then to prove $\prod_{(p: A \otimes B)} \operatorname{sym}(\operatorname{sym}(p))=p$, use \otimes-induction again: the goal reduces to $x \otimes y=x \otimes y$ for which we have reflexivity.

$$
\text { inv }: \equiv \lambda p \text {.let } x \otimes y \text { be } p \text { in refl }{ }_{x \otimes y}
$$

Colourful Variables

We need to prevent terms like $\lambda x . x \otimes x: A \rightarrow A \otimes A$, so variable use needs to be restricted somehow.

Every term a has a colour \mathfrak{C}.
Every variable binding $x:{ }^{\mathfrak{C}} A$ also has a colour \mathfrak{C}. A variable is only usable when its colour matches the colour of the term (roughly).

Colourful Variables

We need to prevent terms like $\lambda x . x \otimes x: A \rightarrow A \otimes A$, so variable use needs to be restricted somehow.

- Every term a has a colour \mathfrak{C}.
- Every variable binding $x:^{\mathfrak{C}} A$ also has a colour \mathfrak{C}.
- A variable is only usable when its colour matches the colour of the term (roughly).

Using Colourful Variables

Building a term, we need to keep track of the current colour. A context has the form

$$
\Gamma \vdash_{\mathfrak{C}} a: A
$$

where $\Gamma \vdash \mathfrak{C}$ colour is an iterated tensor of 'primitive colours' bound in the context.
Each variable is a term of its own colour:

Each colour has a copy of all ordinary type formers.

Using Colourful Variables

Building a term, we need to keep track of the current colour. A context has the form

$$
\Gamma \vdash_{\mathfrak{C}} a: A
$$

where $\Gamma \vdash \mathfrak{C}$ colour is an iterated tensor of 'primitive colours' bound in the context.
Each variable is a term of its own colour:

$$
\begin{aligned}
& \mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B, z:^{\mathfrak{p}} C \vdash_{\mathfrak{r}} x: A \\
& \mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B, z:^{\mathfrak{p}} C \vdash_{\mathfrak{b}} y: B \\
& \mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B, z:^{\mathfrak{p}} C \vdash_{\mathfrak{p}} z: C
\end{aligned}
$$

Each colour has a copy of all ordinary type formers.

Using Colourful Variables

Building a term, we need to keep track of the current colour. A context has the form

$$
\Gamma \vdash_{\mathfrak{C}} a: A
$$

where $\Gamma \vdash \mathfrak{C}$ colour is an iterated tensor of 'primitive colours' bound in the context.
Each variable is a term of its own colour:

$$
\begin{aligned}
& \mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B, z:^{\mathfrak{p}} C \vdash_{\mathfrak{r}} x: A \\
& \mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B, z:^{\mathfrak{p} C \vdash_{\mathfrak{b}} y: B} \\
& \mathfrak{r}, \mathfrak{b}, \mathfrak{p}, x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B, z:^{\mathfrak{p} C \vdash_{\mathfrak{p}} z: C}
\end{aligned}
$$

Each colour has a copy of all ordinary type formers.

$$
\begin{gathered}
\sum_{(x: A)} B(x) \quad \prod_{(x: A)} B(x) \\
\text { ind }_{+}\left(z \cdot C, x \cdot c_{1}, y \cdot c_{2}, p\right) \quad \text { ind }=\left(x \cdot x^{\prime} \cdot p \cdot C, x \cdot c, p\right)
\end{gathered}
$$

Rules for \otimes, Take 1

- Formation: For closed ${ }^{*} A: \mathcal{U}$ and $B: \mathcal{U}$, there is a type $A \otimes B: \mathcal{U}$.

Introduction: Given $a: A$ with colour \mathfrak{R} and $b: B$ with colour \mathfrak{B}, there is a term

$$
a \otimes b: A \otimes B
$$

Flimination: Any term : $A \otimes B$ of colour $\cap 3$ may be assumed to be of the form $x \otimes y$ for some variables $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B$ where r and \mathfrak{b} are fresh colours, when constructing some other term $c: C$.

$$
\text { (let } x \otimes y \text { be } p \text { in } c): C[p / z]
$$

Rules for \otimes, Take 1

- Formation: For closed* $A: \mathcal{U}$ and $B: \mathcal{U}$, there is a type $A \otimes B: \mathcal{U}$.
- Introduction: Given $a: A$ with colour \Re and $b: B$ with colour \mathfrak{B}, there is a term

$$
a \otimes b: A \otimes B
$$

with colour $\mathfrak{R} \otimes \mathfrak{B}$.
Elimination: Any term $p: A \otimes B$ of colour \mathfrak{Z} may be assumed to be of the form $x \otimes y$ for some variables B where \mathfrak{r} and \mathfrak{b} are fresh colours, when constructing some other term $c: C$.

