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Motivation: Five Questions

1) What is the algebraic structure underlying Courant algebroids?
2) What is alg. structure underlying multisymplectic manifolds?
3) What are “good” curvatures for non-abelian gauge potentials?
4) What do Leibniz algebras integrate to?
5) What is a small cofibrant replacement for the operad Lie?
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First question 3/27

What is the algebraic structure underlying Courant algebroids?

Answers in the literature:
Roytenberg (2002):
An (exact) Courant algebroid is the symplectic dg-manifold

V2 = T ∗[2]T [1]M , ω = dxµ ∧ dpµ + dξµ ∧ dζµ ,

Q = {S,−} , S = ξµpµ + 1
3!$µνκξ

µξνξκ

for M some manifold. Dorfman and Courant brackets:

[X,Y ]D = {QX,Y } , [X,Y ]C = 1
2

(
{QX,Y } − {QY,X}

)
These brackets fit into two structures:

[−,−]C part of L∞-algebra, Getzler (2009), Zambon (2010)
[−,−]D part of dg-Leibniz algebra cf. Rogers (2011).

Is there more to it?
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Relevance of first question 4/27

This may be seem as a niche question, but:
Courant algebroids underlie Hitchin’s Generalized Geometry
Application in supergravity: Generalized tangent bundle
All generalized tangent bundles are symplectic L∞-algebroids
Dorfman bracket structure relevant in tensor hierarchies
Currently relevant: Double and Exceptional Field Theory.

In order to further understand the above:
understand symplectic L∞-algebroids!
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Third question 5/27

How to construct “good” curvatures for non-abelian gauge
potentials in presence of B-field?

Answers in the literature:
Use Chern-Simons terms:

F = dA+ 1
2 [A,A] , H = dB + (A,dA) + 1

3(A, [A,A])

Bergshoeff et al. (1982), Chapline et al. (1983)
This is at odds with the “conventional” non-abelian gerbes:

F = dA+ 1
2 [A,A] , H = dB − 1

3(A, [A,A])

Breen/Messing (2001), Aschieri, Cantini, Jurco (2003)
Sati, Schreiber (2009): adjust definition of curvatures

F = dA+ 1
2 [A,A] , H = dB+(A,F )− 1

3(A, [A,A])

Where does (−,−) come from?
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Relevance of third question 6/27

We need reasonable higher principal bundles with connections.

Physics:
Heterotic supergravity
Tensor hierarchies of gauged supergravity and EFT
6d superconformal field theories

Mathematics:
Higher geometry would be much less beautiful.
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Summary

All these questions:
1) Algebraic structure underlying symplectic L∞-algebroids?
2) Algebraic structure underlying multisymplectic manifolds?
3) Algebraic structure underlying higher curvature forms?
4) Cofibrant replacement of Lie?
5) How do you integrate Leibniz algebras?

have a simple, unifying answer:

EL∞-algebras
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Initial observations 8/27

Generalized Geometry:
The Dorfman bracket is part of a hemistrict Lie 2-algebra.

Coupling B-field to non-abelian gauge potential:
Additional algebraic structure is an alternator of Lie 2-algebra.

Gauged supergravity:
Embedding tensor yields (weak) Lie 2-algebra

Mathematics literature:
Roytenberg (2007): weak Lie 2-alg. or 2-term EL∞-algebras
Dehling (2017): weak Lie 3-alg. or 3-term EL∞-algebras

Conclusions
We are looking for a weak generalization of L∞-algebras,
generalizing the 2- and 3-term EL∞-algebras in the literature.
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Key ingredients: Operads + Koszul duality 9/27

Sketch:
Won’t need much more than an intuitive understanding
Useful framework for describing algebras and their relations
Symmetric operad O:

Abstract operations with n inputs and 1 output:

, , , . . .

Composition prescription: equalities between “trees”
Also: unit and symmetric group action on inputs

Algebras over O: ops are multilinear maps on vector spaces
Examples: Lie, Ass, Com, Leib
“Homotopy O-algebras or O∞-algebra is an algebra over the
Koszul resolution of the Koszul-dual cooperad.”
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Homotopy algebras via Koszul duality 10/27

Recall: Chevalley–Eilenberg algebra of a Lie algebra g

Graded vector space V = g[1]∗, coords. ξα, |ξα| = 1.
Vector field or differential on polynomial functions:

Q = −1
2f

α
βγξ

βξγ
∂

∂ξα
, Q2 = 0 , |Q| = 1

Lie bracket [τα, τβ] = fγαβτγ , Q2 = 0 ⇔ Jacobi identity

Generalize to Chevalley–Eilenberg algebra of L∞-algebra:
g = ⊕i∈Zgi
Q most general with Q2 = 0 and |Q| = 1

Structure constants in Q: µi : g∧i → g, |µi| = 2− i
Q2 = 0 ⇔ homotopy Jacobi identities
For g = ⊕i≤0gi: categorified Lie algebras
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Homotopy algebras via Koszul duality 11/27

Operadic perspective:
Lie has Koszul-dual Lie! = Com
Therefore:

L∞-algebras ↔ dg-com algebras
µi ↔ Q

semifree dg-Com-algebra give homotopy Lie-algebra.
Similarly for

Ass! = Ass: produces A∞-algebras
Leib! = Zinb: produces homotopy Leibniz algebras

...

