
CONSTRUCTING ROOTS

OF POLYNOMIALS

OVER

THE COMPLEX NUMBERS

Wim Ruitenburg

Department of Mathematics, Statistics and Computer Science
Marquette University
Milwaukee, WI 53233

§0. Introduction

Constructive proofs of the Fundamental Theorem of Algebra are known since 1924,
when L. E. J. Brouwer, B. de Loor, and H. Weyl showed that nonconstant monic
polynomials over the complex numbers have a complex root. Later that year Brouwer
generalized this result by showing that each polynomial f(X) having an invertible coeffi-
cient for some positive power of X has a root. These proofs are constructive equivalents
of classical analytical proofs of the Fundamental Theorem. Modern versions of their
results are in [1, pp. 156ff] and [12, pp. 434ff]. The time has come to give a constructive
algebraic proof.

In [7] the authors use algebraic methods to show that the algebraic closure Ca of the
field of rationals Q in the field of complex numbers C is algebraically closed and dense
in C. In the exercises it is indicated how one can construct roots of monic polynomials
over the complexes more generally [7, p. 191]. There is, however, no indication how to
accomplish this without resorting to some choice principles, or how to generalize this
to polynomials of which it is only known that the coefficient of some positive power of
X is invertible. We show that the more general version is indeed provable, and without
resorting to choice principles.

We have two target audiences in mind: Constructivists and computer algebraists.
To accommodate the former we present the algebraic results in more detail than would
otherwise be necessary. For the latter, we will presently discuss some aspects of con-
structive mathematics, how it relates to algorithms, and why avoiding choice principles
matters to us.

There exist several schools of constructive mathematics, the most well-known being
Brouwer’s intuitionism, Markov constructivism, and Bishop constructivism [2]. Modern
followers, however, do not always closely adhere to the philosophies of the originators,
so many ‘dialects’ developed, some of these motivated by the existence of models for
constructive logic. The mathematics we use is based on the constructive logic that
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holds for all topos models [5], and is also called intuitionism. This intuitionism is
essentially stricter than the constructivisms mentioned above, so our results hold in all
topos models, and are acceptable to most constructivists at the same time. The most
important restriction is the lack of choice principles. Fortunately, only a small amount
of knowledge of intuitionism is required for understanding the constructive proofs of the
Fundamental Theorem.

A clear illustration of where constructivism differs from classical mathematics is in
proving statements of the form ”there exists x such that A(x).” Classically it suffices to
show that it is impossible that there is no x for which A(x) holds. A constructive proof
must construct x as well as a proof of A(x). In particular, a constructive proof of ”A
or B” must consist of a proof of A or a proof of B. If B is the statement ”not A”, then
a constructive proof of ”A or not A” means either proving A, or proving that assuming
A leads to an absurdity. Such proofs cannot always be found. So the Principle of the
Excluded Middle fails.

There is a difference between proving ”not A” and showing that A cannot be proven.
We illustrate this through examples. It is well-known that constructive proofs have
computational content. So if there is a constructive proof of the existence of a function
f :N → N such that A(n, f(n)) holds for all natural numbers n ∈ N, then, by classical
techniques outside the realm of constructivism, one can show that f is a computable
function. On one hand, if by classical means we know that there is no computable func-
tion f such that A(n, f(n)) holds for all n, then we know that ”there exists f such that
A(n, f(n)) for all n” cannot be proven. On the other hand, a constructive proof of the
negation of this statement implies that the negation also holds in classical mathemat-
ics: There is no solution f whatsoever. Let us identify Turing machines with natural
numbers by some primitive recursive bijective encoding. By the Halting Theorem there
is no computable function f such that f(n) = 0 exactly when Turing machine n halts,
but there are noncomputable ones. So it cannot be shown constructively that such a
function exists, and it cannot be shown constructively that such a function does not
exist. Another example, also based on the Halting Theorem, says that there is no con-
structive proof to decide for all binary sequences α:N → {0, 1} whether α(n) = 1 for
some n.

The three constructive schools mentioned above accept certain choice principles that
are at least as strong as the simple axiom of Countable Choice. The simple axiom of
Countable Choice says that if A(m,n) is a statement about natural numbers m,n such
that for all m there exists n with the property that A(m,n) holds, then there exists
a function f such that A(m, f(m)) holds for all m. [1] and [12], in their proofs of the
Fundamental Theorem of Algebra, make essential use of choice principles extending
Countable Choice. Although not explicitly stated, the construction of the algebraic
closure Ca in [7] does not make essential use of any choice principles. By avoiding
choice principles, results will hold in all topos models. This implies that if we are able
to construct a solution x of an equation f(x) = 0 over the (Dedekind) reals using topos
intuitionism, then x is locally continuous in the parameters of the equation. So, for
example, we cannot show the existence of a solution of X3 + pX + q = 0 over the
(Dedekind) reals when (p, q) is close to (0, 0), because it would imply the existence of
a continuous solution X(p, q) in a neighborhood of (0, 0) [6]. For the same reason we
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cannot find a solution to the equation X2 +c = 0 over the (Dedekind) complex numbers
when c is near 0. With Countable Choice, however, one can find solutions. So if we
allow the use of Countable Choice, then continuity of solutions in the parameters is no
longer guaranteed.

The lack of choice principles does not prevent us from constructing functions. Sup-
pose that A(m,n) is a statement for which we can prove that for all m ∈ N there exists
a least n for which A(m,n) holds. Define f by f(m) = the least n for which A(m,n)
holds. Then A(m, f(m)) holds for all m. The key distinction is that we are able to give
a finite description that uniquely defines f .

Constructive mathematics without choice principles is stricter than ‘computable’
mathematics. Its constructive nature more than allows us to construct algorithms from
the constructive proofs: It also proves the correctness of the algorithms. These implicit
algorithms, however, are usually grossly inefficient since in practice constructivists con-
centrate on abstractness and generality rather than on the computational complexity
of their results.

In §1 we prove the existence of algebraic closures of countable discrete fields (Poor
Man’s Algebraic Closure). In §2 these are used to construct algebraic closures of count-
able factorial discrete fields (Rich Man’s Algebraic Closure). Within such algebraic
closures we can factor nonzero polynomials into irreducible factors over many subfields.
We apply these results to Q and, in §3, establish isomorphisms with the algebraic clo-
sure Ca of Q in C. Then we use the algebraic closedness of Ca to show that many more
polynomials over C have roots in C, strengthening the results of [1] and [12].

§1. The Poor Man’s Algebraic Closure

It is not necessary to recapitulate all of algebra just because we use constructive
methods. It is easily seen that many basic results from classical algebra are constructive.
Therefore we concentrate on the less obvious results, or results that require an original
proof, together with some glue to create one coherent presentation.

First and foremost, sets need not be discrete. A set is discrete if for all of its elements
a, b we can determine whether a = b or not. The natural numbers N, integers Z,
and rationals Q are discrete sets. Obviously, polynomial rings R[X ] over a discrete
commutative ring R are also discrete. But the reals R are not: For a real to exist it
suffices, for each natural number m > 0, to be able to give a rational interval of length
at most 1/m ‘in which the real number lies,’ see §3. For each Turing machine we can
construct a sequence {an}n by setting an = 1/n if the machine does not stop in n steps,
and an = 1/m if the machine stops in m ≤ n steps. As a Cauchy sequence, {an}n

determines a real number. By the Halting Theorem, we cannot show for each Turing
machine whether the limit of its corresponding sequence {an}n equals 0 or not.

A discrete set is finite if there exists a bijection with an initial segment {0, . . . , n−1}
of N. The empty set (if n = 0) is finite. Finite combinatorial theorems are essentially
constructive. This is true for all finite group theory that we will need, including Sylow’s
Theorem. Some caution is required, though. Exceptions are statements like ‘each
subgroup of a finite group is finite.’ For example, let G = {0, 1} be the group of two
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elements, and let H be the subgroup of G generated by the image of a binary sequence
{an}n. Then H = G if and only if an = 1 for some n, and H = {0} if an = 0 for all n.
By the Halting Theorem, such a choice cannot always be made constructively.