$$
\text { (let } x \otimes y \text { be } p \text { in } c): C[p / z]
$$

Rules for \otimes, Take 1

- Formation: For closed* $A: \mathcal{U}$ and $B: \mathcal{U}$, there is a type $A \otimes B: \mathcal{U}$.
- Introduction: Given $a: A$ with colour \Re and $b: B$ with colour \mathfrak{B}, there is a term

$$
a \otimes b: A \otimes B
$$

with colour $\mathfrak{R} \otimes \mathfrak{B}$.

- Elimination: Any term $p: A \otimes B$ of colour \mathfrak{P} may be assumed to be of the form $x \otimes y$ for some variables $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B$ where \mathfrak{r} and \mathfrak{b} are fresh colours, when constructing some other term $c: C$.

$$
\text { (let } x \otimes y \text { be } p \text { in } c \text {) :C } C p / z]
$$

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \rightarrow B \otimes A$

Proof.
Suppose $p: A \otimes B$. Then \otimes-induction on p gives $x:{ }^{\text {r }} A$ and $y:^{\mathfrak{b}} B$.

We can form $y \otimes x: B \otimes A$ of colour $\mathfrak{b} \otimes \mathfrak{r} \ldots$
But now we are stuck, the term $y \otimes x$ has colour $\mathfrak{b} \otimes t$ rather than p so we can't write

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \rightarrow B \otimes A$

Proof.
Suppose $p: A \otimes B$. Then \otimes-induction on p gives $x:^{\text {r }} A$ and $y:^{\mathfrak{b}} B$.

We can form $y \otimes x: B \otimes A$ of colour $\mathfrak{b} \otimes \mathfrak{r} \ldots$
But now we are stuck, the term $y \otimes x$ has colour $\mathfrak{b} \otimes \mathfrak{r}$ rather than \mathfrak{p} so we can't write

$$
\text { sym }: \equiv \lambda p \text {.let } x \otimes y \text { be } p \text { in } y \otimes x
$$

2-cells

We need a judgement describing how colours relate to each other. There will be an admissible principle

$$
\begin{gathered}
\Gamma \vdash s: \mathfrak{C} \Rightarrow \mathfrak{D} \quad \Gamma \vdash_{\mathfrak{O}} a: A \\
\text { REWRITE } \frac{\Gamma \vdash_{\mathfrak{C}} s^{*}(a): s^{*}(A)}{} \text { (------}
\end{gathered}
$$

With axioms:

$$
\begin{gathered}
s ; t: \mathfrak{C} \Rightarrow \mathfrak{E} \text { for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{D} \Rightarrow \mathfrak{E} \\
s \otimes t: \mathfrak{C} \otimes \mathfrak{E} \Rightarrow \mathfrak{D} \otimes \mathfrak{F} \text { for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{E} \Rightarrow \mathfrak{F}
\end{gathered}
$$

$$
\text { zero : } \mathfrak{C} \Rightarrow \mathfrak{D}
$$

2-cells

We need a judgement describing how colours relate to each other. There will be an admissible principle

$$
\begin{aligned}
& \Gamma \vdash s: \mathfrak{C} \Rightarrow \mathfrak{D} \quad \Gamma \vdash_{\mathfrak{D}} a: A \\
& \text { REWRITE ---------------- } \\
& \Gamma \vdash_{\mathfrak{C}} s^{*}(a): s^{*}(A)
\end{aligned}
$$

With axioms:

$$
\begin{gathered}
\text { sym }: \mathfrak{C} \otimes \mathfrak{D} \Rightarrow \mathfrak{D} \otimes \mathfrak{C} \quad \text { assoc }:(\mathfrak{C} \otimes \mathfrak{D}) \otimes \mathfrak{E} \Rightarrow \mathfrak{C} \otimes(\mathfrak{D} \otimes \mathfrak{E}) \\
s ; t: \mathfrak{C} \Rightarrow \mathfrak{E} \text { for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{D} \Rightarrow \mathfrak{E} \\
s \otimes t: \mathfrak{C} \otimes \mathfrak{E} \Rightarrow \mathfrak{D} \otimes \mathfrak{F} \text { for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{E} \Rightarrow \mathfrak{F}
\end{gathered}
$$

