EL-algebras, Generalized Geometry,
and Tensor Hierarchies

Christian Saemann

Maxwell Institute and

School of Mathematical and Computer Sciences
Heriot—Watt University, Edinburgh

SFT@Cloud 2021, 24.9.2021
Based on:

o arXiv:2106.00108 with Leron Borsten and Hyungrok Kim
o arXiv:1908.08086 with Lennart Schmidt



Motivation: Five Questions

1) What is the algebraic structure underlying Courant algebroids?
2) What is alg. structure underlying multisymplectic manifolds?
3) What are “good” curvatures for non-abelian gauge potentials?
4) What do Leibniz algebras integrate to?

5) What is a small cofibrant replacement for the operad Lie?
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First question 3/27

What is the algebraic structure underlying Courant algebroids? J

Answers in the literature:
o Roytenberg (2002):
An (exact) Courant algebroid is the symplectic dg-manifold
Vo = T*2TAIM , w=da” Adp, +d€" AdCH
Q= {S 7} , S= gﬂpu + %wuwﬁ@ugyg{
for M some manifold. Dorfman and Courant brackets:
(X, Y]p ={QX,Y}, [X,Y]e=3({QX,Y}—-{QY,X})

o These brackets fit into two structures:

o [—,—]c part of L..-algebra, Getzler (2009), Zambon (2010)
o [—,—]p part of dg-Leibniz algebra cf. Rogers (2011).

o Is there more to it?
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Relevance of first question afer

This may be seem as a niche question, but:
Courant algebroids underlie Hitchin's Generalized Geometry

(*]

Application in supergravity: Generalized tangent bundle

All generalized tangent bundles are symplectic L..-algebroids
Dorfman bracket structure relevant in tensor hierarchies
Currently relevant: Double and Exceptional Field Theory.

In order to further understand the above:
understand symplectic L.,-algebroids!
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Third question 5/27

How to construct “good” curvatures for non-abelian gauge
potentials in presence of B-field?

Answers in the literature:
o Use Chern-Simons terms:
F=dA+3[AA], H=dB+ (A dA)+1i(A 4 4)
Bergshoeff et al. (1982), Chapline et al. (1983)
o This is at odds with the “conventional” non-abelian gerbes:
F=dA+1[A,A], H=dB-i(A, A, A])
Breen/Messing (2001), Aschieri, Cantini, Jurco (2003)
o Sati, Schreiber (2009): adjust definition of curvatures
F=dA+1[A,A], H=dB+(AF)—1(A[A A])

@ Where does (—, —) come from?
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Relevance of third question 6/27

We need reasonable higher principal bundles with connections. J

Physics:
o Heterotic supergravity
o Tensor hierarchies of gauged supergravity and EFT

o 6d superconformal field theories

Mathematics:

o Higher geometry would be much less beautiful.
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All these questions:
1)
2)
3) Algebraic structure underlying higher curvature forms?
4)

5) How do you integrate Leibniz algebras?

Algebraic structure underlying symplectic L..-algebroids?

Algebraic structure underlying multisymplectic manifolds?
Cofibrant replacement of Lie?

have a simple, unifying answer:

EL,-algebras
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Initial observations 827

Generalized Geometry:
o The Dorfman bracket is part of a hemistrict Lie 2-algebra.

Coupling B-field to non-abelian gauge potential:
o Additional algebraic structure is an alternator of Lie 2-algebra.

Gauged supergravity:
o Embedding tensor yields (weak) Lie 2-algebra

Mathematics literature:
o Roytenberg (2007): weak Lie 2-alg. or 2-term E'L.-algebras
o Dehling (2017): weak Lie 3-alg. or 3-term E'L..-algebras

Conclusions

We are looking for a weak generalization of L..-algebras,
generalizing the 2- and 3-term F'L..-algebras in the literature.
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Key ingredients: Operads + Koszul duality

Sketch:
@ Won't need much more than an intuitive understanding
o Useful framework for describing algebras and their relations

o Symmetric operad O:
o Abstract operations with n inputs and 1 output:

A A

o Composition prescription: equalities between “trees”
o Also: unit and symmetric group action on inputs

o Algebras over O: ops are multilinear maps on vector spaces
o Examples: Lie, Ass, Com, Leib

o “Homotopy O-algebras or O..-algebra is an algebra over the
Koszul resolution of the Koszul-dual cooperad.”
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Homotopy algebras via Koszul duality 10/27

Recall: Chevalley—Eilenberg algebra of a Lie algebra g
el =1.

o Vector field or differential on polynomial functions:

