M-theory and cohomotopy

Hisham Sati
New York University Abu Dhabi (NYUAD)

M-Theory and Mathematics
NYUAD Workshop

27-30 January 2020

1/50



I. From 11d sugra to M-theory

Il. Where do fields live?

I11. (Twisted) Cohomotopy vs. (twisted) cohomology description of the M-theory
fields

1. Rationally.
2. Integrally.
3. Differentially.

IV. Further applications: branes and gauge theory

Joint with: Urs Schreiber, Domenico Fiorenza, Dan Grady, Vincent Braunack-Mayer

[BMSS]= Braunack-Mayer-S.-Schreiber
[FSS]= Fiorenza-S.-Schreiber

[GS]= Grady-S.

[s]= s.

[SS]= S.-Schreiber

2/50



Richness of M-theory

Higher

geometry
Super-

geometry

Differential
cohomology

M- Twisted
THEORY cohomology

Generalized
cohomology

Equivariant

homotopy
Parametrized

homotopy

3/50



|. From 11d supergravity to M-theory
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Bosonic 11D supergravity

e Bosonic Lagrangian: given by the eleven-form [cCremmer-Julia-Scherk]

L9 =Rx1— 3Gy AxGy — LGy A Gy A Cs

. . el .
o Equations of motion: The variation Esliab = 0 for Cs gives the

corresponding equation of motion

d*G4—|—%G4/\G4:0 .

e Bianchi identity:

4=

@ The second order equation (1) can be written in a first order form, by first

writing d (*G4 + %C3 A G4) =0 so that

%Gy = Gy 1= dC67%C3/\G4 R

where G is the potential of G7, the Hodge dual field strength to G4 in 11
dimensions.

(1)

(2)

(3)
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The effect of the fermions

@ The femionic field 1) € T(S ® TM) (the gravitino) satisfies the generalized
Dirac equation, the Rarita-Schwinger equation

|Drsy =0, wel(SeT'M)|.

(involves mixing of terms).

o The fields themselves are in fact combinations of bosonic and fermionic
fields. Physics literature usually writes:

super -
G — G+ Ul
~—
~~topology/geometry  ~»topology/geometry

@ Similarly for the connections

super

w = w + fermion-bilinears

[See Duff-Nilsson- Pope]

Strategy: Extract topology/higher geometry from bosons and fermions separately.
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[1. Where do fields live?
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Generalities on what physics wants

Nontrivial physical entities, such as fields, charges, etc. generically take values in
cohomology.

Cohomology

R TN

@ Generalized: Capture essential topological and bundles aspects.

e

Twisting: Account for symmetries via automorphisms.

@ Differentially refined: Include geometric data, such as connections, Chern
character form, smooth structure, smooth representatives of maps ...
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Differential refinement

@ Introduce geometric data via differential forms (connections, Chern forms,
--+), i.e., retain differential form representatives of cohomology classes.

Q*(M)
H*(M; Q) H*(M; Z) E*(M)
H*(M; Q) H*(M; Z) E*(M)

@ Amalgam of an underlying (topological) cohomology theory and the data of
differential forms:

‘ Differential gen. cohomology‘ Forms
Gen. cohomology de Rham cohomology

@ That is, we have a fiber product or twisted product

“Differential cohomology = Cohomology X 4e Rham Forms” o/50



Differential generalized cohomology

@ Start with a generalized cohomology theory h

e Q(X,h,) :=Q(X)®z h.,  Smooth differential forms with
coefficients in h, := h(x)

e Qu(X,h,) CQ(X, h,) closed forms
o Har(X, h.) cohomology of the complex ((X, h.),d)

A smooth extension of h is a contravariant functor
h : Compact Smooth Manifolds — Graded Abelian Grps
ch(Xa h*)
|
h(X) Har (X, h.)
|
h(X)
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Full structure

‘ Twisted N Differential N Generalized‘

Geometric

twisty }M % adjoin twiste
H'(I\/I Q) H*(M;Z) E'((}/I) Topological
He*(M; Q) H*(M; Z) E*(M) Combined

Examples ([GS])

@ Type | (1) RR fields live in twisted differential KO-theory KO (K-theory K ).
@ Differential refinements of various twisted cohomology theories.

o Fields in M-theory are proposed to live in a theory of this type [S06].
Which one?
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I1l. (Twisted) Cohomotopy vs. (twisted) cohomology
description of the M-theory fields
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Cohomotopy versus cohomology

e Cohomology of Y with R-coefficients: [Y, K(R, n)] = H"(Y; R). old

o Cohomotopy of Y with R-coefficients: [Y, SR] = 7 (Y). new

Compare cohomotopy to cohomology of various flavors:
© Rational: S§ vs. H*(—; Q).

