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If we look back at the historical development of bundles, the notion of a
principal H-bundle for H a Lie group arose via considerations of homogeneous
spaces G/H, and the defining bundle G→ G/H. Here H is a closed subgroup
of G, and this will be a general assupmption for the talk. For instance, we can
conside Stiefel manifolds, Grassmann manifolds, projective spaces, Minkowski
space, spheres, . . . I am to leverage this in order to address the

Challenge: Write down a (nontrivial) 2-bundle. Equivalently, write down a

Čech cocycle with values in an interesting crossed module (K
t−→ H,H ×K a−→

K).

Recall (Breen 1994) that the cocycle equations are
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where the hαij are H-valued functions, the kαβγijk are K-valued functions and
the two sorts of indices label open sets of the base space. We shall return to
this momentarily. Note that at this point we haven’t even started to consider
connections, which are necessary for gauge theory (and in fact we won’t even
go so far today).

Note: I am not going to use good open covers (that is, those such that non-
empty finite intersections are contractible), since in many geometric situations
there are naturally arising open covers that are not good. Instead, I will be using
truncated globular hypercovers (these are open covers with particular properties),
and I will define these in a moment. For now, suffice it to say, this is why there
are two different sorts of indices on the cocycle.

Christian Saemann asked (Feb 2013): I want a 2-bundle on (conformally
compactified) R5,1 (recall that this is S5 × S1). So let’s try lifting the frame
bundle of S5 × S1 to a String bundle. Note that the S1 factor contributes
nothing (its frame bundle is trivial) so just work over S5. Note that the frame
bundle of S5 is most definitely not trivial.

The frame bundle FS5 → S5 is classified by a map S5 ⊃ S4 → SO(5),
called the clutching or transition function. Since S5 is 4-connected, the first
Stiefel-Whitney class w1 necessarily vanishes, as does the characteristic class
p1/2 ∈ H4(S5,Z) that is the obstruction to lifting to a String bundle. Thus we
can be assured that the lift we are after does exist. From the vanishing of w1 we
know the transition function lifts to a function S4 → Spin(5), and so defines a
class in π4(Spin(5)), which is the group Z/2Z (Mimura-Toda 1964). Since FS5

1These notes are the written version of a talk delivered at Herriot-Watt University on
26 July 2014 at the Workshop on Higher Gauge Theory and Higher Quantization. DMR is
supported by ARC grant number DP120100106. Thanks to David Baraglia, Michael Murray,
Christian Sämann and Raymond Vozzo for helpful converstations.
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is not trivial, the transition function needs to represent the non-trivial homotopy
class. We want to write down an explicit function in coordinates, rather than
use some abstract representative.

To approach this, we first use the exceptional isomorphism Spin(5) ' Sp(2),
where Sp(2) is the group of 2×2 unitary quaternionic matrices. The non-trivial
class in π4(Sp(2)) is represented by a map S4 → S3 ' Sp(1) ↪→ Sp(2) and
here Sp(1) is the group of unit quaternions. The map between spheres is (up
to homotopy) the suspension of the Hopf map S3 → S2, which is not a priori a

smooth map, and the inclusion is q 7→
(
q 0
0 1

)
. Note that this implies that

FS5 lifts to an Sp(1)-bundle, and this is what we shall assue without further
comment.

The first task is then to write down a smooth, non-null-homotopic smooth
map S4 → Sp(1). We shall use quaternionic coordinates on S4 = HP1, that is,
homogeneous coordinates [p; q] where at least one of p, q is non-zero.

Proposition: The smooth function

T [p; q] =
2pq̄ip̄q − |p|4 + |q|4

|p|4 + |q|4
(∈ Sp(1))

represents the non-trivial class of π4(Sp(1)), and hence is the transition function
for FS5.