2-cells

We need a judgement describing how colours relate to each other. There will be an admissible principle

$$
\begin{gathered}
\Gamma \vdash s: \mathfrak{C} \Rightarrow \mathfrak{D} \quad \Gamma \vdash_{\mathfrak{D}} a: A \\
\text { REWRITE } \frac{\Gamma \vdash_{\mathfrak{C}} s^{*}(a): s^{*}(A)}{} \text { (------}
\end{gathered}
$$

With axioms:

$$
\begin{gathered}
\text { sym }: \mathfrak{C} \otimes \mathfrak{D} \Rightarrow \mathfrak{D} \otimes \mathfrak{C} \quad \text { assoc }:(\mathfrak{C} \otimes \mathfrak{D}) \otimes \mathfrak{E} \Rightarrow \mathfrak{C} \otimes(\mathfrak{D} \otimes \mathfrak{E}) \\
s ; t: \mathfrak{C} \Rightarrow \mathfrak{E} \text { for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{D} \Rightarrow \mathfrak{E} \\
s \otimes t: \mathfrak{C} \otimes \mathfrak{E} \Rightarrow \mathfrak{D} \otimes \mathfrak{F} \text { for } s: \mathfrak{C} \Rightarrow \mathfrak{D}, t: \mathfrak{E} \Rightarrow \mathfrak{F} \\
\text { zero }: \mathfrak{C} \Rightarrow \mathfrak{D}
\end{gathered}
$$

etc.

Rules for \otimes, Take 2

- Formation: For closed* $A: \mathcal{U}$ and $B: \mathcal{U}$, there is a type $A \otimes B: \mathcal{U}$.

Introduction: Given $a: A$ with colour \Re and $b: B$ with colour \mathfrak{B}, and a 2 -cell $s: \mathfrak{P} \Rightarrow \mathfrak{R} \otimes \mathfrak{B}$, there is a term

with colour \mathfrak{B}.

Flimination: Any term : A $\otimes B$ of colour 23 may be assumed to be of the form $x \otimes_{S} y$ for some variables $x:{ }^{\mathfrak{r}} A, y:{ }^{\mathfrak{b}} B$ where \mathfrak{r} and \mathfrak{b} are fresh colours and there is a fresh 2 -cell $s: \mathfrak{P} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$, when constructing some other term $c: C$.

$$
\text { (let } \left.x \otimes_{s} y \text { be } p \text { in } c\right): C[p / z]
$$

Rules for \otimes, Take 2

- Formation: For closed* $A: \mathcal{U}$ and $B: \mathcal{U}$, there is a type $A \otimes B: \mathcal{U}$.
- Introduction: Given $a: A$ with colour \Re and $b: B$ with colour \mathfrak{B}, and a 2 -cell $s: \mathfrak{P} \Rightarrow \mathfrak{R} \otimes \mathfrak{B}$, there is a term

$$
a \otimes_{s} b: A \otimes B
$$

with colour \mathfrak{P}.
Elimination: Any term $p: A \otimes B$ of colour \mathfrak{X} may be assumed to be of the form $x \otimes_{s} y$ for some variables $x:{ }^{\mathfrak{r}} A, y:{ }^{\mathfrak{b}} B$ where \mathfrak{r} and \mathfrak{b} are fresh colours and there is a fresh 2 -cell $s: \mathfrak{P} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$, when constructing some other $\operatorname{term} c: C$.

$$
\text { (let } \left.x \otimes_{s} y \text { be } p \text { in } c\right): C[p / z]
$$

Rules for \otimes, Take 2

- Formation: For closed* $A: \mathcal{U}$ and $B: \mathcal{U}$, there is a type $A \otimes B: \mathcal{U}$.
- Introduction: Given $a: A$ with colour \Re and $b: B$ with colour \mathfrak{B}, and a 2 -cell $s: \mathfrak{P} \Rightarrow \mathfrak{R} \otimes \mathfrak{B}$, there is a term

$$
a \otimes_{s} b: A \otimes B
$$

with colour \mathfrak{P}.

