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0. Introduction.

The purpose of this chapter is to give a detailed account of the known evidence

([Be1], §5) for Beilinson’s conjecture concerning the values at s = 2 of L-functions

of modular forms of weight two. We do not discuss here the results concerning the

L-values at other integers s ≥ 2 (for which see [Be2]), nor do we treat the case of

the product of two modular curves (also to be found in [Be1]).

On the whole we follow the method of Beilinson, apart from two differences.
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Firstly, we give a statement of the main theorem in terms of modular curves, rather

than motives of modular forms. In particular, we have tried to work throughout with

modular curves of finite level, rather than passing to the inverse limit. Secondly,

our proof of the “integrality” statement (Theorem 1.1.2(iii) here; Theorem 5.1.1 in

[Be1]) is rather different from that proposed by Beilinson; this seems necessary since

the “integral” refinement of the Manin-Drinfeld theorem (see [Be1], §5.5) does not

hold in general. For further remarks on this see 1.1.3(iii) and 7.4 below.

In the course of preparing the talks of which this is an expanded account, Ra-

makrishnan’s expository preprint [Ra] was helpful in a number of places. We are

also grateful to many people for helpful discussions during the conference, and in

particular to G. Harder and R. Weissauer.

1. The theorem.

1.0. We first review the formalism of modular curves and their cohomology. For

details, see [DR], [La].

1.0.0. For any integer n ≥ 3, there exists a moduli scheme Mn for elliptic curves E

with level n structure (Z/nZ)2 ∼−→ E[n]. We have the following description of its

complex points:–

Mn(C) = GL2(Z)\H± ×GL2(Z/nZ)

where H± = C−R. A point on the right represented by (τ, γ) ∈ H± ×GL2(Z/nZ)

corresponds to E = C/Z + Zτ with γ ·
(

1/n
τ/n

)
(mod Z + Zτ) as basis for E[n].

Writing G for the algebraic group GL2 over Q, Gf for its points in the finite adèle

ring Af of Q, and Kn for the compact open subgroup

Kn = ker{pn : GẐ → GZ/nZ}

one has

Mn(C) = GZ\H
± ×GẐ/Kn = GQ\H

± ×Gf/Kn.

1.0.1. More generally, for any compact open subgroup K of Gf , there is a modular

curve MK defined over Q with

MK(C) = GQ\H
± ×Gf/K.
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There is a compactification

MK ↪−→MK

where MK is a smooth projective (not necessarily geometrically connected) curve

over Q, and MK is the complement of a finite set M∞
K of cusps. We denote by MK/Z

a regular model of MK over Z (see §7 below).

Examples of MK include the familiar modular curves

X1(n) when K = K1(n) def= p−1
n

(
∗ ∗
0 1

)
X0(n) when K = K0(n) def= p−1

n

(
∗ ∗
0 ∗

)
and Mn itself, usually denoted X(n). Usually we will assume that K ⊆ GẐ (the

general case may be reduced to this by conjugation).

1.0.2. If K ′ ⊆ K are open compact subgroups of Gf , there is a natural map θK′/K :

MK′ → MK . The projective limit M = lim←−
K
MK is the moduli scheme for elliptic

curves E with ‘universal level structure’ Ẑ2 ∼−→ lim←−n E[n].

1.1. We now turn to Beilinson’s conjecture concerning the leading coefficient of

L(H1(MK), s) at s = 0.

1.1.0. In Beilinson’s formulation, the image of the regulator map

rD = r0,1 : H2
A(MK/Z,Q(2))→ H2

D(MK/R,R(2))

is conjectured to be a Q-structure of

H2
D(MK ,R(2)) = H1

B(MK(C),R(1))−

= H1
B(MK/R,R(1))

and the determinant (“regulator”) of a linear map taking this Q-structure onto

H1
B(MK/R,Q(1)) is conjectured to be, up to a factor in Q∗, the leading coefficient of

L(H1(MK), s) at s = 0. (We have denoted by MK/R the analytic space over R asso-

ciated to MK —see chapter VIII, §1.) We recall that by definition, H2
A(MK/Z,Q(2))

is the image of the homomorphism

K
(2)
2 (MK/Z) −→ K

(2)
2 (MK)

and that it does not depend on the choice of regular model.

Beilinson’s theorem exhibits, for each K, a subspace of H2
A(MK/Z,Q(2)) whose

image under rD is a Q-structure of H1
B(MK/R,R(1)) with the desired regulator.
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1.1.1. This subspace is defined in terms of O∗(MK), the so-called modular units of

level K. Write {O∗(MK),O∗(MK)} for the Q-subspace of H2
A(MK ,Q(2)) generated

by all symbols {u, v} with u, v ∈ O∗(MK)⊗Q = H1
A(MK ,Q(1)). Recall from chapter

VIII, 5.1–2 that the map

H2
A(MK ,Q(2)) −→ H2

A(MK ,Q(2))

is injective. Define

QK = H2
A(MK ,Q(2)) ∩ {O∗(MK),O∗(MK)}

and

PK =
⋃

K′⊆K

θK′/K∗(QK′) ⊂ H2
A(MK ,Q(2))

the union being taken over all open subgroups K ′ ⊆ K (cf. 1.0.2 above).

1.1.2. Theorem.

(i) rD(PK) is a Q-structure of

H2
D(MK/R,R(2)) = H1

B(MK/R,R(1)).

(ii) Let g be the genus of MK . Then

det rD(PK) = L(g)(H1(MK), 0) · detH1
B(MK/R,Q(1)).

(iii) PK ⊆ H2
A(MK/Z,Q(2)).

1.1.3. Remarks. (i) Theorem 1.1.2(i) fails in general if PK is replaced by QK .

For example, when MK = X0(p) for a prime p there are only two cusps, so that

O∗(MK) = Q∗ · uZ for some modular unit u; and in this case it is easy to see that

rD(QK) = 0, using the relation {u, u} = 0.

(ii) In some cases it is known, however, that QK is sufficient. For example, this

holds when MK = X0(27), the elliptic Fermat curve, as can be shown using methods

similar to those of chapter VIII—see the concluding example in [Ro]. Also, for the

elliptic curve E = MK = X0(20) (which does not have complex multiplication) one

has E(Q) = M∞
K , so that the calculations of Bloch and Grayson [BG] for the curve

“20B” show that again rD(QK) 6= 0.
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(iii) The proof of part (iii) of the theorem, which is independent of the other

parts, will be given in §7 below. In the talks presented at the conference we were

only able to prove a weaker result, namely that

rD(PK) = rD
(
PK ∩H

2
A(MK/Z,Q(2))

)
.

It seems to be generally believed that rD is injective on H2
A(MK ,Q(2)), and not just

on the integral subspace (see for example [BG], where rD is denoted M). We regard

part (iii) of the theorem as evidence for this conjecture, since it is not hard to see that

if (iii) did not hold, then the rest of the theorem, together with the weaker statement

mentioned above, would imply that the conjecture were false.

1.2. We next decompose the regulator map according to the automorphic repre-

sentations of Gf , and reduce assertions (i) and (ii) of 1.1.2 to statements involving

automorphic forms of weight 2.

1.2.0. Define Ω1(M) = lim−→
K

Ω1(MK). The following facts are well known (see for

example [La]).

The natural action of Gf on Ω1(M) gives rise to a decomposition

Ω1(M)⊗Q =
⊕
π
Vπ

where π : Gf → GL(Vπ) are irreducible admissible Q-representations of Gf , pairwise

non-isomorphic.

