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Motivation 2/31

Future progress in string theory seems to depend on more mathematical input.

String-/M-theory as it used to be

Every 10 years a “string revolution”
Every 2-3 years one new big fashionable topic to work on

This changed: No more revolutions or really big fashionable topics.

My explanation
We need more input from maths, in particular category theory:

2-form gauge potential B-field: Gerbes or principal 2-bundles
String Field Theory: L∞-algebras or semistrict Lie ∞-algebras
Double Field Theory: Courant algebroids and beyond or

symplectic Lie 2-algebroids
(2,0)-theory: parallel transport of string-like objects

full non-abelian higher gauge theory
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We will need to use some very simple notions of
category theory, an esoteric subject noted for its
difficulty and irrelevance.
G. Moore and N. Seiberg, 1989

What does categorification mean?
One of Jeff Harvey’s questions to identify
the “generation PhD>1999” at Strings 2013.

Christian Sämann Principal String 2-Group Bundles and M-Branes



Motivation: The Dynamics of Multiple M5-Branes 4/31

To understand M-theory, an effective description of M5-branes would be very useful.

D-branes
D-branes interact via strings.
Effective description: theory of endpoints
Parallel transport of these: Gauge theory
Study string theory via gauge theory

M5-branes
M5-branes interact via M2-branes.
Eff. description: theory of self-dual strings
Parallel transport: Higher gauge theory
Holy grail: (2,0)-theory (conjectured 1995)
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What We Know 5/31

Multiple M5-branes are described by a N = (2, 0) superconformal field theory.

What we know:
String theory considerations: conformal fixed point in 6d

Witten, Strominger 1995
Field content: N = (2, 0) supermultiplet in 6d:

a self-dual 3-form field strength
five (Goldstone) scalars
fermionic partners

A theory of essentially tensionless light strings
Supergravity decouples, so study string dynamics separately
Observables: Wilson surfaces, i.e. parallel transport of strings
No Lagrangian description known
As important as N = 4 super Yang-Mills for string theory
Huge interest in string theory: AGT, AdS7-CFT6, S-duality, ...
Mathematics: Geom. Langlands, Khovanov Homology, ...
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Parallel Transport of Strings is Problematic 6/31

The lack of surface ordering renders a parallel transport of strings problematic.

Parallel transport of particles in representation of gauge group G:
holonomy functor hol : path γ 7→ hol(γ) ∈ G

hol(γ) = P exp(
∫
γ A), P : path ordering, trivial for U(1).

Parallel transport of strings with gauge group U(1):
map hol : surface σ 7→ hol(σ) ∈ U(1)

hol(σ) = exp(
∫
σ B), B: connective structure on gerbe.

Nonabelian case:
much more involved!
no straightforward definition of surface ordering
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Naïve No-Go Theorem 7/31

Naively, there is no non-abelian parallel transport of strings.

Imagine parallel transport of string with gauge degrees in Lie(G):

•
�� oo
^^

g1��

g′1��

•�� oo ]]
g2��

g′2��

Consistency of parallel transport requires:

(g′1g
′
2)(g1g2) = (g′1g1)(g′2g2)

This renders group G abelian. Eckmann and Hilton, 1962
Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations ◦ and ⊗ satisfying Interchange Law:

(g′1 ⊗ g′2) ◦ (g1 ⊗ g2) = (g′1 ◦ g1)⊗ (g′2 ◦ g2) .
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Objection to a classical (2,0)-theory 8/31

Without coupling constant, there shouldn’t be classical effective descriptions in M-theory.

Standard objection beyond the previous no-go theorem:
theory at conformal fixed points ⇒ no dimensionful parameter
fixed points are isolated ⇒ no dimensionless parameter
“No parameters ⇒ no classical limit ⇒ no Lagrangian.”

