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Abstract

The anti-de Sitter/ Conformal Field theory correspondence provides a unique novel perspective on critical

phenomena at second order quantum phase transitions in systems with spatial dimensions d > 1. The first

half of these lectures will provide technical background to apply the so called ”holographic” techniques of

the correspondence. The second half discusses the application to quantum phase transitions in condensed

matter: how spontaneous symmetry breaking in a quantum critical system is similar and different to the

standard case, the notion of semi-local quantum liquids and their connection to non-Fermi liquids and

strange metals.

There are also many lecture notes available. A sample of references are:

• J. Erdmenger, Introduction to gauge gravity duality, Chapters 1,2,4,5,6.

• S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.

26, 224002 (2009).

• N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase tran-
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Lecture I

1. CONTEXT AND BACKGROUND

In QFT (merging of QM & SR) particles are localized excitations of fields. Localization

=Assumes weak coupling. In strong coupling regime, wave functions start to overlap until

indistinguishable. Point: there should be other (non-perturbative) excitations that correctly

describe the physics in this regime. Can we identify them? If so we have an example of a

duality. The difficult part is the identification. There are no hard and fast rules to do so. In

some cases we know and we will illustrate this with a simple example of electric-magnetic

duality in d = 3+1 dimensions. It is extremely simple as opposed to the topic of this course,

AdS/CFT, which will be technically very involved. At its heart philosophically AdS/CFT

is just another duality, however.

Example: Electromagnetic duality

S[A] =

∫
d4x− 1

4g2
F 2
µν (1.1)

Bianchi identity

∂[µFνρ] = 0 ⇒ Fνρ = ∂[νAρ] (1.2)

EOM

∂µF
µρ = Jρelectric (1.3)

Introduce magnetic charge

∂[µFνρ] = εµνρσJ
σ
magnetic (1.4)

Symmetric. Really dual, means one can also think of Bianchi as e.o.m. Can be made

manifest for J = 0 by using a Lagrange multiplier

S[F, Ã] =

∫
d4x− 1

4g2
F 2
µν − Ãµεµνρσ∂νF ρσ (1.5)

Note now Fµν is the field. Integrating out (i.e. solving the e.o.m. for) the Lagrange multiplier

Ãµ gives us back the original action.

∂S

∂Ãµ
= εµνρσ∂

νF ρσ = 0 ⇒ Fνρ = ∂[νAρ] (1.6)
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However, we can also integrate out Fµν . It is now algebraic. Completing squares

S[Ã] =

∫
− 1

4g2
F 2
µν + ∂νÃµεµνρσ∂

νF ρσ (1.7)

=

∫
− 1

4g2
(Fµν − g2εµνρσ∂

ρÃσ)2 +
g2

4
εµνρσ(pa[ρÃσ])2 =

∫
−g

2

4
(∂[ρÃσ])

2 (1.8)

where we used that εµνρσεαβγδη
ργησδ = −2(ηµαηνβ − ηµβηνα). If we define g̃ = 1/g this is

the original action. Note however that perturbation expansion in g is the strong-coupling

expansion in g̃ and vice versa. This is the simplest example of a (strong-weak) duality.

AdS/CFT is just an incredible more complicated version of the same story, where the dual

theory is now given by a quantum-gravitational string theory in a curved space with one extra

spatial dimension. Nevertheless a precise dictionary exists between these higher-dimensional

gravitational theories and the original CFT. That dictionary and some of its uses is the goal

of these lectures.

2. ANTI-DE-SITTER SPACE

The AdS in AdS/CFT stands for anti-de-Sitter space. Here we give a brief introduction

to this spacetime. As always in physics, the best way to classify spacetimes is through

their symmetries. For spacetimes symmetries are the isometries of the spacetime manifold

i.e. coordinate transformations that leave the metric invariant. To each such symmetry

we can therefore associate a distinct Killing vector. Recall that under general coordinate

transformations δxν = ξν(x) the metric transforms as

δgµν = D(µξν) (2.1)

A Killing vector is a vector such that D(µξν) = 0.

The simplest spacetimes are those with the most symmetries. These will have the most

Killing vectors. Since a d-dimensional symmetric metric has d(d + 1)/2 components, there

can be at most d(d+1)/2 independent Killing equations and thus at most d(d+1)/2 Killing

vectors. Spacetimes with such amount of Killing vectors are called maximally symmetric.

These Killing vectors will form a group. The simplest group that contains this number of

generators of SO(d + 1), but this would not account for the Lorentzian signature. It turns

out there are only three distinct maximally symmetric spacetimes. They are classified by

the group formed by their Killing vectors. They are
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Group Spacetime

SO(d, 1) d-dimensional de Sitter space

SO(d− 2, 2) d-dimensional anti-de Sitter space

ISO(d− 1, 1) = SO(d− 1, 1) ∝ Translationsd d-dimensional Minkowski space

The simplicity of maximally symmetric spacetimes reflects through in their curvature. Since

essentially every point is similar to every other point the curvature cannot have a derivative

dependence. Thus1

Rµνρσ = c(gµρgνσ − gµσgνρ) (2.2)

Rµν = c(d− 1)gµν (2.3)

R = cd(d− 1) (2.4)

with c a constant. All these spacetimes are in fact solutions to the vacuum dynamical

Einstein equations supplemented with a cosmological constant

Rµν −
1

2
gµν(R− 2Λ) = 8πGTµν (2.5)

In vacuum Tµν = 0, then a contraction with the metric gives

R =
2d

d− 2
Λ (2.6)

and thus c = 2Λ/(d− 1)(d− 2).

It turns out that Λ > 0 corresponds to de Sitter space, Λ = 0 to Minkowski space,

and Λ < 0 to anti-de-Sitter space. In other words, anti-de-Sitter space is the maximally

symmetric space that is the unique solution to the vacuum Einstein equations with a negative

cosmological constant.

This may still not say much, but you are in fact very familiar with maximally symmetric

Euclidean spaces. The maximally symmetric Euclidean spaces are the sphere (Λ > 0),

flat space (Λ = 0), and the hyperboloid (Λ < 0). de Sitter space is thus the Lorentzian

generalization of the sphere and anti-de Sitter space is the Lorentzian generalization of the

hyperboloid. Just as the d-dimensional sphere is defined as the solution to the constraint

X2
1 +X2

2 + . . .+X2
d+1 = R2 (2.7)

1 We are using conventions where [Dµ, Dν ]V ρ = R ρ
µν σV

σ and gµν is mostly plus.
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. and the hyperboloid is defined as

−X2
−1 +X2

1 + . . .+X2
d = −R2 (2.8)

d-dimensional anti-de Sitter space is defined as the

−X2
−1 −X2

0 +X2
1 +X2

d−1 = −R2 (2.9)

We immediately see the SO(d− 1, 2) symmetry. A solution to this defining relation is

X1 = R+ cos θ1 (2.10)

X2 = R+ sin θ1 cos θ2 (2.11)

... = (2.12)

Xd−2 = R+ sin θ1 sin θ2 . . . cos θd−2 (2.13)

Xd−1 = R+ sin θ1 sin θ2 . . . sin θd−2 (2.14)

X0 = R− cos t (2.15)

X−1 = R− sin t (2.16)

where R2
+ = R2 sinh2 τ, R2

− = R2 cosh2 τ . The induced metric one gets is

ds2 = −dX2
−1 − dX2

0 + dX2
1 + . . . dX2

d−1 (2.17)

= R2(dτ 2 − cosh2 τdt2 + sinh2 τdΩ2
d−2) (2.18)

where dΩ2
d−2 is the metric on the d− 2-dimensional sphere Sd−2. Anti-de-Sitter space is the

universal cover of this, where we unroll the periodic coordinate t. This coordinate system

is quite special because it is a global coordinate system. It covers the whole of AdS (recall

that generically one needs multiple coordinate patches to cover the whole space).

Now consider the coordinate transformation τ = arcsinh tan ρ with 0 ≤ ρ ≤ π/2. This

maps the hyperbolic direction τ to a finite range. In these coordinates the metric is

ds2 =
R2

cos2 ρ

(
dρ2 − dt2 + sin2 ρdΩ2

d−2

)
(2.19)

This metric allows us to understand the topology of AdS. For this we can ignore the overall

conformal factor R2/ cos2 ρ. The topologically equivalent spacetime

ds2
teq ∼

(
dρ2 − dt2 + sin2 ρdΩ2

d−2

)
(2.20)
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To be filled

FIG. 1: Topology of anti-de Sitter space.

describes a cylinder with radial direction ρ, longitudinal direction t and each point in (ρ, t)

is an Sd−2. See Fig.

We thus see that AdS has a (conformal) boundary at ρ = π/2. Note that in physical

units this is an infinite distance away. This conformal boundary will play an important role

in AdS/CFT.

There is a third convenient coordinate system for AdS. See exercises that it indeed solves

the defining relation (2.9)

ds2 =
R2

z2

(
dz2 − dt2 + dx2

1 + . . .+ dx2
d−2

)
(2.21)

This coordinate system, the so-called Poincaré patch, covers only half of AdS. Relating it

back to the global coordinate system through the defining relation (2.9) one can show that

it covers the diamond depicted in Fig 1.

For a review see [106, 107].

3. EXERCISES

Problem 1:

In lecture we showed electromagnetic duality in 3 + 1 dimensions. In 2 + 1 dimensions the

exact same exercise is called particle-vortex or Abelian-Higgs duality. Starting from a free

U(1) gauge theory in 2 + 1 dimensions perform the same steps to dualize the theory. What

is the theory you end up with, i.e. what type of theory is the vortex/Higgs theory?

Problem 2:

a. In lecture we claimed that the spacetime defined the embedding

−X2
−1 −X2

0 +X2
1 + . . .+X2

d−1 = −R2 (3.1)
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into RRd−1,2 can be chosen to have local coordinates

X1 = R+ cos θ1 (3.2)

X2 = R+ sin θ1 cos θ2 (3.3)

... = (3.4)

Xd−2 = R+ sin θ1 sin θ2 . . . cos θd−2 (3.5)

Xd−1 = R+ sin θ1 sin θ2 . . . sin θd−2 (3.6)

X0 = R− cos t (3.7)

X−1 = R− sin t (3.8)

where R2
+ = R2 sinh2 τ, R2

− = R2 cosh2 τ gives the global AdS metric. Verify this.

b. There is another well-known choice to solve the AdS constraint as as an embedding.

It is given by

Xi = Rxi/z i = 0, . . . , d− 2 (3.9)

Xd−1 +X−1 =
1

z
(x2

0 − x2
1 − . . .− x2

d−2 − z2) (3.10)

Xd−1 −X−1 = R2 1

z
(3.11)

What does the AdS metric look like for this choice?

Problem 3: In lecture we computed the two-point function of a scalar conformal operator

from AdS using the AdS/CFT prescription. Do the same for a vector operator. There are a

number of subleties. (1) As mentioned, in AdS the vector field is dynamical. The only way

such a field makes sense is as a gauge field. We must therefore fix the gauge the solve for

the Green’s function. (2) Because of gauge invariance the vector field is massless. This will

make the solution a bit simpler.

a. Write down the equation of motion for a vector field in an AdSd+1 background.

b. Verify that the bulk-boundary propagator

Gµν =
zd−2

(z2 + xµxµ)d−1
ηµν (3.12)

G0µ = − zd−3xµ
(z2 + xµxµ)d−1

(3.13)
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with all other components vanishing solves the equation of motion. Show also that it

reduces to a delta-function on the boundary.

c. Consider an arbitrary boundary source aµ(xν) and its corresponding bulk solution

AM =
∫
GMνa

ν . Substitute this into the bulk action and use the AdS/CFT dictionary

to determine the two-point function of conformal vector fields.

d. Verify that these conformal vector fields are conserved (global) currents.

A brief concluding comment. The gauge choice we have used here is not a standard one:

it is one where the Green’s function in position space is particularly simple. In more in-

volved AdS/CFT computations, especially numerical, one normally chooses the where the

components along the extra AdS direction vanish, i.e. Az = 0.

4. THE ADS/CFT CORRESPONDENCE

4.1. CFT brush up

A CFTd is a special relativistic d-dimensional QFT which is invariant under SO(d, 2)

instead of just the Lorentz group SO(d− 1, 1).2 Now think of renormalization of a standard

QFT. This is a very deep statement that in the real world microscopic physics resonates

through for macroscopic physics, but in a very predictable way that does not depend on the

details of the microscopic model. A generic QFT is therefore scale dependent. CFTs by

definition, however, are scale independent. This must mean that CFTs do not renormalize:

all beta-functions and anomalous dimensions must be exactly zero.

4.2. AdS/CFT

〈e
∫
ddxJ(x)O(x)〉CFT =

∫
Dφ e−SAdS

∣∣∣∣
φ(x,∂AdS)=J(x)

. (4.1)

2 Non-relativistic CFTs also exist, but we will not consider them here.
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boundary: field theory bulk: gravity

energy momentum tensor T ab metric field gab

global internal symmetry current Ja Maxwell field Aa

order parameter/scalar operator Ob scalar field φ

fermionic operator Of Dirac field ψ

spin/charge of the operator spin/charge of the field

conformal dimension of the operator mass of the field

source of the operator boundary value of the field (leading part)

VEV of the operator boundary value of radial momentum of the field

(subleading part)

(Global aspects)

global spacetime symmetry local isometry

temperature Hawking temperature

chemical potential/charge density boundary values of the gauge potential

phase transition Instability of black holes

TABLE I: The basic dictionary for AdS/CFT correspondance.