Q@ Integral: S} vs. H*(—;Z).

Q Differential: 5% vs. H4(-).
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1. Rationally
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Connection to rational homotopy theory

Definition

The field equations of (a limit) of M-theory on an 11-dimensional manifold Y1! are

d*G4 %G4/\G4
dG, = 0

Q. What topological & geometric information can the above system
provide us?
o Rational structures: Differential forms, rational cohomology, rational
homotopy theory ...
o More refined structures: (twisted) 2-gerbes, (twisted) String structures,
orientations ...

A priori, G4 should be described by a map f: Y — K(Z,4) ~ H*(Y;Z)
Differential refinement G, corresponds to Y — B3U(1)y  ~» H*(Y)

Product structure on Eilenberg-MacLane spaces is cup product, with no
a priori information about trivialization.

Need (Ga, G7) satisfying above & Y — 7.
Need (Gs, G7) satisfying above & Y — 7.
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Rational degree four twists [S]

@ Consider a 3-form C3 with G4 = dC3. We can build a differential with G4 as
de, = d + v3 1 GsA

Observation

The de Rham complex can be twisted by a differential of the form d + vz_,-ile,-/\
provided that Gp; is closed and v»;_1 is Grassmann algebra-valued.

o Form a duality-symmetric graded uniform degree form G = v3 ' G4 + v ' G7.
This expression can now be used to twist the de Rham differential, leading to

de=d+GA=d+v; Gy A+vg "G A .

Observation
The de Rham complex can be twisted by the differential d¢ provided

o {v3,13} = v

(] dG7 = %64 A G4.
The first condition is the M-theory gauge algebra and the second is the equation
of motion.
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Observation (The Sullivan model as the equations of motion [S])

The above equations correspond to the Sullivan DGCA model of the 4-sphere S*
M(S*) = (Alya, y7); dyr = yZ, dya=0)

What about the factor of 37
e Whitehead bracket [i4,t4]w : S” — S* generates Z (Q)-summand in 77(S%).
@ There is an extra symmetry as we are in the dimension of a Hopf fibration,
i.e. o the H-Hopf map and so the generator is o = %[u, talw.

Observation (Quillen model as the M-theory gauge algebra [FSS])

The Sullivan model for $2" is given by the DGCA

M(Szn) = (/\(X2n7X4n—1); dX2n = 07 dX4n_]_ = X2n2) .
Imposing the Maurer-Cartan equation on the degree 1 element
Xon€1—_2n + Xan—1&2_4n We find the Lie bracket dual to the differential is given by

[€1—2n, &1—2n] = 2€2—ap
with all the other brackets zero.

Example (n = 2)

The graded Lie algebra RE_3 @ RE_g with bracket [€_3,&_3] = 26_¢ (Quillen
model) can be identified with the M-theory gauge Lie algebra.

-
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Proposal ([S])

Higher gauge fields in M-theory are cocycles in (rational) cohomotopy.

Ga,Gr
Developed via Rational Homotopy Theory (RHT) in [FSS]: X ( )

[Y, Sg] = 76,(Y') rational cohomotopy.
o Ultimately interested in full Map(Y,S*) > f.
o Geometry + physics = differential cohomotopy [Fss]
e Formulate in stacks/chain complexes.
RHT. Generalized Chern character maps are examples of rationalization

Generalized Chern character L oo-valued
_Snern chamete o : .
cohomology theory differential forms
classifying i 1 Sullivan model
spaces construction
Full Rational
-
homotopy theory rationalization homotopy theory

RHT amenable to computations due to Sullivan models: differential
graded-commutative algebras (dgc-algebras) on a finite number of generating
elements (spanning the rational homotopy groups) subject to differential relations
(enforcing the intended rational cohomology groups). In Sugra: “FDA's. 18 /50



SETNTIES

Rational
super space

Loop
super L~ -algebra

Chevalley-Eilenberg
super dgc-algebras

(“Sullivan models”, “FDA"'s)