In classical mathematics, groups, rings, and modules are defined by simple universal
equational axioms like, for rings, x(y+ z) = xy+xz. In constructive algebra we use the
same schemas to axiomatize them. A ring is nontrivial when 1 is not equal to 0.

We do not require equality on groups, rings, and modules to be discrete. This creates
problems when we want to define integral domain and field. In the case of integral
domains, an axiom saying that from xy = 0 one can conclude x = 0 or y = 0 is too
restricting because of the difficulty of establishing ”or”: Even the real numbers cannot
be shown to satisfy this axiom. Instead, one has a binary relation x 6= y on the ring,
classically usually equivalent to ”x = y is false.” On R and C we define x 6= y if and
only if x − y is a unit. Being nonzero and being a unit cannot be shown to be the
same. An integral domain then satisfies: If x 6= 0 and y 6= 0, then xy 6= 0. Similarly, R
and C—obviously—satisfy the field property: If x 6= 0, then x is a unit. The technical
problems with inequalities grow fast, and we refer the reader to [7, pp. 41ff] and [9] for
further details and developments. When we restrict ourselves to discrete structures, we
avoid these problems because we can use the classical definitions: A discrete nontrivial
commutative ring is a discrete domain if for all x, y such that xy = 0 we have x = 0 or
y = 0. A discrete domain is a discrete field if all nonzero elements are units. One easily
verifies that the standard construction of a quotient field of a discrete domain produces
a discrete field.

One easily verifies that elementary finite-dimensional linear algebra over discrete
fields (rank of a matrix, finite-dimensional null spaces and ranges, Gaussian elimination,
determinant) is constructive. If A is a square matrix over a discrete field k, then the
commutative matrix ring k[A] is discrete. The characteristic polynomial of A is the
polynomial f(X) = det(X − A) over k ⊆ k[A]. For all invertible S, det(X − A) =
det(X − S−1AS). The eigenvalues of A are the roots of f(X) in k or in a discrete field
extension of k. The construction of roots of polynomials over discrete extension fields
is a nontrivial matter. Even the existence of such roots is not guaranteed [7, p. 153],
unless the base field k is countable (Theorem 1.6).

A module over a commutative ring R is finite-rank free if it is isomorphic to Rn, for
some n ∈ N.

1.0 Proposition (Cayley-Hamilton). Let R be a commutative ring, and f(X) be the
characteristic polynomial of an endomorphism α of a finite-rank free R-module. Then
f(α) = 0.

Proof: For an algebraic proof, see [7, p. 72]. ⊣

Proposition 1.0 allows for a non-algebraic proof. Let A be an n × n matrix with
variables Xi,j as entries. Then the characteristic polynomial f(A) over Z in n2 variables
reduces to 0, as is shown by classical means. A general theorem of logic says that the
same reduction must work constructively. There are several results below that can be
reduced to trivialities using general theorems from logic. We refrain from using these
methods so as to increase the accessibility of our results.
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A polynomial over a commutative ring is monic if it has leading coefficient 1. A
polynomial f = anX

n + · · · + a0 has degree at most n, and degree less than m for all
m > n. We may not know the degree of a polynomial, because we may not know whether
a ‘leading’ coefficient equals 0 or not. Naturally, monic polynomials and polynomials
over discrete commutative rings have a degree.

An R-module M is faithful if rM = 0 implies r = 0, for all r ∈ R.

1.1 Proposition. Let R ⊆ S be commutative rings, and α ∈ S. Then the following
are equivalent:

(1) α satisfies a monic polynomial of degree n over R.
(2) R[α] is generated by n elements as an R-module.
(3) S has a faithful R-submodule M , generated by n elements, such that αM ⊆M .

Proof: Obviously, (1) implies (2), and (2) implies (3). Suppose (3) holds, and let
m1, . . . , mn generate M . There are βi,j ∈ R such that αmj =

∑

i βi,jmi. Let f be the
characteristic polynomial of the matrix {βi,j}. Then f(α)M = 0, so f(α) = 0. So (1)
holds. ⊣

A commutative ring S ⊇ R is called integral over the commutative ring R if all s ∈ S
are roots of monic polynomials over R. From Proposition 1.1 it now follows that if α
is root of a monic polynomial over R, then so are all elements of R[α]. We say that
α is integral over R if R[α] is integral over R. If R is a discrete field, then—following
tradition—we commonly use the term algebraic instead of integral.

1.2 Proposition. Let R ⊆ S be commutative rings, and let α, β ∈ S be such that α
is integral over R, and β is integral over R[α]. Then R[α, β] is integral over R. The
elements of S that are integral over R form a subring.

Proof: It suffices to prove the first claim: R[α, β] is a finitely generated module over
R[α], and R[α] is a finitely generated module over R. Multiplication of the generators
of the two extensions yields a finite set of generators of R[α, β] as module over R. ⊣

1.3 Proposition. Let R, S be commutative rings such that S is a finitely generated
integral ring extension of R. Then S is a finitely generated R-module.

Proof: There exist rings R0 ⊆ R1 ⊆ · · · ⊆ Rn such that Ri = R[a1, . . . , ai], and
Rn = S. Then Ri+1 is a finitely generated Ri-module, for all i. Multiplication of the
generators from the different extensions produces a finite set of generators for Rn = S
as module over R0 = R. ⊣

1.4 Proposition. Let R ⊆ S ⊆ T be commutative rings such that T ⊇ S and S ⊇ R
are integral extensions. Then T ⊇ R is integral.

Proof: For each α ∈ T there is a monic polynomial f(X) = Xn +a1X
n−1 + · · ·+an

over S such that f(α) = 0. Let S′ = R[a1, . . . , an]. Then S′[α] is a finitely generated
module over S′, and S′ is a finitely generated module over R. So S′[α] is finitely
generated as module over R. Thus α is integral over R. ⊣
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A set S is countable if there exists a function s:N → S from the natural numbers
onto S, that is, S = {s0, s1, s2, . . .}.

A subset Y ⊆ X is called detachable from X if for all x ∈ X we can decide whether
x ∈ Y or x /∈ Y , that is, x is not an element of Y . So a commutative ring R is discrete
exactly when {0} is detachable from R. More generally, an ideal I ⊆ R is detachable
from R if and only if the quotient ring R/I is discrete.

Countable discrete sets may be finite or (countably) infinite, but we cannot always
know which one. For example, let p0, p1, . . . be the ascending sequence of prime num-
bers, and let {an}n be a binary sequence with at most one 1. Let P ⊆ Z be the ideal
generated by the sequence of elements {anpn}n. One easily verifies that P is a prime
ideal that is detachable from Z. The quotient ring R = Z/P is countable, but, by
the Halting Theorem, we may not know whether it is finite or not. We may not know
its characteristic either. The quotient field of R is a countable discrete field whose
characteristic we cannot determine.

1.5 Proposition. Let R be a countable commutative ring whose finitely generated ideals
are detachable, and let I be a proper finitely generated ideal. Then I is contained in a
maximal ideal that is detachable from R.

Proof: R = {r0, r1, . . .} for some enumeration r. Construct a sequence of finitely
generated ideals I0 ⊆ I1 ⊆ . . . as follows: Set I0 = I; if Ij +rjR = R, then set Ij+1 = Ij,
otherwise set Ij+1 = Ij + rjR. Let M =

⋃

j Ij . Then rj ∈ M if and only if rj ∈ Ij+1.
So M is a detachable maximal ideal. ⊣
1.6 Theorem. Let f be a nonconstant polynomial over a countable discrete field k.
Then there is a countable discrete field E ⊇ k and α ∈ E such that f(α) = 0.

Proof: By the Euclidean Algorithm all finitely generated ideals of the countable
ring k[X ] are principal and detachable. So f is contained in a detachable maximal ideal
M . Set E = k[X ]/M . ⊣

Let {an}n be a binary sequence, and let k be the countable discrete field extension

of Q generated by the sequence {an

√
2}n. Then we may not know the factorization of

X2 − 2 over k. So in general one cannot give a minimal polynomial for α in Theorem
1.6.