Answers:
Same arguments for M2-brane Schwarz, 2004
There, integer parameters arose from orbifold R8/Zk

BLG, ABJM, 2008
Same should happen for M5-branes
Even if no Lagrangian, BPS-states may exist classically
Even if not, study quantum features of related theories.
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We want to categorify gauge theory

Need: suitable descriptions/definitions

Equivalent options:
1. finite descriptions via Wilson lines ⇒ Parallel transport functor
2. infinitesimal description via connections ⇒ Atiyah Algebroid



1. Wilson Lines and Parallel Transport Functors 10/31

A straightforward way to describe gauge theory is in terms of parallel transport functors.

Encode gauge theory in parallel transport functor
Mackaay, Picken, 2000

Every manifold comes with path groupoid PM = (PM ⇒M)

x
γ
)) y

Gauge group gives rise to delooping groupoid BG = (G⇒ ∗)
parallel transport functor hol : PM → BG:

assigns to each path a group element
composition of paths: multiplication of group elements

Readily categorifies: Baez, Schreiber 2004
use path 2-groupoid with homotopies between paths
use delooping of categorified group

Problem: Need to differentiate to get to cocycles



Recall: NQ-Manifolds 11/31

NQ-manifolds, known from BRST quantization, provide very useful language.

N-manifolds, NQ-manifold
N-graded manifold with coordinates of degree 0, 1, 2, . . .

M0 ←M1 ←M2 ← . . .

manifold
���

linear spaces
@@IH

HHY

Morphisms φ : M → N are maps φ∗ : C∞(N)→ C∞(M)

NQ-manifold: vector field Q of degree 1, Q2 = 0

Physicists: think ghost numbers, BRST charge, SFT

Examples:
Tangent algebroid T [1]M , C∞(T [1]M) ∼= Ω•(M), Q = d
Lie algebra g[1], coordinates ξa of degree 1:

Q = −1
2f

c
abξ

aξb
∂

∂ξc

Condition Q2 = 0 is equivalent to Jacobi identity for f cab



2. Atiyah Algebroid Sequence 12/31

A straightforward way to describe gauge theory is in terms of parallel transport functors.

(Flat) connection: splitting of Atiyah algebroid sequence

0 −→ P ×G Lie(G) −→ TP/G −→ TM −→ 0

Atiyah, 1957

Related approach: Kotov, Strobl, Schreiber, ...

Gauge potential from morphism of N -manifolds:

a : T [1]M → g[1] −→ Aaµdxµ := a∗(ξa)

Curvature: failure of a to be morphism of NQ-manifold:

F a := (d ◦ a∗ − a∗ ◦Q)(ξa) = dAa + 1
2f

a
bcA

b ∧Ac

Infinitesimal gauge transformations: flat homotopies
Readily categorifies, but integration an issue



L∞-Algebras, Lie 2-Algebras 13/31

NQ-manifolds provide an easy definition of L∞-algebras.

Lie n-algebroid or n-term L∞-algebroid:

M0 ←M1 ←M2 ← . . .←Mn ← ∗ ← ∗ ← . . .

Lie n-algebra, n-term L∞-algebra or Lie n-algebra:

∗ ←M1 ←M2 ← . . .←Mn ← ∗ ← ∗ ← . . .

Example: Lie 2-algebra as 2-term L∞-algebra
NQ-manifold: ∗ ←W [1]← V [2]← ∗ ← . . ., coords. wa, vi

Homological vector field:

Q = −ma
i v
i ∂

∂wa
− 1

2m
c
abw

awb
∂

∂wc
−mj

aiw
avi

∂

∂vj
− 1

3!m
i
abcw

awbwc
∂

∂vi

Structure constants: higher products µi on W ← V [1]

µ1(τi) = ma
i τa , µ2(τa, τb) = mc

abτc , . . . , µ3(τa, τb, τc) = mi
abcτi

Q2 = 0: Higher or homotopy Jacobi identity, e.g.
µ2(w1, µ2(w2, w3)) + cycl. = µ1(µ3(w1, w2, w3))



Local Higher Gauge Theory via NQ-Manifolds 14/31

One easily constructs local higher gauge theory using NQ-manifolds.

