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B Kahler

(p,q)7-brane: divisor on which pS7, + ¢S} collapses

Collision of 7-branes: singularities of CY4 & non-abelian gauge symmetry

M/F II1B 4D Lorentz invariance

7/-brane flux l

\ bulk fluxes G4 must have one and only one leg along T?

Fluxes: Gy
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Same procedure applies for the Sp(N) series
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1 i Orientifold plane
The new nodes pop up along the
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3 5 4

Again: Constrain CY4 complex structure such that S n O7 is reducible

and choose C® to be one component

/ Affine Dynkin diagram of SO(10)

The new integral, holomorphic 4-cycles are
the orange nodes fibered over C®?

@ |
‘ Result for SU2N+1) N=>2 / c2(CYy) = / S
M) c@ |

Interpretation: C™ lifts loops of closed, non-orientable strings intersecting S in C®?)

This procedure works also for the SU(2N) series and lends better itself to treating
the “U(|)-restricted” cases.
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The outlined picture of the lift may be useful for several consistency checks

=) Make sure that the M2 anomaly leads to well-defined chiral indices

Sen’s limit of SU(N) F-theory configurations leads to conifold singularities in CY3
R.Donagi, M.Wijnholt 09

=) An appropriate treatment of them is crucial for topological matters

The class of G4 | ms must be pure torsion E.Witten "99

=P Analyzing this condition using M/F theory duality may be relevant for
the physics of the corresponding type IIB instantons