Lecture II

5. THE PHYSICS OF ADS/CFT CORRELATION FUNCTIONS

Let us now show how the GKPW rule precisely validates our ad hoc construction Eq.(??)

that the two-point correlation function can be read off from the near-boundary asymptotics

of AdS waves. The GKPW rule instructs us to consider the on-shell action with the boundary

value of the field equal to the source in the dual field theory. For the simple scalar theory

the action can be written in terms of a “bulk” and “boundary” contribution as,

S = −1

2

∫
AdS

dD+1x
√
−gφ(�+m2)φ− 1

2

∮
∂AdS

dDξ
√
−hφ∂nφ (5.1)

Here h is the determinant of the induced metric hab = gµν∂aξ
µ∂bξ

ν on the boundary which

has the local coordinates ξa(x). Only the bulk part contributes to the equations of motion.

On-shell, i.e. when we substitute for φ(x) a solution for to the equation of motion, the
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“bulk” term integrated over the whole of the AdS space vanishes. We already learned that

this solution — i.e. with appropriate boundary conditions in the interior — has a universal

asymptotic behavior near the boundary z = 0 as,

φsol(ω, k, z) = A(ω, k)z∆− +B(ω, k)z∆+ + . . . . (5.2)

According to GKPW the boundary value of φ(ω, k, z) is proportional to the source J . A

priori we are now facing a problem since ∆− will be generically negative and thus the

boundary value of φ is not well defined. However, we know what the meaning of this

divergence is in the boundary field theory. Approaching the boundary is like increasing

the renormalization scale to infinity and here one typically encounters UV divergences. In

other words, the theory has to be regulated and this can be done in a particularly elegant

way using the bulk language. GKPW proposed that one should compute at an infinitesimal

distance z = ε away from the formal boundary, and then modify the theory such that one

can take an appropriate limit ε→ 0. Let’s do so. The “regulated” on-shell action equals

Son-shell(ε) =
1

2

∮
z=ε

dωdD−1k

(2π)D
z−D+1

(
∆−A

2z2∆−−1 + (∆− + ∆+)ABz∆−+∆+−1 + . . .
)
. (5.3)

The first term is formally divergent. The key to making the action well-defined is that adding

an arbitrary boundary term to the action never changes the equation of motion. However,

such an extra boundary term can be used to remove by hand the UV divergence. Adding a

boundary counterterm of the form

Scounter(ε) = −1

2
∆−

∮
z=ε

dωdD−1k

(2π)D

√
−hφ2

= −1

2
∆−

∮
z=ε

dωdD−1k

(2π)D
z−D

(
A2z2∆− + 2ABz∆++∆− + . . .

)
(5.4)

yields in combination with Eq. (5.3),

Son-shell(ε) + Scounter(ε) =
1

2

∮
z=ε

dωdD−1k

(2π)D
z−D

(
(D − 2∆−)ABzD + . . .

)
. (5.5)

This is now all finite. We can now equate the leading behavior (A coefficient) of the φsol with

the source J . Given that the above should coincide with the combination iJ〈O〉 in the field

theory, by taking the single derivative with respect to J this yields the expectation value

〈O〉 of the field theory operator sourced by J in AdS/CFT in the presence of the source. It

is given by

〈O(ω, k)〉J = 2νB(ω, k) (5.6)
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where we used ∆± = D
2
± ν. Thus we see that equating the leading near-boundary behavior

A(ω, k) of the solution φsol with the source implies that the subleading near-boundary behavior

B(ω, k) is the corresponding response.

One can similarly obtain the two-point correlation function by taking an additional deriva-

tive w.r.t. J and setting it to vanish. Linear response theory tells us already that B(ω, k)

ought to be proportional to A(ω, k) and the proportionality is precisely the CFT Green’s

function,

〈O(−ω,−k)O(ω, k)〉 = 2ν
B(ω, k)

A(ω, k)
(5.7)

and we have demonstrated that the propagator rule Eq.(??) is indeed a consequence of the

fundamental GKPW rule.

One can actually check that the GKPW rule encodes linear response theory by itself

in a correct fashion. For this one has to realize that one in essence just needs to solve a

simple Dirichlet boundary value problem. Recall that the equation of motion for φ has two

independent solutions. Let us denote the solution with A = 0 as φB with boundary behavior

φB(z) = Bz∆+(1 +
∑

n cnz
n). This is the appropriate Dirichlet solution that vanishes at the

boundary, and let us denote as φint(z) the solution with boundary behavior determined by

regularity in the interior of AdS as in Eq. (??). The Dirichlet AdS Green’s function obeying

limz→0 GAdS = 0 thus equals

GAdS(z, z′) =
φB(z)φint(z

′)θ(z − z′) + φint(z)φB(z′)θ(z′ − z)

φint∂φB − φB∂φint
. (5.8)

The Wronskian in the denominator assures the correct normalization and is independent of

z, i.e. it may be evaluated for any preferred z. Then for a boundary source J(ω, k) the

solution to the equation of motion is

φsol(ω1, k1, z) = lim
ε→0

∮
z′=ε

dωdD−1k

(2π)D
∂z′G(z, ω1, k1; z′, ω, k)J(ω, k)

= lim
ε→0

∫
dωdD−1k

(2π)D
∂φB(ε)φint(z)

φint∂φB − φB∂φint
J(ω, k). (5.9)

By construction this obeys limz→0 φsol(ω, k, z) = J(ω, k), which can be seen by noting that

the Wronskian reduces to φint∂φB for z → 0. The normal derivative of the solution follows
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straightforwardly

∂zφsol(ω1, k1, z) = lim
ε→0

∮
z′=ε

dωdD−1k

(2π)D
∂z∂

′
zG(z, z′)J(ω, k)

= lim
ε→0

∫
dωdD−1k

(2π)D
∂φB(ε)∂φint(z)

φint(ε)∂φB(ε)
J(ω, k) = lim

ε→0

∫
dωdD−1k

(2π)D
∂φint(z)

φint(ε)
J(ω, k)

(5.10)

Substituting this into the action one finds

Son-shell + Scounter = lim
z→0

(
1

2

∫
dDxz−D+1φsol∂zφsol −

1

2
∆−

∫
dDxz−Dφ2

sol

)
= lim

ε→0

∫
dωdD−1k

(2π)D

(
ε−D+1 1

2
J(−ω,−k)

∂φint(ε)

φint(ε)
J(ω, k)− ∆−

2
ε−DJ(−ω,−k)J(ω, k)

)
.

(5.11)

Near the boundary the solution φint has again the generic behavior φint = Aint(ω, k)z∆− +

Bint(ω, k)z∆+ and by taking two derivatives w.r.t. the source J one finds

〈O(−ω,−k)O(ω, k)〉 = lim
ε→0

ε−D+1∂φint(ε)

φint(ε)
− 1

2
∆−

= ε−D+1∂ε(ε
−∆−φint(ε))

φint(ε)
= 2ν

B(ω, k)

A(ω, k)
. (5.12)

Thus one is left with the same linear response answer (5.7).

6. ADS/CFT AT FINITE TEMPERATURE: BLACK HOLES, AND THE HAWK-

ING PAGE TRANSITION AS THE HOLOGRAPHIC ENCODING OF CONFINE-

MENT/DECONFINEMENT

The Einstein equation for a D + 1 dimensional Minkowski-signature space time with a

negative cosmological constant is,

Rµν −
1

2
gµνR−

D(D − 1)

2L2
gµν = 0. (6.1)

This is solved by an AdS-Schwarzschild black hole background with the metric,

ds2 =
r2

L2
(−f(r)dt2 + dx2

i ) +
L2

r2f(r)
dr2, i = 1, ..., D − 1 (6.2)

where L is the AdS radius, r is the radial direction, and the redshift factor

f(r) = 1− rD0 /rD. (6.3)
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gives us the black horizon at r0. To compute the temperature we use an insight from Gibbons

and Hawking. Consider a general static black hole metric

ds2 = −gtt(r)dt2 +
dr2

grr(r)
+ gxx(r)d~x

2,

where gtt(r) and grr(r) have a single zero at the horizon r0, and Wick rotate to the Euclidean

signature τ = it with the result

ds2
E = gtt(r)dτ

2 +
dr2

grr(r)
+ gxx(r)(d~x)2. (6.4)

Let’s make the natural assumption that the properties of the black hole are reflected in the

geometry near the horizon where gtt and grr are vanishing. To focus in on this region we

expand gtt(r) = g′tt(r0)(r − r0) + ..., grr(r) = grr ′(r0)(r − r0) + ... and gxx(r) = gxx(r0) + ...

where the prefactors g′’s are just numbers. Thus the near horizon (Euclidean) metric equals

ds2
E = g′tt(r0)(r − r0)dτ 2 +

dr2

grr ′(r0)(r − r0)
+ gxx(r0)(d~x)2 + . . . (6.5)

It is now convenient to re-parametrize the radial direction in terms of a new variable R =

2
√
r − r0/

√
grr ′ and the metric becomes

ds2
E =

1

4
R2g′ttg

rr ′dτ 2 + dR2 + gxx(0)(d~x)2 + . . .

What matters is the plane spanned by this R and the imaginary time direction τ . This is just

like the metric of a plane in polar coordinates with τ being the compact angular direction.

Upon approaching the horizon R → 0 one sees that the prefactor of dτ 2 is vanishing: this

means that the Euclidean time direction shrinks to a point! However, since the horizon is

not a special point, we should not allow this point to be singular. Smoothness at the horizon

can be achieved by insisting that R = 0 is the center of a Euclidean polar coordinate system

and this implies that τ is periodic with period 4π√
g′tt(r0)grr ′(r0)

. This periodicity is directly

identified with the inverse temperature of the black hole (as measured at r =∞).

For the AdS-Schwarzschild black hole we thus find

T =

√
g′ttg

rr ′

4π
=

r2
0

4πL2

df(r)

dr
|r=r0 =

Dr0

4πL2
. (6.6)

Let us illustrate the above with the most important equations for the bulk. As we

emphasized, to introduce a second scale in addition to the temperature we make the spatial
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topology compact. All Euclidean isotropic solutions to AdS-Einstein’s equations have the

same generic form as Eqn. (??)

ds2
2 = f(r)dτ 2 +

dr2

f(r)
+ r2dΩ2

D−1, (6.7)

The most general solution is

f(r) = 1 +
r2

L2
− ωD

M

rD−2
, ωD =

2κ2

(D − 1)Vol(SD−1)
. (6.8)

For M = 0 we have “thermal AdS” (the time circle is still compact); for M 6= 0 we have the

Euclidean (global-)AdS black hole.3

Note that f(r) now has multiple zeroes. The outer most one, i.e. the larger solution of

the equation

1 +
r2

L2
− ωD

M

rD−2
= 0 (6.10)

is the horizon r+. Following the near-horizon prescription of the previous section, one can

deduce the temperature

β =
4πL2r+

Dr2
+ + (D − 2)L2

. (6.11)

in units of c = kB = ~ = 1 and its inverse gives the temperature of the black hole T = 1/β.

We can compare which solution is thermodynamically favored by using the algorithm

of the previous section to compute the free energies of the boundary corresponding with

these two different bulk geometries. A crucial extra ingredient is that in order to compare

these free energies, one has to insist that the bulk geometries describe precisely the same

boundary space-time. Choosing a cut-off in the radial direction at r = R, one can express

the imaginary time periodicity of the thermal AdS β′ in terms of the black hole inverse

temperature β such that both systems live in the same boundary space, sharing the same

boundary time circle.At a cut-off radius R the periodicities in each geometry are

β′
(
1 +

R2

L2

)1/2
= β

(
1 +

R2

L2
− ωDM

RD−2

)1/2
. (6.12)

3 In the scaling limit

t = λt, r = λ−1r, dΩ2
D−1 = λ2d~x2 with λ→ 0, (6.9)

the metric (6.7) changes to the vacuum planar AdSD+1. If we scale M → λ−DM at the same time, one

gets the planar AdS Schawartzshild black hole (6.2).
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One now computes the difference in the boundary field theory free energy straightforwardly

and it is related to the Euclidean action difference

βFThAdS − β′(R)FBH =
d

κ2L2
lim
R→∞

(∫ β

0

dt

∫ R

r+

dr

∫
SD−1

dΩrD−1 −
∫ β′

0

dt

∫ R

0

dr

∫
SD−1

dΩrD−1

)
=

4πVol(SD−1)rD−1
+ (L2 − r2

+)

2κ2(Dr2
+ + (D − 2)L2)

. (6.13)

where FThAdS and FBH are the free energies for the black hole- and thermal AdS solutions.

With the units restored, we have

β(FThAdS − FBH) = c3 4πVol(SD−1)rD−1
+ (L2 − r2

+)

2κ2(Dr2
+ + (D − 2)L2)

. (6.14)

7. ADS/CFT AND HYDRODYNAMICS: MINIMAL VISCOSITIES

One step further then equilibrium thermodynamics is to consider small time-dependent

fluctuations around a thermodynamic equilibrium. For very small energies and ultra-long

wavelengths the state is still collective and the response of the system is described by hydro-

dynamics. A slightly more detailed definition would say that hydrodynamics applies when

the length scale of interest is much larger than the mean-free-path between the microscopic

constituents of the system. This is where the connection with AdS/CFT comes in. Since

the mean-free-path is inversely proportional to the coupling constant, for strongly coupled

theories hydrodynamics applies widely. And AdS/CFT can give a gravitational description

of (matrix-valued) strongly coupled theories (in the large N limit).

The defining equations of relativistic hydrodynamics are extremely simple. They are just

conservation of energy-momentum and charge

∂µT
µν = 0∂µJ

µ = 0 (7.1)

These are d + 1 equations for 1
2
d(d + 1) + d unknowns. And the dynamical fluid equations

must always be supplemented by additional constraints. The fluids you are probably familiar

with are perfect fluids. These fluids are completely homogeneous and isotropic (rotationally

and translationally invariant) and experience no force, i.e. they move at a constant velocity.