Higher gauge theory with Lie 2-algebra:
Lie 2-algebra: ∗ ←W [1]← V [2]← ∗ ← . . ., coords. wa, vi

Gauge potentials T [1]M → (W [1]← V [2]):

Aaµdxµ := a∗(wa) and Bi
µνdxµ ∧ dxν = a∗(vi)

Curvature: failure of a to be morphism of NQ-manifold:

F := dA+ 1
2µ2(A,A) + µ1(B)

H := dB + µ2(A,B) + 1
3!µ3(A,A,A)

Gauge transformations from flat homotopies ...



Local Higher Gauge Theories 15/31

The most interesting higher gauge theories for us live in 6 and 4 dimensions.

“Fake curvature”: F = dA+ 1
2µ2(A,A)− µ1(B) = 0

Vanishing makes parallel transport reparam. invariant.
3-form curvature: H = dB + µ2(A,B) + 1

3!µ3(A,A,A)

Gauge part of (2,0) theory

If (2,0) theory on R1,5 is a higher gauge theory, then gauge part is:

H = ∗H , F = 0 .

Non-Abelian Self-Dual Strings

BPS equation for (2,0) theory on R4 (∼ monopoles in 4d SYM)
H = ∗ (dΦ + µ2(A,Φ)) , F = 0 .



The Global Picture:

Principal 2-Bundles and Finite Gauge Transformations

Three steps:
1. Categorified notion of group, describing the symmetries
2. Categorified notion of principal bundle
3. Endow these bundles with categorified connections



Tool: Categorification 17/31

Categorification provides some guidelines in the construction of higher objects.

Category theory: excellent tool for deformations/generalizations.

Notions used: categorification, internalization and enrichment.

Idea: Mathematical objects are stuff, structures, structure eqns.

Translate as follows:
stuff (sets) becomes categories
structures (functions) become functors
structure equations become structure isomorphisms



1. Categorified Groups 18/31

Categorifying a group, we arrive at the notion of a 2-group.

Group:
Stuff: Underlying set G, unit 1
Structure: Multiplication, inverse
Structure equations: associativity, g−1g = 1, 1g = g1 = g

2-Group:
Stuff: A category C , unit object 1
Structure: Multiplication bifunctor ⊗, inverse functor inv
Structure isomorphisms:

ax,y,z : (x⊗ y)⊗ z ⇒ x⊗ (y ⊗ z)
lx : x⊗ 1⇒ x, rx : 1⊗ x⇒ x
inv(x)⊗ x⇒ 1⇐ x⊗ inv(x)

Example: Strict 2-Group Gn H⇒ G,
a, l, r all trivial, inv(x)⊗ x = 1 = x⊗ inv(x)

id(g) = (g,1H), (g1, h1)⊗ (g2, h2) = (g1g2, h1(g1 B h2)), etc.



2. Categorical Description of Principal Bundles 19/31

Descent data for principal n-bundles are encoded in n-functors.

Čech groupoid of surjective submersion Y �M , e.g. Y = taUa:

Č (U) :
⊔
a,b

Uab ⇒
⊔
a

Ua , Uab ◦ Ubc = Uac .

Principal G-bundle

Transition functions are nothing but a functor g : Č (U)→ (G⇒ ∗)

tUab
gab //

�� ��

G

�� ��
tUa ∗ // ∗

gabgbc = gac

Equivalence relations: natural isomorphisms.

Principal 2-bundle, structure Lie 2-group G

Definition is clear: 2-functor Č (U)→ (G ⇒ ∗).
Questions: Which notion of 2-category and which G ?



3. Towards Connections: Differentiation 20/31

There is a differentiation procedure of quasi-groupoids due to Ševera.

Recall: Connection on principal G-bundle: Lie(G)-valued 1-forms

We therefore need a way of differentiating Lie 2-groups.

Lie functor as suggested by Ševera, 2006
Functors: supermanifolds to certain principal G -bundles

X 7→ descent data subordinate to X ×R0|1 � X

Moduli: Lie(G ) as an n-term complex of vector spaces
Carries Hom(R0|1,R0|1)-action → L∞-algebra structure



Example: Differentiation of Lie group 21/31

There is a differentiation procedure of quasi-groupoids due to Ševera.