Let H(Gf ,K) denote the Hecke algebra of compactly supported functions on Gf

with values in Q which are biinvariant under K. WriteHK for the image ofH(Gf ,K)

in the ring of correspondences on MK . Then HK acts faithfully on Ω1(MK) ⊗ Q,

and

Ω1(MK)⊗Q =
⊕
π
V K

π

where those of the spaces V K
π which are nonzero are pairwise non-isomorphic HK-

modules. We define

m(π,K) = dimQ V
K
π <∞

and we write eKπ ∈ HK for the projector

Ω1(MK)⊗Q−−−→→V K
π .

1.2.1. For each σ : Q ↪−→ C and each π as above, we obtain a complex representation

πσ of Gf , and therefore corresponding L-functions and ε-factors L(πσ, s), ε(πσ, s).
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Following Beilinson we normalise the L-functions so that the functional equation is

given by the substitution s 7→ 2− s (this represents a shift of 1
2 from the conventions

of [JL]).

In verifying Beilinson’s conjecture it is convenient not to specify a preferred em-

bedding of Q in C, and accordingly one defines L(π, s) to be the function taking

values in CHom(Q,C) whose σ-component is L(πσ, s). Since π can be defined over an

algebraic number field, L(π, s) actually takes values in the subring

Q⊗C ⊂ CHom(Q,C).

We similarly define the ε-factors ε(π, s) as Q⊗C-valued functions of s.

1.2.2. Theorem.

L(H1(MK), s) =
∏
π
L(π, s)m(π,K).

1.2.3. Remarks. (i) Up to a finite number of Euler factors, this result was obtained

by Eichler and Shimura. By the work of Igusa, Langlands, Deligne and Carayol, it

is now completely proved; see [Ca].

(ii) Note that although the individual factors on the right are Q ⊗ C-valued

functions, their product takes values in C ⊂ Q⊗C.

(iii) We should point out that in the decomposition of the l-adic cohomology

H1
ét(MK ⊗Q,Ql) under the action of HK , the π-isotypical component corresponds

to the factors L(π̌, s), where π̌ is the representation contragredient to π, rather than

L(π, s). But since m(π,K) = m(π̌,K) this gives the theorem as stated. However,

when we decompose the regulator map rD under the action of Gf in 1.2.6 below,

the π-component will actually contribute a factor of L′(π, 0) (not L′(π̌, 0)) to the

value of the regulator. This can be accounted for by the general form of Beilinson’s

conjecture, in which it is the L-function of the dual of the motive which occurs (see

[Be1], 3.4(b)).

1.2.4. We next recall the isomorphism (given by Poincaré duality)

H1
B(MK/R,R(1)) ∼−→ Hom(Ω1(MK),R).

Applying the projector eKπ̌ , we obtain a diagram

eKπ̌ H
1
B(MK/R,Q(1)) ↪−→ eKπ̌ H

1
B(MK/R,Q⊗R(1))yo

HomQ(V K
π ,Q) ↪−→ HomQ(V K

π ,Q⊗R)
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in which the two groups on the left define Q-structures on the free Q⊗R-modules on

the right. Since V K
π is an irreducible HK-module, and the right-hand isomorphism

is an HK-isomorphism, we must have

eKπ̌ H
1
B(MK/R,Q(1)) = c+(π) ·HomQ(V K

π ,Q)

for some c+(π) ∈ (Q ⊗ R)∗/Q∗, independent of K (provided V K
π 6= (0)). This

constant is none other than Deligne’s period for the motive attached to π whose L-

function is L(π, s+ 1) ([DP], 2.6, 7.4 and Chapter II of this volume)—see also 2.2.1

below.

1.2.5. We observe that HK acts on H2
A(MK ,Q(2))⊗Q, leaving stable the subspace

PK ⊗Q. This is immediate from the definition of PK . Theorem 1.1.2(i) and (ii) are

now a consequence of the next theorem.

1.2.6. Theorem. For every π and every K,

eKπ̌ rD(PK ⊗Q) = L′(π̌, 0)c+(π) ·HomQ(V K
π ,Q)

⊂ HomQ(V K
π ,Q⊗R) = eKπ̌ H

1
B(MK/R,Q⊗R(1)).

1.2.7. We will actually prove a slightly different statement. Denote by < , >K the

Q-linear pairing given by Poincaré duality (1.2.4):

H1
B(MK/R,Q⊗R(1))× Ω1(MK)⊗Q

< , >K−−−−→ Q⊗R.

1.2.8. Theorem. Let π, Vπ be as in 1.2.0.

(i) For every open compact subgroup K ⊂ Gf , for every ω ∈ V K
π , and for every

ξ ∈ QK ⊗Q, we have

<rD(ξ), ω>K ∈ c
+(π)L′(π̌, 0) ·Q ⊂ Q⊗R.

(ii) There exist K, ω and ξ as in (i) such that

<rD(ξ), ω>K 6= 0.

1.2.9. Let us first show that 1.2.8 implies the preceding theorem 1.2.6 and therefore

also 1.1.2(i) and (ii).

First, note the adjointness property, for K ′ ⊆ K, and θ = θK′/K as in 1.0.2, 1.1.1:

if ξ′ ∈ H2
A(MK′ ,Q(2))⊗Q and ω ∈ V K

π , then

<rD(ξ′), θ∗ω>K′ =<rD(θ∗ξ
′), ω>K .
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From this and the identity θ∗θ
∗PK = PK , we see that 1.2.8(i)—for all K—implies

eKπ̌ rD(PK ⊗Q) ⊆ L′(π̌, 0)c+(π) ·HomQ(V K
π ,Q).

Assuming this to be true (for all K) consider the commutative diagram
eK

′
π̌ rD(PK′ ⊗Q) θ∗−−−−→ eKπ̌ rD(PK ⊗Q)yiK′

yiK

L′(π̌, 0)c+(π) ·HomQ(V K′
π ,Q) θ∗−−−→→ L′(π̌, 0)c+(π) ·HomQ(V K

π ,Q)

To prove that iK is an isomorphism, it suffices to prove that iK′ is an isomorphism,

for some K ′; by the irreducibility of V K′
π this follows from eK

′
π̌ rD(PK′⊗Q) 6= 0, which

in turn is a consequence of 1.2.8(ii).

1.3. The final reformulation of Theorem 1.1.2 to be done in this section makes explicit

the regulator map rD.

1.3.0. Recall from Chapter VIII, 1.6 the projection

prD : H1
B(MK/R,R(1)) −→ H1

B(MK/R,R(1)).

The commutative diagram
H2
A(MK ,Q(2)) rD−→ H1

B(MK/R,R(1))y y xprD

H2
A(MK ,Q(2)) rD−→ H1

B(MK/R,R(1))

suggests that we compute, for modular units u, v ∈ O∗(MK)⊗Z Q, the element

prD(rD({u, v})) ∈ H1
B(MK/R,R(1)).

This is done by the following formula, valid for all ω ∈ Ω1(MK ⊗ Q), which is

none other than a Q-linear extension of VIII, (1.10) (compare also Chapter III, in

particular 1.8–1.12):

< prD(rD({u, v}), ω >K=
1

2πi

∫
MK(C)

log |u| d log v ∧ ω.

Note that this is an identity in Q⊗C . . .

1.3.1. Let us look again at the commutative diagram in 1.3.0. In view of the

Manin-Drinfeld theorem (3.4.0 below) we can apply Bloch’s lemma (Lemma 5.2 of

Chapter VIII). Thus given u, v ∈ O∗(MK) there is a finite extension F of Q and

an element α ∈ φ∗{F ∗,O∗(MK ⊗Q F )} such that ξ = α + {u, v} belongs to the

image of H2
A(MK ,Q(2)) in H2

A(MK ,Q(2)). (Here φ is the basechange morphism

MK ⊗ F −→ MK .) From the diagram above we have prD (rD ({u, v})) = rD(ξ).