0
Q=—2/38¢ 50, Q@ =0. Q=1

o Graded vector space V' = g[1]*, coords. £,

o Lie bracket [7,.73] = f7.7,, Q% =0 < Jacobi identity
B aB 'Y

Generalize to Chevalley—Eilenberg algebra of L..-algebra:
° g = Diczbi
o () most general with Q% =0 and |Q| = 1
o Structure constants in Q: ;1 g™\ — g, || =21
o Q> =0 < homotopy Jacobi identities
o For g = ®;<pg;: categorified Lie algebras
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Homotopy algebras via Koszul duality 11727

Operadic perspective:
o Lie has Koszul-dual Lie' = Com
o Therefore:
Lo-algebras <> dg-com algebras
i < Q
o semifree dg-Com-algebra give homotopy Lie-algebra.

o Similarly for

o Ass' = Ass: produces A, -algebras
o Leib' = Zinb: produces homotopy Leibniz algebras

o Question: which operad produces weak L..-/FE L. -algebras?
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hLie-algebras 12/27

Hemistrict Lie 2-algebras: differential graded algebras £ with
9 £RL L, e =0, alt:LxL—>L, lalt=-1

Generalize, preserving differential compatibility: hLie-algebras

hLie-algebras
Graded vector space £ with

€1 : £ 8, |e=1, & : L2, |&=—i

such that
e1(e1(z1)) =0,
e1(eh(1, w2)) = +eb(er(21), m2) + (21, 1(2a)) + €5 (21, 2) F €5 (20, 1)
b (b (w1, 22), w3) = Feb (w1, €b(22, 23)) F €b(w2, b (21, x3)) F bt (w2, 65 (23, 21))
&3 (eb(w1, 22), m3) = e (w2, 65 (w3, 71))
eb(eh (w1, 22), v5) = el (21, eh(w2, 25)) F 52, €] (41, 03)) £ €51 (w3, 6] (21,2)

Generalizes hemistrict Lie 2-algs and specializes dg-Leibniz algs.
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Eilh-algebras 13/27

K I [i
I Llic oszul duality Silh

Eilh-algebras
Graded vector space V/, tensor products ©;, | @; | =i, 1 € N,

a Q; (b®jc):Z('--®k'--)®l--~ ,
Differential:

Qa2 b) = (—1)*((Qa) @; b+ (-1)llg o; Qb)
+ (-1)¥(a @41 b) — (-1)Pl(b @i11 a) .

Duality explicitly:
o hLlie-algebra:

€1 (Ta> = mgTB ) 5%(7_&77/3> - mg%ﬂ/
o Eilh-algebra:

Qt” = +mft’ £ mp2t’ 0, 1
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EL.-algebras 1a/27

FE'L.-algebras

FE'L.-algebra are homotopy h/Lie-algebras.
That is, graded vector space £ with higher products

g £— £, ’81‘:1,
e LRL L, | =—i
e . LRLRLL, | =-i-j,

such that
e1(e1(?1)) =0,

e1(eb (w1, 22)) = Feb(e1(w1), v2) + bz, 61(w2)) + 5 (21, 22) F b (w2, 21)

amounting to Q% = 0 in the corresponding dual £ilh-algebra.

Note: if Eé =0 for I # (0,0,...,0), then this is L..-algebra.
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Properties of E'L..-algebras

They generalize:

©

(dg) Lie algebras
o L..-algebras
o Roytenberg's hemistrict and semistrict Lie 2-algebras
o Dehlings weak Lie 3-algebras
They specialize:
o Leibniz algebras
o homotopy Leibniz algebras
Properties:
o Modified homotopy transfer (modified tensor trick)
o Minimal model and strictification theorems
o I'L..-algebras antisymmetrize to L..-algebras
o An L..-algebras in each quasi-isomorphism class

o = They are weak Lie oco-algebras
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Answer to question 1:

What is the algebraic structure underlying Courant algebroids?
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Derived bracket constructions 1/2

shift/truncate antisymmetrize

/\ /_\
dg Lie algebra hLie-algebra L.-algebra

\/

Getzler

©

Differential graded Lie algebras yield L..-algebras
Fiorenza/Manetti (2006), Getzler (2009), ...

Differential graded Lie algebras truncate to hLic-algebras

©

©

hLie-algebras antisymmetrize to L ..-algebras

©

Note: hLie-algebras are much easier to handle!
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Example: Courant algebroid 18/27

Differential graded Lie algebra Roytenberg (2002):
0 1 1
o Graded manifold M := T*[2]T[1]M, ¥ & C,.py

0 g:=C™(T*[2|T[1]M), degree is coordinate degree
o Lie bracket: Poisson bracket of w = dz* A dp,, + d&* A d¢H
o differential: @ = {S,—}, S =&"p, + Fmunblerer

hLie-algebra:
oC = €, 5 g = (M) 2 (M)
o Higher products: ¢; = Q, 8% ={-,-} 8(2) ={Q—,—}

L-algebra:
o £=¢
o pa(z1,22) = 5(e5(w1, w2) £ (w2, 1))
o p3(w1, 20, 23) = 3(e3(e9(21, 22), 23) £...)