General

X X CE(1X)
Super d,1|N d,1|N N avd dyp® = 0
spacetime 4.1l R R[{¢Y}q=1{e }a:O]/ de? = Pray
Eilenberg-MacLane K(R, p+2)
space ~, BPH1st Rlp +1] Rlepi2] / (depra = 0)
=R
Odd-dimensiona ki1 -
sphere SR * 1($2KF1) Rlwagiq] / (dwapyg = 0)
Even-dimensional 2k 2k dway =0
s R s
sphere K = [waro war—al /(o2 Z L A
dyp%= 0
M2-extended 10,132 32 10 o
super spacetime o3 m2brane R{v )32y ()10 h3] | d” = Wy
dhy = L@Tp0) Ae? A &b
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Consequences [FSS|[BMSS]

© Reduction via a circle bundle = new functors formalizing dimensional
reduction via loop (and mapping) spaces with rich structure retained
(topological, geometric, gauge).

@ The rational data of S* on the total space Y1 of a circle bundle
St — Y1 5 X0 |eads exactly to rational data of twisted K-theory on base
X109, — [see Vincent's talk]

© Even if we take flat + rational we can still see a lot of structure: Study of
cocycles in Super-Minkowski space recovers cocycles in rational twisted
K-theory.

@ Furthermore, T-duality can be derived at the level of supercocycles.

20/50



Branes from supercocycles

@ Superspace formulation of 11d supergravity [D'Auria-Fre]: fully
controlled by an iterated pair of invariant super-cocycles p,,, and p,,, on
D =11, N = 1 super Minkowski spacetime.

@ In the super homotopy-theoretic formulation [FSS]:

K(R,3) K(R,3) R—quaternionic Hopf fibration
/J/\ J/ P = (U oy ag ) €™ Ao A €
TR | K(R,7) s A,
ﬁb(um)i l
T2 e (R 4) fy = L (OT syt €™ A €™

which are the super-flux forms to which the M2-brane and M5-brane couple, in(4)
their incarnation as Green-Schwarz-type sigma models [FSS].

e T10.132 = m2prane arises as the homotopy fiber of p,, and is the extended
super Minkowski spacetime or the M2-brane super Lie 3-algebra.
@ 1, = super-form component of magnetic flux sourced by charged M5-branes.

® u,,. = super-form component of electric flux source by charged M2-branes.

So these cocycles are avatars of M-brane charge/flux at the level of super RHTzi/so



Twisted K-theory in type Il from M-theory

@ Type lIA. [BMSS] The double dimensional reduction of rational M-brane
supercocycles (pu,,, f1,;) is indeed the tuple of F1/Dp-brane supercocycles
(Lo oo > Moy s Popss Hing s s ) 1N rational twisted K-theory, which the literature
demands to be the rational image of a cocycle in actual twisted K-theory.

Objects Cohomology theory
M-branes twisted double. dimer-15ior.13|
Cohomotopy > reduction /oxidation
[see talk by Vincent]
twisted
D-branes K-theory

© Type lIB. Characterization of T-duality for circle and sphere bundles using
RHT [FSS].

@ Novel effect: T-duality in super-exceptional spacetimes in 11d M-theory

[FSS][SS].
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2. Integrally
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© Rationally and stably 5(32 is just the Eilenberg-MacLane space K(Q, 4), and
H4(Y11;Q) o~ W?(Yll) ® Q .
@ In the unstable case, schematically, we have
Rational cohomotopy = Rational cohomology + trivialization of the cup square
Integrally and stably we do see new effects.

@ In between full non-abelian cohomotopy and abelian ordinary cohomology sits
stable cohomotopy, represented not by actual spheres, but by their
stabilization to the sphere spectrum.

@ There is a description of the C-field in each one of these flavors [FSS][BMSS].

Cohomology Rational Integral Stable Non-abelian
theory cohomology cohomology cohomotopy cohomotopy
Cocycle H Ga Ga > ¢ ‘ c ‘

The C-field is charge-quantized in cohomotopy theory,

Hypothesis H. non-rationally.

Cancellation of main anomalies of M-theory follows naturally from cohomotopy:
@ C-field charge quantization in twisted cohomotopy implies various
fundamental anomaly cancellation and quantization conditions [FSS].
@ Similar effects for D-branes and orientifolds [SS]. 250



Lifting rational S* to integral S*

o If we start with the rational 4-sphere S#, then how can we lift it to an
“integral” space?