Granted this, the following theorem clearly implies 1.2.8 and therefore also parts (i),

(ii) of the main theorem 1.1.2.
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1.3.2. Theorem. Let π, Vπ be as in 1.2.0.

(i) For all K, all u, v ∈ O∗(MK)⊗Z Q, we have

∫
MK(C)

log |u| d log v ∧ ω ∈ 2πi c+(π)L′(π̌, 0) ·Q ⊂ Q⊗C.

(ii) For some K, some ω ∈ V K
π , and some u, v ∈ O∗(MK)⊗Z Q,

∫
MK(C)

log |u| d log v ∧ ω 6= 0.

2. Transformation of L-values.

2.0. In this section, we are going to rewrite the product

(2.0.0) 2πi c+(π)L′(π̌, 0) ∈ (Q⊗C)∗/Q∗

which occurs in 1.3.2.

2.0.1. In this section, every expression is to be regarded as an element of (Q ⊗
C)∗/Q∗. We always regard C as embedded in Q⊗C via the second inclusion. Thus

if a, b are complex numbers, then in writing a = b we signify that a and b are equal

up to a nonzero rational factor.

2.1. The functional equation for the L-function of π implies that

(2.1.0) L′(π̌, 0) = π−2ε(π, 2)−1L(π, 2).

2.1.1. Now, the ε-factor of a motive is equal (in the sense of 2.0.1) to that of its

determinant motive; see [DP], 5.5. But the determinant representation of the l-

adic realisation of the motive associated to π is the central character ωπ of π, and

ω−1
π̌ = ωπ—cf. [DP], 7.1, 7.4 where the “contragredient” normalisation is used. ωπ

is an even Dirichlet character of Q since π has weight 2.

2.1.2. If χ is any even Q-valued Dirichlet character of Q, its ε-factor ε(χ), evaluated

at any integer s, is equal to the standard Gauss sum of χ; see [DP], 6.4. It is

characterised by the following properties—see [Scha], II §3, in particular 3.4; compare

also [Bl].

(i) ε(χ) ∈ (Q⊗C)∗.
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(ii) If Aut(C/Q) acts on Q ⊗ C via the second factor, then for all τ ∈ Aut(C/Q),

one has

ε(χ)τ = χ(τ) · ε(χ),

where χ is defined on Aut(C/Q) via the reciprocal of the cyclotomic character

(“geometric Frobenius”).

This characterisation applies in particular to ε(ωπ) = ε(π, 2), by 2.1.1; as a general

consequence, note that

2.1.3. If χ, χ′ are two even Dirichlet characters of Q, then

ε(χχ′) = ε(χ) · ε(χ′).

2.2. We now transform the product (2.0.0) into an expression involving a certain

auxiliary Dirichlet character χ, which will vary over all even Dirichlet characters of

Q. The following fact is essential for the proof of 1.3.2(ii).

2.2.0. Lemma. Given π, there exists an even Dirichlet character χ 6= 1, ω−1
π of Q,

such that the corresponding value at s = 1 of the twisted L-function does not vanish:

L(π ⊗ χ, 1) ∈ (Q⊗C)∗.

The standard proof of this lemma uses the fact that the first homology of the

modular curves is generated by modular symbols—see [Shi], Theorem 2 and remark,

pp. 212–214 for a result which covers all we need here.

2.2.1. Proposition. Let χ be as in 2.2.0. Then

L(π ⊗ χ, 1) = c+(π) · ε(χ),

where c+(π) is as in 1.2.4 above.

In fact, Deligne’s conjecture is true for motives of modular forms, by [DP], §7.

Thus one gets

L(π ⊗ χ, 1) = c+(π ⊗ χ).

The remaining identity c+(π ⊗ χ) = ε(χ)c+(π) is essentially a consequence of the

fact that the de Rham realisation of the motive of χ is spanned by an element ε(χ)

satisfying (i) and (ii) of 2.1.2—see [DP], 6.3; [Scha], II,§3; [Bl].
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2.2.2. In transforming the product (2.0.0), via 2.1.0 and 2.2.1, we shall pick up in

the denominator the term

ε(π, 2) · ε(χ) = ε(ωπ) · ε(χ) = ε(ωπχ),

by 2.1.1 and 2.1.3. But Deligne’s conjecture is true (due to Siegel) for Artin motives;

see [DP], 6.7. Thus, since s = 2 is critical for the L-function of an even Dirichlet

character—cf. [DP], 5.1.8—we see that

(2.2.3) π2ε(ωπχ) = L(ωπχ, 2)

where the L-function on the right is the Dirichlet L-function attached to the character

ωπχ.

2.2.4. Remark. We have been using freely the notion of motive and certain special

cases of Deligne’s conjecture in this section. For the reader who may feel uneasy

about this, we want to point out that all the motives and their properties that were

needed in this section can be obtained in the category of motives for absolute Hodge

cycles—see [DMOS] and [Scha], in particular Chapter V, §1. But they also exist in

the strongest sense required by Grothendieck—cut out by projectors in the category

of algebraic correspondences modulo rational equivalence.

Collecting now everything that has been established in this section, we obtain

the following result.

2.3. Theorem. For all χ satisfying L(π⊗χ, 1) ∈ (Q⊗C)∗, we have in (Q⊗C)∗/Q∗
,

c+(π) · L′(π̌, 0) =
L(π, 2) · L(π ⊗ χ, 1)

L(ωπχ, 2)
.
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3. Eisenstein series and modular units.

3.0. This and the following section prepare the evaluation, in §5, of the regulator

integral occurring in 1.3.2(i).

3.0.0. Let us begin with some notations for subgroups of G = GL2:

B =
(
∗ ∗
0 ∗

)
;N =

(
1 ∗
0 1

)
;D =

(
∗ 0
0 1

)
.

If H is any of G, B, N , D and R is a Z-algebra, we write HR for the group of R-valued

points of H; Hf for HAf
, where Af is the ring of finite adèles of Q; and

H+
Q =

{
g ∈ HQ : det g > 0

}
.

We also write Hp for HQp
.

If b =
(
b1 ∗
0 b2

)
∈ Bf , we write the modulus as

|b|f =
∣∣∣∣∣b1b2

∣∣∣∣∣
f

,

where the right hand side is finite idèle modulus. Thus, for b ∈ B+
Q, one has |b| =

b2/b1.

3.0.1. The cusps of MK(C) can be written as

M∞
K (C) = ±NẐ\GẐ/K.

For k ∈ GẐ, denote the corresponding cusp by [k]. The width w(k,K) of [k] is the

least w > 0 such that (
1 w
0 1

)
∈ ±kKk−1 ∩B+

Q.

A uniformising parameter on MK(C) in a neighbourhood of [k] is then

(z, k) 7→ exp(2πiz/w(k,K)),

for Im z > 0.

3.0.2. If

t =
∏
p
tp : Aut(C/Q) −→ Ẑ∗ =

∏
p

Z∗p

denotes the cyclotomic character, giving the action of Aut(C/Q) on exp(2πi · Q),

then Aut(C/Q) acts on the cusps by the rule

[k]τ =
[(
t(τ) 0
0 1

)
k
]
.

284



3.1.0. Let φ : ±NẐ\GẐ → Q be a locally constant function. Define

deg φ : Ẑ∗ −→ Q ⊂ Q⊗C

by

(deg φ)(a) =
∫
SL2(Ẑ)

φ
((

a 0
0 1

)
g
)
dg,

relative to the Haar measure of total mass 1 on SL2(Ẑ). If φ is right invariant under

the open subgroup K ⊆ GẐ, then it just gives a divisor on MK(C), with coefficients

in Q, supported on M∞
K (C); the connected components of MK(C) are indexed by

Ẑ∗/det(K), and deg φ measures the degree on each connected component.