Question: which operad produces weak L∞-/EL∞-algebras?
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hLie-algebras 12/27

Hemistrict Lie 2-algebras: differential graded algebras L with

ε2 : L⊗ L→ L , |ε2| = 0 , alt : L⊗ L→ L , |alt| = −1

Generalize, preserving differential compatibility: hLie-algebras

hLie-algebras
Graded vector space L with

ε1 : L→ L , |ε1| = 1 , εi2 : L⊗ L→ L , |εi2| = −i
such that

ε1(ε1(x1)) = 0 ,

ε1(ε
i
2(x1, x2)) = ±εi2(ε1(x1), x2)± εi2(x1, ε1(x2)) + εi−12 (x1, x2)∓ εi−12 (x2, x1)

εi2(ε
i
2(x1, x2), x3) = ±εi2(x1, εi2(x2, x3))∓ εi2(x2, εi2(x1, x3))∓ εi+1

2 (x2, ε
i−1
2 (x3, x1))

εj2(ε
i
2(x1, x2), x3) = ±εi+1

2 (x2, ε
j−1
2 (x3, x1))

εi2(ε
j
2(x1, x2), x3) = ±εj2(x1, ε

i
2(x2, x3))∓ εi2(x2, ε

j
2(x1, x3))± ε

i+1
2 (x3, ε

j−1
2 (x1, x2))

Generalizes hemistrict Lie 2-algs and specializes dg-Leibniz algs.
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Eilh-algebras 13/27

hLie Koszul duality−−−−−−−−−−−−→ Eilh

Eilh-algebras
Graded vector space V , tensor products �i, | �i | = i, i ∈ N,

a�i (b�j c) =
∑

(. . .�k . . .)�l . . . ,
Differential:

Q(a�i b) = (−1)i
(
(Qa)�i b+ (−1)|a|a�i Qb

)
+ (−1)i(a�i+1 b)− (−1)|a| |b|(b�i+1 a) .

Duality explicitly:
hLie-algebra:

ε1(τα) = mβ
ατβ , εi2(τα, τβ) = mi,γ

αβτγ
Eilh-algebra:

Qtα = ±mα
β t
β ±mi,α

βγ t
β �i tγ
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EL∞-algebras 14/27

EL∞-algebras
EL∞-algebra are homotopy hLie-algebras.
That is, graded vector space L with higher products

ε1 : L→ L , |ε1| = 1 ,

εi2 : L⊗ L→ L , |εi2| = −i
εij3 : L⊗ L⊗ L→ L , |εij3 | = −i− j ,
...

...
such that

ε1(ε1(x1)) = 0 ,

ε1(ε
i
2(x1, x2)) = ±εi2(ε1(x1), x2)± εi2(x1, ε1(x2)) + εi−12 (x1, x2)∓ εi−12 (x2, x1)

...
...

amounting to Q2 = 0 in the corresponding dual Eilh-algebra.

Note: if εIk = 0 for I 6= (0, 0, . . . , 0), then this is L∞-algebra.
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Properties of EL∞-algebras 15/27

They generalize:
(dg) Lie algebras
L∞-algebras
Roytenberg’s hemistrict and semistrict Lie 2-algebras
Dehlings weak Lie 3-algebras

They specialize:
Leibniz algebras
homotopy Leibniz algebras

Properties:
Modified homotopy transfer (modified tensor trick)
Minimal model and strictification theorems
EL∞-algebras antisymmetrize to L∞-algebras
An L∞-algebras in each quasi-isomorphism class
⇒ They are weak Lie ∞-algebras
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Answer to question 1:

What is the algebraic structure underlying Courant algebroids?
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Derived bracket constructions 17/27

dg Lie algebra hLie-algebra L∞-algebra

shift/truncate

Getzler

antisymmetrize

Differential graded Lie algebras yield L∞-algebras
Fiorenza/Manetti (2006), Getzler (2009), ...

Differential graded Lie algebras truncate to hLie-algebras
hLie-algebras antisymmetrize to L∞-algebras
Note: hLie-algebras are much easier to handle!
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Example: Courant algebroid 18/27

Differential graded Lie algebra Roytenberg (2002):

Graded manifoldM := T ∗[2]T [1]M ,
0
xµ,

1
ξµ,

1
ζµ,

2
pµ

g := C∞(T ∗[2]T [1]M), degree is coordinate degree
Lie bracket: Poisson bracket of ω = dxµ ∧ dpµ + dξµ ∧ dζµ

differential: Q = {S,−} , S = ξµpµ + 1
3!$µνκξ

µξνξκ

hLie-algebra:
E = E−1

ε1−−→ E0 = C∞0 (M)
Q−−→ C∞1 (M)

Higher products: ε1 = Q, ε12 = {−,−}, ε02 = {Q−,−}

L∞-algebra:
L = E
µ2(x1, x2) = 1

2(ε02(x1, x2)± ε02(x2, x1))
µ3(x1, x2, x3) = 1

3!(ε
1
2(ε

0
2(x1, x2), x3)± . . .)