@ The actual 4-sphere S* stands out as not only the most natural but the
finite-dimensional one.

Intes_ral, = 54 (5)
% &

@ Start with integral cohomology as describing the (shifted/twisted) C-field and
then transition to a description in terms of cohomotopy. By representability,
this amounts to lifting

Nonlinear > 54 (6)
prequﬁf‘fﬂ"f‘__.v Lt ¢L
Y i, ——>K(Z,4).

The map ¢ assembles, upon taking homotopy classes, into the integral
cohomology H*(S*;7Z) generated by a fundamental class.

@ Description:

C-field in 7*(Y!!) <= C-field in H*(Y!;Z) + nontrivial conditions.
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Proposition (Integral Postnikov tower for $* [GS])

degree"4
cohqmotopy

fourth"v
lifting

third T
lifting

second

_ lifting

first
lifting

integral
Cohomology

> s4

“qu tg" ,Lz,Pé L4=0
K(Z2,10) ———3 (5%)g ————————> K(Z240,12) =K(Z16,12) X K(Z5,12) x K(Z3,12)

holds
p P11
K(Z24,7) —3= (57)3 K(Zz,11)
fourth obstruction
("Sq*14", Py ra)
K(z2,6) = (5%)2 K(Z24.8) = K(Zg., 8) X K(Z3,8)
R third obstruction
4 &
K(Z2,5) = (5™ K(Z2,7)
200097 second obstruction
Sq? g
———————— (5%)0 = K(z,9) K(Z2, 6)

first obstruction

Note that at the top level the three conditions vanish necessarily on Y11, for

dimension reasons.

v
26 /50



Cohomotopy in deg 4 ~ Integral 4-cohomology + four sets of obstructions.

Pulling back to spacetime Y, where the fundamental class ¢4 pulls back to the field
Gy —In=:1Gy=Ff"1,

where A\ = %pl is the first Spin characteristic class of TY.

(i) First obstruction. S Gs Loe HS(Y;Z,) | .

This follows from anomaly cancellation in M-theory [FSS].

(ii) Second obstruction. () = 0 € H'(Y;Zy)

where a7 is a secondary operation, restricting fiberwise to Sq2L5.
No candidate degree 5 classes.

(iii) Third obstructions. f*(”Sq4L4”) ; = H8(Y128)

o Note that by construction, this implies also that (upon mod 2 reduction)
F*(Sq*a) = Sq*F*(14) = Sq* Gy = G4 U Gy = 0 € HE(Y; Z5) .
o Recall that rationally we have the EOM d * Gf™ = 1 Glo™ A G .
o Coefficients being Zg rather than Z,: Fields reduced modulo 4:
%/\ ~» modding out p; by 4. (Pontrjagin square operation).
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We also have .

@ Mod 3 reductions are shown to play a prominent role in topological
considerations in M-theory [S], where similar conditions, including
P3p3Gs = 0, have been highlighted in the context of Spin K-theory.

(iv) Fourth obstruction. £ (P11) Lo

where Pq1 is a class which fiberwise restricts to Sq4L7.
@ Reminiscent of G4 A Gy.

@ The universal coefficient theorem gives detectable effect for M-theory on
orientable spacetimes.

v) Fifth obstructions.
v) “SqBiq <0, 3 =0, Piiy =0

These obstructions necessarily vanish on Y!!. However on a 12-manifold Z'?, for
analyzing the congruences of the Chern-Simons term in the M-theory action, the
three conditions are nontrivial (but natural to have).
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Proposition (Cohomotopy vs. cohomology for the C-field)

Consider the M-theory (shifted) C-field Gy as an integral cohomology class in
degree four. Then if G, lifts to a cohomotopy class G, € (Y1) the following
obstructions necessarily vanish

()]

6 6 e

©

Sq2Gs = 0 € HO(YL: Z,).

PL(G4) = 0 € H3(Y1L; Z3).

Sq464 = (~;4 U (~;4 =0€ HS(YH;ZQ).

If G4 = 0 and dC3 = 0 can be lifted to an integral class 53, then we also have
Sq*Sqt Gz = 0 € H7(Y!; Zy).