Generalizes to all generalized tangent bundles )
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Answer to question 3

What are “good” curvatures for non-abelian gauge potentials?
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Naive higher curvatures 20/27

All direct categorifications of gauge theory yield the following:
o Higher gauge Lie algebra
o Two gauge Lie algebras: g and §
o Morphism puq : h — g.
o Action p5 1 g v
o Higher non-abelian gauge potentials
o Ac Q! (U,g)
o Be Q(U.h).
o Higher non-abelian curvature forms
o Fake curvature dA + %,ug(A,A) + p1(B)
o 3-form curvature dB + s (A, B)
Many, many problems with this:

o BRST complex is not closed off-shell
= fake curvature 2-form needs to vanish
= but then everything becomes locally abelian...

o Principal bundles + V are not trivially higher bundles
o Does not match mathematical or physical expectations
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Adjusted kinematical data 21727

Archetypal example: string Lie 2-algebra
R -2 g
Gauge potentials:
(A,B) € Q'(U)®g & Q*(U)
Curvatures:
F=dA+ }[A, A
=dB+ (A,dA) + 1(4,[A, A])

)

cs(A)
Bianchi identities:
dF +[A,F]=0, dH - (F,F)=0
Gauge transformations:
6A = dAg + p2(A, Ao) OF = —pa(F, Ag)
6B = dA1 + (Ao, F) — 3u3(A, A, Ag) SH =0
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Observations /27

Evident question:

Where do the structure constants for adjustment come from? J

Observation:
There is a family of quasi-isomorphic weak Lie 2-algebras

. Wk, 0
string) "“(g) == (R — g) ,

el(r) =0,
e2(w1,w2) = [w1,72] , 2(21,7) =0,
es(x1,x9,x3) = (1 — a)(z1, [x2, 23]) ,
alt(x1, x2) = —2a(x1, x2)
Conjecture:
Adjustment data from alternators in weak Lie n-algebras J
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General adjustment 23/27

Theorem

Any EL..-algebra obtained by shift/truncation from a differential
graded Lie algebra admits a mathematically natural adjustment of
the definition of the resulting curvatures.

Note:
o Have explicit formulas for adjustment/curvatures
o String 2-algebra from dglLA =- adjusted higher gauge theory
@ Tensor hierarchies from dgLA = adjusted higher gauge theory
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Example: Tensor hierarchies

Palmkvist
glie (THA)
Lavau Lavau,Palmkvist
LieLeibTriple ——— dgLie (THA') Getzler L
D % £
% < 6*9 ‘L>f
c 04@[\? .:_JCU
ooenhLeib complete

Bonezzi, Hohm

. hLie-algebra
Strobl, Wagemann aXioms
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Example: 5d max. supersymmetric Tensor Hierarchy

graded Lie algebra/tensor hierarchy algebras (reps. of ¢g))

Veo o) Vs ® Vy & Vg & Vo & Vg @ Vp @ W

Pk 27 1728 351, 78 27 27, 78 351

hLie-algebra:
¢ ¢ 4 © €3 D €5 B €E; B €

27T ® 1728 351, 78 27 27,

66)

Curvatures:
F*=dA® + 1 X, A" A A° + Z°%B,
H, = dBy — $Xpa°A" A Be — 3dape X" A° N AT N A® + dope AP A F© + 0,°C,
Go =dCa — 3Xaa”A* N Cy + (1 X008 + $taa” X (an))A” A A® A B,
+ 3tadF* A By — $tad”Hy N A” = Yool dpeg A" N A NF— Y0P D"
Note:
o Adjustments are given by alternators of h.Lie-algebra
o Invisible at level of gauge L..-algebra
o L..-algebra + extra structure, cf. Palmer, CS (2013)
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Summary 26/21

©

Constructed hemistrict weak Lie oc-algebras: h/Lie-algebras

©

They have many applications:

arise from differential graded Lie algebras

generalized tangent bundles/symplectic L ..-algebroids
adjusted higher gauge theories

in particular: tensor hierarchies

©

© 0 ©

Homotopy h/Llie-algebras are F'L.-algebras
These have a number of mathematical applications

Physical applications of true/non-strict E'L-algebras?

© © o o

Lift above constructions to true/non-strict E L..-algebras?
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Thank You!
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