If z ∈ H±, write

(3.1.1) I(z) =
{

Im(z) if z ∈ H, i.e., Im(z) > 0
0 if −z ∈ H

By the Iwasawa decomposition, we may write any g ∈ Gf in the form g = b · k, with

b ∈ B+
Q, and k ∈ GẐ. Then define

φ̂s : Gf −→ Q⊗C

by

(3.1.2) φ̂s(g) = |b|sfφ(k)

for s ∈ C. This makes the function on H± ×Gf

(3.1.3) (z, g) 7→ φ̂s(g)I(z)
s

well-defined, and invariant under left translation by B+
Q. The real analytic Eisenstein

series associated with φ is then defined, for Re s > 1, by the absolutely convergent

series

(3.1.4) Eφ(z, g; s) = −2π
∑

γ∈B+
Q\GQ

φ̂s(γg)I(γz)
s.

This expression is to be regarded as taking values in Q⊗C.

The following facts are consequences of Selberg’s theory—see [GJ], or [Ku] for

a more classical account.

(3.1.5) Eφ has a meromorphic continuation to the s-plane, with at worst a simple

pole at s = 1. The residue of Eφ at s = 1 is a locally constant function on

H± ×Gf .
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(3.1.6) As a function on H± ×Gf , Eφ is left GQ-invariant, and right K-invariant if

φ is. It satisfies the differential equation 4Eφ = s(s−1)Eφ, for the Laplacian

4 on H±.

(3.1.7) If deg φ = 0, then Eφ has no pole at s = 1. In this case, Eφ(z, g; 1) is harmonic

on H±, and the difference

Eφ(z, k; 1)− (−2πy)φ(k)

is bounded as y = Im z tends to +∞.

From 3.1.7, it follows that, if deg φ = 0 and φ is right K-invariant, then the

differential form on H± ×Gf

(3.1.8) ηφ = 2∂zEφ(z, g; 1)

may be viewed as a holomorphic Q ⊗ C-valued 1-form on MK(C), with at worst

simple poles at the cusps, and its residue at the cusp [k] ∈M∞
K (C) is φ(k)/w(k,K).

3.1.9. Define

EisK =
{
ηφ | φ is K-invariant and deg φ = 0

}
,

and

Eis =
⋃
K

EisK .

Notice that a priori the space Eis is a Q-subspace of the space Ω1(M) ⊗ Q ⊗ C,

where Ω1(M) = lim−→
K

Ω1(MK); it is however actually contained in Ω1(M) ⊗ Q, as a

consequence of the Manin-Drinfeld theorem—see Theorem 3.4.0 below.

3.2.0. For any φ (not necessarily of degree 0) the function

φ̂ = φ̂1 : Gf −→ Q ⊂ Q⊗C

is a locally constant function satisfying

φ̂(bng) = |b|f φ̂(g)

for all b ∈ B+
Q, n ∈ NẐ, g ∈ Gf .

Under the action of diagonal matrices, the space of all such functions φ̂ decom-

poses as

(3.2.1)
⊕

χ1,χ2

Ind(χ1, χ2),
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where (χ1, χ2) runs over all pairs of Dirichlet characters

χi : A∗
Q/Q

∗ −→ Q∗

whose product χ1χ2 is even, and where Ind(χ1, χ2) is the space of all locally constant

functions φ̂ : Gf → Q satisfying

φ̂(bg) = χ1,f (b1)χ2,f (b2)|b|f φ̂(g),

for all b =
(
b1 ∗
0 b2

)
∈ Bf . In the terminology of [JL], we have

Ind(χ1, χ2) = B(µ, ν) =
⊗
p

′ B(µp, νp),

where µ, ν : A∗
f → Q∗ are the characters

µ(x) = χ1,f (x)|x|
1
2
f

ν(x) = χ2,f (x)|x|−
1
2

f .

3.2.2. The assignment ηφ 7→ φ̂ defines a Gf -equivariant inclusion

Eis ↪−→
⊕

χ1,χ2

Ind(χ1, χ2).

We write

Eis(χ1, χ2) = Eis ∩ Ind(χ1, χ2).

3.2.3. Proposition. Eis =
⊕

Eis(χ1, χ2). Furthermore, Eis(χ1, χ2) = Ind(χ1, χ2)

unless χ1 = χ2 = χ, in which case Eis(χ, χ) is the unique Gf -invariant subspace of

Ind(χ, χ) of codimension one.

Proof. The map ηφ 7→ φ̂ identifies Eis(χ1, χ2) with

{
φ̂ ∈ Ind(χ1, χ2) | deg

(
φ̂|G

Ẑ

)
= 0

}
.

If φ̂ ∈ Ind(χ1, χ2) and a, b ∈ Ẑ∗, then

(
deg

(
φ̂|G

Ẑ

))
(a) =

∫
SL2(Ẑ)

φ̂
((

a 0
0 1

)
g
)
dg

=
∫
SL2(Ẑ)

φ̂
((

ab 0
0 b−1

)
g
)
dg

= χ1,f (a)
χ1,f

χ2,f

(b) ·
(
deg

(
φ̂|G

Ẑ

))
(1).
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Thus, deg
(
φ̂|G

Ẑ

)
is determined by its value at 1, and is zero if χ1 6= χ2. Hence, in

this case we have indeed that Eis(χ1, χ2) = Ind(χ1, χ2).

If, however, χ1 = χ2, then µν−1 = |·|f , and so B(µp, νp) has a unique nonzero

invariant subspace Bs(µp, νp), the so-called special representation (see [JL], Theorem

3.3). It has codimension 1, and is the subspace of functions φ̂p on Gp which belong

to B(µp, νp) and satisfy ∫
SL2(Zp)

φ̂p(g) dg = 0.

Eis(χ1, χ2) is then identified with the subspace of
⊗
p

′ B(µp, νp) spanned by tensors

⊗pφ̂p such that φ̂p belongs to Bs(µp, νp) for at least one p, and this is the unique

invariant subspace of B(µ, ν) of codimension one.

3.3. Remarks. (i) Even if deg φ 6= 0, we can still define a GQ-invariant 1-form ηφ

on H± × Gf ; for the residue of Eφ at s = 1 is locally constant on H± × Gf , and we

can write

ηφ = lim
s→1

2∂zEφ.

This will be an “almost holomorphic” form, as introduced by Hecke ([He], pp. 411–

413).

(ii) The representations Eis(χ1, χ2) are highly reducible. However, if χ1 6= χ2,

then for infinitely many primes p, the p-components χi,p will be unequal, whence the

local factors B(µp, νp) will be irreducible. In particular, for such primes p, there can

be no quotient of Eis(χ1, χ2) whose restriction to Gp is abelian. We will come back

to this in 7.4 below.

(iii) If K is an open subgroup of GẐ, then for every p such that GZp
⊆ K, the

Hecke operator Tp ∈ H(Gf ,K) (cf. 1.2.0 above) is defined as
1
p

times the character-

istic function of the double coset K
(

1 0
0 $

)
K, with $ ∈ A∗

f having component p

at the place p, and 1 elsewhere. Then Tp acts as multiplication by pχ1(p) +χ2(p) on

Ind(χ1, χ2)
K .

3.4. We next recall the well-known theorem of Manin and Drinfeld:

3.4.0. Theorem (Manin-Drinfeld). Let C ⊂ Pic0(MK ⊗C) be the subgroup of

classes of divisors supported on the cusps of MK(C). Then C is finite.

Proof. Choose a prime p ≥ 7 such that GZp
⊆ K. C is a quotient of

H̃0(M∞
K (C),Z) =

{
φ : ±NẐ\GẐ/K → Z | deg φ = 0

}
,
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and, by 3.3(iii), the eigenvalues of Tp on C ⊗ Q have absolute value ≥ p − 1. On

the other hand, the characteristic polynomial Xp(T ) of Tp on Ω1(MK) has rational

coefficients, and all its roots have absolute value ≤ 2
√
p. For some positive integer

N , the correspondence NXp(Tp) annihilates Pic0(MK), and since p − 1 > 2
√
p for

p ≥ 7, we get that C ⊗Q = 0.