A discrete field K is a splitting field for a monic polynomial f over a discrete field k
if there exist a1, . . . , an ∈ K such that f = (X −a1) . . . (X−an) and K = k[a1, . . . , an].
Repeated application of Theorem 1.6 now gives:

1.7 Theorem. Let f be a monic polynomial over a countable discrete field k. Then
there exists a countable discrete splitting field for f over k. ⊣

In general one cannot show that countable discrete splitting fields are uniquely de-
termined up to isomorphism [7, pp. 153ff].

The construction in the proof of Proposition 1.5 depends on the enumeration of
the ring R. Different enumerations may give different maximal ideals. To avoid choice
principles when we use Theorem 1.7 in the proof of the theorem below, we need to choose
some canonical method to construct one unique splitting field K with enumeration from
a given discrete field k with enumeration. Let {a0, a1, . . .} be an enumeration of a
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countable discrete field k. Then the canonical enumeration of k[X ] (based on {an}n)
is the one that lists, for i = 1, 2, . . . successively, all polynomials of degree at most i in
the coefficients a0, a1, . . . , ai in lexicographical order with the leading term considered
most significant. If we use the canonical enumeration, then, for all f ∈ k[X ], the field
extension k[α] of Theorem 1.6 is uniquely determined, and k[α] receives its (canonical)
enumeration from k[X ]. Repeating this process, using canonical enumerations at each
step, the splitting field of Theorem 1.7 is uniquely determined by the enumeration of k,
and by f .

1.8 Theorem (Poor Man’s Algebraic Closure). Each countable discrete field k is
contained in a countable discrete field that is algebraically closed and algebraic over k.

Proof: Let f0, f1, . . . be an enumeration of the monic polynomials over k. Construct
a chain of countable discrete fields k0 ⊆ k1 ⊆ . . . by setting k0 = k, and by letting ki+1

be the canonical splitting field of fi over ki. Let Ω =
⋃

i ki. Clearly, Ω is countable,
discrete, and an algebraic field extension of k. Let f be a monic polynomial over Ω. By
Proposition 1.6 there is a countable discrete field extension E ⊇ Ω such that f(α) = 0
for some α ∈ E. By Proposition 1.4 α is algebraic over k. So fi(α) = 0 for some i. But
fi splits in ki+1 ⊆ Ω. Thus α ∈ Ω. ⊣

Note that the special construction of ki+1 from ki enables us to avoid choice principles
in the construction of Ω, since all ki are uniquely determined by any enumeration of
k0 = k. By the uniqueness of the ki, the union Ω is uniquely determined.

Splitting fields cannot be uniquely determined up to isomorphism, so one cannot show
that countable discrete algebraic closures of a discrete field k are uniquely determined
up to isomorphism.

1.9 Corollary. The field Q of rational numbers has a countable discrete algebraic
closure. ⊣

In §2 we will show that for Q countable discrete algebraic closures are unique up to
isomorphism.

§2. The Rich Man’s Algebraic Closure

A discrete domain R is a GCD-domain if for all a, b ∈ R there exists a greatest
common divisor c = GCD(a, b). Obviously, c is unique up to a unit, and GCD-domains
satisfy the familiar equations [7, pp. 108ff]

GCD(GCD(a, b), c) = GCD(a,GCD(b, c));

c · GCD(a, b) = GCD(ca, cb);

if x = GCD(a, b), then GCD(a, bc) = GCD(a, xc); and

if a | bc and GCD(a, b) = 1, then a | c.

All equations are up to a unit. Equality-up-to-a-unit need not be a discrete equality
relation on the equivalence classes. (Consider, for example, the subring of Q generated
by the sequence {an/2}n, for some binary sequence {an}n.) Note that, by the Euclidean
Algorithm, k[X ] is a GCD-domain for all discrete fields k.
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Let f be a polynomial over a GCD-domain. Then cont(f), the content of f , is the
greatest common divisor of the coefficients of f ; f is primitive if cont(f) = 1.

2.0 Lemma (Gauss’s Lemma). Let f and g be nonzero polynomials over a GCD-
domain R. Then cont(fg) = cont(f)cont(g).

Proof: We may assume that f and g are primitive. Let m and n be the degrees of
f and g respectively, let c = cont(fg), and let d = GCD(c, am), where am is the leading
coefficient of f . We complete the proof by induction on m+ n. If f = amX

m, then we
are done. Otherwise, d | (f−amX

m)g, so, by induction, d | cont(f−amf)cont(g). Since
g is primitive, d | (f − amX

m), thus also d | f , proving d = GCD(c, am) = 1. Similarly,
GCD(c, bn) = 1, where bn is the leading coefficient of g. So GCD(c, ambn) = 1. Thus
fg is primitive. ⊣

Let f and g be polynomials over a commutative ring R such that g is monic. By the
Remainder Theorem there are unique polynomials q and r over R, with r of a degree less
than the degree of g, such that f = qg + r. The coefficients of q and r are polynomials
in the coefficients of f and g.

2.1 Theorem (Unique Interpolation). Let a0, . . . , an and v0, . . . , vn be elements of
a commutative ring R such that ai − aj is a unit, for all i 6= j. Then there is a unique
polynomial of degree at most n over R such that f(ai) = vi for all i.

Proof: By induction on n. If n = 0, choose f = v0. If n > 0, then there is a
polynomial g of degree at most n− 1 such that g(ai) = (vi − vn)/(ai − an) for all i < n.
Take f = (X − an)g + vn.

For uniqueness it suffices to show that if f(ai) = 0 for all i, and f is of degree at
most n, then f = 0. The case for n = 0 is trivial. Suppose n > 0. By the Remainder
Theorem, f = g(X−an) for some g of degree at most n−1 with g(ai) = 0 for all i < n.
By induction on n, g = 0. So f = 0. ⊣

A nonzero element p of a discrete domain R is irreducible if it is not a unit, and if
p = qr implies that q or r is a unit, for all q, r ∈ R.

A discrete domain is a unique factorization domain or UFD if each nonzero element
is a unit or equals a product of irreducibles, and such that if p1 . . . pm = q1 . . . qn are
two products of irreducibles, then m = n and there is a permutation π such that pi and
qπi differ by a unit, for all i. Discrete fields and Z are unique factorization domains. A
discrete domain R is factorial if R[X ] is a discrete UFD. This definition seems unnatural
at first, but is a natural generalization of the notion of factorial field: A discrete field
is factorial when we can factor polynomials over it into irreducibles. See also Theorem
2.3. Algebraically closed discrete fields are factorial, since all nonconstant polynomials
factor into linear terms.

A set is infinite if it contains arbitrarily large finite subsets. Without choice principles
we cannot show that an infinite set contains a countably infinite subset.

2.2 Theorem (Kronecker 1). If R is an infinite UFD with finitely many units, then
so is R[X ]. Thus R is factorial.

Proof: Obviously R[X ] has finitely many units since it has the same units as R.
Let f ∈ R[X ] be of degree n > 0. We complete the proof by induction on n. It suffices
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to provide a finite collection of polynomials that includes all possible factors of f . Let
a0, . . . , an be distinct elements of R. If f(ai) = 0 for some i, then we divide a factor
X − ai out of f and apply induction. So we may assume f(ai) 6= 0 for all i. Each
nonzero element of R has finitely many divisors, so there are finitely many sequences
b0, . . . , bn such that bi divides f(ai), for all i. By the Unique Interpolation Theorem
2.1, there is for each such sequence a unique polynomial g over the quotient field of R,
of degree at most n, such that g(ai) = bi. Since R is detachable from its quotient field,
we can find a finite subcollection of g with coefficients in R that includes all factors of
f . ⊣

An essentially identical proof of Theorem 2.2 was given, about nine decades before
Kronecker, by the astronomer Friedrich Theodor von Schubert (1758–1825) in 1793 [10].
See also [3, pp. 136ff].