Call this velocity uµ, normalized such that uµuµ = −1. Then the rest frame expression for
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the stress-tensor in terms of the energy density ε and pressure p

T µν =


ε 0 . . . 0

0 p . . . 0

0 0 . . . 0

0 0 . . . p

 (7.2)

together with the symmetries uniquely determine the stress-tensor of a perfect fluid to be

Tµν = (ε+ p)uµuν + pgµν (7.3)

The extra relation one must add is the equation of state which determines p in terms of ε.

In reality no perfect fluid exists. One should think of it as one thinks of an ideal gas. In

reality interactions at the microscopic scale have an effect on the expression for the stress-

tensor that causes it to deviates from the perfect fluid. Note that the symmetries played an

essential role in the definition of the perfect fluid. So what is true is that the more and more

these symmetries are manifested in the system, the better the perfect fluid description is.

Vice versa this means that deviation from the perfect fluid are captured by terms that

break the perfect translational and rotational symmetries of the system. The fluid velocity

thus has small variations in space and time. For simplicity let us consider the fluid in the

rest frame, perform a lowest order expansion in gradient velocities and arrange these again

according to representations of the rotational group. One has

T00 = ε , T0i = 0 (7.4)

Tij = εδij + η

(
∂iuj + ∂jui −

2

3
∂`u

`

)
+ ζδij∂`u

` (7.5)

A relativistic expression exists, and can be found in many references (e.g. Baier). Here

η and ζ are the shear and bulk viscosities. They are decay constants how rotations and

decompressions relax.

For simplicity and physics let us consider the charge current rather than the energy-

momentum current. The insight is that a small local excess of charge density should cause

a small current to flow away from the excess until it is completely diluted into the system.

Improving on the perfect fluid limit one would write down in the rest frame

J0 = ρ , J i = −D∂iρ = −D∂iJ0 (7.6)
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with D the diffusion constant. This second constitutive equation is also known as Fick’s

law. Now take the divergence of both sides

∂iJ
i = −D�J0 (7.7)

and use the dynamical equation (the charge conservation law) ∂µJ
µ = 0 to write this as

∂0J
0 = D�J0 (7.8)

Solving this in Fourier space (space only) one has

J0(t, k) = e−Dk
2tJ0

init(k) (7.9)

One sees the diffusion of charge happen, as the excess decays away over time. The shear and

and bulk viscosities play the same role as the diffusion constant D with some more indices

to carry around.

7.1. Fluctuation dissipation theorem and Kubo relations

Let’s now also Fourier transform the charge diffusion equation for J0 in time.

iωJ0(ω, k) = Dk2J0(ω, k) ⇔ (iω −Dk2)J0(ω, k) = 0 (7.10)

One should think of this dynamical equation as the equation of motion for the charge density.

Suppose now one would like to solve a more complicated problem in this fluid, e.g. one with

an external source for the charge. Then one would construct the Green’s function from the

equation of motion

G = 〈J0J0〉 ' 1

iω −Dk2
+ . . . (7.11)

(Recall there are higher order terms in the gradient expansion. Since we are doing semiclas-

sical physics, this has to be the retarded Green’s function). This means that

ImiG =
Dk2

ω2 +D2k4
(7.12)

and one can get D from by taking considering

lim
ω→0

ImiG =
1

Dk2
(7.13)
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This Kubo relation is an example of the fluctuation-dissipation theorem. One can get macro-

scopic properties (the diffusion constant) by considering microscopic fluctuations. A mani-

festion of the fluctuation-dissipation theorem that you almost certainly know is the optical

theorem: the total cross section is proportional to the imaginary part of the forward scat-

tering amplitude.

Let us know use AdS/CFT to compute the diffusive properties of a strongly coupled

(matrix)-theory. The example that we will use is the shear viscosity [48]. This is for two

reasons (1) historically it was the first, (2) the finding that the viscosity is universal and

bounded from below for all theories with a gravitational dual, (3) but, most importantly,

in units of the entropy density it is the smallest viscosity known and it turned out to be in

very close neighborhood to viscosities measured of the Quark-Gluon-Plasma in Relativistic

Heavy Ion Collisions and Cold Fermi-gas experiments. We can do it here because it is among

the simplest calculations for a linear response property one can imagine in the AdS/CFT

context. The dynamics in the bulk is just pure Einstein gravity, while the geometry is

that dual to thermal equilibrium: an AdS Schwarzschild black holeOne of the aspects this

calculation will illustrate is that in AdS/CFT it is remarkably straightforward to compute

directly in real time in thermal systems.

We will compute the viscosity from the Kubo formula

η = − lim
ω→0

1

ω
ImGR

x1x2,x1x2
(ω, 0), (7.14)

where, GR
x1x2,x1x2

(ω, 0) is the retarded Green’s function of the xy component of the energy

momentum tensor, defined as

GR
µν,αβ(ω,~k) = −i

∫
dtd~xeiωt−i

~k·~xθ(t)〈[Tµν(t, ~x), Tαβ(0, 0)]〉. (7.15)

Using the GKPW formula the stress tensor perturbations are encoded in fluctuations of the

metric. As usual in linearized gravity, one writes the metric as gµν = g0
µν + hµν where g0

µν

is the background metric that solved for the AdS Schwarzschild black hole while hµν is the

infinitesimal metric fluctuation, i.e. the gravitational wave/graviton.

The counting of the number of DOF for the massless graviton is a bit of a tricky affair:

We focus on 4 + 1 dimensional bulk. We first classify the graviton modes as follows. We

take the spatial momentum to be in the x3 direction ~k = (0, 0, k) and this means that the

perturbation hµν = hµν(t, r, x3). The system has an SO(2) symmetry in the x1x2-plane
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and according to the behavior of the graviton modes under this symmetry we have three

decoupled sets of graviton modes: the tensor mode (transverse mode) hx1x2 , the vector

mode (shear mode), a linear combination of htx1 , hx3x1 , hrx1 together with htx2 , hx3x2 , hrx2

and two scalar modes (sound mode) from two linearly independent combinations of htt, htx3 ,

hx3x3 , hx1x1 + hx2x2 , hrr, htr and hrx3 . It directly follows from the linearized coordinate

transformations on hµν

δhµν = ∂µεν + ∂νεµ (7.16)

that hx1x2 in this momentum configuration is a gauge-invariant, i.e. physical mode.

We now perturb the Einstein equation with a negative cosmological constant, eqn (6.1),

around the solution of the AdS-Schwarzchild black hole geometry (6.2). Denoting the per-

turbation hx1x2(t, r, x3) ≡ gx1µhµx2 with [47]

δgx1x2 = hx1x2(t, r, x3) =

∫
dωdk

(2π)2
φ(r;ω, k)e−iωt+ikx3 , (7.17)

one obtains linearized equation of motion for φ(r;ω, k). One finds that it identical to the

equation for a massless scalar

1√
−g

∂µ
√
−ggµν∂νφ(r; t, x3) = 0 (7.18)

Substituting the background metric eq. (6.2) and Fourier transforming we find

φ(r;ω, k)′′ +

(
D + 1

r
+
f ′

f

)
φ′(r;ω, k) +

(ω2 − k2f)L4

r4f 2
φ = 0 (7.19)

with f = (1− rD0
rD

).

To obtain the retarded Green’s function in the CFT we must now solve this equation with

infalling boundary conditions at the horizon. The retarded Green’s function is then given

by the ratio of the subleading to the leading coefficient of the solution at the boundary:

φsol(u, ω, k) = A(ω, k)r−∆− +B(ω, k)r∆−−D + . . . (7.20)

with ∆− = 0 in this case, and

GCFT
R,xy,xy(ω, k) ∼ B(ω, k)

A(ω, k)
(7.21)

To obtain A(ω, k) and B(ω, k) is a relatively straightforward numerical exercise; in some

special cases the answer is analytically known. Rather than using this brute force short-cut,
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we will give an alternate way [53, 54] to compute the solution which captures some of the

essential physics. We first write the Green’s function directly in terms of the solution φsol

following the GKPW construction

GCFT
R (ω, k) =

1

2κ2
lim
r→∞

r−2∆−
√
−ggrr ∂rφsol(r)

φsol(r)

(7.22)

The overall factor 1/2κ2 follows from the normalization of the Einstein-Hilbert action.

The key step is that the viscosity (and all other transport coefficients) follow from the

imaginary part of the retarded Green’s function. Inserting 1 = φ∗(r)/φ∗(r) inside the limit

one obtains for this imaginary part the expression

ImGCFT
R (ω, k) = lim

r→∞
r−2∆−

√
−ggrrφ

∗
sol(r)∂rφsol(r)− φsol(r)∂rφ

∗
sol(r)

2iφ∗sol(r)φsol(r)
(7.23)

The numerator is readily recognized as the Wronskian which measures the flux density

through a surface at fixed r. The physics is that for a field obeying a second order equation

of the type

φ′′ + P (r)φ′ +Q(r)φ = 0 (7.24)

with P (r) and Q(r) real, the generalized Wronskian

W (r) = e
∫ r P (r)(φ∗sol(r)∂rφsol(r)− φsol(r)∂rφ

∗
sol(r)) (7.25)

is conserved: ∂rW = 0. Note that the combination
√
−ggrr is precisely this necessary

prefactor: this is readily seen by acting with ∂r and using the equation of motion (7.18).

Rewriting the imaginary part of the retarded Green’s function directly in terms of the

conserved Wronskian we find

ImGCFT
R (ω, k) = lim

r→∞
r−2∆−

W (r)

2iφ∗sol(r)φsol(r)
(7.26)

We will discuss the physics of this rewriting in a moment. Mathematically its compu-

tational power for frequency-independent transport coefficients is immediate. We can use

the conservation of the Wronskian to evaluate the numerator at any point r. The most

convenient is the horizon itself where the infalling boundary conditions are set. Near the

horizon, near the single zero of f(r), the equation of motion (7.19) reduces to

φ′′ +
f ′

f
φ′ +

L4ω2

r4f 2
φ+ . . . = 0 (7.27)
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Writing f(r) = (r − r0)D
r0

+ . . .,

φ′′ +
1

(r − r0)
φ′ +

L4ω2

D2r2
0(r − r0)2

φ+ . . . = 0. (7.28)

We can deduce the powerlaw dependence of the solution near the horizon by substituting

the ansatz

φsol(r;ω, k) = (r − r0)α(1 + . . .) (7.29)

One finds

α(α− 1) + α +
L4ω2

D2r2
0

= 0 (7.30)

with solutions α = ± iωL2

Dr0
= ± iω

4πT
. In the last step we used the relation between the

horizon location and the black hole temperature derived in eqn. (??). The choice α =

−iω/4πT corresponds to the infalling solution. Thus near the horizon we may parametrize

φsol(z;ω, k) = (r − r0)−iω/4πTF (r;ω, k), (7.31)

where F (r;ω, k) is regular at the horizon r = r0. Evaluating now the conserved Wronskian

near the horizon one finds

W (r0) = lim
r→r0

√
−ggrrφ∗

↔
∂ φ

= lim
r→r0

rD+1

LD+1

(
1− rD0

rD

)(
−2iω

4πT
(r − r0)−1

)
F ∗(1)F (1) + . . .

=
rD+1

0

LD+1

D

r0

−2iω

4πT
F ∗(1)F (1)

= (
4

D
πTL)D−1(−2iω)F ∗(1)F (1). (7.32)

In the last line, we have again used the definition of the temperature 4πTL = Dr0/L.

Substituting, one sees that the remaining unknown in the Green’s function

ImGCFT
R (ω) =

1

2κ2
lim
r→∞

(
4

D
πTL)D−1(−ω)

F ∗(1)F (1)

F ∗sol(r)Fsol(r)
(7.33)

is the ratio of the absolute value of F (r) at the horizon to |F (r)| at the boundary. Formally

one still needs to solve for F (r) to determine this. However, in the limit ω → 0, k → 0 the

leading contribution will be the ω-independent solution for the remaining function F . From
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equation (7.19) this is readily seen to be the trivial constant function. This is the leading

solution φ ∼ Ar−∆− near r →∞ with our special case of ∆− = 0. Hence one obtains

ImGCFT
R (ω, k) =

1

2κ2
(

4

D
πTL)D−1(−ω). (7.34)

From the Kubo relation

η = − lim
ω→0

1

ω
Im〈Tx1x2(−ω)Tx1x2(ω)〉 = − lim

ω→0

1

ω
ImGCFT

R (ω, 0), (7.35)

the shear viscosity therefore equals

η =
1

2κ2
(

4

D
πTL)D−1. (7.36)

Recalling that 2κ2 ≡ 16πG and comparing this to the entropy density (??) s =

4π
2κ2

( 4
D
πTL)D−1 for a D + 1-dimensional AdS Schwarzschild black hole, we find the famous

ratio

η

s
=

1

4π

~
kB
. (7.37)

8. EXERCISES
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Lecture III

9. CONDENSED MATTER IN A NUTSHELL

Condensed matter is about systems at finite density. When you put together a large

amount of matter, how does it behave? For relatively dilute systems at finite temperature,

one can readily apply the lessons of statistical physics. Many interesting phenomena occur,

however, at low temperatures when quantum effects become important and/or when one

considers densities large enough that the quantum wavefunctions of each of the constituents

can overlap. This is the regime we will investigate here: we wish to know the macroscopic

characteristics — density, pressure, equation of state, etc. — of T/µ → 0 low temperature

(low energy) finite density quantum matter.

There is a large set of condensed matter wisdoms which we have acquired over decades

that tell us what generically can happen when you study such quantum matter.

• The system can be gapped. This means that all excitations cost a finite amount of

energy. In relativistic language, there is no massless state. Therefore at T = 0, i.e.

when there is no energy density in the system, nothing (interesting) in fact happens.

The system is in its groundstate, but is unable to respond to infinitesimal small (in

energy) perturbations.