3.4.1. In §7 below we shall use a similar argument in the course of proving 1.1.2(iii).

3.5.0. Let u ∈ O∗(MK ⊗C), for some open compact subgroup K ⊆ GẐ. If ord[k] u

denotes the multiplicity of u at the cusp [k] ∈M∞
K (C), then the function

div(u) :GẐ −→ Q

k 7→
ord[k] u

w(k,K)

depends only on u, not on the choice of K. It is left ±NẐ-invariant, right K-invariant,

and has degree zero (see 3.1.0). Conversely, by the Manin-Drinfeld theorem any φ

with this property is of the form div(u) for some u ∈ O∗(MK ⊗C)⊗Z Q.

3.5.1. Proposition. If φ = div(u) : ±NẐ\GẐ/K → Q, then

ηφ = d log u;

the function

Eφ(z, g; 1)− log |u|

is locally constant.

Proof. Since φ is Q-valued, Eφ(z, g; s) takes values in C ⊂ Q⊗C, and Eφ(z, g; 1) is

real-valued. By 3.1.7, the difference Eφ(z, g; 1)− log |u| is harmonic and bounded on

MK(C), whence locally constant. The first claim follows immediately.

3.5.2. Corollary. Let O∗(M ⊗C) = lim−→O
∗(MK ⊗C). Then

d logO∗(M ⊗C)⊗Q = Eis ⊂ Ω1(M)⊗Q.

We can therefore write the integral occurring in 1.3.2 as

(3.5.3)
∫
MK(C)

(
Eφ(z, g; 1) + c

)
η̄ξ ∧ ω,

where ξ = div v, φ = div u and c is locally constant on MK(C). Since η̄ξ ∧ ω =

2 d(Eξ(z, g; 1)ω), Stokes’ theorem shows that we may assume that c = 0.
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3.5.4. Proposition. d logO∗(M)⊗Z Q =
⊕

χ even
Eis(1, χ).

Proof. Let Qc denote the algebraic closure of Q in C (to be distinguished from Q).

Then

O∗(M) = O∗(M ⊗C)Aut(C/Q) = O∗(M ⊗Qc)Gal(Qc/Q)

whence by Hilbert 90

d logO∗(M) = (d logO∗(M ⊗Qc))Gal(Qc/Q) .

If τ ∈ Gal(Qc/Q) and u ∈ O∗(M ⊗Qc), then by 3.0.2,

(div uτ ) (k) = (div u)
((

t(τ) 0
0 1

)
k
)

for all k ∈ GẐ. Thus if u ∈ O∗(M) and φ = div u, then φ̂ ∈⊕
χ

Ind(1, χ).

4. Whittaker functions and L-factors.

4.0. In this section we continue to prepare for the integral evaluation of §5, and

also include some facts needed for later sections. Most of the results required from

representation theory can be found in [JL], [Ge] or [Go].

4.0.0. For every prime p, let ψp : Qp → C∗ be the additive character such that

ψp(p
−r) = exp(−2πip−r).

Then ψ =
∏

p ψp :Af → C∗ has the property that (x∞, xf ) 7→ exp(2πix∞) · ψ(xf ) is

a non-trivial character of Q\A.

4.0.1. If πC is any irreducible admissible complex representation of Gf , all of whose

local components are infinite-dimensional, then it has a unique realisation W(πC) in

the space of Whittaker functions

W =
{
f : Gf → C | f

((
1 x
0 1

)
g
)

= ψ(x)f(g) for all x ∈ Af , g ∈ Gf

}
.

If πC occurs in Ω1(M ⊗C), the space of (complex) cusp forms of weight 2 (cf. 1.2.0

above), then Fourier expansion gives an explicit mapping of the space of πC into W;

if ω = 2πif(g, z) dz belongs to the space of πC (here z ∈ H±, g ∈ Gf ), then the

mapping is:

(4.0.2) ω 7→Wω(g) =
∫
Q\A

f(z + x∞,
(

1 xf
0 1

)
g) e−2πi(z+x∞)ψ(xf ) dx
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where x = (x∞, xf ) ∈ R×Af = A. The inverse mapping is given by

(4.0.3) ω =
∑
a∈Q
a>0

Wω

((
a 0
0 1

)
g
)
d(e2πiaz).

4.1. Now suppose that π is an irreducible factor of Ω1(M) ⊗Q. Then, as in 1.2.0,

for every embedding σ : Q ↪−→ C, we obtain by extension of scalars a complex

representation πσ of Gf . The resulting Whittaker models W(πσ) fit together to give

a “rational” Whittaker model, in a sense to be explained now.

4.1.0. Recall the definition of the cyclotomic character t : Aut(C/Q) → Ẑ∗ from

3.0.2, and let Aut(C/Q) act on Q⊗C via the second factor. In terms of the inclusion

Q⊗C ⊂ CHom(Q,C), for τ ∈ Aut(C/Q) and (xσ)σ ∈ Q⊗C we have

(xσ)τ = (xτ
τ−1σ)σ.

(The action of Aut(C/Q) is a left action.)

4.1.1. Theorem. There is a unique realisation of π in a Q-subspace Wrat(π) of the

Q⊗C-module

Wrat =

f : Gf → Q⊗C

∣∣∣∣∣ f
((

1 x
0 1

)
g
)

= ψ(x)f(g) for all x ∈ Af and g ∈ Gf

f(g)τ = f
((

t(τ) 0
0 1

)
g
)

for all τ ∈ Aut(C/Q)

 .

The mapping (4.0.2) gives rises to a (canonical) isomorphism Vπ
∼−→Wrat(π).

This theorem is implicit in [Ha]. The main point is that the curves MK are

defined over Q, and the action of τ ∈ Aut(C/Q) on the set of cusps

M∞
K (C) = ±NẐ\GẐ/K

is left multiplication by
(
t(τ) 0
0 1

)
. This enables one to keep track on the action of

Aut(C/Q) on the Fourier expansions of automorphic forms at the various cusps of

MK (and the theorem is no more than a description of this action).

4.1.2. The modelW(πC) of 4.0.1 is a restricted tensor product
⊗
p

′W(πC,p) of Whit-

taker models of the local representations πC,p of Gp. The rational Whittaker model

also admits such a factorisation; if π = ⊗
p
′ πp is as above, then

Wrat(π) =
⊗
p

′Wrat(πp)
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where Wrat(πp) is the unique realisation of πp in

Wrat
p =

f : Gp → Q⊗C

∣∣∣∣∣
f

((
1 x
0 1

)
g
)

= ψp(x)f(g) for all x ∈ Qp and g ∈ Gp

f(g)τ = f
((

tp(τ) 0
0 1

)
g
)

for all τ ∈ Aut(C/Q)

 .

4.2. The restriction of functions in the Whittaker model to the subgroup
(
∗ 0
0 1

)
of G is injective; the resulting space of functions is the Kirillov model. Restricting

functions in Wrat(π), resp. Wrat(πp), gives realisations Krat(π), Krat(πp) of the rep-

resentations π, πp in spaces of Q ⊗C-valued functions on A∗
f and Q∗

p, respectively.

In particular, we have

Krat(πp) ⊂ K
rat
p =

f : Q∗
p → Q⊗C

∣∣∣ f locally constant, and f(x)τ = f(tp(τ)x)

for all x ∈ Q∗
p and τ ∈ Aut(C/Q)

 .

From [JL], Proposition 2.9(i), one obtains:

4.2.0. Lemma. The space Krat(πp) contains all functions in Krat
p of compact sup-

port.