- Elimination: Any term $p: A \otimes B$ of colour \mathfrak{P} may be assumed to be of the form $x \otimes_{s} y$ for some variables $x:^{\mathfrak{r}} A, y:^{\mathfrak{b}} B$ where \mathfrak{r} and \mathfrak{b} are fresh colours and there is a fresh 2 -cell $s: \mathfrak{P} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$, when constructing some other term $c: C$.

$$
\text { (let } \left.x \otimes_{s} y \text { be } p \text { in } c\right): C[p / z]
$$

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \rightarrow B \otimes A$

Proof.
Suppose $p: A \otimes B$. Then \otimes-induction on p gives $x:{ }^{r} A$ and $y:{ }^{\mathfrak{b}} B$, so that $s: \mathfrak{p} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$. There is a 2 -cell $(s ;$ sym $): \mathfrak{p} \Rightarrow \mathfrak{b} \otimes \mathfrak{r}$, so $y \otimes_{s ; \text { sym }} x: B \otimes A$.

$$
\text { sym }: \equiv \lambda p . \text { let } x \otimes_{s} y \text { be } p \text { in } y \otimes_{s ; \text { sym }} x
$$

To prove Π
$=p$, use \otimes-induction again: the
goal reduces to $x \otimes_{s} y=x \otimes_{s} y$ for which we have reflexivity.
inv $: \equiv \lambda p . l e t x \otimes_{s} y$ be p in refl $\otimes_{s} y$

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \rightarrow B \otimes A$

Proof.

Suppose $p: A \otimes B$. Then \otimes-induction on p gives $x:{ }^{r} A$ and $y:{ }^{\mathfrak{b}} B$, so that $s: \mathfrak{p} \Rightarrow \mathfrak{r} \otimes \mathfrak{b}$. There is a 2 -cell $(s ;$ sym $): \mathfrak{p} \Rightarrow \mathfrak{b} \otimes \mathfrak{r}$, so $y \otimes_{s ; \text { sym }} x: B \otimes A$.

$$
\text { sym }: \equiv \lambda p . \text { let } x \otimes_{s} y \text { be } p \text { in } y \otimes_{s ; \text { sym }} x
$$

To prove $\prod_{(p: A \otimes B)} \operatorname{sym}(\operatorname{sym}(p))=p$, use \otimes-induction again: the goal reduces to $x \otimes_{s} y=x \otimes_{s} y$ for which we have reflexivity.

$$
\text { inv }: \equiv \lambda p \text {.let } x \otimes_{s} y \text { be } p \text { in refl } x_{x \otimes_{s} y}
$$

- Linear HoTT is a bunched type theory.
- There is no notion of 'linear variable' which may only be used once. Instead, colours denote permission to use a resource.
- When we have access to a variable, we can use it any ordinary way we like.

$$
\begin{aligned}
& f: A \otimes B \rightarrow A \otimes(B \times B \times B) \\
& f: \equiv \lambda p . \text { let } x \otimes y \text { be } p \text { in } x \otimes(y, y, y)
\end{aligned}
$$

$$
\begin{aligned}
& g: A \otimes B \rightarrow(A \otimes B) \times(A \otimes B) \\
& g: \equiv \lambda p . \text { let } x \otimes y \text { be } p \text { in }(x \otimes y, x \otimes y)
\end{aligned}
$$

Formal Rules and a Stupid Trick

$$
\begin{gathered}
\otimes \text {-FORM } \frac{\Gamma, \mathfrak{l} \vdash_{\mathfrak{l}} A \text { type } \quad \Gamma, \mathfrak{r} \vdash_{\mathfrak{r}} B \text { type }}{\Gamma \vdash_{\mathfrak{C}} A \otimes B \text { type }} \\
\otimes \text {-INTRO } \frac{\Gamma \vdash_{\mathfrak{L}} a: A[\mathfrak{L} / \mathfrak{l}] \quad \Gamma \vdash_{\mathfrak{R}} b: B[\mathfrak{R} / \mathfrak{r}]}{\Gamma \vdash_{\mathfrak{C}} a \otimes_{s} b: A \otimes B} \\
\Gamma, \mathfrak{l}, \mathfrak{r}, s: \mathfrak{D} \Rightarrow \mathfrak{l} \otimes,:^{\mathfrak{r}, x:^{\mathfrak{l}} A, y:^{\mathfrak{c}} B \vdash_{\mathfrak{C}} c: C\left[x \otimes_{s} y / z\right]} \\
\Gamma \vdash_{\mathfrak{D}} p: A \otimes B
\end{gathered}
$$

Comparison with Old Rules

Pros:

- No more baroque rules for "splits".
- Simpler crisp induction principles without complicated pattern matching.
- No context clearing/manipulation in modal rules.