• The groundstate of the system can spontaneously break a global symmetry. This is the

generic groundstate for a system of bosons. In the spontaneously broken or ordered

state, the system has protected gapless/massless Goldstone modes. These modes then

completely dominate the low temperature/low energy physics. The formalism to de-

scribe this is the Landau-Ginzburg free energy functional: a low-energy effective action

for the order parameter of the symmetry breaking. From the free energy we can get

all the other macroscopic equilibrium properties of the system.4 The robustness of the

4 Note that compared to particle physics, these Landau-Ginzburg functionals are often very simple. One

only concentrates on the order parameter and not on any other degrees of freedom in the system. Thanks to

Goldstone’s theorem this is almost always sufficient at extremely low energies and macroscopic equilibrium

properties. Particle physics Lagrangians are usually much more involved. One also wishes to know detail

the behavior of excitations at moderate energies. In condensed matter one mostly wishes to connect

the microscopics to the correct Landau-Ginzburg functional. In these broken groundstates, one therefore

makes a moduli-space approximation.
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results are guaranteed by Goldstone’s theorem. In high dimensions the usual scaling

arguments reduce the Landau-Ginzburg functional to a Gaussian (mean-field approx-

imation). In lower dimensions quantum effects (fluctuations) are more important and

one can get distinct non-mean field behavior.

• For a system with only fermions, one generically gets a Landau Fermi liquid. This is

based on the Pauli principle. Recall that we are interested in matter at finite density

and take a free fermion as the simplest example of a many-body-fermion system. In this

free Fermi gas, two fermions cannot be in the same quantum state. They therefore

must have different momentum. The occupied states of the fermions fill shells in

momentum space outward from the origin as each shell has a slightly larger energy

cost. The last fermion added to the system this way gives a preferred momentum

scale, the fermi-momentum kF (Fig 1.). The Fermi liquid is this Fermi gas state where

one includes small interactions between the Fermions.

The Fermi liquid has a well-defined stable fermionic quasiparticle excitation that costs

no energy to excite. It is massless and it therefore controls the low-temperature/low-

energy macroscopic behavior of the system. Its free energy is essentially that of a free

non-interacting fermion. The robustness of the Fermi liquid follows from the Pauli

principle. Intuitively this is very understandable. Strictly speaking, however, this

is mathematically not as well understood as the Goldstone theorem for bosons. A

way to phrase this is that there is no order parameter language for the Fermi liquid

state. The closest mathematical explanation for the robustness is Luttinger’s theorem.

For charged fermions this states that indepedent of the nature of the interactions the

total charge carried by the Fermi liquid state equals the volume of occupied states

in momentum space expressed in terms of kF We will discuss Luttinger’s theorem in

detail below.

This is what happens generically. The primary quest of quantum matter is to understand

those systems that do not fall into one of these three classes.

A more refined version of this question is as follows. A compressible state is a finite

density state of a system with a U(1) symmetry, in which the charge Q as a function of the
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chemical potential µ behaves as

〈Q〉 ≡ − ∂

∂µ
F ∼ µα , α > 0 (9.1)

In particular if a locally change the chemically potential, I will locally change the charge

density. This state therefore conducts. In condensed matter nomenclature, it is therefore a

metal. The amount of energy does not feature in this argument, so at infinitesimally small

energies, this will still happen, and therefore a compressible state does not have a gap.

Recapitulating the lessons from above with one addition, the known compressible states

are:

• A state with broken translational symmetry, i.e. a crystal. The state is a solid.

• A state with spontaneously broken U(1) symmetry. One has a superconductor with

a single massless Goldstone mode. Note that technically we have broken a global

U(1) and not the local U(1) of Maxwell theory. In many condensed matter situations

the electromagnetic interaction is so weak, however, that the mean free path of a

photon is much larger than the sample size. This allows one to effectively think of the

electromagnetic current as a global U(1) current. At the end one can weakly gauge

the global U(1) to incorporate dynamical electromagnetic effects. From this viewpoint

the spontaneously broken state is a superconductor, rather than a superfluid.

• The state is a Fermi-liquid. This is special in that it is not associated with a broken

symmetry.

The question then is:

Is there a translationally invariant compressible state of matter with-

out symmetry breaking that is not a Fermi liquid, and how do we

characterize it?

This is where AdS/CFT will shed new light.

First, however, we will study in particular the Fermi liquid in some more detail. This

will also explain why this question is so important. Before we do so, note that a finite

density systems is manifestly associated with a U(1) charge. This connection points to

a strongly identifying macroscopic characteristic of the state, in addition to the pressure,
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density, etc.The expectation value of the current Jµ associated to this U(1) current is an

important macroscopic characteristic of this state. The timelike component J0 is just the

charge density. In equilibrium the expectation value of the spacelike component vanishes,

of course, as it is odd under time reversal. But its fluctuations also contains very important

information. To compute these, couple to an external source Aexternal
i as usual and add this

to the action

〈J i〉 = 〈 δ

δAexternal
i

S〉 (9.2)

We are already argued that in the absence of a driving source the expectation value

vanishes. Thus for a small but finite source one finds

〈J i〉 = 〈 δ

δAexternal
i

S〉 = 〈J iJ j〉Aexternal
j +O(A) (9.3)

One can think of this in extremely physical terms. We know that an external electric field

can source a current. Specifically, in a gauge where A0 = 0, ∂tAi = Ei. In Fourier space this

becomes Ai(ω) = Ei(ω)/(−iω). Now the amount of the current that this external electric

field generates is controlled by the conductivity σ(ω) of the system. A larger conductivity

results in a larger current etc. For a not-too-large electric field this is expressed through

the defining relation 〈J i(ω)〉 ≡ σij(ω)Ei(ω) where σij(ω) is the conductivity tensor. The

frequency dependent conductivity is also known as the optical or AC conductivity. The

ω → 0 limit of the optical conductivity is the DC conductivity. Combining this defining

relation with the current as a response to an external source, one obtains the expression for

the conductivity

σij(ω) =
∂

∂Ej(ω)
〈J i(ω)〉 =

1

−iω
∂

∂Aexternal
j (ω)

〈J iJk〉Aexternal
k

=
−1

iω
〈J i(ω)J j(ω)〉 (9.4)

Thus for small fields one can read off the conductivity by measuring the two-point cor-

relation of the current. Because the conductivity is closely related to the U(1) charge of

the chemical potential introduced to put the system at a finite density, we will encounter it

extensively throughout these lectures.
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9.1. The Landau Fermi Liquid Theory as an IR stable fixed point.

Before we start using AdS/CFT, for reference we present a modern view of Landau

Fermi liquid theory. As we already alluded briefly, the Landau Fermi liquid is based on the

zero temperature free Fermi gas. The momentum of the highest occupied state is called

the Fermi momentum kF and this momentum will characterize the macroscopic properties

of the system. For charged free fermions the number density is equal to the U(1) charge

density. The finite density system is therefore obtained by introducing a chemical potential

for the U(1)-charge. The low-energy (=low-frequency) dynamics are then readily seen to be

described by expanding the free (non-relativistic spinless) electron action coupled to a U(1)

gauge field

S =

∫
ddxΨ†(x)(i(∂t − ieAt) +

1

2m
∇2)Ψ(x) (9.5)

in the presence of a finite chemical potential background

At = µ/e

S =

∫
ddxΨ†(x)(i∂t + µ+

1

2m
∇2)Ψ(x) (9.6)

One readily notes that there is a preferred momentum — the Fermi momentum kF =
√

2mµ — for which the kinetic term action vanishes at ω = 0, i.e. the state at k = kF costs

zero energy to excite. The low energy effective action is the expansion around this state

[112, 113].

SFermi gas =

∫
ddk

(2π)d
Ψ†(k)(i∂t − vF (k − kF ))Ψ(k) + . . . (9.7)

with vF = kF/m. Conventionally one invokes the Pauli principle that turning on small

interactions cannot in any way change this occupation barrier and the existence of a mo-

mentum scale kF , and postulates that the relevant degrees of freedom are still the fermions

above. In the modern view this insight directly follows from the renormalization group

[112, 113]. Assuming that the interactions between the fermions are controlled by a scale

M , one can integrate out the interactions to arrive at an effective theory for the low-energy

fermions. In perturbation theory this results in analytic higher order corrections to the dis-

persion relation plus induced interactions. As long as the scale M is much much larger than
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the chemical potential, rotational invariance uniquely determines

SFermi liquid =

∫
ddk

(2π)d
Ψ†(k)

(
i∂t + µ+

∇2

2m
+

α

M
(i∂t + µ)2 +

β

M
(i∂t + µ)

∇2

2m
+

γ

M

(
∇2

2m

)2

+ . . .

)
Ψ(k)

+
ξ

Md
(Ψ†Ψ)(Ψ†Ψ) + . . .

=

∫
ddk

(2π)d
Ψ†(k)

(
ω − vF (k − kF ) +

α

M
ω2 +

β

M
ω(k − kF ) +

γ

M
(k − kF )2 . . .

)
Ψ(k)

+
ξ

Md
(Ψ†Ψ)(Ψ†Ψ) + . . . (9.8)

where α, β, γ, ξ are dimensionless coupling constants generically of order O(1).

Straightforward dimensional analysis shows that all interactions between the electrons

are irrelevant in any dimension d > 1. The generic fixed point of an interacting finite

density fermi system is thus a field theory of IR free fermionic quasiparticles. This generic

effective low-energy theory is the Fermi liquid. Its tell-tale sign is that the two-point retarded

correlation function of two such quasiparticles

GR(ω, k) =
1

ω − vF (k − kF )− Σ(ω, k)
(9.9)

=
1

ω − vF (k − kF )− Σ′(ω, k)− iΣ′′(ω, k)
(9.10)

has a self-energy Σ(ω, k) whose imaginary part ImΣ(ω, k) ≡ Σ′′(ω, k) behaves as

Σ′′(ω, kF ) ∼ α
M
ω2 + . . . for k = kF . This is the reflection of the analyticity of the gra-

dient expansion. The spectral density

A = − 1

π
ImGR(ω, k) (9.11)

= − 1

π

Σ′′(ω, k)

(ω − vF (k − kF ) + Σ′(ω, k))2 + (Σ′′(ω, k))2
(9.12)

therefore has a beautiful Lorentzian line shape around ω = 0 for k = kF .

A =
1

π

αω2/M

(ω − vF (k − kF ))2 + α2 ω4

M2

+ . . . (9.13)

with total weight unity and width α/M . At finite temperature T the usual t = −iτ ,

ω = iωE with the Matsubara frequencies ωE = nT , means that “dimensionally” we can

obtain a lot of information by just replacing ω → ω + iT in the imaginary part of the

self-energy.
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9.1.1. Spectral Functions

Single Fermion spectral functions play an important role in condensed matter physics.

This is readily understandable as Fermi liquid theory is the foundation of band theory in

crystals and as shown above the spectral function of a Fermi liquid has a distinct Lorentzian

peak at ω = 0, k = kF . This peak can be directly measured with Angle Resolved Photo

Emission Spectroscopy (ARPES). The probability of liberating an electron from a sample by

shining light (photoemission) is directly proportional to the spectral function. Particularly

in the last decade the resolution of energy and momentum of this final state electron has

improved so much that extremely detailed spectral functions can be measured. The con-

ventional way to express the single fermion spectral function is to first expand the Green’s

function (9.9) around ω = 0 and k = kF as

GR(ω, k) =
1

ω − vF (k − kF )− Σ′(0)− ω∂ωΣ′(0)− iΣ′′(ω) + . . .
(9.14)

=
Z

ω − m
m?
vF (k − kF )− iΓ

+Gincoherent (9.15)

Here Z ≡ 1/(1 − ∂ωΣ′(0)) is known as the pole strength Γ = ZΣ′′(ω) the width, and

m? = mvFkF/(vFkF − Σ′(0)) the renormalized mass. [Work out further]

9.2. DC conductivity in Landau Fermi liquid theory

As an example of how the low-energy degrees of freedom determine the macroscopic

properties, we will now compute the temperature dependence of the DC conductivity of the

Fermi liquid. We will do so using the “Kubo” relation derived earlier

σ(ω) =
−1

iω
〈 ~J ~J〉 (9.16)

In the effective action for the Fermi liquid, the current J i is the composite operator

J i = ie
2m

Ψ̄∂iΨ (there are no gamma-matrices, as we are considering a spinless fermion for

simplicity). The two point function of the currents to leading order is therefore the one-loop
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diagram

(9.17)

We will now simply state the result for the real part of this diagram. The real part can

be powerfully rewritten in terms of Fermi-Dirac distributions f(ω) and the spectral function

A(ω, k). In dS spatial dimensions one has

Re(σDC) ∼ lim
ω→0

1

iω
ImΨ̄ΨΨ̄Ψ

∼ lim
ω→0

1

iω

∫
ddSk

dω1

2π

dω2

2π

f(ω1)− f(ω2)

ω1 − ω − ω2 − iε
A(ω1, k)Λ(ω1, ω2, ω,−k)A(ω2, k)Λ(ω2, ω1, ω, k)

(9.18)

Essentially this formula states that a photon with energy ω can create an electron pair

with energies ω1 and ω2 pulled from the occupied states f(ωi)A(ωi, k). The relative minus

sign between f(ω1) and f(ω2) follows from Fermi statistics and all the model depedent

details are stuck in the transport vertex Λ(ω1, ω2, ω, k). We next make the assumption that

this vertex is in fact momentum independent (at low energies). This is not entirely obvious,

but can be verified to be so in most microscopic models. To leading order in ω Λ is then a

constant, and we get

σDC ∼ lim
ω→0

1

iω

∫
ddSk

dω1

2π

dω2

2π

f(ω1)− f(ω2)

ω1 − ω − ω2 − iε
A(ω1, k)A(ω2, k)

∼
∫
ddSkdω1

df

dω1

A(ω1, k)2 (9.19)

One can get the dominant temperature-dependence in the spectral function by shifting

the the imaginary part of the self-energy Σ′′(ω)→ Σ′′(ω + iT ). This lifts the pole at ω = 0,

but nevertheless the spectral function A(ω, k) remains dominated by the Fermi-surface at

ω ∼ 0, k ∼ kF .