2.3 Theorem (Kronecker 2). If R is a factorial domain, then so is R[X ].

Proof: For m > 0, let R[X, Y ]m be the submodule of R[X, Y ] of polynomials of
X-degree less than m. The submodule R[X, Y ]m is closed under taking factors. Let
ϕm:R[X, Y ]m → R[X ] be the R-module map that is the restriction of the ring morphism
that is the identity on R[X ] and maps Y to Xm, and let ψm:R[X ] → R[X, Y ]m be the
R-module map that takes Xn to Y qXr, where n = qm + r with 0 ≤ r < m. Then ϕm

and ψm are each other’s inverses. Each factorization of a polynomial f ∈ R[X, Y ] of
X-degree less than m must be of the form f = ψm(g)ψm(h). So it suffices to factor
ϕm(f) in R[X ]. ⊣

Note that, in the proof of Theorem 2.3, ϕm(f) may have factorizations that do not
translate into factorizations of f .

By Kronecker 1 the domain Z is factorial, so, by Gauss’s Lemma, Q is factorial
too. Thus, by Kronecker 2, Q(X1, X2, . . . ) is factorial, and so is k(X1, X2, . . . ), for all
algebraically closed discrete fields k. Next we will show that finite algebraic extensions
of Q are also factorial. Since Q has characteristic 0, several results are proven for
discrete fields of characteristic 0 only. Generalizations involving separability conditions
are discussed in [7].

Elements a, b of a commutative ring R are strongly relatively prime if aR + bR =
R. The derivative f ′ of a polynomial f is defined as usual. A polynomial f over a
commutative ring is separable if f and f ′ are strongly relatively prime. This is different
from tradition: One usually defines separable polynomials over discrete fields as the
ones that are products of our separable polynomials [8]. Clearly, factors of separable
polynomials are again separable, for if fg is separable, then there exist polynomials s, t
such that sfg+t(f ′g+fg′) = 1; so (sg+tg′)f+tgf ′ = 1. Let R[α] ⊇ R be commutative
rings. Then α is separable over R if it is root of a separable polynomial over R.

Each n× n matrix over a discrete field k is also a vector of an n2-dimensional vector
space. We can find a smallest m such that the vectors I, A,A2, . . . , Am are linearly
dependent. Then A is root of a monic polynomial p over k of degree m, the so-called
minimal polynomial of A. Since A is root of its characteristic polynomial of degree n,
we have that m ≤ n. The matrix ring k[A] forms a discrete commutative ring such
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that k[A] ∼= k[X ]/(p). If S is an invertible n× n matrix, then k[A] ∼= k[S−1AS] by the
isomorphism that is the identity on k and that sends A to S−1AS. The matrix A is
separable if its minimal polynomial p is separable.

2.4 Theorem. Let A be an n × n matrix over a discrete field k. Then the minimal
polynomial of A is separable and splits into linear factors if and only if A is diagonal-
izable. If A is diagonalizable, then the projections of kn onto the eigenspaces of A can
be written as polynomials in A of degree at most n− 1.

Proof: If A is diagonalizable, with set of eigenvalues Λ, then it is root of the
separable polynomial

∏

λ∈Λ
(X − λ). Conversely, if the minimal polynomial of A is

separable and splits into linear factors, then the eigenspaces Vλ of A, being the null
spaces of matrices A − λ that are associated with the strongly relatively prime linear
factors X −λ of the minimal polynomial of A, are direct summands such that

∑

λ Vλ =
kn.

Suppose A is diagonalizable, and write f = (X − λ)gλ(X) for each root λ of the
minimal polynomial f . As f(A) = 0, the matrix gλ(A) maps into Vλ. If µ 6= λ
are eigenvalues, then X − µ divides gλ(X), so gλ(A)Vµ = 0. The polynomial 1 −
∑

λ∈Λ
gλ(X)/gλ(λ) has a degree less than the cardinality of Λ, but has all the eigenvalues

as roots; so it is identical to 0. Thus
∑

λ∈Λ
gλ(A)/gλ(λ) is the identity, and gλ(A)/gλ(λ)

is the projection onto Vλ. ⊣
2.5 Theorem. Let A and B be commuting diagonalizable n×n matrices over a discrete
field k. Then kn admits a basis relative to which A and B diagonalize simultaneously.

Proof: Let V A
λ and V B

λ be the λ-eigenspaces of A and B respectively. Since B
commutes with A− λ, for all λ, the eigenspaces of A are invariant under B, hence also
under the projections onto the eigenspaces V B

µ , which are polynomials in B. Therefore,

V A
λ =

∑

µ V
A
λ ∩ V B

µ . So kn =
∑

λ,µ V
A
λ ∩ V B

µ ⊣

The class of discrete fields admits linear elimination: Let k be a discrete field, and
v1, . . . , vn, w be vectors in kn. Then w is a linear combination of the vectors vi with
coefficients in some discrete field extension of k if and only if the rank of the matrix
(v1, . . . , vn, w) is equal to the rank of the matrix (v1, . . . , vn). So if w is a linear combi-
nation of the vi over some discrete extension field, then it is already a linear combination
with coefficients in k.

2.6 Theorem. If A and B are commuting separable n×n matrices over a discrete field
k of cardinality greater than n(n−1)/2, then there exists c such that k[A,B] = k[A+cB].

Proof: Let K be a countable discrete subfield that includes the coefficients of the
matrices A and B, and contains at least 1+n(n−1)/2 elements from k. By Theorem 1.7
we can construct a countable discrete field L ⊇ K over which the minimal polynomials
of A and B split into linear factors. So A and B are—simultaneously—diagonalizable
over L with diagonal elements a1, . . . , an and b1, . . . , bn. Choose c ∈ K distinct from
(aj − ai)/(bi − bj), for all pairs i, j with bi 6= bj. Then ai + cbi 6= aj + cbj whenever
(ai, aj) 6= (bi, bj). By Theorem 2.4, A and B can be written as polynomials of degree at
most n− 1 in A+ cB. So A and B, as vectors in n2 variables, are linear combinations
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of the vectors I, A+ cB, . . . , (A+ cB)n−1 with coefficients in L. By linear elimination,
A and B are polynomials in A+ cB over K, hence over k. ⊣

The proofs of Theorems 2.4, 2.5, and 2.6 are based on [8]. For further improvements
and strengthenings, see [7, pp. 158ff] and [8].

2.7 Lemma. Let R be a commutative ring containing a discrete field k, and let α, β ∈ R
and polynomials f, g over k be such that f(α) = g(β) = 0. Then there are commuting
square matrices A,B of the same size over k such that f(A) = g(B) = 0, and a ring
map from k[A,B] onto k[α, β] that is the identity on k, sends A to α, and sends B to
β.

Proof: The ring k[x, y] = k[X, Y ]/(f(X), g(Y )) is a finite-dimensional vector space
over k. Multiplication by x and y are linear transformations on this vector space. With
respect to some basis, these transformations are represented by commuting matrices A
and B satisfying f(A) = g(B) = 0, and k[A,B] ∼= k[x, y]. So we can construct the ring
map from k[A,B] onto k[α, β] that is the identity on k, sending A and B to α and β
respectively. ⊣
2.8 Corollary (Primitive Element). Let R be a commutative ring containing an
infinite discrete field k, and let α and β be elements of R that are separable over k.
Then there exists θ such that k[α, β] = k[θ].

Proof: There are separable polynomials f, g ∈ k[X ] such that f(α) = g(β) = 0,
so there is a commutative matrix ring with surjective ring map σ: k[A,B] → k[α, β],
and such that f(A) = g(B) = 0. By Theorem 2.6 there is C ∈ k[A,B] such that
k[C] = k[A,B]. Choose θ = σ(C). ⊣

Let K ⊇ k be discrete fields such that K is finite-dimensional as a vector space over
k. We shall write [K : k] for the dimension. If L is a discrete field extension of K that
is finite-dimensional, then so is L over k, and [L : k] = [L : K][K : k]. If two of the
three dimensions are finite, then so is the third and the equation holds.