If dG7 = G4 A G4 = 0 and Gy can be lifted to an integral class 57, then we
also have the condition Sq*G; = 0 € H}(Y™; Z,).
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Consequences:

@ Congruences for the action The Chern-Simons term in the action
%/ GAGINAG,.
Yll

Since C3 may not be globally defined in general, one may consider Y!! as the
boundary of a 12-manifold Z2 and analyzes the globally well defined term

: Gy A Gy A Gy (7)
712
[Witten]: usual quantization law of G does not give rise to a well defined
Chern-Simons action, as (7) might fail to be integral by a factor of 6.
Cohomotopy implies the added condition that

éf =0 mod3.
This, with G2 = Sq*(G4) = 0 mod 2, gives result (without Eg-gauge theory).

© The anomaly in the partition function Quantization in cohomotopy yields
the condition Sq?(Gs) = 0 for some integral lift of Gj.
o Implies the vanishing of the DMW anomaly Sq*(Gs) = 0 [FSS].
o Obstruction theory for S* = fields which contribute to the phase are just the

field which lift to the first Postnikov stage in cohomotopy [GS]. ,
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Example (Flux compactification spaces)

Anti-de Sitter space AdS, ~» simply-connected cover K&JS,, of AdS,.

© AdS; x CP? x T2: Supersymmetry without supersymmetry [Duff-Lu-Pope]
and T-duality [Bouwknegt-Evslin-Mathai]. 74(CP?) = Z while
H4(CP% Z) & Z.,

@ AdS; x RP*: M-theory on an orientifold [Witten][Hori]. 7*(RP*) = Z, while
H*(RP*;Z) = 0, indeed shows that cohomotopy detects more.

© AdS, x RP® x T2: 7*(RP®) is cyclic or order 4, i.e. either Z4 or Zy x Z,
while HX(RP®; Z) = Z,.

© AdS,; x CP3 x S': 74(CP3) = Z & Z, while H*(CP3;Z) = Z, so that there
is an extra contribution of Z, present in cohomotopy.

@ For HP?: 74(HP?) = Z while H*(HP?;Z) = 7, and hence no new
contribution,

Q For OP2: 74(0OP?) = Z . while H*(QP?;Z) = 0, signaling a new effect.
Important for bosonic M-theory ([Ramond][S]).

Interpretation and consequences? Work in progress (via Pontrjagin-Thom theory).
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Twisted Cohomotopy theory [FSS]

In degree d — 1 there is a canonical twisting on Riemannian d-manifolds, given by
the unit sphere bundle in the orthogonal tangent bundle:

J-twisted
Cohomotopy theory

Txd(Xd) :

12

continuous section
= twisted cocycle

Ve
/

/

X

_ S(TX9) ———— S971/0(d)

tangent

universal tangent
unit sphere bundle

unit sphere bundle

i’” L Bol(d)

classifying map of
tangent/frame bundle

/ ™ homotopy
~BO(d)

0(d)

/ ™ homotopy
BO(d)

Since the canonical morphism O(d) — Aut(S9~1) is known as the
J-homomorphism, we may call this J-twisted Cohomotopy theory, for short.

32/50



Twisted cohomotopy and anomalies [FSS]

Hypothesis H: The C-field 4-flux & 7-flux forms in M-theory are subject to charge
quantization in J-twisted Cohomotopy cohomology theory in that they are in the
image of the non-abelian Chern character map from J-twisted Cohomotopy theory.

= Cancellation of main anomalies:

Half-integral flux quantization [ Gy + %p1 ] € HY(X,Z)
\—\f—/
=: Gg integral flux
Background charge q(Gs) = Ga (Ga— 3p1)
‘ ~
quadratic form =(Ga)o
DMW-anomaly cancellation Wz (TX) = 0
Integral equation of motion Sq* (Ga) = 0
~—
=8¢
M5-brane anomaly cancellation o2 + M° + ik = o
~—~
chiral  self-dual  bulk
fermion 3-flux inflow
M2-brane tadpole cancellation Mo — + q(54) = Is
~—~ ~—
number of One loop
M2-branes polynomial

Consequences for WZW model associated to M5-brane = [See talk by Domenico]




J-Twisted Cohomotopy and Topological G-Structure

@ For every topological coset space realization G/H of an n-sphere, there is a
canonical homotopy equivalence between the classifying spaces for G-twisted
Cohomotopy and for topological H-structure (i.e., reduction of the structure
group to H), as follows:

coset space structure G-twisted Cohomotopy /

on topological n-sphere topological H-structure
S" ~ G/H = S")G ~ BH.
homeo htpy

(One may think of this as “moving G from numerator on the right to
denominator on the left".)