Ševera: want moduli of functor

X 7→ descent data subordinate to X ×R0|1 � X

For a Lie group G:

g : X ×R0|2 → G , g(θ0, θ1, x)g(θ1, θ2, x) = g(θ0, θ2, x) .

This implies

g(0, θ, x) = g(θ, 0, x)−1 and g(θ0, θ1, x) = g(θ0, 0, x)(g(θ1, 0, x))−1

and we have a trivializing coboundary:

g(θ0, 0, x) = 1+ αθ0 , α ∈ Lie(G)[1] .

We readily compute

g(θ0, θ1) = 1+ α(θ0 − θ1) + 1
2 [α, α]θ0θ1 .

With Qg(θ0, θ1, x) := d
dεg(θ0 + ε, θ1 + ε, x), we obtain the

NQ-manifold description of Lie(G):

Qα = −1
2 [α, α] .



Finite Gauge Transformations 22/31

The differentiation method can be extended to read off finite gauge transformations.

We have: Lie algebra element in terms of descent data g
Perform a coboundary transformation to g̃
Trivialize g̃, establish relation between moduli of g, g̃, e.g.

α̃ = p−1αp+ p−1Qp , p ∈ C∞(X,G)

Replacing Q by de Rham differential on patches yields
finite gauge transformations B Jurco, CS, M Wolf, 1403.7185
Can read off global patching of gauge potential forms.
More elegant approach in B Jurco, CS, M Wolf, 1604.01639

Again: Everything readily categorifies.



All this is quite powerful... 23/31

We readily define Deligne cohomology for semistrict Lie 2-group bundles.

Example: principal G -bundle with G semistrict Lie 2-group:

Cocycle data: (mab, nabc, Aa,Λab, Ba). Cocycle relations:
nabc : mab ⊗mbc ⇒ mac

nacd ◦ (nabc ⊗ idmcd
) ◦ a−1

mab,mbc,mcd
= nabd ◦ (idmab

⊗ nbcd)
dAa +Aa ⊗Aa + s(Ba) = 0

Λab : Ab ⊗mab ⇒ mab ⊗Aa − dmab
Λcb ◦ (idAb

⊗ nbac) ◦ aAb,mba,mac =

= (nbac ⊗ idAc − dnbac) ◦
[
a−1
mba,mac,Ac

− idd(mba⊗mac)

]
◦

◦ (idmba
⊗ Λca − iddmba⊗mac) ◦ (amba,Ac,mac − iddmba⊗mac) ◦ (Λab ⊗ idmac)

Bb ⊗ idmab
= µ(Ab, Ab,mab) +

[
idmab

⊗Ba + µ(mab, Aa, Aa)
]
◦

◦
[
− dΛab − Λab ⊗ idAa − µ(Ab,mab, Aa)

]
◦

◦
[
− ids(dΛab) − idAb

⊗ (Λab + iddmab
)
]

B Jurco, CS, M Wolf, 1403.7185

We can now start to calculate and look for applications.



Applications to M-theory



An Application: N = (2, 0) Theory from Twistors 25/31

Given a higher gauge group, one can readily construct a corresponding (2,0)-theory.

Theorem [Ward, 1977]

CP 3
◦ C4

C4 ×CP 1

�
�	

@
@R

Holomorphic princ. bundles∗ over CP 3
◦

in 1:1 correspondence (mod gauge) with
Solutions to the 4d instanton equations

Idea: Put 2-bundles over twistor space for self-dual 3-forms in 6d

Theorem [CS & Wolf, 2012]

Q6|4
C6|16

C6|16 ×CP 3

�
�	

@
@R

Holomorphic princ. 2-bundles∗ over Q6|4

in 1:1 correspondence (mod gauge) with
Solutions to N = (2, 0) SCFT equations

⇒ Reduced search for (2, 0)-theory to search for gauge structure.



Remaining Issue: Examples. 26/31

No truly non-abelian solutions of higher gauge equations are known

In principle, we found a (2, 0)-theory.
We’ve generalized all this to ∞-groupoid bundles.
But: How do we know we’re not talking about the empty set?
Popular claim: principal 2-bundles reduce to abelian gerbes.
Problem: Find explicit, truly non-abelian configurations
Input from M-theory: BPS ⇒ self-dual strings in 4d
Mathematics of gauge theory started with instanton sols.