2.9 Theorem. Let k ⊆ k[α] be discrete fields of characteristic 0 such that k is factorial.
Then k[α] is factorial too.

Proof: Let f be a polynomial over k[α] of degree n > 1. It suffices to give an
irreducible factor. We complete the proof by induction on n. We may assume that f
is separable; otherwise, the greatest common divisor of f and f ′ is a proper factor, and
we are done by induction. Let k[α, β] = k[α][X ]/(f(X)); k[α, β] is a finite-dimensional
vector space over k. Then k[α, β] = k[θ], with g(θ) = 0 for some polynomial g over k of
degree [k[θ] : k]. If g is irreducible, then so is f . Otherwise, let p be a proper factor of
g. Then k[θ] maps onto k[X ]/(p) with nonzero kernel p(θ) · k[θ]. Hence h(β) = p(θ) is
mapped to 0, for some h(X) ∈ k[α][X ]. Then the greatest common divisor of f and h
is a proper factor of f . ⊣

Recall that there exist countable discrete fields whose characteristic we cannot de-
termine. Theorem 2.9 can be generalized to some of such discrete fields, and to some
discrete fields of finite characteristic, by replacing the characteristic 0 condition by Sei-
denberg’s ‘Condition P ’ [7, p. 188].
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2.10 Theorem (Rich Man’s Algebraic Closure). Each countable factorial field k
of characteristic 0 has a countable discrete algebraic closure Ω such that for each finitely
generated subfield K ⊇ k, each element of Ω is root of an irreducible polynomial over
K.

Proof: The construction of Ω is identical to that in the proof of Theorem 1.8. By
Corollary 2.8, each finitely generated intermediate field is of the form K = k[α]. Let
β ∈ Ω. Then K[β] = k[θ] for some θ ∈ Ω. Both θ and α are roots of irreducible
polynomials over k, so k[θ] and k[α] are finite-dimensional vector spaces over k. Then
K[β] is a finite-dimensional vector space over K of degree

[K[β] : K] = [k[θ] : k]/[k[α] : k].

So θ is root of an irreducible polynomial over K of degree [K[β] : K]. ⊣
2.11 Corollary. The field of rational numbers Q has a countable discrete algebraic
closure C such that for each finitely generated subfield k ⊇ Q, each element of C is root
of an irreducible polynomial over k. ⊣

Without additional choice principles we cannot show that all algebraic closures of a
countable factorial field of characteristic 0 are countable. But the countable algebraic
closures are all isomorphic.

Let k,K be discrete fields, and σ: k → K a morphism. Let k[α] be a discrete field
extension of k, and α a root of an irreducible polynomial f over k. If β ∈ K is a root
of σ(f), then σ extends to a morphism from k[α] into K that takes α to β.

2.12 Theorem. All countable discrete algebraic closures of a countable factorial field
of characteristic 0 are isomorphic.

Proof: Let K = {a0, a1, . . .} and L = {b0, b1, . . .} be countable discrete alge-
braic closures of the countable factorial field k. By induction we construct embeddings
σn: kn = k[a0, . . . , an−1] → L. Naturally, k0 = k embeds into L. Suppose σn exists.
Then an is root of an irreducible polynomial f over kn, and there is a smallest, hence
unique, i such that bi is root of σn(f). Extend σn to σn+1 by setting σn+1(an) = bi.
The union of the σi is an isomorphism from K to L. ⊣

§3. The Fundamental Theorem of Algebra

There are several ways to define the set of real numbers, hence at least as many ways
to define the set of complex numbers. Some of these cannot be shown to be equivalent
in constructive mathematics. Each choice yields another field of complex numbers for
which one may try to prove some form of the Fundamental Theorem of Algebra. Below
we restrict ourselves to the ones that seem most relevant to constructivists.

A (rational) Cauchy sequence is a sequence of rational numbers {rn}n such that for
all integers m > 0 there exists M such that |rp − rq| < 1/m for all p, q ≥M . A Cauchy
sequence is modulated if M = M(m) is a function from N to N [11, pp. 253ff]. [1, pp.
18ff] uses a ‘fixed’ modulus function M(m). This further restriction will be inessential in
what follows below. Define a binary relation ∼ on the collection of Cauchy sequences by
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{rn}n ∼ {sn}n if and only if for all m > 0 there exists M such that |rp − sq| < 1/m for
all p, q ≥ M . One easily verifies ∼ to be an equivalence relation. A similar modulated
equivalence relation exists where M = M(m) is a function N → N. A Cauchy real
is an equivalence class. A modulated Cauchy real is a ‘modulated’ equivalence class of
modulated Cauchy sequences. Both kinds of Cauchy reals with the canonical operations
form commutative rings. A (modulated) Cauchy real is invertible exactly when it has
a (modulated) Cauchy sequence {rn}n for which there exist m > 0 and M according to
the definition above, and |rM | > 2/m.

A subset Q ⊆ Q of the rationals is a left Dedekind cut if it satisfies

(1) p < q ∈ Q implies p ∈ Q.
(2) For all p ∈ Q there exists q such that p < q ∈ Q.
(3) For all integers m > 0 there exist p < q such that |p − q| < 1/m, p ∈ Q, and

q /∈ Q, that is, q is not an element of Q.

Left Dedekind cuts form the set of Dedekind reals R. We easily verify that R, with the
canonical operations, is a commutative ring. We write Q > 0, Q is positive, when p ∈ Q
for some p > 0, and Q < 0, Q is negative, when q /∈ Q for some q < 0. A Dedekind real
Q is invertible, written Q 6= 0, exactly when Q > 0 or Q < 0. Note that this makes
6= on R different from denial of equality. If Q 6= 0 is false, then Q = 0. Analogous to
(modulated) Cauchy reals and Dedekind reals we have (modulated) Cauchy complex
numbers and Dedekind complex numbers, the last ones forming the set C = R + iR,
with a + ib 6= 0 exactly when a + ib is invertible. Then a + ib 6= 0 exactly when a 6= 0
or b 6= 0, for all a, b ∈ R. The relation 6= is an apartness [9].

We may consider Q a subring of the modulated Cauchy reals by identifying each
rational with the equivalence class that contains the corresponding constant Cauchy
sequence. The modulated Cauchy reals may be considered a subring of the Cauchy
reals. The Cauchy reals may be considered a subring of R by identifying each Cauchy
sequence {rn}n with the Dedekind cut Q defined by p ∈ Q if and only if for some m > 0
and M satisfying the definition of Cauchy sequence, p+ 2/m < rM .

If c is a (modulated) Cauchy complex number, then the absolute value |c| exists and
is a (modulated) Cauchy real. Similarly, if c ∈ C, then |c| ∈ R. A Cauchy sequence
is a sequence {cn}n of elements of C such that for all m > 0 there exists M such
that |cp − cq| < 1/m for all p, q ≥ M . The sequence is modulated if M = M(m)
is a function. A (modulated) Cauchy sequence of modulated Cauchy sequences is a
(modulated) Cauchy sequence, and a Cauchy sequence of Dedekind reals is a Dedekind
real. But a Cauchy sequence of modulated Cauchy sequences is only a Cauchy sequence,
and a modulated Cauchy sequence of Cauchy sequences is only a Dedekind real. With
Countable Choice one can show that each Dedekind real is a modulated Cauchy real,
and thus the Cauchy reals are closed under taking Cauchy sequences. Therefore, in the
presence of Countable Choice, modulated Cauchy sequences are the common way by
which to define reals; without choice it is the (left) Dedekind cuts [5, pp. 415ff].

A set U ⊆ R is open if for all u ∈ U there exist rational numbers p, q such that
p < u < q, and v ∈ U whenever p < v < q. Open sets on Rn are defined by the product
topology. If c,d ∈ Rn are such that ci 6= di (ci − di is a unit) for some i, then there
exist open sets U, V ⊆ Rn such that c ∈ U , d ∈ V , and U ∩ V = ∅. Functions f are
continuous if f−1(U) is open, for all open U . Constant functions, the identity, and the
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basic ring theoretic functions are continuous. Compositions of continuous functions are
continuous. So all polynomial functions are continuous.