o Existence of a G-structure is a non-trivial topological condition, so is the
existence of J-twisted Cohomotopy cocycles.

o Notice that this is a special effect of twisted non-abelian generalized
Cohomology: A non-twisted generalized cohomology theory (abelian or
non-abelian) always admits at least one cocycle, namely the trivial or
zero-cocycle. But here for non-abelian J-twisted Cohomotopy theory on
8-manifolds, the existence of any cocycle is a non-trivial topological condition.
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Equivalence for Spin 8-manifolds

classifying space classifying space]
for J-twisted for topological
Cohomotopy theory] Spin(7)-structure
ocycle in . topological .
p-twisted 57//Sp1n(8) Spin(7) > BSpm(?)
Chhomotopy -7 structure —
< _ c s
7 4 7
S //Spm(S) / homotopy ~ 4 homotopy Bi
~ B Spin(7) / /
/ /
X8 — > BSpin(8) X8 — > BSpin(8)
TX® TX®
tangent tangent
spin structure spin structure
classifying space classifying space
for Sp(2) - Sp(1)-twisted for topological
Cohomotopy theory Sp(1) - Sp(1)-structure
cocycle i topological
Sp(2) - Sp(1)-tisted S7/Sp(2) - Sp(1) sp(}) - Se(2) BSp(1) - Sp(1)
Cohomotopy theory - > stfucture g -
7 .7 7
-sp(1 y _
i /éSP(2) SP(I) = 7 homotopy ~ y homotopy Bi
=~ BSp(1) - Sp(1) /
/ /
. 8 .
X8 — > BSpin(8 X8 — > BSpin(8)
TX® pin(8) Tx®
tangent tangent
spin structure spin structure 35 /50




Stable vs. unstable

The quaternionic Hopf fibration.

quaternionic Hopf fibration

i
S 7 ~ S (HZ) H Pl ~ 54 ’
unit sphere (CI1 7q2) g [ql 3‘72] quat_erni_onic
in quaternionic projective
2-space 1-space

which represents a generator of the non-torsion subgroup in the 4-Cohomotopy of
the 7-sphere, as shown on the left here:

non-abelian/unstable

abelian/stable
Cohomotopy group

stabilization Cohomotopy group

h; e h tabilized
quaternionic [57 — 54] 7T4(57) —_—> 84(57) Z > [57 — 54] q:a:erni:nic
Hopf fibration Hopf fibration
non-torsion 1 O c Z X Z Z E) 1 torsion
eeermon (1,0) 2 o e aay L2 ceneraror

@ So composition with the quaternionic Hopf fibration can be viewed as a
transformation that translates deg-7 to deg-4 Cohomotopy classes:

o 57 7-Cohomotopy 7T7(X)
c_~ h
P H reflects into ()
—
XZ - - _s 64 4-Cohomotopy 774(X)

(=)« (<) 36 /50



Proposition (Differential form data underlying twisted Cohomotopy)

Let X be a simply connected smooth manifold and 7 : X — BO(n + 1) a twisting
for Cohomotopy in degree n. Let V.. be any connection on the real vector bundle

V classified by 7 with Euler form Xox12(V;) (see [Mathai-Quillen]).
(i) f n=2k+1is odd n > 3: a cocycle defining a class in the rational

T-twisted Cohomotopy of X is equivalently given by
75(X) =~ {Gakr1 | d Gokyr = X21<+2(VT)}/~ ~

(ii) If n =2k is even, n > 2: a cocycle defining a class in the rational 7-twisted

Cohomotopy of X is given by a pair of differential forms Gy, € Q2¢(X) and
Gur—1 € Q4k—1(X) such that
dGy, = 0; T Gok = X0k (V7)
dGak—1 = —Gok N\ Goy + %Pk(VTL
where p, (V) is the k-th Pontrjagin form of V., m: E — X is the unit sphere
bundle over X associated with 7, 7: E — BO(n) classifies the vector bundle V on

E defined by the splitting 7*V = Rg @ V associated with the tautological section
of 7V over E, and V: is the induced connection on V. That is,

dGy =0, 7 Gy= éxzk(vﬁ}

mo(X) = { (Gak, Gak—1
Q {( ) ’ d Gar—1 = —Goi N Go + %pk(v"')
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3. Differentially
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Differential refinement

o Refine the topological lift (5) to a geometric lift at the level of smooth stacks

of the form
5t (8)
Differential cohomotopy, .
prequantum and geome_'_:_r_ig_.---""
Y Differential cocycle, B3 U 1
quantum and geometric ( )V .

where S% is the differential refinement of the 4-sphere and B3U(1)y is the
smooth stack of 3-bundles with connections

@ This would require a differential refinement of the Postnikov tower which uses
refinement of cohomology operations, primary (such as Steenrod operations)
and secondary (such as Massey products) [GS].