4.3. Using the Kirillov model one defines local L-factors. For all p, associated to

πp there is a Q ⊗ C-valued function L(πp, s), which is in fact the reciprocal of a

polynomial in p−s with coefficients in Q ⊂ Q ⊗ C. The fact that these coefficients

are in Q expresses the fact that if πE is a representation of Gp defined over a subfield

E ⊂ C which is Galois over Q, then the L-factor L(πE , s)—in the usual sense—is a

polynomial in p−s with coefficients in E, and if α ∈ Gal(E/Q), the L-factor of πα is

obtained by applying α to the coefficients of L(πE , s).

4.3.0. In case πp is spherical (that is, has a nonzero GZp
-invariant vector) we have

L(πp, s) =
∫
Q∗

p

|a|s−1
p f(a) d∗a,

where f is the unique spherical function in Krat(πp) such that f(1) = 1.

4.3.1. The global L-function is defined as the Euler product (for Re s > 3/2)

L(π, s) =
∏
p
L(πp, s);

it is a Q⊗C-valued function, whose σ-component is the usual L-function associated

to πσ—cf. 1.2.1 above.
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4.4. One also defines Whittaker models for the induced representations Ind(χ1, χ2)

(see [Go], §I.9)—note that these are in general reducible, and are not automorphic

representations in the usual sense of the word. The associated L-function is the

product of the Dirichlet L-series

L(χ1, s) · L(χ2, s+ 1).

The composite mapping

Eis(χ1, χ2) ↪−→ Ind(χ1, χ2)
∼−→Wrat(Ind(χ1, χ2))

can be described by the Fourier expansion map (4.0.2); however in the inversion

formula (4.0.3) a constant term must be added.

4.5. We now describe what we need from the theory of L-functions for GL2×GL2—

see [J].

4.5.0. Suppose that π is an irreducible constituent of Ω1(M)⊗Q, and that π′ is one

of the representations Ind(χ1, χ2). For f ∈ Krat(πp) and g ∈ Krat(π′p), write

(4.5.1) I(f, g; s) =
∫
Q∗

p

|a|s−1
p f(a)g(a) d∗a

(where complex conjugation acts on Q⊗C via the second factor).

4.5.2. Proposition. (i) I(f, g; s) ∈ Q(p−s) ⊂ Q⊗C(p−s).

(ii) If f and g are spherical functions with f(1) = g(1) = 1, then

I(f, g; s) =
L(πp ⊗ χ1,p, s+ 1) · L(πp ⊗ χ2,p, s)

L(χ1,pχ2,pωπ,p, 2s)
,

where ωπ is the central character of π.

The proof can be extracted from §§14, 15 of [J], in particular Proposition 14.4

and its proof, and Lemma 15.9.4. The only point which this reference does not make

explicit is that I has coefficients in Q. The key observation here is that conjugating

the coefficients by τ ∈ Aut(C/Q) amounts to replacing f(a)g(a) with (f(a)g(a))τ in

the integral, hence with f
(
tp(τ)a

)
g

(
tp(τ)a

)
. This is the same as substituting tp(τ)a

for a everywhere in the integral—which however leaves it unchanged.

4.5.3. Now suppose that f ∈ Wrat(π), g ∈ Wrat(π′) where π and π′ are as in 4.5.0,

and let φ be any function as in 3.1.0 with the additional property that, for every

τ ∈ Aut(C/Q) and k ∈ GẐ,

φ
((

t(τ) 0
0 1

)
k
)

= φ(k) ∈ Q ⊂ Q⊗C.
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Consider the integral

J(f, g, φ; s) =
∫
A∗

f×G
Ẑ

|a|s−1
f φ(k)f

((
a 0
0 1

)
k
)
g

((
a 0
0 1

)
k
)
d∗a dk

where dk denotes the Haar measure on GẐ with total mass one. By restricting

to sufficiently small open subgroups of GẐ (leaving f , g, φ invariant under right

translation) and using 4.5.2 and its proof one sees that J can be meromorphically

continued to the s-plane (cf. [J], pp. 124ff.), and that, for some A = A(f, g, φ) ∈ Q,

J(f, g, φ; 1) = A · L(π ⊗ χ1, 2)L(π ⊗ χ2, 1)
L(χ1χ2ωπ, 2)

.

4.5.4. We need one further local fact; by Lemma 4.2.0, we see that if S is any

nonempty compact open subset of Q∗
p, there exist f ∈ Krat(πp) and g ∈ Krat(π′p)

such that

supp(f) ∪ supp(g) ⊆ S and I(f, g; 1) = 1.

5. Evaluation of the regulator integral.

5.0. We now begin the calculation of the integral of 1.3.2,∫
MK(C)

log |u|d log v ∧ ω

where π, Vπ is fixed as in 1.2.0, K is an open compact subgroup of Gf , ω ∈ V K
π , and

u, v ∈ O∗(MK).

5.0.0. Write φ = div(u) and ξ = div(v). By virtue of (3.5.3) this integral equals

(5.0.1)
∫
MK(C)

Eφ(z, g; 1)η̄ξ ∧ ω.

Note that ηξ is a Q-linear combination of elements of Eis(1, χ), where χ runs over all

even Dirichlet characters, by 3.5.4.

5.1. The main tool in the evaluation of (5.0.1) is Rankin’s trick. Let (π, Vπ) be

an irreducible constituent of Ω1(M) ⊗ Q, and let (π′, Vπ′) be a representation of

Gf which is either also an irreducible constituent of Ω1(M) ⊗Q, or else one of the

representations Ind(χ1, χ2). In the former case write V 0
π′ = Vπ′ , and in the latter

set V 0
π′ = Eis(χ1, χ2) ⊆ Vπ′ . If ω ∈ V K

π and η ∈ (V 0
π′)

K , the associated Whittaker

functions Wω, Wη are defined (by 4.0 and 4.4 above).
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5.1.0. Proposition (“Rankin’s trick”). For any φ : ±NẐ\GẐ/K → Q, and any

s with Re s > 1,∫
MK(C)

Eφ(z, g; s) η̄∧ω = πi
Γ(s+ 1)
(4π)s−1

[
GẐ : ±K

]
×

∫
A∗

f×G
Ẑ

φ(k)Wω

((
a 0
0 1

)
k
)
Wη

((
a 0
0 1

)
k
)
|a|s−1

f d∗a dk

where dk is the Haar measure on GẐ with total mass 1.

Proof. The integral is∫
GQ\H±×Gf/K

−2π
∑

γ∈B+
Q\GQ

φ̂s(γg)I(γz)
s η̄ ∧ ω

=
∫

B+
Q\H±×Gf/K

−2πφ̂s(g)I(z)
s η̄ ∧ ω

(since η̄ ∧ ω is GQ-invariant). Now if Im(z) > 0 then

η̄ ∧ ω =
(∑

b>0

Wη

((
b 0
0 1

)
g
)
d

(
e2πibz

)
+ C

)

∧
∑
a>0

Wω

((
a 0
0 1

)
g
)
d

(
e2πiaz

)
where C denotes the “constant term” in the Fourier expansion of η. The only terms

contributing to the integral are those for which a = b, and so it may be rewritten as∫
B+

Q\H×Gf/K

−2πφ̂s(g)y
s

∑
a>0

Wη

((
a 0
0 1

)
g
)
Wω

((
a 0
0 1

)
g
)
d (e2πiaz) ∧ d

(
e2πiaz

)

= 16π3i
∫

ZQNQ\H×Gf/K

φ̂s(g)y
sWη(g)Wω(g)e−4πy dx ∧ dy

= πi
Γ(s+ 1)
(4π)s−1

[
GẐ : ±K

] ∫
ZQNf\Gf

φ̂s(g)Wη(g)Wω(g) dg

where dg is the measure on ZQNf\Gf derived from the Haar measure on Gf for

which GẐ has measure 1. Observing that

ZQNf\Gf = ±NẐ\DfGẐ

and that, in terms of the decomposition

Gf = NfAfGẐ, g =
(

1 x
0 1

) (
a1 0
0 a2

)
k

the Haar measure is dg =
∣∣∣∣∣a1

a2

∣∣∣∣∣
−1

f

dx d∗a1 d
∗a2 dk, we obtain the required formula.
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5.1.1. Remark. When deg(φ) = 0, the above yields

(5.1.2)

∫
MK(C)

Eφ(z, g; 1)η̄ ∧ ω = πi
[
GẐ : ±K

]
× lim

s→1

∫
A∗

f×G
Ẑ

φ(k)Wω

((
a 0
0 1

)
k
)
Wη

((
a 0
0 1

)
k
)
|a|s−1

f d∗a dk.