A commutative ring is impotent if it satisfies the axioms

a2 = 0 implies a = 0, and

a2 = a implies a = 0 or a = 1.

One easily verifies that R and C are impotent rings.
If R is impotent and a, b ∈ R are such that a+ b = 1 and ab = 0, then a = 1 or a = 0

and, therefore, b = 0 or b = 1. For if we multiply the first equation by a, and apply the
second equation, we get a2 = a2 + ab = a.

3.1 Lemma. Let R ⊆ S be impotent commutative rings, and α ∈ S. If f, g ∈ R[X ] are
strongly relatively prime, and f(α)g(α) = 0, then f(α) is a unit or g(α) is a unit. So
g(α) = 0 or f(α) = 0.

Proof: sf + tg = 1 for some s, t ∈ R[X ]. So s(α)f(α) = 1 or t(α)g(α) = 1. ⊣
3.2 Theorem. Let R be an impotent commutative ring with discrete subfield k. If
α ∈ R is algebraic over k, then k[α] is a discrete field. The set of elements in R
algebraic over k is a discrete subfield.

Proof: It suffices to prove the first claim. By Proposition 1.2 each β ∈ k[α] is
algebraic over k, hence root of a monic polynomial g ∈ k[X ]. We can write g = Xmh
with h(0) 6= 0. Then Xm and h are strongly relatively prime, so βm is a unit or h(β) is
a unit. So β is a unit or β = 0. ⊣

Let Ca be the set of algebraic numbers, that is, the set of complex numbers that are
algebraic over Q, and Ra = Ca ∩R be the set of algebraic reals. Then Ca and Ra are
discrete.

3.3 Lemma. Let f ∈ Ra[X ], and a, b ∈ R such that f(a) < 0 < f(b). Then there
exists a modulated Cauchy real c ∈ Ra with f(c) = 0. If a < b, then a < c < b;
otherwise, a > c > b.

Proof: We may assume that a < b. By continuity there are a′, b′ ∈ Q such that
a < a′ < b′ < b and f(a′) < 0 < f(b′). For each r ∈ Ra we have f(r) < 0, f(r) = 0,
or f(r) > 0, so we can construct sequences {an}n, {bn}n, and {cn}n, where cn =
(an + bn)/2, by:

(1) a0 = a′ and b0 = b′.
(2) an+1 = bn+1 = cn if f(cn) = 0.
(3) an+1 = cn and bn+1 = bn if f(cn) < 0.
(4) an+1 = an and bn+1 = cn if f(cn) > 0.

Then an ≤ an+1 ≤ bn+1 ≤ bn and |an − bn| ≤ (b′ − a′)(1/2)n, for all n. So {cn}n is
a modulated Cauchy sequence with limit c ∈ R. By the Remainder Theorem, applied
to Q[Y ][X ], there is g ∈ Q[X, Y ] such that f(X) = (X − Y )g(X, Y ) + f(Y ). There
is an M such that |g(x, y)| ≤ M whenever a ≤ x, y ≤ b. So |f(x) − f(y)| ≤ M |x − y|
whenever a ≤ x, y ≤ b; thus {f(cn)− f(an)}n and {f(cn)− f(bn)}n converge to 0, with
f(an) ≤ 0 ≤ f(bn). By continuity, f(c) = 0; and c ∈ Ra by Proposition 1.4. ⊣
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3.4 Corollary. All nonzero polynomials f ∈ Ra[X ] have a finite set of roots in Ra. If
f is of odd degree, then it has at least one root.

Proof: Suppose f is of odd degree. We may assume f to be monic. Let b be 1
plus the sum of the absolute values of the coefficients of f , and let a = −b. Then
f(a) < 0 < f(b).

Let f be nonzero and of degree n > 1. We complete the proof by induction on n. We
may assume f to be separable. By induction, f ′ has a finite set of roots r1 < · · · < rm.
If f ′ has no roots, then f has one. Otherwise, f has one root in the interval (rj, rj+1)
exactly when f(rj)f(rj+1) < 0, one root less than r1 exactly when f(r1−1)f ′(r1−1) > 0,
and one root bigger than rm exactly when f(rm + 1)f ′(rm + 1) < 0. ⊣

Obviously, the element i =
√
−1 is algebraic. Let a, b ∈ R be such that a+ ib is an

algebraic number. Then a+ ib is root of a polynomial with rational coefficients, so, by
conjugation, a − ib is root of the same polynomial. So a and b are algebraic numbers
too. Thus Ca = Ra + iRa. If c ∈ Ca, then the absolute value |c| ∈ Ra. The order
relation < with restriction to Ra is decidable: If a ∈ Ra is nonzero, then a is invertible,
so a > 0 or a < 0. Obviously we can enumerate the monic polynomials over Q, and for
each such polynomial we can enumerate its roots in Ra in a unique manner ‘from left
to right.’ So Ra is countable, hence Ca is countable. Combining this with Theorem 3.2
we get:

3.5 Corollary. The set of algebraic numbers Ca is a countable discrete field. ⊣

3.6 Corollary. All algebraic numbers are modulated Cauchy.

Proof: Let c ∈ Ra. Then c is the unique root of the polynomial f(X) = X − c
satisfying f(c− 1) < 0 < f(c+ 1). ⊣

Let {an + ibn}n be a (modulated) Cauchy sequence of algebraic numbers. Construct
the (modulated) rational sequence {cn/n + idn/n}n by setting cn equal to the largest
integer less than or equal to nan, and dn equal to the largest integer less than or equal
to nbn. Then the rational sequence has the same limit as the sequence over Ca. So each
(modulated) Cauchy sequence of algebraic numbers has as limit a (modulated) Cauchy
number.

3.7 Lemma. Let a, b ∈ Ra. Then there exist c, d ∈ Ra such that (c+ id)2 = a+ ib.

Proof: First suppose that b = 0. As Ca is discrete, either a > 0 or a = 0, or a < 0.
If a > 0, then

√
a ∈ Ra is a root of X2 − a, by Lemma 3.3. If a < 0, then we get

i
√−a. In the general case we choose c and d from the roots of X2 − (a +

√
a2 + b2)/2

and X2 − (−a+
√
a2 + b2)/2 respectively. ⊣

The theory of finite groups is essentially completely constructive. One easily sees
that most proofs of the class equation for finite groups are easily constructivized. So
Sylow’s theorem is constructive: If G is a finite group and p is a prime number such
that pn divides the order of G, then G has a finite subgroup of order pn. A subgroup
of order pn with n maximal is called a p-Sylow subgroup.
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Let R be a commutative ring. A polynomial f ∈ R[X1, . . . , Xn] is symmetric in
the variables X1, . . . , Xn if f(X1, . . . , Xn) = f(Xπ1, . . . , Xπn), for all permutations π.
Clearly, the coefficients σi of the polynomial

(Y +X1)(Y +X2) . . . (Y +Xn) = Y n + σ1Y
n−1 + · · ·+ σn

are symmetric. They are the elementary symmetric polynomials. Each symmetric poly-
nomial is element of the ring R[σ1, . . . , σn] [7, pp. 73ff].

Let K ⊇ k be discrete fields. An element α ∈ K splits over k if it is root of a
polynomial over k that factors into linear factors over K. The field K is normal over k
if each α ∈ K splits over k.

Let K ⊇ k be discrete fields such that K = k[θ]. Then θ splits over k if and only
if K is normal over k. For if θ splits, then there is a monic polynomial f over k that
splits with roots θ = θ1, . . . , θn. The elementary symmetric polynomials in the θj are
coefficients of f , hence elements of k. Let α ∈ K. We can write α = p(θ), for some
p ∈ k[X ]. Then α is root of the polynomial g =

∏

j(X − p(θj)), whose coefficients are

symmetric in the θj . So g ∈ k[X ].
Let K = k[θ] and θ = θ1, . . . , θn be as above, and suppose, additionally, that f is

irreducible and the characteristic of k equals 0. Then all θj are distinct, and for each
j we have a unique automorphism of K that is the identity on k and maps θ to θj.
These automorphisms form the Galois group G of the extension K ⊇ k. If H is a finite
subgroup of G, then θ is root of the polynomial h =

∏

σ∈H(X − σ(θ)) over the field
L ⊇ k generated by the coefficients of h. The field L is called the fixed field of H, since
its elements are exactly the ones that are fixed by the automorphisms of H. Obviously,
h is irreducible over L. So [K : L] = |H|, the cardinality of H.