Generalizes to all generalized tangent bundles
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Answer to question 3

What are “good” curvatures for non-abelian gauge potentials?
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Naive higher curvatures 20/27

All direct categorifications of gauge theory yield the following:
Higher gauge Lie algebra

Two gauge Lie algebras: g and h
Morphism µ1 : h→ g.
Action µ2 : g y h

Higher non-abelian gauge potentials
A ∈ Ω1(U, g)
B ∈ Ω2(U, h).

Higher non-abelian curvature forms
Fake curvature dA+ 1

2µ2(A,A) + µ1(B)
3-form curvature dB + µ2(A,B)

Many, many problems with this:
BRST complex is not closed off-shell

⇒ fake curvature 2-form needs to vanish
⇒ but then everything becomes locally abelian...

Principal bundles + ∇ are not trivially higher bundles
Does not match mathematical or physical expectations
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Adjusted kinematical data 21/27

Archetypal example: string Lie 2-algebra

R
0−−→ g

Gauge potentials:

(A,B) ∈ Ω1(U)⊗ g ⊕ Ω2(U)
Curvatures:

F := dA+ 1
2 [A,A]

H := dB − 1
3!µ3(A,A,A) + (A,F )

= dB + (A,dA) + 1
3(A, [A,A])︸ ︷︷ ︸

cs(A)

Bianchi identities:

dF + [A,F ] = 0 , dH − (F, F ) = 0
Gauge transformations:
δA = dΛ0 + µ2(A,Λ0) δF = −µ2(F,Λ0)

δB = dΛ1 + (Λ0, F )− 1
2µ3(A,A,Λ0) δH = 0
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Observations 22/27

Evident question:

Where do the structure constants for adjustment come from?

Observation:
There is a family of quasi-isomorphic weak Lie 2-algebras

stringwk,α
sk (g) := (R

0−−→ g) ,

ε1(r) = 0 ,

ε2(x1, x2) = [x1, x2] , ε2(x1, r) = 0 ,

ε3(x1, x2, x3) = (1− α)(x1, [x2, x3]) ,

alt(x1, x2) = −2α(x1, x2)

Conjecture:

Adjustment data from alternators in weak Lie n-algebras
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General adjustment 23/27

Theorem
Any EL∞-algebra obtained by shift/truncation from a differential
graded Lie algebra admits a mathematically natural adjustment of
the definition of the resulting curvatures.

Note:
Have explicit formulas for adjustment/curvatures
String 2-algebra from dgLA ⇒ adjusted higher gauge theory
Tensor hierarchies from dgLA ⇒ adjusted higher gauge theory

Christian Saemann EL∞-algebras, Generalized Geometry, and Tensor Hierarchies



Example: Tensor hierarchies 24/27

Palmkvist
gLie (THA)

Lavau
LieLeibTriple

Lavau,Palmkvist
dgLie (THA′) L∞

∞enhLeib
Bonezzi, Hohm

Strobl, Wagemann
hLie-algebra

Getzler

Lavau
ref. der. brackets

complete
axioms

an
tis
ym

.
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Example: 5d max. supersymmetric Tensor Hierarchy 25/27

graded Lie algebra/tensor hierarchy algebras (reps. of e6(6))
Ve6(6) = V−5 ⊕ V−4 ⊕ V−3 ⊕ V−2 ⊕ V−1 ⊕ V0 ⊕ V1

ρ(k) 27⊕ 1728 351c 78 27 27c 78 351

hLie-algebra:
Ee6(6) = E−4 ⊕ E−3 ⊕ E−2 ⊕ E−1 ⊕ E0

27⊕ 1728 351c 78 27 27c

Curvatures:
F a = dAa + 1

2Xbc
aAb ∧Ac + ZabBb

Ha = dBa − 1
2Xba

cAb ∧Bc − 1
6dabcXde

bAc ∧Ad ∧Ae + dabcA
b ∧ F c + Θa

αCα

Gα = dCα − 1
2Xaα

βAa ∧ Cγ + (14Xaα
βtβb

c + 1
3 tαa

dX(db)
c)Aa ∧Ab ∧Bc

+ 1
2 tαa

bF a ∧Bb − 1
2 tαa

bHb ∧Aa − 1
6 tαa

bdbcdA
a ∧Ac ∧ F d − YaαβDβ

a

Note:
Adjustments are given by alternators of hLie-algebra
Invisible at level of gauge L∞-algebra
L∞-algebra + extra structure, cf. Palmer, CS (2013)
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Summary 26/27

Constructed hemistrict weak Lie ∞-algebras: hLie-algebras
They have many applications:

arise from differential graded Lie algebras
generalized tangent bundles/symplectic L∞-algebroids
adjusted higher gauge theories
in particular: tensor hierarchies

Homotopy hLie-algebras are EL∞-algebras
These have a number of mathematical applications
Physical applications of true/non-strict EL∞-algebras?
Lift above constructions to true/non-strict EL∞-algebras?
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Thank You!
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