Now we want to shift perspective a little bit, and note that the function T
gives rise to a smooth functor from the Čech groupoid U ×S5 U ⇒ U over S5

coming from the open cover by two discs2 U := D+

∐
D− → S5. For future

notational convenience, write U [2] = U ×S5 U .
Since we now have an explicit Čech cocycle (this is precisely what the above

functor is) for FS5, we can talk about lifting this to a Čech cocycle for the
2-group StringSp(1). But what is this? There are many models for String

2-groups, and we shall take the crossed module (Ω̂Sp(1) → PSp(1)), where
PSp(1) is the group of smooth paths [0, 1] → Sp(1) based at 1 ∈ Sp(1), and

Ω̂Sp(1) is the universal central extension of the subgroup ΩSp(1) ⊂ PSp(1)
of loops (Baez-Crans-Schreiber-Stevenson 2007). Note that the abstract de-
tails of what I’m considering doesn’t rely on this choice of model. Notice that

(Ω̂Sp(1) → PSp(1)) comes with a map to the crossed module (1 → Sp(1)),
and that the former gives rise to a groupoid (which I shall call String(3), as

Sp(1) ' Spin(3)), namely the action groupoid for Ω̂Sp(1) acting on PSp(1) via
the given homomorphism, and a 2-groupoid BString(3) with a single object
(using the 2-group structure). More generally, we can repeat these construc-
tions with any compact, simple, simply connected Lie group G to get a 2-group
StringG. Also, given an inclusion of Lie groups3 H → G gives an inclusion of

2One should take these as open discs, and so the intersection would be S4 × (−ε, ε); we
extend T to this slightly larger subspace by taking it constant in the direction of the interval.

3that induces an isomorphism H3(G,Z)→ H3(H,Z); the examples listed below all satisfy
this, as can be calculated via the long-exact sequence in homotopy.
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Lie 2-groups StringH → StringG.
In the Čech groupoid U [2] ⇒ U we don’t have U [2] a disjoint union of con-

tractible opens, so we take an open cover V → U [2] where V is such a dis-
joint union (or, at least, acyclic enough). Since the non-trivial part of U [2] is
D+ ∩D− ∼ HP1, we will take V to be the two H charts H+ and H− given by
non-vanishing of each of the two homogenous coordinates. Then if we take the
fibred product V [2] = V ×U [2] V we get a Lie 2-groupoid V [2] ⇒ V ⇒ U , which
I call a truncated globular hypercover.4 The nontrivial component of V [2] (it
contains boring bits like D+) is the intersection H+ ∩H− = H×. Notice that if
we wanted to use a good open cover then U would necessarily have had more
open sets, and so more overlaps. In some sense we have made a trade-off in the
number of open sets and the slight increase in complexity of the description.
Also, we can finally see where the two sorts of indices in the cocycle equation
above come from: the indices i, j, . . . label open sets appearing in U , and the
indices α, β, . . . label the open sets appearing in V .

So, finally, a Čech cocycle on S5 with values in String(3) is ‘just’ a 2-functor

(V [2] ⇒ V ⇒ U)→ BString(3).

If we break this down, it is determined by components

V → PSp(1)

V [2] → ̂ΩPSp(1)

and since we have so few open sets in the globular hypercover, functoriality
follows automatically. In our particular case, we want the first map to lift the
given V → U [2] → Sp(1).

Recall that V is (essentially) H+

∐
H−, we define the lift in two parts:

T+(q) =

(
s 7→ |q|

4 − s2 + 2q̄iq

|q|4 + s2

)
T−(p) =

(
s 7→ |p|

4s2 − 1 + 2p̄ip

|p|4s2 + 1
·
(
s− i
s+ i

)2
)

To define the remaining component of the 2-functor, we first take the difference
of these two maps to get a function H× → ΩSp(1)

TΩ(q) =

(
s 7→ (s+Q)(sQ− 1)

(s−Q)(sQ+ 1)
·
(
s− i
s+ i

)2
)
, where Q = q̄iq.