Cons:
Explicit 2-cell manipulation. - Mostly inferable?

- Conversion checking seems harder.
$>$ E.g., $(\operatorname{sym} \otimes \mathrm{id})^{*}((a \otimes b) \otimes c) \equiv \operatorname{sym}^{*}(a \otimes b) \otimes c$
Bad judgement states.
- Still pretty ad-hoc.

Comparison with Old Rules

Pros:

- No more baroque rules for "splits".
- Simpler crisp induction principles without complicated pattern matching.
- No context clearing/manipulation in modal rules.

Cons:

- Explicit 2-cell manipulation.
- Mostly inferable?
- Conversion checking seems harder.
- E.g., $(\operatorname{sym} \otimes \mathrm{id})^{*}((a \otimes b) \otimes c) \equiv \operatorname{sym}^{*}(a \otimes b) \otimes c$
- Bad judgement states.
- E.g. $x:^{{ }^{r}} A \vdash_{r \otimes r} x \otimes x: A \otimes A$
- Still pretty ad-hoc.

This Only Works Sometimes

$$
\begin{array}{r}
\text { b-intro } \frac{\Gamma \vdash s: \mathfrak{C} \Rightarrow \mathrm{f}(\mathfrak{D}) \quad \Gamma \vdash_{\mathfrak{D}} a: A}{\Gamma \vdash_{\mathfrak{C}} b(a): b A} \\
\text { b-ELIM } \frac{\Gamma, z^{\mathfrak{D}}: b A \vdash_{\mathfrak{C}} C \text { type }}{\Gamma, \mathfrak{l}, s: \mathfrak{D} \Rightarrow \mathrm{f}(\mathfrak{l}), x: A \vdash_{\mathfrak{C}} c: C[b(x) / z]} \begin{array}{c}
\Gamma \vdash_{\mathfrak{D}} p: b A
\end{array} \\
\Gamma \vdash_{\mathfrak{C}} \text { let } b\left(x^{\mathfrak{l}}\right) \text { be } p \text { in } c: C[p / z]
\end{array}
$$

This " b " is not left-exact! Variables created by b-ELIM cannot interact.

$$
\begin{aligned}
& \text { func }: b(A \rightarrow B) \rightarrow b A \rightarrow b B \\
& \text { func }(h, u): \equiv \text { let } b\left(f^{\mathfrak{l}}\right) \text { be } h \text { in let } b\left(a^{\mathfrak{c}}\right) \text { be } u \text { in } b(f(a))
\end{aligned}
$$

A Fragment of Quipper

$$
\begin{aligned}
& \text { VAR } \\
& \overline{\Phi, x: A \vdash x: A} \\
& \text { Q-INTRO } \\
& \frac{\Phi, \Gamma_{1} \Vdash M: A \quad \Phi, \Gamma_{2} \Vdash N: B}{\Phi, \Gamma_{1}, \Gamma_{2} \Vdash M \otimes N: A \otimes B} \\
& \text { Q-ELIM } \\
& \frac{\Phi, \Gamma_{1} \Vdash M: A \otimes B \quad \Phi, \Gamma_{2}, x: A, y: B \Vdash N: C}{\Phi, \Gamma_{1}, \Gamma_{2} \Vdash \text { let } x \otimes y \text { be } M \text { in } N: C} \\
& \text { !-INTRO } \\
& \frac{\Phi \Vdash M: A}{\Phi \Vdash \operatorname{lift} M:!A} \\
& \text { !-ELIM } \\
& \Phi, \Gamma \Vdash M:!A \\
& \overline{\Phi, \Gamma \Vdash \text { force } M: A}
\end{aligned}
$$

A Fragment of Quipper

$$
\begin{aligned}
& \text { VAR } \\
& \text { Q-INTRO } \\
& \Gamma_{1} \Vdash M: A \quad \Gamma_{2} \Vdash N: B \\
& x: A \vdash x: A \\
& \Gamma_{1}, \Gamma_{2} \Vdash M \otimes N: A \otimes B \\
& \text { Q-ELIM } \\
& \underline{\Gamma_{1} \Vdash M: A \otimes B \quad \Gamma_{2}, x: A, y: B \Vdash N: C} \\
& \Gamma_{1}, \Gamma_{2} \Vdash \text { let } x \otimes y \text { be } M \text { in } N: C \\
& \text { !-INTRO } \\
& \text { - } \Vdash \mid M: A \\
& \cdot \stackrel{\Vdash \text { lift } M:!A}{ } \\
& \text { !-ELIM } \\
& \Gamma \Vdash M:!A \\
& \bar{\Gamma} \text { force } M: A
\end{aligned}
$$