Monopoles and Self-Dual Strings 27/31

Self-dual strings are the monopoles of M-theory.

Dirac Monopole:
Extend Hopf fibration S1↪→S3 → S2 to R3\{0}
u(1)-gauge potential A, solves FA = dA = ∗dΦ for Φ ∼ 1

2r

’t Hooft-Polyakov monopole:
Note: S3 ∼= SU(2)

Hopf fibration can be trivialized in SU(2)×R3 → R3

Obvious bundle map S3 → S2 to S3 × S2 → S2

Interesting and non-singular monopole solution FA = ∗dAΦ

Abelian self-dual string:
Tautological gerbe G over S3 with DD-class 1 (H = volS3)
solves H := dB = ∗dΦ over R4\{0} for Φ ∼ 1

2r2

Truly non-Abelian self-dual string:
G is a 2-group model for the string group
Can trivialize G in trivial gerbe G × S3

Should yield very interesting and physically relevant solution
Connective structure: work in progress with L. Schmidt



Conclusions 28/31

Summary and Outlook.

Summary:
X Clear physical and mathematical motivation to study HGT
X straightforward definition of higher gauge theory
X Can make cocycles etc. explicit to calculate with them
X Twistor constructions of (2,0) theory
X Relevant higher gauge group identified

Soon to come:
� Examples of 2-bundles with connections
� Link to higher quantization
� Localization for higher gauge theories



The String Group 29/31

A very interesting case: The string group.

Monopole/instanton solutions: gauge group from spin group
Spin(3) ∼= SU(2), Spin(4) ∼= SU(2)× SU(2)

Higher analogue of the spin group: String group
Stolz, Teichner, Witten, ...

Def. via Whitehead tower (iteratively delete homotopy groups)

. . .→ String(n)→ Spin(n)→ Spin(n)→ SO(n)→ O(n)

Definition only up to homotopy, as a group: ∞-dimensional
2-group models:

∞-dimensional strict 2-group Baez et al., Nikolaus et al.
finite-dimensional quasi 2-group Schommer-Pries

Higher gauge theory 1602.03441, G A Demessie and CS
Conjecture: Gauge 2-group for M5-branes is String(E8)



Review: The ’t Hooft-Polyakov Monopole 30/31

The ’t Hooft-Polyakov Monopole is a non-singular solution with charge 1.

Recall ’t Hooft-Polyakov monopole (ei generate su(2), ξ = v|x|):

Φ =
eix

i

|x|2
(
ξ coth(ξ)− 1

)
, A = εijk

eix
j

|x|2

(
1− ξ

sinh(ξ)

)
dxk

At S2
∞: Φ ∼ g(θ)e3g(θ)−1.

g(θ) : S2
∞ → SU(2)/U(1): winding 1

Charge q = 1 with

2πq = 1
2

∫
S2
∞

tr (F †Φ)

||Φ||
with ||Φ|| :=

√
1
2 tr (Φ†Φ)

Higgs field non-singular:



Elementary Solutions: A Non-Abelian Self-Dual String 31/31

We can write down a non-abelian self-dual string with winding number 1.

Self-Dual String (Lie 2-algebra su(2)× su(2)
µ1←− R4, ξ = v|x|2):

Φ =
eµx

µ

|x|3
f(ξ) , Bµν = εµνκλ

eκx
λ

|x|3
g(ξ) , Aµ = εµνκλD(eν , eκ)

xλ

|x|2
h(ξ)

Solves indeed H = ?∇Φ for right f(ξ), g(ξ), h(ξ)

At S∞3 : Φ ∼ g(θ) B e4. g(θ) : S3
∞ → SU(2) has winding 1.

Charge q = 1:

(2π)3q = 1
2

∫
S3
∞

(H,Φ)

||Φ||
with ||Φ|| :=

√
1
2(Φ,Φ) ,

Higgs field non-singular:
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