39 /50



Differential cohomotopy [Fiorenza-S.-Schreiber]

o H-Hopf fibration: §3 — §7 — S§* — BSU(2) -2 K(Z, 4).

o Rationalize: §3 — SJ, — 53 — (BS*)g which is equivalent to

@ Rational homotopy of spaces can be modelled using L..-algebras.

@ The Eilenberg-MacLane spaces K(Q, n) = B"Q can be modelled using
algebras via chain complexes: b"Q = Q[n].

@ Lie 7- algebra s* is defined by CE(s*) = R|[gy, g7] with g in degree k and
with the differential defined by dgs = 0, dg7 = g4 A ga.

@ Has a natural structure of infinitesimal R[2]-quotient of R[6], i.e., there exists
a natural homotopy fiber sequence of L..-algebras

R[6] — s*

P
g - R[. ©)

The system (54, 57) forms a cocycle in differential cohomotopy.
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Differential refinements: B3U(1)y vs. S*

@ Let 5% be the Lie 7-algebra whose corresponding Chevellay-Eilenberg algebra
is the exterior algebra on generators g4 and g7 with relations

dgs =0, dgr = gs N ga -

@ As a de Rham model for flat 1-forms with values in S* we take the sheaf on
the site of Cartesian spaces given by the assignment

Q(—;s*): Ur—— homdgcAlg(CE(54),Q*(U)) ,

for each Cartesian space U = R". (The homotopy type of Q}(—;s*) can be
computed via the Sullivan construction as the R-local 4-sphere S¢).
@ Then pulling back along the canonical map $* — S#, we get a smooth stack
i“ — Q5%
b

(L JE—

Definition (Differential unstable cohomotopy)

For a smooth manifold X, let i(X) denote its embedding as a smooth stacks via
its sheaf of smooth plots. Then the differential cohomotopy of X in degree 4 is
defined as the pointed set 7, (X) := moMap(i(X), S*) where the maps on the
right are those of smooth stacks. 41/50



Differential cohomotopy: stably

@ Stably, $* has only torsion groups in higher degrees and hence the canonical
map S* — K(R,4) is a stable R-local equivalence.

o Geometrically, the realification if modeled by closed 4-forms Q4(—).

@ Stable differential cohomotopy in degree 4 fits into a pullback square

TS5t H(7=004 ()

i |

yoSt — > 3V4HR.

where Q4+*(—) denotes the de Rham complex, shifted so that Q% is in degree
zero, and 7=0 truncates the complex in degree zero so that the complex is
concentrated in negative degrees. The functor H denotes the
Eilenberg-MacLane functor which turns a chain complex into a spectrum.

Definition (Differential stable cohomotopy)

Let X be a smooth manifold with i(X) its associated smooth stack. The stable
differential cohomotopy group of X is defined as

F4(X) := moMap(i(X); (£ 54)o).

S
where the subscript 0 denotes the deg 0 component of the sheaf of spectra ¥°54.

/
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Geometric cycles

Definition (Geometric cohomotopy cocycles [GS])

If X is a smooth manifold, a morphism ¢ : X — S*4 can be identified with a triple

(c, h,w) where

@ c: X — S*isa cocycle in ordinary cohomotopy,

@ w:CE(s*) — Q*(X) is a DGA morphism, determined by specifying forms wy
and w; on M satisfying dw; = w? and dws = 0,

@ and his a homotopy interpolating between the rational cocycle represented

by the form data and the rationalization of the classifying map ¢ : X — S*.
Thus, h exhibits a sort of de Rham theorem for cohomotopy.
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Proposition (Differential refinement of Postnikov tower of the sphere)

K(Zys,11) ———— > (5*%),

K(Z24 % Z3, 10) (5% K(Z1s,12)
K(Z2 x Z2,9) (5%)s K(Z24x Z3,11)
K(Z2xZ2,8) (5%)a K(Z2%Z2,10)
K(Z12,7)x K(Z,7) (5%)s K(Z2 x Z2,9)
K(Zz,6) (54 — % K(Zu,8) x B7U(1)v
K(Za2,5) (5% orl K(Z2,7)

