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(1, i, i + 1,−1) respectively under ρ2i. We refer to appendix A for the details of the

geometry.

One can now easily seek for the detecting 4-cycles in analogy with the analysis done

for the Sp(N) singularities in sec. 3.2, by imposing that:

D ≡ P D̂ +QD̃ (4.6)

a2k+2 , kN ≡ P â2k+2 , kN +Q ã2k+2 , kN k = 1, 2 , (4.7)

and a2 = a2,1 D . The ansatz makes the gauge symmetry enhance on {P = Q = 0} from

SU(2N) to SU(2N + 1) along the whole matter curve. The enhancement manifest itself

as the splitting into two of the node E2N−1 �→ E(1)
2N−1 ∪ E(2)

2N−1. Such transition is shown

in fig. 3 for the N = 2 case.
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Figure 3: This shows the transition from the extended Dynkin diagram of SU(4) (left) to

the extended Dynkin diagram of SU(5) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. The fifth D-brane of the SU(5) stack is given by

the Whitney-type brane. The orange nodes are the fibers of the 4-cycles on which it is

possible to detect the Freed-Witten anomaly.
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and a2 = a2,1 D . The ansatz makes the gauge symmetry enhance on {P = Q = 0} from

SU(2N) to SU(2N + 1) along the whole matter curve. The enhancement manifest itself

as the splitting into two of the node E2N−1 �→ E(1)
2N−1 ∪ E(2)

2N−1. Such transition is shown

in fig. 3 for the N = 2 case.

!"

!# !$ !%

## %%

$$ &&

Figure 3: This shows the transition from the extended Dynkin diagram of SU(4) (left) to

the extended Dynkin diagram of SU(5) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. The fifth D-brane of the SU(5) stack is given by

the Whitney-type brane. The orange nodes are the fibers of the 4-cycles on which it is

possible to detect the Freed-Witten anomaly.

19

D6-brane

S1-fibration over 2-4 string M2

Extended node

Cartan nodes

However, these 4-cycles are NOT able to detect the M2 anomaly! 



The SU(2N) case

Loops of i-j IIA open strings   

Loops of boundaries on D6i and D6j C(2)

lift

Loops of M2s  =  En fibered over C(2) C(4)

Resolved fiber over SU(4) locus Affine Dynkin diagram of SU(4)

(1, i, i + 1,−1) respectively under ρ2i. We refer to appendix A for the details of the

geometry.

One can now easily seek for the detecting 4-cycles in analogy with the analysis done

for the Sp(N) singularities in sec. 3.2, by imposing that:

D ≡ P D̂ +QD̃ (4.6)
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a2k+2 , kN ≡ P â2k+2 , kN +Q ã2k+2 , kN k = 1, 2 , (4.7)

and a2 = a2,1 D . The ansatz makes the gauge symmetry enhance on {P = Q = 0} from

SU(2N) to SU(2N + 1) along the whole matter curve. The enhancement manifest itself

as the splitting into two of the node E2N−1 �→ E(1)
2N−1 ∪ E(2)

2N−1. Such transition is shown

in fig. 3 for the N = 2 case.

!"

!# !$

## $$

%% &&''

!
%

(#)
!
%

($)

Figure 3: This shows the transition from the extended Dynkin diagram of SU(4) (left) to

the extended Dynkin diagram of SU(5) (right) happening along the curve {P = Q = 0}
due to the singularity enhancement. The fifth D-brane of the SU(5) stack is given by

the Whitney-type brane. The orange nodes are the fibers of the 4-cycles on which it is

possible to detect the Freed-Witten anomaly.

19

BUT C(2) ≠ S ∩ W as W is anomaly free !



Strategy: Use a node interpolating between a brane of the stack and a fluxless brane

Natural candidate: O(1) invariant D7-brane  W  with “Whitney Umbrella” shape

Such nodes pop up along the “fundamental-matter” curve  S ∩ W ⊂ CY3

(1, i, i + 1,−1) respectively under ρ2i. We refer to appendix A for the details of the

geometry.

One can now easily seek for the detecting 4-cycles in analogy with the analysis done

for the Sp(N) singularities in sec. 3.2, by imposing that:

D ≡ P D̂ +QD̃ (4.6)
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This argument suggests that we should constrain the complex structure of the blown-

up fourfold, which is given in eq. (A.4), in such a way that the curve {P = Q = 0} ⊂ B3

is automatically contained in both the D-brane stack and the orientifold plane. Therefore,

we impose the following conditions

D ≡ P D̂ +QD̃

a1 ≡ P â1 +Q ã1 ,

(4.15)

since the polynomial defining the O7-plane is

O7 : h = a
2
1 + 4a2,1D . (4.16)

Since the curve {P = Q = 0} is a branch of the intersection between the non-abelian stack

and the O-plane, we experience on it the gauge symmetry enhancement from SU(2N+1)
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This procedure works also for the SU(2N) series and lends better itself to treating 
the “U(1)-restricted” cases.
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