Translating from Quipper

A Quipper term $x: A, y: B \Vdash c: C$ is translated to

$$
\phi:^{\mathfrak{c}_{\phi}} I, x::^{\mathfrak{c}_{x}} \llbracket A \rrbracket, y::^{\mathfrak{c}_{y}} \llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}} \llbracket c \rrbracket: \llbracket C \rrbracket
$$

$\llbracket x \rrbracket: \equiv$ let \square_{i} be ϕ in unitor ${ }_{i}(x)$

$\llbracket!A \rrbracket: \equiv I \times \mathfrak{L}(I \rightarrow \llbracket A \rrbracket)$
$\llbracket \operatorname{lift} M \rrbracket: \equiv\left(\phi,(\lambda s . \llbracket M \rrbracket[s / \phi])^{\natural}\right)$ \llbracket force $M \rrbracket: \equiv$ let $\left(\phi^{\prime}, f\right)$ be $\llbracket M \rrbracket$ in $f_{\mathrm{q}}\left(\phi^{\prime}\right)$

Translating from Quipper

A Quipper term $x: A, y: B \Vdash c: C$ is translated to

$$
\phi:^{\mathfrak{c}_{\phi}} I, x::^{\mathfrak{c}_{x}} \llbracket A \rrbracket, y::^{\mathfrak{c}_{y}} \llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}} \llbracket c \rrbracket: \llbracket C \rrbracket
$$

$$
\llbracket x \rrbracket: \equiv \text { let } \square_{i} \text { be } \phi \text { in } \text { unitor }_{i}(x)
$$

$$
\llbracket!A \rrbracket: \equiv I \times \mathfrak{b}(I \rightarrow \llbracket A \rrbracket)
$$

$$
\llbracket \operatorname{lift} M \rrbracket: \equiv\left(\phi,(\lambda s . \llbracket M \rrbracket[s / \phi])^{\natural}\right)
$$

$$
\llbracket \text { force } M \rrbracket: \equiv \text { let }\left(\phi^{\prime}, f\right) \text { be } \llbracket M \rrbracket \text { in } f_{\text {匕 }}\left(\phi^{\prime}\right)
$$

Translating from Quipper

A Quipper term $x: A, y: B \Vdash c: C$ is translated to

$$
\begin{gathered}
\phi:^{\mathfrak{c}_{\phi}} I, x::^{\mathfrak{c}_{x}} \llbracket A \rrbracket, y:^{\mathfrak{c}_{y}} \llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}} \llbracket c \rrbracket: \llbracket C \rrbracket \\
\llbracket x \rrbracket: \equiv \text { let } \square_{i} \text { be } \phi \text { in unitor }{ }_{i}(x)
\end{gathered}
$$

$$
\begin{aligned}
\llbracket A \otimes B \rrbracket & : \equiv \llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket(M, N) \rrbracket & : \equiv \llbracket M \rrbracket \otimes_{\text {id }} \text { unitorinv }_{i}\left(\llbracket N \rrbracket\left[\varpi_{i} / \phi\right]\right)
\end{aligned}
$$

\llbracket let (x, y) be M in $N \rrbracket: \equiv$ let $x^{\mathfrak{c}_{x}} \otimes_{s} y^{\mathfrak{c}_{y}}$ be $\llbracket M \rrbracket$ in $(\mathrm{id} \otimes s)^{*}\left(\llbracket N \rrbracket\left[\square_{i} / \phi\right]\right)$

Translating from Quipper

A Quipper term $x: A, y: B \Vdash c: C$ is translated to

$$
\begin{gathered}
\phi::^{\mathfrak{c}_{\phi}} I, x::^{\mathfrak{c}_{x}} \llbracket A \rrbracket, y::^{\mathfrak{c}_{y}} \llbracket B \rrbracket \vdash_{\mathfrak{c}_{\phi} \otimes \mathfrak{c}_{x} \otimes \mathfrak{c}_{y}} \llbracket c \rrbracket: \llbracket C \rrbracket \\
\llbracket x \rrbracket: \equiv \text { let } \square_{i} \text { be } \phi \text { in unitor }{ }_{i}(x)
\end{gathered}
$$

$$
\begin{aligned}
\llbracket A \otimes B \rrbracket & : \equiv \llbracket A \rrbracket \otimes \llbracket B \rrbracket \\
\llbracket(M, N) \rrbracket & : \equiv \llbracket M \rrbracket \otimes_{\text {id }} \text { unitorinv }_{i}\left(\llbracket N \rrbracket\left[\square_{i} / \phi\right]\right)
\end{aligned}
$$