One now notes that the Fermi surface is a dS − 1-dimensional surface in momentum

space with a single normal direction k⊥. Because of the Pauli principle to lowest order all

excitations can only carry momentum in the direction k⊥. This means that dS − 1 of the

momentum integrals computing the DC conductivity localize on the Fermi surface. Doing
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so

σDC ∼ kdS−1
F

∫
dk⊥dω

df

dω
A(ω, k⊥)2 (9.20)

we see that the system has reduced to an effective d = 1 system. Next we note that

the derivative of the Fermi-Dirac distribution is essentially a delta-function at ω = 0, so we

can perform the ω-integral as well. We can now scale the temperature dependence out of

integral by a redefinition k⊥ → T 2k⊥/M and we deduce characteristic temperature-squared

dependence of the conductivity of a Fermi-liquid.5 [CHECK]

σDC ∼ kdS−1
F

∫
dk⊥A(0, k⊥)2|Σ′′(0+iT ) (9.21)

∼ kdS−1
F

∫
dk⊥

T 4/M2(
(−vFk⊥)2 + T 4

M2

)2 (9.22)

∼ T 2

T 4
kdS−1
F M ∼ 1

T 2
kdS−1
F M (9.23)

Experimentally one usually measures the resistivity ρ. This is just the inverse of the

conductivity. Thus for a Fermi liquid

ρFL ≡
1

σFLDC
∼ T 2 (9.24)

9.2.1. Macroscopic features of FL follow from Quasi 1D

Completely following our general introduction, all the macroscopic properties of the Fermi

liquid are essentially explained by this effective dimensional reduction of the massless quasi-

particle to a dS = 1 dimensional dynamics perpendicular to the Fermi surface.

For instance for a general massless system in dS dimensions where there is no intrinsic scale

the temperature scaling of the entropy density and the specific heat is simply determined

by dimensional analysis.

s ∼ 1

LdS
∼ T dS

vdS
(9.25)

cV ∼
T

∂S
∂T ∼ T dS

vdS
(9.26)

This is called hyperscaling. Here v is the characteristic IR velocity that appears in the

dispersion relation of the massless excitation ω ∼ vk. For a relativistic system clearly v = c.

5 Note that the DC-conductivity is dimensionless in dS = 2 as it should.
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For a Fermi liquid the dS-dimensional system reduces to deffS = 1 dimensional system

due to the presence of the Fermi surface at kF . As there is no other scale in the system, one

can assume that hyperscaling holds in this reduced sense and argue that the temperature

scaling of the entropy and specific heat behave as

s ∼ T

k

ds−1

F
∼ kdSF

T

EF
(9.27)

cV ∼
T

EF
(9.28)

This very simple insight is indeed borne out by a detailed microscopic calculation.

9.2.2. Luttinger’s theorem

Let us finally briefly discuss Luttinger’s theorem. In the Fermi liquid it is very easy

to establish a relation between the number density and the Fermi momentum kF . The

expectation value of the number density as a function of momentum is

nF (k) =

∫
dω

2πi
〈Ψ†(ω, k)Ψ(ω, k)〉 (9.29)

Again the right hand side is a two point correlation function and to lowest order this

therefore can be computed from the one-loop expression

nF (k) = lim
t→0−

∫
dω

2πi
GR (9.30)

= lim
t→0−

∫
dω

2πi

Z

ω − vFk⊥ − iεsign(ω)
(9.31)

= Zθ(kF − k) (9.32)

This is the classic step function profile of the zero-temperature occupation density of a

free Fermi gas. The total number density for the free Fermi gas therefore equals

ntotal =

∫
d2k

(2π)2
Zθ(kF − k) = Z

k2
F

4π
(9.33)

(In the free system Σ = 0, but we need to be explicit about the iε prescription in that

case.) For this free system the number density is directly proportional to the total charge

density in the system. In the conventional normalization

Q ≡ 4π2qntotal = πk2
F (9.34)
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This relation is Luttinger’s theorem. Its power relies in the fact that Luttinger has

proved that no perturbative or non-perturbative interactions can change this relation.[Is

this because conserved currents do not renormalize?]. There is a caveat. The Fermi

liquid groundstate must remain, e.g. turning on a BCS instability which causes pairing and

condensation of the composite pair operator can violate this theorem.

As mentioned, Luttinger theorem is in some way the Fermi liquid equivalent of Gold-

stone’s theorem. It explains the robustness of the Fermi surface and its associated massless

quasiparticle. Nevertheless there is no fundamental understanding of Luttinger’s theorem

as spontaneous symmetry breaking provides for Goldstone’s theorem.

9.3. Experimental non-Fermi-liquids

So far the story may seem quite academic. The importance of the question whether there

are compressible states of matter without symmetry breaking that are not a Fermi liquid

became immediate with the discovery of high temperature superconductors in 1985. These

fall outside the standard BCS paradigm. Within BCS theory, one can derive a gap equation,

which gives the value of the order parameter as a function of the temperature

∆(T ) = ΛUV e
− 1
λnF (T ) (9.35)

[CHECK] Here ΛUV is a UV cut-off, λ is the small perturbative coupling parameter that

controls the binding energy of the Cooper pair and nF is the number density. The identifying

characteristic is the exponential suppression. This precludes BCS superconductivity at any

high temperature. For normal materials one has, and one finds an upper bound for the

critical temp

Tmax
critical BCS = K (9.36)

High temperature superconductors violate this bound by definition. The mechanism

underlying superconductivity can therefore not be the conventional BCS mechanism. The

superconducting phase itself is actually not the mystery. As explained superconductivity is

just the spontaneous breaking of U(1) symmetry and this can has no temperature limitations.

Indeed experimentally one readily shows that one has (d-wave) Cooper paired electrons that

Bose condense. The mystery is why the material becomes superconducting at such a high
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temperature. The failure of BCS theory means that it cannot be a regular Fermi liquid

with a perturbative Cooper pairing interaction. Indeed experimentally the macroscopic

characteristics of the strange metal state just above the critical temperature are not those

of a regular Fermi liquid. The most notable of these is the fact that the resistivity scales

linear in the temperature rather than quadratic.

The typical phase diagram of a high temperature superconductor is given in Fig. 2. At

optimal doping — the doping value where Tc is maximal — the material is in this strange

metal phase for T > Tc and superconducts for T < Tc. For higher doping above Tc there is

a crossover from the strange metal to a regular Fermi liquid regime. Very near the doping

where the superconducting region vanishes, the onset of superconductivity can in fact be

explained by standard BCS theory. For lower than optimal doping at temperatures higher

than Tc there is a phase transition to another mysterious pseudogap phase6 and at even lower

doping a crossover to an antiferromagnetic phase.

FIG. 2: The typical phase diagram of a high Tc superconductor.

Our focus here will be on the strange metal phase. Quite soon after the discovery of

high Tc superconductivity, a very phenomenological proposal was made to explain the linear

resistivity [135]. Suppose the full single fermion spectral function would be of the form

G =
1

ω − vFk⊥ + iω lnω
(9.37)

6 Only very recently has it been settled that this is a true phase transition, see [? ? ].
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From our derivation of the scaling behavior of the resistivity, it is easy to say that if

Σ′′ ∼ ωa, then the conductivity scales as σ ∼ T−a and thus the resistivity as ρ ∼ T a.

The logarithm is needed to differentiate it analytically from the true linear term in ω.

This “model”, or rather this Green’s function, is clearly not that of a regular Fermi liquid.

Collectively (phenomenological) single fermion spectral functions that do not have a width

that scales as ω2 are called non-Fermi liquids. And this particular one with Σ′′ ∼ ω lnω is

called the marginal Fermi liquid.

Although a tremendous effort has been made to understand the strange metal better and

beyond the phenomenology of the marginal Fermi liquid, only in one qualitative aspect has

progress been made. It is now believed that the barrier to understanding is explained by

the fact that underlying the physics of the strange metal is the phenomenon of Quantum

Criticality. This is the critical universal behavior that occurs in the vicinity of a Quantum

Phase transition. The latter is a phase transition which happens at exactly T = 0; it is

driven by quantum rather than thermal fluctuations. Now the relevant aspect is that if

this phase transition is second order, the absence of a scale at the critical point (due to

the diverging correlation length) means that the quantum field theory describing this point

must be a conformal field theory. The special aspect of a quantum critical theory compared

to a classical critical theory is that one now raises the temperature in the conformal field

theory, the conformal constraints resonate through in the finite temperature physics. A

CFT at finite T is still very special in that all its dynamics are still controlled by the T = 0

conformal symmetry and in general the only aspect that changes is that all dimensionfull

quantities are now given in terms of the only present scale T . To get non-conformal (generic)

behavior one needs at least two scales. This means that the phase diagram near a quantum

critical point looks as in Fig. 9.3 The “fan-like” region is indeed very suggestive when

compared to the phase diagram of high Tc superconductors. Although the idea that the

physics underlying the strange metal is a finite T conformal field theory, in detail it is not

so simple. In particular scale-invariance is only observed in terms of energy-temperature

scaling. In spatial directions one still notes a distinct Fermi surface with ARPES data. This

curious combination, scale-less in the “time-direction”, but a distinct Fermi-momentum in

the spatial directions has been coined “local quantum criticality”.

The Fermi-surface and Fermions apparently continue to play a key role in the strange

metal region. An approach to understanding the strange metal and its quantum criticality
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FIG. 3: Generic phase diagram of a quantum phase transition

is to understand the role of fermionic degrees of freedom in strongly interacting CFTs. That

will be our ultimate goal. First we shall try to understanding strongly interacting CFTs,

i.e. quantum critical systems, at finite density more generally.

10. FINITE DENSITY HOLOGRAPHY/SEMI-LOCAL QUANTUM

LIQUID/ADS2-METAL

To describe a system at finite (charge) density we recall that global charges in the CFT,

correspond to local symmetries on the AdS gravity side. Thus the minimal system we need

to consider is AdS-Einstein gravity — dual to the energy-momentum sector — plus Maxwell

theory — dual to a U(1) global charge. Moreover, from statistical physics we recall that we

can think of the chemical potential as the “source” for charge density. Since the expectation

value of the current is given by the subleading part of the solution to Maxwell’s equation,

we deduce that an AdS system dual to a field theory at finite chemical potential will be a

solution to the AdS equations of motion with the other leading non-normalizable solution

to Maxwell equation non-vanishing.

The simplest such solution is the charged AdS black hole. In the remainder of this

discussion of AdS/CFT we will consider AdS theories in d = 3 + 1 dimensions, describing

2 + 1 dimensional strongly coupled systems such as can occur at interfaces in condensed

matter experiments. In d = 4 the charged black hole has metric and timelike component of
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the gauge potential At

ds2 =
r2

L2
(−fdt2 + d~x2) +

L2

r2

dr2

f
, (10.1)

f(r) = 1 +
Q2

r4
− M

r3
, At = µ

(
1− r0

r

)
(10.2)

where [ CHECK ESPECIALLY gF ]

µ =
2Q

r0

(10.3)

The differences in the geometry as compared to the AdS-Schwarzschild solution Eq. (6.2)

are encapsulated by the altered redshift factor f(r). The horizon is still determined by the

largest root of this function, f(r0) = 0. We have used the gauge freedom to shift the gauge

field such that it vanishes at the horizon.

Using the recipe for the black hole thermodynamics of section ??, the black hole temper-

ature and entropy are

T =
3r0

4πL2

(
1− Q2

3r4
0

)
, s =

2π

κ2

(r0

L

)2

µ = 2gEM
Q

r0

(10.4)

where r0 is related to M as

M = r3
0 +

Q2

r0

. (10.5)

The novel part of the charged black hole compared to the uncharged one is that one

notices that for r0 =
√
Q

4
√

3
the temperature vanishes, but the redshift factor stays non-trivial

T = 0⇔ r0 =

√
Q

4
√

3
(10.6)

f(z) = (1− r0

r
)2(1 + 2

(
r

r0

)2

+ 3

(
r

r0

)3

) (10.7)

One still has a black hole. This extremal black hole is the dual of a zero temperature finite

density state.

We can already make a remarkable statement about the state in the CFT that this ex-

tremal black hole encodes. Note that the entropy remains finite even for T = 0. This means

that the extremal AdS RN black hole encodes a groundstate with an extensive amount of

degeneracy. This is very counterintuitive, and strongly suggests that this system is actually

ridiculously unstable to any deformation that lifts the degeneracy.
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10.1. AdS2 near horizon geometry and emergent local quantum criticality

Let us study the extremal black hole some more. In particular, just as the case for the

generic black hole, the characteristic physics is controlled by the horizon. In general, the

horizon rh is determined from the vanishing of f(rh) = 0. To study what happens near the

horizon we Taylor expand f(r) near r − rh as

f(r) = f ′(rh)(r − rh) + f ′′(rh)(r − rh)2 + . . . (10.8)

where the ‘. . . ’ are higher order terms in r − rh. Following AdS/CFT it is precisely this

near-horizon geometry that is representative for the IR physics in the field theory. In the

case of a generic black hole, we learned that f ′(rh) ∝ T . The finite temperature near horizon

geometry is therefore quite different from the zero temperature near horizon geometry. It

is governed by the next order coefficient f ′′(rh). This reflects the universal feature that

extremal black holes have a double zero at the horizon. Specifically

f(r) = 6
(r − r0)2

r2
0

+ . . . (10.9)

Inserting the near-horizon redshift factor in the full metric yields the near horizon geom-

etry in the regime r−r0
r0
� 1,

ds2 = −6(r − r0)2dt2

L2
+

L2dr2

6(r − r0)2
+
r2

0

L2
dx2 + . . . , (10.10)

while the gauge potential becomes

At =
µ

r0

(r − r0) (10.11)

Something surprising has happened! One infers that in terms of the near horizon coordinate

r−r0 , the metric factors multiplying dt2 and dr2 acquire a similar structure as the bare AdS

metric Eq. (??): this is an effective anti-de Sitter geometry, except that the space directions

(dx2) are multiplied by the constant (r0)2! Therefore, the space directions form just a flat

space, while the effective anti de Sitter geometry is only realized in the two-dimensional t, r

directions! To render this more explicit, let us re-parametrize the near-horizon metric in

terms of a radial coordinate ζ which is the inverse of the distance from the horizon, and a

radius L2

ζ =
L2

2

r − r0

, L2 =
L√
6
, (10.12)

ds2 =
L2

2

ζ2
(−dt2 + dζ2) +

r2
0

L2
d~x2, At =

1√
6ζ

(10.13)
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This is the metric of a space time with an AdS2 × R2 geometry, where the AdS2 part has a

rescaled radius L2 = L/
√

6 w.r.t. the original AdS4 geometry.