For the nonvanishing argument in §6 it is useful to note that the limit of the integrals

in 5.1.0 exists for every φ (even though in general Eφ has a pole at s = 1). Indeed,

since the residue of Eφ at s = 1 is locally constant, the same reasoning as in (3.5.3)

above shows that it does not contribute to the integral.

5.2. It remains to collect up the loose ends of the argument. As observed in 5.0

above, the integral (5.0.1) is a Q-linear combination of integrals of the form (5.1.2),

with η ∈
(
V 0

π′

)K
where π′ = Ind(1, χ) for even characters χ. Furthermore φ = div(u)

satisfies the Galois invariance property required in 4.5.3. This paragraph tells us that

the integral (5.0.1) lies in the Q-subspace of Q⊗C generated by the elements

2πi
L(π, 2) · L(π ⊗ χ, 1)

L(χωπ, 2)
∈ Q⊗C,

as χ varies over all even Dirichlet characters of Q. By 2.3, these elements are Q-

multiples of

2πi · c+(π) · L′(π̌, 0).

This concludes the proof of part (i) of Theorem 1.3.2.
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6. Nonvanishing of the regulator integral.

6.0. In this section we complete the proof of part (ii) of Theorem 1.3.2. Fix π as in

1.2.0, and let χ 6= 1, ωπ be an even Dirichlet character of Q such that L(π⊗χ, 1) 6= 0

(see 2.2.0). In view of 3.5.1 and 3.5.4, in order to establish 1.3.2(ii) it suffices to prove

the following.

6.0.0 Proposition. There exist φ : ±NẐDẐ\GẐ −→ Q of degree zero (3.1.0),

ω ∈ Vπ, and η ∈ Eis(1, χ), such that, for some K ⊆ GẐ fixing φ, ω and η under right

translation, the integral

(6.0.1)
∫
MK(C)

Eφ(z, g; 1) η̄ ∧ ω

is nonzero.

6.1.0. Let us first prove 6.0.0 without the requirement that deg(φ) be zero. Choose

ω and η in such a way that their Whittaker functions factorise:

Wω = ⊗
p
′Wω,p

Wη = ⊗
p
′Wη,p,

and such that for a suitable finite set S of primes, one has:

• for p /∈ S, Wω,p and Wη,p are right GẐ-invariant; and

• for p ∈ S, we have (cf. 4.5.4 above)

I
(
Wω,p

((
· 0
0 1

))
,Wη,p

((
· 0
0 1

))
; 1

)
= 1.

For p ∈ S, denote by Kp an open subgroup of GZp
such that Wω,p and Wη,p are

right Kp-invariant. Choose φ to be the characteristic function of

NẐ

( ∏
p/∈S

GZp
×

∏
p∈S

Kp ·DZp

)
.

Then in view of the choice of χ (from 6.0 above), it follows from Propositions 5.1.0

and 4.5.2 that the integral (6.0.1) does not vanish, as claimed.

6.1.1. Finally, given any φ (not necessarily of degree zero), ω and η such that the

integral (6.0.1) is nonzero, denote by ψ the function on GẐ such that ψ̂ (in the

notation of 3.2.0) is the (1, 1)-component of φ̂ in the decomposition 3.2.1. Then

deg(φ) = deg(ψ), and the integral (6.0.1), with φ replaced by ψ, vanishes, since the

product of the central characters of the three representations involved is 1 ·χ ·ωπ 6= 1.

Thus replacing φ by φ− ψ leaves (6.0.1) unchanged, while deg(φ− ψ) = 0.
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7. Integrality.

7.0. In this section we prove Theorem 1.1.2(iii). The main ingredient is the analysis

of the reduction mod p of modular units using supersingular points.

7.0.0. Throughout the section, we fix a prime p and an integer m ≥ 3 which is prime

to p. Define

G(p) =
∏′

l 6=p

Gl.

We denote by H(m, p) the Hecke algebra of compactly-supported functions on G(p)

with values in Q which are biinvariant under G(p) ∩Km.

7.0.1. We need to recall the structure of the reduction mod p of certain modular

curves. If MK/Z is a model for MK over SpecZ, we will denote MK/Z ⊗Z Fp by

MK/Fp
. In the cases

K = Km ∩K0(p) or K(mpk),

we take MK/Z to be the regular model described in [DR], V.1.18, V.4 and [KM],

Chapter 13.

7.0.2. There is a natural map Mm/Z −→ SpecZ[µµµm] induced by the Weil pairing,

whose fibres in characteristic p are smooth and geometrically connected. We write

Σm,p for the set of supersingular points of Mm/Z⊗ZFp, and Sm,p for the set of primes

of Q(µµµm) lying over p (which is thus the same as the set of connected components

of Mm/Z ⊗ Fp). If A is any abelian group, let A[Σm,p], A[Sm,p] be the groups of

A-valued functions on Σm,p, Sm,p. There is a natural inclusion A[Sm,p] ⊂ A[Σm,p],

and also a surjection γ : A[Σm,p] −→ A[Sm,p] given by summing along the fibres;

write A[Σm,p]
0 def= ker γ.

7.0.3. Consider the modular curve MK for K = K0(p)∩Km. There is a short exact

sequence

(7.0.4) 0 −→ T −→ Pic0(MK/Fp
) −→ Pic0(Mm/Fp

)2 −→ 0

in which T is a torus over Fp whose character group is Z[Σm,p]
0 (cf. [DR] V.1.18

and I.3.7).

7.1.0. If (π, Vπ) =
⊗′
l

(πl, Vπ,l) is an irreducible representation of Gf occurring in

Ω1(M)⊗Q, let

V (p)
π =

⊗′

l 6=p

Vπ,l ;
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it is an irreducible admissible representation of G(p).

We denote by sp(1) the (special) representation of Gp on the space of locally

constant functions on P1(Qp) modulo constants.

7.1.1. Theorem. There is an isomorphism of H(m, p)-modules

Q[Σm,p]/Q[Sm,p]
∼−→

⊕
π

(V (p)
π )Km,

where the sum is taken over all irreducible (π, Vπ) ⊂ Ω1(M) ⊗ Q for which πp is

isomorphic to sp(1).

This result is well known, and in principle is due to Eichler. The result in the

case m = 1 has been used by Mestre and Oesterlé to find Weil curves with prime

conductor (see [M]). Since there does no seem to be an easily accessible proof of the

general case in the literature, we sketch one here. First note that the right-hand space

is isomorphic, as an H(m, p)-module, to the sum of spaces V Km∩K0(p)
π , taken over all

(π, Vπ) for which p divides the conductor of π. This in turn is precisely the space of

all holomorphic cusp forms of weight two on K(m)∩K0(p) which are “p-new”. Now

the reduction mod p of the corresponding part of the Jacobian of MKm∩K0(p) is the

torus T . Since EndT ∼−→ End(Hom(Z[Σm,p]
0,Z)) by (7.0.4), the result follows.