Now we need to lift this map through the projection Ω̂Sp(1) → ΩSp(1) (this
is not a priori possible, but one calculates the possible obstructions and they

vanish). To do this, we need a workable description of what Ω̂Sp(1) is. There are

4This may look familiar if you’ve seen bundle 2-gerbes before.
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multiple papers constructing this e.g. Mickelsson, Murray, Murray-Stevenson.
We shall use the description of it as the quotient group

PΩSp(1) o U(1)

˜Ω2Sp(1)

The precise embedding of the simply-connected covering group ˜Ω2Sp(1) is not
important, just that we can represent elements as equivalence classes of pairs
consisting of paths in ΩSp(1) and elements of U(1).

One calculates the final answer to be as follows. For any q ∈ H×, let qt be
any path (in H×) 1 q, and the lift to the central extension is

TΩ̂(q) = [TΩ(qt), 1].

This is independent of the choice of path and is smooth. This function, together
with T±, defines the Čech cocycle we are interested in. We know that this
cocycle is not a coboundary, since geometrically realising everything we get a
map S5 → BString(3) that picks out the nontrivial class in π5(BString(3)) '
π5(BSpin(3)) ' π4(Spin(3)) ' π4(Sp(1)) = Z/2Z. One can also check (easily,
as there are so few open sets involved in the open covers), that these functions
satisfy the cocycle equations displayed at the beginning of the notes.

Now this is just one example, and a pretty exceptional example at that, as
the dimensions involved are right on the boundary of where the obstructions
vanish, not to mention the use of quaternions. One can take a more global
approach that leads to many more examples as follows. The total space of the
frame bundle FS5, as an Sp(1)-bundle, is nothing other than the homogenous
bundle SU(3) → SU(3)/Sp(1) = S5, using the embedding Sp(1) ' SU(2) →
SU(3) as a block matrix. One can calculate that StringSU(3)/String(3) '
SU(3)/Sp(1), so that the underlying groupoid of StringSU(3) is the ‘total space’
of the String(3) bundle. Another way to view this is to consider the transitive
StringSU(3) action on S5 via the projection to SU(3); then String(3) is the
stabiliser of the basepoint.

This picture generalises to any StringG acting on G/H for H < G, and
at this point we can use any model of StringG, including non-strict models,
and even 2-groups in differentiable stacks, which have underlying Lie groupoids.
There are a number of interesting exceptional examples which should be amenable
to the same treatment as above, for instance:

• StringG2
→ G2/SU(3) = S6

• StringSpin(7) → Spin(7)/G2 = S7

• StringSp(2) → Sp(2)/Sp(1) = S7

• StringF4
→ F4/Spin(9) = OP2

The first three of these have explicit transition functions written down by
Püttmann (arXiv:1101.5147). OP2 admits a cover by three R16 charts, and
is 7-connected.
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Exercise: write down transition functions for the Spin(9) bundle on OP2,
and lift them to String(9) = StringSpin(9)-valued transition functions using a
globular hypercover.

The astute reader will have realised that this method only gives a single
example on each homogeneous space with that particular structure group, which
in the case of S5 is ok as there is only one nontrivial String(3) bundle. But, for
instance, StringSU(3) bundles on S6 are classified by an integer (and in fact the
example above is a generator). However, using the Eckmann-Hilton argument,
one can show that over a sphere Sk+1, given a G-bundle with transition function
t : Sk → G representing a generator of g ∈ πk(G), we can obtain the transition
functions for the bundles corresponding to elements gn by taking the pointwise
power tn : Sk → G for any n ∈ Z. The same will be true for the lifted 2-
bundles, where we take pointwise powers of the 2-group-valued functor (V [2] ⇒
V )→ StringH . Thus, for spheres at least, we can in principle give Čech cocycle
descriptions for all String bundles.

As a final note, the abstract picture in the penultimate paragraph is not
restricted to smooth geometry: one can equally well take holomorphic 2-groups,
assuming one has them. However, in current work with Raymond Vozzo we have
found that the basic gerbe on a simple, simply-connected complex reductive Lie
group, which is holomorphic (Brylinski 1994, 2000), is also multiplicative, so
defines a weak 2-group in complex analytic stacks. This means we can de-
fine holomorphic String bundles on complex homogeneous spaces, which can be
plugged into the higher twistor correspondence of Saemann-Wolf.
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