The remarkable aspect of this near-horizon discovery is that the AdS2 geometry precisely

should encode a physical regime where time-like rescalings show self-similar behavior, but

spatial rescalings can be sensitive to an underlying fundamental scale. This is precisely what

the notion of local quantum criticality tries to capture. So the extremal AdS RN black hole

is the first description of a theory which contains in it in a very concrete and quantitative

way the notion of local quantum criticality. In the next lecture we will see how this manifests

itself in more detail.

11. EXERCISE: COMPUTING THE CONDUCTIVITY OF THE ADS-RN METAL

Following our introduction one of the characteristic quantities to compute in a finite

density system is the conductivity. Let us actually first compute the conductivity in the

µ = 0 AdS background. In the specific case of d = 2 + 1 dimensions, there is no need

for a detailed computation. In d dimensions a conserved current has dimensions d − 1.

Its Fourier transform therefore has dimensions −1. The two-point function without the

momentum-conserving delta function therefore has dimension d − 2, and the conductivity

σ(ω) = −1
iω
〈J(ω)J(ω)〉 thus has dimension d−3. In our case σ(ω) is therefore dimensionless.

Now in the pure AdS background dual to an exact CFT there is no scale in the problem.

Therefore the conductivity can only be a pure number independent of ω.

What happens when we turn on a chemical potential? In the presence of a chemical

potential, we now have an abundance of charge carriers at scales below µ. In the presence

of a constant electric field this will cause a current to run. In fact if we change nothing

else, this DC current will be infinite as the carriers start to accelerate. Combining this

with a sum-rule, that the integrated density of states (as a function of ω) cannot change

(this is unitarity/completeness of the underlying quantum theory), we see that between the

DC current (ω = 0) and the chemical potential-scale ω ∼ µ, the conductivity (which is

proportional to the number of states) must decrease compared to the µ = 0 conductivity.

As an exercise we will now see that this indeed happens in the conductivity of a finite density

CFT system through a computation of its AdS dual.

We will only work at T = 0 and for computational convenience, we will use Poincaré
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like coordinates for the isotropic extremal charged AdS black hole. In such coordinates the

background is

ds2 = gµνdx
µdxν + gzzdz

2

=
L2µ2

12z2
(−f(z)dt2 + dx2 + dy2 +

12dz2

µ2f(z)
) (11.1)

The metric interpolates between an asympotically AdS space at z = 0 and an extremal

horizon at the double zero of the redshift function f(z)

f(z) = (1− z)2(1 + 2z + 3z2) (11.2)

(Let us just mention for completeness that for the non-extremal finite temperature solution

f(z) has a single zero of course 7

f(z) = (1− z)(1 + z + z2 − q2z3), T =
µ

8qπ
(3− q2) (11.3)

and one should replace µ2/3 with µ2/q2 in the metric.)

Together with an electrostatic potential

A0 ≡ Φ = µ(1− z) (11.4)

it is a solution to the equations of motion of the AdS-Einstein-Maxwell action

S =
1

2κ2

∫
d4x
√
−g
(
R +

6

L2
− L2

4
FMNF

MN

)
(11.5)

To obtain the optical conductivity at low-ω we will not use the Kubo formula, but Ohm’s law

directly. Recall that the conductivity is defined as J i = σEi. Recall also that in AdS/CFT

the dictionary computes the partition function in the presence of a source

Z(Jµ)CFT =

∫
DXeiSCFT [X]+JµOCFT (X) (11.6)

Thus to study the CFT in the presence of an external (electric) field, Ei
ext = ∂tA

i
ext (in

the gauge A0
ext = 0) we need that J i ∼ Aiext is non-vanishing. Through the dictionary

J i
AdS/CFT
≡ limz→0A

i
AdS this means that leading source term to the equation of motion of

AiAdS is non-vanishing. At the same time the response J iCFT
AdS/CFT
≡ limz→0 ∂zA

i
AdS (Here

we use that we know the scaling dimension ∆ = d− 1 for the operator dual to Ai). Putting

7 For our reference: compared to Sean’s lectures [1], we have set γ = 2, r+ = 2q/µ and rescaled r = r+z
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this together we see that the conductivity just follows from solving the equation of motion

for AiAdS in the background and then evaluating the quantity

σ(ω) =
JxCFT
Ex
CFT

= lim
z→0

∂zA
x
AdS(ω)

−iωAxAdS(ω)
(11.7)

There is a tricky part to the computation. We need to evaluate the equation of motion

for fluctuations Ax in the charged extremal black-hole background. As we will see, when we

expand Aµ = ABHµ + δAµ and gµν = gBHµν + hµν the kinetic term will be off-diagonal in the

fluctuations δAµ, hµν . We will have to take this cross-coupling into account. So we take the

action (11.5) and expand to second order

S = SBH + δS|BH + δ2S|BH + . . . (11.8)

The first variation will vanish because the extremal BH is a solution to the equations of

motion. For the second variation, let’s consider the variation of the Maxwell term first. The

first variation gives the stress-tensor for the metric variation and the Maxwell equation for

the δAµ and then we need to vary this one more time

δ2S = δ

∫ √
−g
(
−1

2
hMNTMaxwell

MN − L2∂MδANF
MN + . . .

)
(11.9)

By symmetry δAx cannot mix with any of the other δAM fluctuations, so we can set all those

to vanish. Then from an expansion of the Maxwell stress tensor to first order in gauge-field

fluctuations Ax around the background

TMaxwell
MN = gRSFMRFNS −

1

4
gMNFRSF

RS

=
(
gRS(∂[MδAR])F

(BH)
NS + (M ↔ N)

)
− gMN(∂RδAS)FRS

(BH) + . . . (11.10)

=
(
gxx(∂MδAx)F

(BH)
Nx − δMxg

RS∂RδAxF
(bg)
NS + (M ↔ N)

)
− gMN(∂RδAx)F

Rx
(BH) + . . .(11.11)

= δMxδNtg
zz∂zδAxΦ

′ − δMxδNzg
tt∂tδAxΦ

′ + (M ↔ N) + . . . (11.12)

In the last line we substituted that the only non-vanishing part of F
(BH)
MN = Fz0 = −F0z =

∂zABH0 ≡ Φ′. Thus we see that the Ax mixes with the metric fluctuations hxt and hxz.

Now we need to compute δ2SEinstein−Hilbert to compute their contribution. To do so, we

use a trick. Again, because of the symmetries all components of hMN where neither M = x

or N = x can be set to zero consistently because of the symmetries of the system. Also

we are only interested in frequency-dependent fluctuations and not momentum-dependent
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ones. Now, the trick is that an off-diagonal metric fluctuation with one component in a

spatial direction hxM(z, t) that does not depend on the x-direction behaves effectively as a

gauge-field with a spacetime dependent coupling [41, 52]

SEHeff =

∫
d4x
√
−gbg

(
− 1

4geff(z)2
f

(x)
MNf

(x)MN

)
(11.13)

with g2
eff = gxx, A(x)

M = hxM and gbg the background metric.

Analyzing this part by part, by symmetries again Ay decouples anc can be to zero. Next,

the equation of motion for Az is a constraint, and directly enforcing this constraint into

the action the remaining two modes At and Ax decouple. To see this, note that for zero

momentum, ~k = 0, the only nonzero component of fMN is fzt. Fourier transforming all fields

in the time-direction φ(t) =
∫

dω
2π
φ(ω)e−iωt, the effective action therefore equals (as usual

quadratic terms a2
z below should be read as az(−ω)az(ω))

Seff = δ2SEHeff + Sinteff

=

∫ √
−gbg

(
− 1

2gxx
gzzgtt

(
∂zA2

t + ω2A2
z + 2iω(∂zAt)Az

)
− 1

2
gzzgttAtΦ′∂zAx +

iω

2
gzzgttAxAzΦ′

)
(11.14)

The second term Sinteff is the first stress term obtained in eq. (11.9), where for simplicity Ax

is what we called δAx before.

The constraint that follows from varying w.r.t. Az(ω) equals

− ω2Az − iω∂zAt +
iω

2
gxxAxΦ

′ = 0 (11.15)

Substituting the constraint back into the total action, including the second term in (11.9),

one finds

S =

∫ √
−gbg

(
− 1

gxx
gzzgtt

(
(∂zAt)2

))
+

1

2
gzzgtt∂zAtAxΦ′ −

1

8
gzzgttgxxA2

x(Φ
′)2

− 1

2
gzzgttΦ′(∂zAx)At

−g
xxgzz

2
(∂zAx)

2 − ω2gxxgtt

2
A2
x

)
(11.16)

Integrating the term in the second line by parts and using the background equation of motion

∂z
√
−ggzzgttΦ′ = 0 (11.17)
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one finds the decoupled system (after shifting ∂zAt)

S =

∫ √
−gbg

(
− 1

gxx
gzzgtt

(
(∂zAt − gxxAxΦ′)2

))
+

1

8
gzzgtt(Φ′Ax)

2gxx

−g
xxgzz

2
(∂zAx)

2 − ω2gxxgtt

2
A2
x

)
(11.18)

Using eq. (7.24) and eq. (5.12) we can now directly write down the equation of motion for

Ax equals

1√
−g

∂z
√
−ggxxgzz∂zAx − ω2gxxgttAx +

1

2
gttgxxgzz(Φ′)2Ax = 0 (11.19)

Substituting the explicit metric of the extremal AdS-RN black hole, this simplifies to8

∂zf(z)∂zAx +
4q2ω2

µ2f(z)
Ax −

4q2z2

2µ2
(Φ′)2Ax = 0 (11.20)

The final step is to solve this equation numerically, and extract the objective of interest

σ = lim
z→0

i

ω

∂zAx
Ax

(11.21)

We will do so with Mathematica in the exercise session. What one finds (Fig 4), is indeed the

expected behavior of the conductivity, with an infinite peak at ω = 0 (by Kramers-Kroenig

this is 1/ω in the imaginary part), a dip for ω < µ and a constant asymptote for ω � µ.

FIG. 4: The conductivity as a function of ω/T . When ω → 0, the imaginary of the optical

conductivity behaves as 1/ω. This reflects the existence of a delta-function δ(ω) in Reσ. In these

plots, from top down, the chemical potential grows larger. These plots are taken from [1]

8 This equals [CHECK: There is a factor 2 difference in the Φ′ term. This can be easily ’fixed’

by adjusting the normalization of the stress-tensor.... It should be the factor of 2 just found

in eqn (11.18)] eqn (110) in [1] after the identification z = µ
2q r = r/r+, r+ = 2q/µ and γ = 2.
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Figure 3 Universal powerlaw of the optical conductivity and the phase angle spectra of optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O8+į. The sample is the same as in Fig. 1. In a the phase function of the optical
conductivity, Arg(ı(Ȧ)) is presented. In b the absolute value of the optical conductivity is plotted on a double
logarithmic scale. The open symbols correspond to the powerlaw |ı(Ȧ)|=CȦ–0.65.

FIG. 5: Left: Observed power law |σ(ω)| = B
ω2/3 in the optical conductivity measured in the strange

metal phase of high Tc superconductors at optimal doping Experiments [73]. Right: Observed

power law |σ(ω)| = B
ω2/3 + C in the optical conductivity of a strongly coupled system in the

presence of an ionic lattice computed numerically through AdS/CFT [72].

11.1. The promise of AdS/CFT

This very straightforward computation resonates in an extremely tantalizing current de-

velopment. One of the mysteries of high-Tc superconductors is that the optical (= frequency

dependence of the) conductivity in the strange metal phase shows an intermediate scaling

behavior (Leftpanel in Fig. 5) with a power σ ∼ (iω)−2/3 [73]. The remarkable finding is

that an AdS/CFT computation in the background of a “modulated” RN black hole with

a chemical potential µ = µ0 + µ1 cos(kx) to account for underlying atomic crystal lattice

effects, has an almost identical ∼ (iω)−2/3 scaling regime [72]! This is super-tantalizing, and

people are actively trying to understand if there is indeed a relation between this intricate

numerical computation and experiment and what it is.
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Lecture IV

12. HOLOGRAPHIC NON-FERMI LIQUIDS

We have seen that with a lattice perturbation the conductivity of the extremal AdS-RN

black hole bears a remarkable resemblence to that measured in the strange metal phase of

high Tc superconductors. We will now try to probe the strange metal more directly. Recall

from our review of the Fermi liquid theory that a successful phenomenological model of

the strange metal is the marginal Fermi liquid. This a special type of non-Fermi-liquid

characterized by a self-energy Σ(ω) ∼ ω lnω in the spectral function.

The spectral function is equivalent to the imaginary part of the retarded Green’s function

of a fermionic excitation. But (two-point) correlation functions is precisely what AdS/CFT

is good at calculating. Let us therefore compute the spectral function of a fermionic operator

in a strongly coupled CFT at finite density dual to the AdS-RN black hole.