\llbracket let (x, y) be M in $N \rrbracket: \equiv$ let $x^{\mathfrak{c}_{x}} \otimes_{s} y^{\mathfrak{c}_{y}}$ be $\llbracket M \rrbracket$ in $(\mathrm{id} \otimes s)^{*}\left(\llbracket N \rrbracket\left[\square_{i} / \phi\right]\right)$

$$
\llbracket!A \rrbracket: \equiv I \times দ(I \rightarrow \llbracket A \rrbracket)
$$

$\llbracket \operatorname{lift} M \rrbracket: \equiv\left(\phi,(\lambda s . \llbracket M \rrbracket[s / \phi])^{\natural}\right)$
\llbracket force $M \rrbracket: \equiv$ let $\left(\phi^{\prime}, f\right)$ be $\llbracket M \rrbracket$ in $f_{\text {飞 }}\left(\phi^{\prime}\right)$

The Simplest Circuit

object Qubit
gate H : ! (Qubit -> Qubit)
circuit : ! (Qubit * Qubit -> Qubit * Qubit)
circuit $n \mathrm{p}=\operatorname{let}(\mathrm{x}, \mathrm{y})=\mathrm{p}$ in ($\mathrm{H} x, \mathrm{y}$)

Then

$$
\begin{aligned}
\llbracket \mathbf{H} \rrbracket: I \times \mathfrak{b}(I \rightarrow(\text { Qubit } \multimap \text { Qubit })) \\
\llbracket \text { circuit } \rrbracket: I \times \mathfrak{h}(I \rightarrow(\text { Qubit } \otimes \text { Qubit } \multimap \text { Qubit } \otimes \text { Qubit }))
\end{aligned}
$$

The Simplest Translation

Generally, there is a map e : $I \times \sharp(I \rightarrow(A \multimap B)) \rightarrow(A \rightarrow B)$

$$
\mathrm{e}(\llbracket \text { circuit } \rrbracket)=\ldots=\lambda p \text {.let } x \otimes y \text { be } p \text { in } \mathrm{e}(\llbracket \mathbf{H} \rrbracket)(x) \otimes y
$$

Then:
$\mathrm{e}(\llbracket$ circuit $\rrbracket) \circ \mathrm{e}(\llbracket$ circuit $\rrbracket)$
= ...
$=(\lambda p$.let $x \otimes y$ be p in $\mathrm{e}(\llbracket \mathbf{H} \rrbracket)(x) \otimes y)$ - $(\lambda p$.let $x \otimes y$ be p in $\mathrm{e}(\llbracket \mathbf{H} \rrbracket)(x) \otimes y)$
$\equiv \lambda p$.let $x \otimes y$ be (let $x^{\prime} \otimes y^{\prime}$ be p in $\left.\mathrm{e}(\llbracket \mathbf{H} \rrbracket)\left(x^{\prime}\right) \otimes y^{\prime}\right)$ in $\mathrm{e}(\llbracket \mathbf{H} \rrbracket)(x) \otimes y$
$=\lambda p$.let $x^{\prime} \otimes y^{\prime}$ be p in $\left(\right.$ let $x \otimes y$ be $\mathbf{e}(\llbracket \mathbf{H} \rrbracket)\left(x^{\prime}\right) \otimes y^{\prime}$ in $\left.\mathrm{e}(\llbracket \mathbf{H} \rrbracket)(x) \otimes y\right)$
$\equiv \lambda p$.let $x^{\prime} \otimes y^{\prime}$ be p in $\mathrm{e}(\llbracket \mathbf{H} \rrbracket)\left(\mathrm{e}(\llbracket \mathbf{H} \rrbracket)\left(x^{\prime}\right)\right) \otimes y^{\prime}$
$=\lambda p$.let $x^{\prime} \otimes y^{\prime}$ be p in $x^{\prime} \otimes y^{\prime}$
$=\lambda p . p$

Thanks!

References I