3.8 Lemma. Each polynomial over Q has a root in Ca.

Proof: Let f be a monic polynomial over Q, and let K be a splitting field of f
over Q which, by Corollary 2.8, has a finite Galois group G. It suffices to embed K in
Ca. Let H be the 2-Sylow subgroup of G with fixed field k. Then [k : Q] = |G|/|H| is
odd. By Corollary 2.8 there exists α such that k = Q[α], and α is root of an irreducible
polynomial of odd degree over Q. So by Corollary 3.4 there exists an embedding of k
into Ca. The group H contains a chain of subgroups H0 ⊆ · · · ⊆ Hn = H of order
|Hj| = 2j , with fixed fields K = K0 ⊇ · · · ⊇ Kn = k. So [Kj : Kj+1| = 2 for all j. By
the quadratic formula, if M ⊇ L are discrete fields of characteristic greater than 2 such
that [M : L] = 2, then M = L[β], with β2 ∈ L. So by Lemma 3.7 we can extend an
embedding from kj+1 into Ca to one from kj , for all j. So K embeds into Ca. ⊣
3.9 Theorem (Discrete Fundamental Theorem). Ca is algebraically closed.

Proof: Let f be a nonconstant polynomial over Ca. By Theorem 1.7 there exists
a countable discrete splitting field of f . Let g ∈ Q[X ] have all roots of f as roots,
including multiplicities; so f | g. By Corollary 2.8 there is a splitting field Q[α] of g.
Let h ∈ Q[X ] be the minimal polynomial of α. Then h(β) = 0 for some β ∈ Ca. So g,
and thus f , splits into linear factors over Q[β] ⊆ Ca. ⊣
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The Discrete Fundamental Theorem enables us to study the roots of polynomials
over C more generally through approximation by polynomials over Ca. To make this
work we must show that if two polynomials are close to each other, then their roots are
close too.

Let f =
∑

j an−jX
j be a polynomial over C. Define |f | =

∑

j |aj |.
Let f = Xn +a1X

n−1 + · · ·+an be a monic polynomial over C, and let c ∈ C. Then
|f(c)| ≥ |c|n − |a1c

n−1 + · · ·+ an| ≥ |c|n − max (1, |c|n−1)(|f | − 1). So if |c| ≥ |f |, then
|f(c)| ≥ |c|n−1(|c| − |f | + 1) ≥ |f |n−1; and if |f(c)| < |f |n−1, then |c| < |f |. If g is a
monic factor of f , then for all ε > 0 there exists a polynomial g∗ =

∏

j(X − cj) over

Ca with |cj | < |f | for all cj , and |g − g∗| < ε. So |g| ≤ ε + |g∗| < ε + (1 + |f |)n. So
|g| ≤ (1 + |f |)n.

If f = (X−c1) . . . (X−cn), ε > 0, and c are such that |f(c)| < εn, then
∏

j |c−cj | <
εn. Thus |c−cj | < ε for some j. Let, additionally, R ≥ |f |, and g = (X−d1) . . . (X−dn).
Suppose that |f − g| < (ε/R)n for some ε > 0. Then |g(cj)| < εn for all j. So for all j
there exists k such that |cj − dk| < ε.

By the Remainder Theorem, there exists for all polynomials f(X) a polynomial
Gf (X, Y ) such that f(X) − f(Y ) = (X − Y )Gf (X, Y ). The coefficients of Gf are
polynomials in the coefficients of f . So given R > 0 and an integer n > 0, there exists
M such that for all monic f of degree n and z, w ∈ C, if |f | < R, |z| < R, and |w| < R,
then |Gf (z, w)| < M .

3.10 Lemma. Let n > 0 be an integer, and R, ε ∈ R be such that ε > 0. Then there
exists δ > 0 such that for all f = (X − c1) . . . (X − cn) and g = (X − d1) . . . (X − dn)
over C, if |f | < R, |g| < R, and |f − g| < δ, then there is a permutation π such that
|cj − dπj| < ε for all j.

Proof: We may assume that ε < 1. Let S = (1 + R)n. Choose M ≥ 1 such that
for all monic f of degree at most n and all z, w, if |f | < S, |z| < S, and |w| < S,

then |f(z) − f(w)| ≤ |z − w|M . Choose 0 < ε2n < · · · < ε1 = ε such that ε2j < εj
2j−1

and ε2j−1 < ε32j−2/(100M2Sn+1), for all j. Set δ = ε2n/S
n−1. Let f =

∏

j(X − cj)

and g =
∏

j(X − dj) be monic polynomials of degree n such that |f | < R, |g| < R,

and |f − g| < δ. Then |f(z) − g(z)| ≤ |f − g|Sn−1 < ε2n for all z satisfying |z| < S.
We complete the proof by induction on n. Suppose n > 1. Then there exists dk such
that |cn − dk| < ε2n−1. We may assume that k = n. Let f∗(z) = f(z)/(z − cn)
and g∗(z) = g(z)/(z − dn). For all z satisfying |z| < S, |z − cn| > ε2n−2/5M , and
|z − dn| > ε2n−2/5M , we have

|f∗(z) − g∗(z)| = |f(z)(z − cn) + f(z)(cn − dn) − g(z)(z − cn)

(z − cn)(z − dn)
|

≤ |f(z) − g(z)|5M/ε2n−2 + |f(z)|ε2n−1(5M/ε2n−2)
2

< ε2n5M/ε2n−2 +RSnε2n−125M2/ε22n−2

< 50M2Sn+1ε2n−1/ε
2
2n−2 < ε2n−2/2.

Let |w| < S. Then there exists z as above such that |w − z| < ε2n−2/4M . So |f∗(w) −
g∗(w)| ≤ |f∗(w) − f∗(z)| + |f∗(z) − g∗(z)| + |g∗(z) − g∗(w)| < ε2n−2/4 + ε2n−2/2 +
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ε2n−2/4 = ε2n−2. By induction there exists a permutation π such that for all j < n
there is πj < n such that |cj − dπj| < ε. Set πn = n. ⊣

We cannot show that all nonzero polynomials over C have an invertible leading
coefficient, so we need to consider polynomials that are ‘almost-monic.’

3.11 Lemma. Let f and g be polynomials over Ca such that f is monic and of degree
n, and g is of degree at most m. Let 0 < ε < 1/2 be such that |g| < (ε/(2|f |))m+n+1. If
c is a root of g(X)Xn+1 + f(X), then exactly one of the following holds:

(1) |c| > |f |/ε, and |1/c− 1/d| < ε/|f | for some root d of g(X)X + 1.
(2) |c| < |f |, and |c− d| < ε for some root d of f(X).

Proof: Let c be a root of g(X)Xn+1 +f(X). Then |c| ≥ 2|f | or |c| < 2|f |. Suppose
|c| ≥ 2|f |. Then |g(c)c+ 1| ≤ (|f | − 1)/|c| < 1/2. So |c|m+1|g| ≥ |g(c)c| > 1/2. Thus
|c|m+1 > (|f |/ε)m+1, hence |c| > |f |/ε. Also, |(g(c)c + 1)/cm+1| < (ε/|f |)m+1. So
|1/c− e| < ε/|f | for some root e = 1/d of the monic polynomial (g(1/X)/X+ 1)Xm+1.

Suppose |c| < 2|f |. Then |f(c)| ≤ |g(c)cn+1| ≤ |g||c|m+n+1 < |g|(2|f |)m+n+1 < εn.
So there is a root d of f(X) such that |c− d| < ε. ⊣
3.12 Lemma. Let F = anX

n + · · ·+ a0 be a polynomial over C such that aj is a unit.
Then there exists k ≥ j such that ak is a unit, and a monic polynomial F ∗ over C
of degree k, such that F ∗ divides F . If the coefficients of F are (modulated) Cauchy
numbers, then so are the coefficients of F ∗.