12.1. Fermionic correlation functions from holography

The novelty compared to our previous computations is the spin 1/2 nature of a fermionic

operator. Following the dictionary this is dual to a spin 1/2 field, and to ensure that it is the

field whose condensed matter aspects we wish to study we make it charged. The minimal

AdS action that describes the gravity dual of this system is the AdS-Einstein-Maxwell-Dirac

action

S =

∫
dD+1x

√
−g
(
R− 2Λ− 1

4
FµνF

µν − Ψ̄
[
eµaΓa(∂µ +

1

4
ωµabΓ

ab − iqAµ)−m
]
Ψ

)
.

(12.1)

Because fermions transform non-trivially under the Lorentz group, they also couple in a

special way to the spacetime background. This is encoded through both the coupling with

a vielbein, the “square root” of the metric defined by eaµe
b
νηab = gµν with ηab the fixed

Minkowski metric, and a spin connection ωµab defined through the demand that the vielbein

should be covariantly constant

Dµe
a
ν = 0 = ∂µe

a
ν − Γσµνe

a
σ + ωaµbe

b
ν . (12.2)
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This machinery ensures that the matrices Γa are the usual fixed Dirac-matrices obeying the

anti-commutation relation {Γa,Γb} = 2ηab.

Due to the first order nature of the Dirac action, there are some technical changes to the

prescription of applying the AdS/CFT dictionary. That such changes are necessary is most

readily apparent by counting components of fermions. In dimensions d = 2n and d = 2n+ 1

a spinor has 2n components. This means that if one has an even dimensional bulk with

d = 2n the spinor has double the components, 2n than one would naively expect based on

the dimensionality d = 2n− 1 of boundary. Due to the first order nature of the action this

counting is wrong. The first order action simultaneously describes the fluctuation — half of

the components — and its conjugate momentum — the other half. Clearly only the former

should correspond to a boundary degree of freedom. The most ready way to do so is to use

the extra direction to project the fermion into two distinct eigenstates Ψ± of Γr and call

one the fluctuation, say Ψ+. The other Ψ− is then the conjugate momentum.9 Under this

projection the Dirac action reduces to

S =

∫
d4x
√
−g
(
−Ψ̄+/DΨ+ − Ψ̄−/DΨ− −mΨ+Ψ− −mΨ̄−Ψ+

)
. (12.3)

The second issue is that the AdS/CFT correspondence instructs us to derive the CFT

correlation functions from the on-shell action. The Dirac action, however, is proportional

to its equation of motion. This reflects the inherent quantum nature of fermions.The action

therefore appears to vanish on-shell. Recall, however, that in the case of scalars the full

contribution came from a boundary term, and we did not specify this yet. In the case

of the scalar the boundary term appeared naturally. Here we have to do some work to

determine it. Having chosen Ψ+ as the fundamental degree of freedom, we will choose

a boundary source Ψ0
+ = limr→∞Ψ+(r). Then, because the dynamical equation is first

order, the boundary value Ψ0
− is not independent but related to that of Ψ0

+ by the Dirac

equation. We should therefore not include it as an independent degree of freedom when

taking functional derivatives with respect to the source Ψ0
+. Instead it should be varied to

minimize the action. To ensure a well-defined variational system for Ψ− we add a boundary

9 Due to the first order nature of the action a bulk Dirac spinor in d = 2n dimensions with 2n−1 (complex)

degrees of freedom corresponds to 2n−1 component complex Dirac operator on the d = 2n−1 dimensional

boundary. A bulk Dirac spinor in d = 2n+1 dimensions with 2n−1 complex degrees of freedom corresponds

to a 2n−1 component Weyl spinor on the d = 2n dimensional boundary.
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action,

Sbdy =

∫
r=r0

d3x
√
−h Ψ̄+Ψ− (12.4)

with hµν the induced metric. The variation of δΨ− from the boundary action,

δSbdy =

∫
r=r0

d3x
√
−h Ψ̄+δΨ−

∣∣∣∣
Ψ0

+fixed

, (12.5)

now cancels the boundary term from variation of the bulk Dirac action

δSbulk =

∫ √
−g
(
−δΨ̄+(/D)Ψ+ − ((/D)Ψ+)δΨ+ − δΨ̄−(/D)Ψ− − ((/D)Ψ−)δΨ−

)
+

∫
z=z0

√
−h
(
−Ψ̄+δΨ− − Ψ̄−δΨ+

)∣∣∣∣
Ψ0

+fixed

. (12.6)

The next complication is that the fermionic correlation function is in general a matrix

between the various spin components. A completely covariant formulation exists [100, 123],

but with some insight we can separate out each independent spin component [101]. This is

very similar to a standard analysis of the Dirac equation in flat space as in any standard

QFT course. Undoing the projection unto Γr, we first write the full covariant first order

Dirac equation (
Γaeµa(∂µ +

1

4
ωµabΓ

ab − iqAµ)−m
)

Ψ = 0 (12.7)

Note that the boundary term does not contribute. The first step is the insight that metrics

whose components depend on only a single coordinate, such as AdS-black holes, have the

property that by a redefinition of the Dirac fields,

Ψ = (−ggrr)−1/4ψ (12.8)

the spin connection ωµab can be removed. This simplifies the Dirac equation to the more

standard form

(Γaeµa(∂µ − iqAµ)−m)ψ = 0 (12.9)

We shall also only be interested in background configurations with just A0 ≡ Φ(r) non-zero

and a function of the radial AdS direction r only.

In a flat spacetime we would now Fourier transform and project the 4-component Dirac

spinor onto 2-component spin-eigenstates. Since the radial direction of anti-de-Sitter space
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breaks the four-dimensional Lorentz invariance, this cannot be done here. However, a similar

projection exists onto transverse helicities, where the spin is always orthogonal to both the

direction of the boundary momentum and the radial direction. We choose the basis for our

d = 3 + 1 dimensional Dirac matrices

Γr =

−σ311 0

0 −σ311

 , Γt =

iσ111 0

0 iσ111

 , Γx =

−σ211 0

0 σ211

 , Γy =

 0 −σ211

−σ211 0


(12.10)

and we Fourier transform only along the directions t, x, y parallel to the boundary

ψ(r, t, x, y) =
∫

dω
2π

dkx
2π

dky
2π
eikxx+ikyy−iωtψ(r, ω, kx, ky). Using rotational invariance we are free

to choose the boundary momentum along the x-direction, ~k = (kx, 0). With this choice for

the momentum one can show that the operator Γ5Γy commutes with the Dirac operator.

We can therefore project onto its eigenstates χ1,2. This reduces the Dirac equation to an

equation for the two-component t-helicities

√
grr (−σ3∂r −

√
grrm)χi(r;ω, k) = −(iσ2

√
gxxkx + σ1

√
−gtt(ω + qΦ))χi (12.11)

Here we have use a shorthand that for a diagonal metric gµν |µ6=ν = 0, the vielbein emµ is

literally the square root emµ =
√
gµµδ

m
µ .

It suffices to consider only χ1 from here on, as the results for χ2 simply follow by changing

kx → −kx. [I AM NOT SURE THIS IS CORRECT]. To construct the CFT correlation

function the essential part is the behavior of the solution near the AdS boundary. In that

region
√
grr = r/L+ . . . ,

√
gxx =

√
gtt = L/r + . . . thus to leading order in r →∞ the eqn

(12.11) behaves as (
∂r +

L

r
σ3m

)
χ1(r;ω, k) = 0 (12.12)

Similar to scalar case near the AdS boundary the 2-component spinor χ1 has the asymptotic

behavior

χ1(r) = a

0

1

 rmL + b

1

0

 r−mL + . . . (12.13)

For a generic mass the first component is non-normalizable, but the second one is.

By acting with the operator
(
∂r − iσ2

√
grrσ1m

)
(−iσ2)

√
grr
gii

on the equation for χ1 one

can obtain a second order equation for each of the individual components of χ1, with two
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independent solutions. Given these homogenous solutions to the Dirac equation, the (bulk)

Green’s function for χ+, still a two by two matrix, can be constructed. It equals

G(ω, k, r1, r2) =
ψb(r)⊗ ψ̄int(r′)θ(r − r′)− ψint(r)⊗ ψ̄b(r′)θ(r′ − r)

1
2

(
ψ̄int(r)σ3ψb − ψ̄b(r)σ3ψint

) . (12.14)

Just as for the scalar case, ψb(r) is the normalizable solution with leading coefficient a = 0.

and ψint(r) is determined by the appropriate boundary conditions in the interior.

We can now use this bulk-Green’s function to evaluate the on-shell Dirac action from

which we can find the boundary correlation function. The on-shell Dirac action comes fully

from the boundary term, we argued should be there in eqn (12.4). There we postulated

that the fundamental field is Ψ+ ≡ 1
2
(1 + Γr)Ψ. For the t-helicity χ1 this reduces to the

projection with respect to 1
2
(1− σ3).

At the same time one should think of Ψ− as dependent on the fundamental field Ψ+.

Since limr→∞Ψ+(r) is the source, one can find the dependence of Ψ− from the bulk Green’s

function

Ψ−(r) = lim
r2→∞

∮
1

2
(1 + σ3)G(r, r2)Ψ+(r2) (12.15)

Substituting this Green’s function into the boundary action one obtains after projection on

the independent t-helicity χ1 [MINUS SIGN MISSING]

S = lim
r→∞

∫ √
−hχ̄0

1

1

2
(1 + σ3)

ψint(r)⊗ ψ̄b(∞)
1
2

(
ψ̄int(r)σ3ψb − ψ̄b(r)σ3ψint

)χ0
1. (12.16)

In the t-helicity basis the boundary source (the non-normalizable coefficient) has only a

lower component

χ0
1 =

0

J

 . (12.17)

Writing also ψint(r) =

bintr−m + . . .

aintr
m + . . .

, ψb(r) =

br−m + . . .

0 + . . .

, one finds

S = lim
r→∞

∫ √
−hr−2m (J†bint)(b

†J)

b†aint + a†intb
. (12.18)

The final step is that an inspection of the Dirac equation reveals that at zero density in pure

AdS one can always choose b and aint real (but not bint).

S = lim
r→∞

∫ √
−hr−2mJ†

bint
aint

J. (12.19)
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Differentiating the on-shell action w.r.t J and J†, and dropping both the int subscript

and the overall r−2m term gives the expression for the fermionic CFT correlation function

Gfermions =
b

a
. (12.20)

12.1.1. On various Green’s functions...

We mention now a subtlety that we brushed over earlier in the lectures. Recall that in

general there are various types of Green’s functions, Feynman, advanced, retarded etc. In

principle which one you wish is determined by the apporpriate boundary conditions in the

interior. However, note that the Green’s function obtained by differentiating the boundary

term in the action is always real (because the action is always real). Something appears

amiss, because the advanced and retarded Green’s functions are generically complex. A

very careful finite temperature field theory analysis of AdS/CFT reveals that one in fact

simply has to take the result (12.20) in all cases even when b and a are not manifestly real.

12.2. Non-Fermi liquids from holography

To study the spectral function of fermionic operators in the background of the holographic

AdS-RN metal, we must therefore solve the Dirac equation (12.11) in the background of

the extremal RN black hole and take the ratio of the subleading to leading fall-off near the

AdS boundary.

A beautiful paper in the summer of 2009 showed how to do this semi-analytically using

a standard trick from quantum mechanics: matching the asymptotic solutions near the

boundary to the asymptotic solution near the horizon in an overlapping range of applicability.

We already know what the solution looks like near the AdS boundary, see Eq. (12.13). Near

the horizon r − r0 � 1 the metric is given by the AdS2 × R2 metric Eq. (10.10), and thus

the Dirac equation becomes
√

6

L
(r − r0)(−σ3)∂rχ1 = −

(
iσ2

L

r0

kx −m−
L√

6(r − r0)
σ1(ω + q

µ

r0

(r − r0))

)
χ1 (12.21)

Changing coordinates to ρ = ωL
6(r−r0)

this equals

ρ∂ρχ1 = −L
(
σ1

kxL√
6r0

− iσ2ρ− iσ2
qµL

6r0

− σ3
m√

6

)
χ1 (12.22)
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Acting with ρ∂ρ on both sides and using the Dirac equation, this equals the second order

equation

ρ2∂2
ρχ1 + ρ∂ρχ1 = L2

(
σ1

kxL√
6r0

− iσ2ρ− iσ2
qµL

6r0

− σ3
m√

6

)2

χ1 + iσ2Lρχ1 (12.23)

=

(
k2
xL

4

6r2
0

+
m2L2

6
− q2µ2L2

36r2
0

)
χ1 + iσ2Lρχ1 (12.24)

The region ρ� 1 is now the near-horizon region, whereas the region ρ� 1 is the boundary

of the AdS2 region where the near-horizon metric starts to break-down. This is where we

should match to the asymptotic solution from the AdS4 boundary. In this transition region,

the boundary of AdS2, the equation becomes diagonal

ρ2∂2
ρχ1 + ρ∂ρχ1 =

(
k2
xL

4

6r2
0

+
m2L2

6
− q2µ2L2

36r2
0

)
χ1 + . . . (12.25)

and can be solved in terms of a simple power of ρ

χ ∼ αρ−νk + βρνk + . . . (12.26)

where νk =
√

k2xL
4

6r20
+ m2L2

6
− q2µ2L2

36r20
. We are in particular interested in the ω-dependence of

the solution. This can be made manifest by defining ρ = ωζ.

χ ∼ αω−νkζ−νk + βωνkζνk + . . . (12.27)

Note, however, that ζ is literally proportional to the natural coordinate on AdS2. Thus

following the definition of the Green’s function as the ration of the subleading to the leading

fall-off, the combination βω∆AdS2/α is precisely the AdS2 Green’s function. Rescaling the

solution, it can therefore be written in a very suggestive way as

χ1 ∼ η+ζ
−νk + GAdS2(ω)η−ζ

νk + . . . (12.28)

with η± a pair of ω-independent spinor s, G(ω)AdS2 ∼ ω2νk .