Sa®p,

(5% = B3U(1)y —2__ K(z/2,6)

where we have identified the first few obstructions.
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Proposition (Differential cohomotopy vs. cohomology for the C-field)

Consider the differentially refined M-theory (shifted) C-field Gs as an integral

cohomology class in degree four. Then if @4 lifts to a cohomotopy class
Ga € (Y1) the following obstructions necessarily vanish

()]

6 e e

©

Sq21(Gs) = 0 € HO(Y1L; Zy).
PLI(G,) = 0 € H¥(YL; Zs3).
Sq4l(64) = /(64 Ups 64) =0€ Hs(yll;Zz).

If 64 =0 and C3f°rm is quantized, with differential refinement 63, then we also

have Sq°Sq'/(Cs) = 0 € H7(Y; Zy).
If dGlorm = Gform A Gfom = 0 and GI™ is quantized, with differential

refinement Gy, then we also have the condition Sq*/(G;) = 0 € H(Y1L; 7Zy).

Remark (Obstruction in M-theory via higher bundles with connections)

Deligne-Beilinson cup product in M-theory 64 Ubp 54 gives a 7-bundle with

connection form locally given by Cl™ A Gf™™ [FSS]. From identification of the

k-invariant at 2nd stage (the DB square): to lift past the 2nd stage in the
Postnikov tower for 5, this connection must be globally defined. In terms of

differential cohomology, (CfDrm A GRom) = G4 Ups G4 , where
a: Q"(Y) — H8(Y1) is the canonical map.
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Example (Differential cohomotopy of flux compactification spaces)

LES in stable cohomotopy

de
oo ——73(X) £

Q%(X) 7H(X) T3 (X)

allows to compute some examples.

@ AdS; x RP* 74(AdS; x RP*) = F4(AdS; x RP*).

@ AdS, x CP? 74(AdS, x CP?) = H*(AdS, x CP?).

Q@ AdS, x CP? x T2 7?54(&\1/&1 x CP? x T?) = lfl“(&T& x CP? x T?).
Q

AdS, x RP5 x T2 7*(RP®) is order 4, either Zy or Zy x Zy, while
H*(RP®;Z) = Z. Also 73(RP®) is finite. We therefore have a short exact
sequence

0—— Q3(RP5) —_— %\4(RP5) —_— 7T4(RP5) —0.

Since m(IRP°®) is generated by gsn4, with 74 : S> — S* the two-fold
suspension of the Hopf map, the induced map on H* necessarily vanishes.
Hence, in this case, differential cohomotopy yields considerably different
information than ordinary differential cohomology.
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Back to @

Cohomotopy = branes and gauge theory
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Differential coh -brane gauge theories

Zoom in beyond foundational/structural M-theoretic considerations [SS]:

@ A differential refinement of Cohomotopy cohomology theory is given by
un-ordered configuration spaces of points.

@ The fiber product of such differentially refined Cohomotopy cocycle spaces
describing D6 1. D8-brane intersections is homotopy-equivalent to the ordered
configuration space of points in the transversal space.

@ The higher observables on this moduli space are equivalently weight systems
on horizontal chord diagrams.

Differential
Cohomotopy cohomology refinement Configuration spaces
e . Model
theory of points
Hypothesis H Fiber product éCOhOmology
Intersecting branes ‘ Weight systems on
rersectne Observables Chord diagrams
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Combining the above seemingly distinct mathematical areas reflect a multitude of
effects expected on brane intersections in string theory. So aside from structural
utility for M-theory, Hypothesis H implies:

M-theoretic observables on D6 L D8-configurations (cf. parametrized).
Chan-Paton observables.

String topology operations.

Multi-trace observables of BMN matrix model.

Hanany-Witten states.

BLG 3-Algebra observables.

Bulk Wilson loop observables. [See talk by Urs]
Single-trace observables

of SYK & BMN model.

Fuzzy funnel observables.

Supersymmetric indices.

't Hooft string amplitudes.

Top-down M-theory via Hypothesis H: knowledge about gauge field theory and
perturbative string theory is not used in deriving the algebras of observables of
M-theory, but only to interpret them.
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Thank you!
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