Proof: By induction on n − j. Write F = aj(bnX
n + · · · + b0), let r = |Xj +

bj−1X
j−1 + · · · + b0|, and s = |bnXn + · · · + bj+1X

j+1|. Then s > 1/(2(6r)n) or s <
1/(6r)n. If s > 1/(2(6r)n), then ak is a unit for some k > j: Apply induction. Suppose
s < 1/(6r)n. By continuity there exists γ > 0 such that s+ (n− j)γ < 1/(6(r − jγ))n.
Let δ = |aj|γ/4. If h is a polynomial over Ca of degree at most n such that |h−F | < δ,
then it has exactly j roots c1, . . . , cj, counting multiplicities, satisfying |ci| < |h|. Define
h∗ =

∏

i(X − ci). Then h∗ is a monic polynomial of degree j that divides h. By
Lemmas 3.10 and 3.11, for all ε > 0 and for all G over C of degree at most n such
that |G − F | < δ there exists δ1 > 0 such that if h1, h2 are polynomials over Ca of
degree at most n satisfying |hi −G| < δ1, then |h∗1 − h∗2| < ε. So the maps h 7→ h∗ and
h 7→ h/h∗ can be continuously extended to all G over C of degree at most n that satisfy
|G− F | < δ. In particular, F ∗ divides F . ⊣

The continuity of the map h 7→ h∗ cannot be strengthened to a continuous map to
some linear factor of h∗, since in general the permutation π in Lemma 3.10 need not be
uniquely determined.

3.13 Theorem (Fundamental Theorem for (modulated) Cauchy complex num-
bers). Each polynomial f(X) over the (modulated) Cauchy complex numbers having an
invertible coefficient for some positive power of X has a (modulated) Cauchy root.

Proof: We may assume f to be a monic polynomial Xn +a1X
n−1 + · · ·+an, where

each aj is the limit of a (modulated) rational Cauchy sequence {aj,m}m. We construct
a sequence {cm}m of roots cm ∈ Ca of fm = Xn + a1,mX

n−1 + · · · + an,m as follows:
Choose for c0 one of the roots of f0. From cm−1 we select for cm from among the roots
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of fm the one that is closest to cm−1, that is, |cm−1 − cm| ≤ |cm−1 − d| for all roots d
of fm. If there is no unique choice, then select the one with largest real part. If there
are still two choices left, select the one with largest imaginary part. Then {cm}m is a
(modulated) Cauchy sequence whose limit is a root of f . ⊣

The uniqueness of the choice of cm in the proof of Theorem 3.13 implies that the
sequence {cm}m is uniquely determined by a finite description, and no choice principles
are needed.

Theorem 3.13 does not extend to all of C: We cannot find a continuous solution X(c)
to the equation X2 + c = 0 when c ∈ C is near 0.

3.14 Theorem. Let n > 1, and let F = Xn + a1X
n−1 + · · ·+ an be a polynomial over

C such that there exists j satisfying njaj 6=
(

n
j

)

aj
1, that is, njaj −

(

n
j

)

aj
1 is a unit. Then

F has a proper monic factor F ∗ such that F ∗ and F/F ∗ are strongly relatively prime.

Proof: Given F , there exists γ > 0 such that |(X + c)n − F (X)| > γ, for all c. So
there exist ε, µ such that for all monic polynomials g over Ca of degree n, if |g−F | < µ,
then |g| < 2|F | = R and g has roots c, d with |c−d| > 2nε. For n, ε, R, there exists δ < µ
satisfying Lemma 3.10. Choose a monic polynomial g =

∏

j(X − cj) of degree n over

Ca such that |g−F | < δ/3. The equivalence relation on the roots of g generated by the
binary relation |cj − ck| < 2ε contains at least two distinct equivalence classes, and can
be extended to a decidable equivalence relation ∼ that divides the collection of roots into
exactly two equivalence classes C and D. For all monic polynomials h =

∏

j(X −dj) of

degree n over Ca such that |h−g| < δ/2, there is a permutation π such that |cj−dπj| < ε.
The equivalence relation on the roots of g induces an equivalence relation on the roots
of h, dividing them into two equivalence classes as well, say C′ and D′. These classes
are independent of π. Define h∗ =

∏

d∈D′(X−d). The map h 7→ h∗ can be continuously
extended to all monic G over C of degree n that satisfy |G− g| < δ/2. Let h◦ = h/h∗.
There are unique polynomials h∗ and h◦ with h∗ of degree less than deg h◦ and h◦ of
degree less than deg h∗, such that h∗h∗ + h◦h◦ = 1. The maps h 7→ h◦, h 7→ h∗, and
h 7→ h◦ are continuous wherever h∗ is. So F ∗ is a proper monic factor of F , and F ∗

and F ◦ = F/F ∗ are strongly relatively prime. ⊣

A polynomial f over C has a simple root α if f(α) = 0 and f ′(α) is invertible.
The existence of a simple root for a monic polynomial can be expressed in terms of
its coefficients. The following approach is from [13]. Let R be a commutative ring,
and let f = (Y + X1)(Y + X2) . . . (Y + Xn) = Y n + a1Y

n−1 + · · · + an be the poly-
nomial over R[X1, . . . , Xn] with as coefficients the elementary symmetric polynomi-
als aj = σj(X1, . . . , Xn). To express that −Xj is a simple root of f , we need that
Ej =

∏

k 6=j(Xj − Xk) 6= 0, where x 6= y stands for x − y is a unit. So for f to have

a simple root we need at least one Ej 6= 0. So (Y + E1)(Y + E2) . . . (Y + En) 6= Y n,
that is, σj(E1, . . . , En) 6= 0 for some j. These polynomials are symmetric, so there exist
polynomials dj(Y1, . . . , Yn) such that dj(a1, . . . , an) = σj(E1, . . . , En). Define f to be
unramifiable, if dj(a1, . . . , an) 6= 0 for some j.

3.15 Theorem. Each unramifiable monic polynomial over C has a simple root.
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Proof: By Theorem 3.14, an unramifiable monic polynomial f of degree n > 1 has
a proper factorization f = gh, for monic g, h. Then g or h is unramifiable again. By
induction on n, g or h has a simple root, which is a simple root of f . ⊣
3.16 Theorem. Let r ∈ R, and let a1(Y ), . . . , an(Y ) be rational functions over Ca

such that aj(r) exists, for all j. Then f(X, r) = Xn + a1(r)X
n−1 + · · ·+ an(r) splits in

C.

Proof: We may assume that n > 1. We proceed by induction on n. There are
rational numbers p and q such that p < r < q, and aj(s) exists for all p ≤ s ≤ q and

all j. If the inequality GCD(f(X, Y ), ∂f
∂X

(X, Y )) 6= 1 over Ca(Y ) has infinitely many

solutions Y = s ∈ Ra with p ≤ s ≤ q, then, by Theorem 2.1, f(X, Y ) and ∂f
∂X

(X, Y )
share a nonconstant factor g(X, Y ) over Ca(Y ) that is monic in X . So g(X, r) is a
proper factor of f(X, r): Apply induction. Otherwise, let p ≤ d1 < · · · < dm ≤ q be
the finite set of solutions of the inequality. Set p = d0 and q = dm+1. By Lemma
3.10 we can find roots c1(t), . . . , cn(t) of f(X, t) that are continuous in t ∈ R on each
interval (dj , dj+1). Continuous roots of neighboring intervals can be pairwise connected
to make a continuous solution on the whole interval (p, q), because the roots of f(X, dj)
are discrete sets. ⊣

The constructions of the continuous solutions ck(t) in the proof above essentially use
that the intervals (dj , dj+1) are simply connected. Theorem 3.16 does not apply to the
polynomial X2 + c with c ∈ C, since a complex number depends on two real values
rather than one: Its real and its imaginary part.
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