This asymptotic expansion is valid in the regime where r − r0 . r0. The asymptotic

expansion from the boundary on the other hand is valid roughly for any r � ω. Thus

there is an overlapping regime whenever ω < 2r0. For such small ω we can match at any

point in the overlapping region. Generically each independent solution of the one expansion

will be a linear combination of the independent solutions of the other expansion. Thus the

asymptotic boundary behavior abstractly is of the form

a = a+(ω) + a−G(ω) (12.29)

b = b+(ω) + b−G(ω) (12.30)
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where a± corresponds to the coefficient of the near-boundary solutions. This then allows

us to express the (retarded) Green’s function of the CFT for small ω in terms of the near

boundary solutions

GR(ω) =
b+(ω) + b−G(ω)

a+(ω) + a−G(ω)
(12.31)

In particular near ω = 0 it will behave as

GR(ω, k) =
b

(0)
+ + ωb

(1)
+ +O(ω2) + Gk(ω)

(
b

(0)
− + ωb

(1)
− +O(ω2)

)
a

(0)
+ + ωa

(1)
+ +O(ω2) + Gk(ω)

(
a

(0)
− + ωa

(1)
− +O(ω2)

) . (12.32)

This is a remarkable result, because even though we do not know the exact expressions for

a
(i)
± (k) and b

(i)
± (k), we can already deduce the nature of the Fermi-liquid quasiparticles, if

there are any. The assumption that there are such particles is equal to the assumption that

the Green’s function has a pole at ω = 0. This occurs if a
(0)
+ (k) vanishes for a specific kF .

Indeed near the Fermi surface, the retarded Green’s function becomes of the canonical form

GR(ω, k) ' Z

ω − vF (k − kF )− Σ(k, ω)
+O(k − kF , ω), , (12.33)

with the self-energy Σ(k, ω) = G(ω)

(
a
(
−0)

a
(1)
+

+O(ω) The one aspect we do know already is the

frequency dependence of the self-energy. It is Σ ∼ ω2νkF . But this scaling is precisely what

we wish to know, because the defining property of a Landau Fermi liquid is that Σ ∼ ω2.

Our calculation thus indeed shows that generically the fermionic excitations in the AdS-RN

metal are non-Fermi liquids.

The precise details of the Fermi liquid — and whether there is indeed such a pole —

depend sensitively on the parameters of the theory as νk depends directly on the charge and

scaling dimension of the Fermionic operator. Explicit numerical calculation has shown that

generically for large enough charge compared to the scaling dimension such a pole exists

(Figs ?? and 6) with the specific properties listed in table II.

13. HOLOGRAPHIC SUPERCONDUCTORS

The CFT state dual to the AdS-RN black hole thus has remarkable properties, that for

a specific choice of parameters can tantalizingly mimick the observed spectral functions in

the strange metal phase of high Tc superconductors. The pure AdS-RN black hole has one
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Fermi liquid; Middle, νkF = 1/2, marginal Fermi liquid; Bottom, νkF > 1/2, irregular Fermi liquid.

Plots are taken from [102].

Σ ∼ ω2νkF Fermi-system Phase Quasiparticle Properties: (dispersion, peak)

2νkF > 1 regular FL ω∗(k) = vFk⊥, Γ(k)
ω∗(k) ∝ k

2νkF−1

⊥ → 0, Z = constant

2νkF = 1 marginal FL GR = h1
c2ω−vF k⊥+cRω lnω , Z ∼ 1

lnω∗
→ 0

2νkF < 1 singular FL ω∗(k) ∼ k1/2νk
⊥

Γ(k)
ω∗(k) → const, Z ∝ k

1−2νkF
2νkF
⊥ → 0

TABLE II: The zoo of non-Fermi liquids one can find in AdS/CFT. .

in-your-face problem, however: its extensive groundstate entropy. Strictly speaking the RN-

black hole therefore describes the typical state amongst a set of degenerate states that scales

as the volume of the system. This suggests that the system is in fact immensely unstable.
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Let’s see if we can understand these instabilities. When we considered only the Einstein-

Maxwell sector in the AdS theory, we concentrated on only the energy-momentum and

electromagnetic current sector of the dual CFT but ignored all other excitations in the

theory. The most plausible explanation is that the instabilities are driven by these ignored

excitations.10 In the previous section we considered adding fermions to the AdS-Einstein-

Maxwell theory. For the purpose of instabilities, we’ll make it even simpler and consider an

additional charged scalar field. The action we consider is thus

S =

∫
dD+1x

√
−g
(
R− 2Λ− 1

4
FµνF

µν − (∂µ + iqAµ)φ̄(∂µ − iqAµ)φ−m2φ̄φ

)
. (13.1)

13.1. (In)stability analysis

Let us first perform a standard stability analysis and consider the field φ as a small

fluctuation around the extremal AdS-RN background. After Fourier transforming along the

boundary directions the equation of motion for φ reads

1√
−g

∂r
√
ggrr∂rφ+ gtt(ω + qAt)

2 − giik2 −m2L2φ = 0 (13.2)

Substituting the background for the extremal AdS4-RN black hole, we have

1

r2
∂rr

4f(r)∂r +
1

r2f(r)
(ω + qAt)

2 − 1

r2
(k2)−m2L2φ = 0 (13.3)

Since we are considering φ as a fluctuation, and since any instability should require very

little energy, i.e. we can concentrate on small ω fluctuations, we can perform the same

matching analysis as for the fermions to study the solutions to the equation of motion.

Near the AdS-boundary we had φ = Ar∆−d +Br−∆ + . . . with

∆ =
3

2
+

√
9

4
+m2L2 (13.4)

Now note that the scaling dimension stays real for all values m2L2 > −9/4. It appears the

equation makes sense for negative m2. This sounds strange, because normally we associated

a negative m2 of a scalar fluctuation as a tachyonic instability where the scalar sits at the

top of a local maximum of the potential. What happens is that in AdS is that there is an

10 The precise way of saying this is that the Einstein-Maxwell theory is not a complete quantum theory of

gravity. Other fields are necessary to have a completely consistent theory.
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additional gravitational contribution to the potential which modifies the tachyonic instability

precisely to the location where ∆ turns imaginary. This is easily seen by taking the flat space

limit L � 1 which connects the stability boundary ∆ = 0 directly to m2 = 0. So in pure

AdS we may consider slightly negative scalar m2 and still have a stable system.

In the AdS2-region (10.12) on the other hand the equation becomes

ζ2∂2
ζφ+ ζ2(ω +

q

6ζ
)2φ− k2

r2
0

−m2L2
2φ = 0 (13.5)

Its asymptotic behavior near the boundary is

φ ∼ αζ1−∆AdS2 + βζ∆AdS2 + . . . (13.6)

where ∆AdS2 = 1
2

+ νk with νk =
√

k2

r0

2
+m2L2

2 −
q2

6
. From these we read off that near the

horizon in the AdS2 region the scalar is unstable when m2L2
2 = m2L2/6 > −1

4
. We have

indeed found an instability. A zero-momentum scalar mode therefore has a mass-window

−6

4
� m2L2 � −9

4
. (13.7)

where the system has a tachyonic instability near the horizon, but well-defined as a theory.

The next question is what the new grounstate is that arises from this instability.

13.2. The holographic superconductor solution

Before we construct this new groundstate, let us discuss its physics. The resulting solution

will be a gravitational system with a non-zero electric field partially if not fully sourced by a

non-vanishing scalar profile. Since this profile must extend to the AdS boundary, there is a

directly translatable consequence in the CFT. The groundstate has a nonvanishing charged

expectation value for the scalar field, i.e. the U(1) symmetry is spontaneously broken. A

more precise way of saying it is that we have Higgsed the dynamical gauge field in the bulk

and this corresponds to global symmetry breaking on the dual boundary. It is in this Landau-

Ginzburg sense (where the U(1) of electromagnetism is considered a global symmetry) that

the new groundstate is a superconductor.

The full holographic superconductor solution involves solving the coupled AdS-Einstein-

57



Maxwell-Scalar system

Rµν −
1

2
gµν(R− 2Λ) = κ(TEMµν + T scalarµν ) (13.8)

DµF
µν = iq(φ̄∂µφ− φ∂µφ̄) + 2q2Aµφ̄φ (13.9)

1
√
g

(∂µ − iqAµ)gµν
√
−g(∂ν − iqAν)φ−m2φ = 0 (13.10)

One can solve the whole system, see e.g. [78, 129, 130], but the essential physics is already

captured in a simple limit. The dynamics of interest is in the U(1) sector and to emphasize

this we can take the limit q � κ/L2. Since we want to keep the dynamics of the scalar field,

this means we should do so after rescaling Aµ → Âµ/q. We also wish to keep the Aµφ̄φ

interaction, so we also first rescale φ → φ̂/q. After this rescalings the stress-energy tensor

becomes Tµν → 1
q
T̂µν , so in the limit q →∞, the dynamics decouples from the gravity sector

completely. One has the effective equations of motion (dropping the hatted notation)

Rµν −
1

2
gµν(R− 2Λ) = 0 (13.11)

DµF
µν = 2Aµφ̄φ (13.12)

1√
−g

(∂µ − iAµ)gµν
√
−g(∂ν − iAν)φ−m2φ = 0 (13.13)

The solution to the vacuum AdS-Einstein equation is just the AdS-Schwarzschild black hole

6.2. We now make the ansatz that the solution will maintain the translational and rotational

invariance of the black hole. We posit

φ = φ(r) , A0 = Φ(r) , Aµ6=0 = 0 (13.14)

Moreover we can take φ(r) to be purely real without any loss. The Maxwell-scalar sector

then becomes

1

r2
∂rr

2∂rΦ =
2

f(r)r2
Φφ2 (13.15)

1

r2
∂rf(r)r4∂rφ−m2φ = − 1

f(r)r2
Φ2φ (13.16)

The groundstate we seek is then the solution to these equations subject to the appropriate

boundary conditions. We wish to study the system at a finite chemical potential. Thus near

the AdS boundary Φ(r) = µ + . . .. Moreover, we do not want an explicit source for the

scalar field, thus it must fall-off near the boundary. With these two conditions, it is easy to
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see that the near-AdS boundary behavior is exactly the same as for the fluctuations, with

the condition that we only consider the normalizable mode for φ.

Φ = µ− ρ

2r
+ . . . (13.17)

φ = Or∆ + . . . (13.18)

We can therefore immediately interpret O as the gravitational encoding of the expectation

value of the CFT scalar operator dual to φ. It will be the order parameter in the dual theory.

Now µ is fixed, but the charge density ρ and the order parameter vev O are unknown.

The system is still underdetermined, since we need two more boundary conditions. These

are determined at the horizon of the black-hole. This is the location where the redshift

factor f(r) vanishes. Consistency of the Maxwell equation (13.17) then indicates that either

Φ or φ has to vanish at the horizon as well. If one chooses the latter, the only reasonable

solution will be φ = 0 everywhere. Therefore one boundary condition is that Φ(rh) = 0.

Substituting this in the scalar field equation one finds that φ(r) at the horizon must satisfy

∂rφ = m2φ/(f ′(rh) + 4/rh).

We now have a uniquely determined system and it remains to find the exact solution. In

practice the only way to do so is numerically. The subtle part is that one has to impose

boundary conditions on both boundaries. There are several numerical recipes to do so. The

most common is a shooting method, where one fixes two of the boundary conditions at the

horizon and varies the remaining two until one finds a solution that obeys the asymptotically

AdS-boundary conditions. With modern computers this can be done quite fast. One finds

that for high T/µ or high m/q there is no non-trivial solution. But for a q/m & 1 there is

a critical temperature/chemical potential ratio, for which a non-trivial solution exists; see

Fig. 7.

13.2.1. The macroscopic properties of the holographic superconductor

The characteristic feature of a superconductor is of course the vanishing of the resistance.

Using the tools we developed earlier in computing conductivities with AdS/CFT we can also

compute the conductivity of the holographic superconductor. The results, compared to the

RN black hole, are given in the right panel in Fig. 7. One notes in fact that for T < Tc

there is a remnant conductivity. However as this keeps decreasing as T is lowered one sees
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the resistivity shrinking. For any finite T there is always a tiny resistivity left.

Similarly we can compute other macroscopic properties of the holographic superconduc-

tor. They are shown in Fig. 8.

Even though the qualitative physics of the holographic superconductor should simply be

seen as standard spontaneous symmetry in the language of the dual gravitational theory, we

should remark that quantitatively the holographic superconductor differs from spontaneous

symmetry breaking in weakly coupled non-critical theories. Specifically in weakly coupled

quantum field theories the canonical scaling dimension ∆ of a scalar field is always infinites-

imally close to the free scaling dimension ∆free = (d − 2)/2. The scaling dimension of the
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holographic superconductor, however, is a completely free parameter encoded in its AdS

mass m2L2 = ∆(∆− d). One consequence is that the dynamical onset of superconductivity

measured through its susceptibility differs [94].

Let us end with a brief observation about the revolutionary nature of the holographic

superconductor. Conventionally the viewpoint about black holes is that they are the most

stable objects around. Matter can only fall in, and classically never come out. The intuition

is that Because gravity is attractive, once you have a black hole, it will always be there.

Quantum mechnically the black hole will radiate, but this is not a strong instability of

the system. The astonishing aspect of the holographic superconductor solution is that it

shows that for AdS-black holes this wisdom does not hold. In AdS space black holes can

be unstable in the classical sense. The holographic superconductor is simply the first such

solution. By now we have legions of examples. There are p-wave and d-wave holographic

superconductors, where spin-1 and spin-2 fields condense; there are striped superconductors,

where the groundstate is not translationally invariant, etc.

14. EXERCISES

In the final exercise of this session we will discuss what happens if the instability is driven

by spin 1/2 fermions.

Exercise 1: Construct the electron star background and compute its macroscopics.
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