7.2.0. In what follows, the reductions mod p of modular curves and their components

will always be assumed to be endowed with the reduced subscheme structure.

7.2.1. Consider Mn/Z for n = mpk, k ≥ 1. We recall the structure of Mn/Fp
and the

covering Mn/Fp
−→Mm/Fp

.

7.2.2. The irreducible components of Mn/Fp
are indexed by Sm,p×P1(Z/pkZ). The

action of GZ/nZ = GZ/mZ × GZ/pkZ on them is the product of the action of GZ/mZ

on Sm,p given by determinant followed by the Artin map, and the usual action of

GZ/pkZ on P1(Z/pkZ) by linear fractional transformations.

7.2.3. If D is a GZ/mZ-orbit of an irreducible component of Mn/Fp
, then D is a

smooth curve over Fp (but not in general irreducible). H(m, p) acts on D by cor-

respondences. The covering D −→ Mm/Fp
is finite and flat, everywhere of degree

pkφ(pk), and is totally ramified over the supersingular points. Thus we can identify

the supersingular points of D with Σm,p, and this identification is compatible with

the action of H(m, p). By the previous paragraph, the irreducible components of D
can be identified with Sm,p.
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7.2.4. Let u ∈ O∗(Mn), and let C be an irreducible component of Mn/Fp
. Use the

superscript h to denote the complement of the supersingular points. u gives rise to

a unit (modulo roots of unity) on Ch as follows. Let ordC denote the normalised

valuation on the function field Q(Mn) at the generic point of C, and write e =

ordC(p) = pkφ(pk). Then if k(C) is the function field of C,

uC = ∂C{u, p}

= ue/pordC(u)

may be viewed as belonging to k(C)∗. Its only poles or zeros can be at singular points

of the fibre Mn/Fp
, so in fact uC ∈ O∗(Ch).

7.2.5. Theorem. uC has the same order of pole or zero at each supersingular point

of C.

Proof. It is convenient to consider, rather than C, the orbit D =
∐ Ci of C under

GZ/mZ; thus Dh =
∐ Ch

i . Then define uD ∈ O∗(Dh) to be the unit whose restriction

to Ch
i is uCi

. Consider the composite homomorphism:

O∗(Mn) −→ O∗(Dh) −→ Z[Σm,p]

where the first map is given by u 7→ uD, and the second is the divisor map. The

assertion of the theorem is that the image of this composite lies in Z[Sm,p]. But by

composing with the quotient map and extending scalars we obtain a map

(O∗(Mn)/Q(µµµn)∗)⊗Z Q −→ Q[Σm,p]/Q[Sm,p]

which is a homomorphism of H(m, p)-modules. The first space occurs in the space of

Eisenstein series (by 3.5.2), and the second in the space of cusp forms (by Theorem

7.1.1)—so by the same principle as in the proof of the Manin-Drinfeld theorem (3.4.0

above) this map is zero.

7.3.0. Fix a positive integer n, which we assume is the product of two coprime

integers, each ≥ 3. Recall that Mn/Z is the complement in Mn/Z of the cuspidal

subscheme M∞
n/Z, itself a disjoint union of copies of SpecZ[µµµn]. Denote the set of

connected components of M∞
n/Z simply by “cusps”. We have boundary maps in

absolute cohomology/homology (see [Be1], 2.2.3 and Chapter V)

∂∞ : H2
A(Mn,Q(2)) −→ H1

A(M∞
n ,Q(1)) =

∐
cusps

Q(µµµn)∗ ⊗Z Q
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∂p : H2
A(Mn,Q(2)) −→ H ′−1

A (Mn/Fp
,Q(0)) ⊂ H1

A(Mh
n/Fp

,Q(1))

= O∗(Mh
n/Fp

)⊗Z Q.

From the localisation sequence, we have (cf. 1.1.1 above)

Qn
def={O∗(Mn),O∗(Mn)} ∩H2

A(Mn,Q(2))

={O∗(Mn),O∗(Mn)} ∩ ker ∂∞.

7.3.1. Theorem. Qn ⊆ H2
A(Mn/Z,Q(2)).

7.3.2. Remark. This is sufficient to prove Theorem 1.1.2(iii). Indeed, from the

definition of PK and the remarks in 1.2.9 above, if ξ ∈ PK then for some n ≥ 3

with Kn ⊆ K, there exists α ∈ Qn satisfying ξ = θKn/K∗α. Now θKn/K∗ maps

H•
A(Mn/Z, ∗) into H•

A(MK/Z, ∗), since the graph of θKn/K extends to a correspon-

dence on the regular models over Z.

Proof. We have to show that ∂p(Qn) = 0 for every p. If p6 |n then this follows at once

from the localisation sequence, since in this case H ′−1
A (Mn/Fp

,Q(0)) = O∗(Mn/Fp
)⊗Z

Q. So let us restrict to the case n = mpk, k ≥ 1. We have the following diagram

with exact rows, in which the solid arrows commute up to sign:

0 - Qn
- {O∗(Mn),O∗(Mn)}

∂∞-
∐

cusps
Q(µµµn)∗ ⊗Z Q

0 - O∗(Mh
n/Fp

)⊗Z Q

αp

?

- O∗(Mh
n/Fp

)⊗Z Q

∂p

? εp -
∐

cusps

∐
Sm,p

Q

θp

?

Here the maps ∂p, ∂∞ are those in the localisation sequence. The map

εp : O∗(Mh
n/Fp

)⊗Z Q −→
∐

M∞
n/Fp

Q

is the infinite part of the divisor map (noting that the points of M∞
n/Fp

are just

(cusps)× Sm,p). Finally θp is the “content” map

Q(µµµn)∗
(ord℘)℘−−−−→

∐
℘∈Sm,p

Q.

We therefore obtain a map αp as indicated making the left-hand square commutative.

It is enough to show that αp(Qn) = 0. But for any component C, we have inO∗(Ch)⊗Z

Q

∂C{f, g}
e =

fordC g
C
gordC f
C

.
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Applying 7.2.5 above we see that if ξ ∈ Qn then αp(ξ), when restricted to any irre-

ducible component C̄h of Mh
n/Fp

, has the same order at each supersingular point. But

every such C̄h is the complement, in the complete curve C̄, of the set of supersingular

points, and the total degree of the divisor of αp(ξ) on C̄ is of course zero. Therefore

αp(ξ) = 0 as required.

7.4. Remark. In [Be1, Be2], Beilinson suggests another proof of 7.3.1 above. This

relies however on the assumption that

O∗(Mn)⊗Z Q = Q(µµµn)∗ · O∗(Mn/Z)⊗Z Q

(which would imply an “integral” version of the Manin-Drinfeld theorem, see [Be2],

5.2.4). This does not hold in general; for example, if p divides n, the modular

unit ∆(pz)/∆(z) belongs to the space on the left, but not to that on the right.

The difficulty arises because the Eisenstein representations Eis(χ1, χ2) are highly

reducible, and can be intertwined with many different irreducible representations of

Gf . The argument of 5.5 of [Be1] produces certain maps

Eis(χ1, χ2) −→ Up

where Up is a Gf -module on which, for every l 6= p, Gl acts via a sum of abelian

characters. Using remark 3.3(ii) above, one can then obtain the relation (compare

3.5.4 above)

d logO∗(MZ)⊗Z Q ⊇
⊕
χ6=1

χ even

Eis(1, χ).

This is enough to prove the weaker version of 1.1.2(iii) described in 1.1.3(iii). One

can also obtain a precise description of d logO∗(MZ) ⊗Z Q analogous to 3.5.4, but

we shall not go into this here.
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