Invent. Math. 106, 139-194 (1991) In'ven tiones

mathematicae

© Springer-Verlag 1991

Arrangements of hyperplanes and Lie algebra homology

Vadim V. Schechtman ! * and Alexander N. Varchenko?*

! Institute of Problems of Microelectronics Technology and High Purity Materials,
Chernogolovka, Moscow region 142432, USSR
2 Moscow Institute of Gas and Qil, Leninsky Prospekt 65, Moscow 117917, USSR

Oblatum 28-11-1990 & 20-11-1991

Table of contents

Introduction . . . . . . . . . .. L Lo 139
Notations . . . . . . . . . . oL e e e 143
Part I. Cohomology of local systems over complements of hyperplanes . . . . . . . . 143
1 Orlik-Solomon algebra . . . . . . . . . . . . . . .. ... ... .. 143
2 Flagcomplex . . . . . . . . . . .. Lo 148
3 Contravariantform . . . . . . . . . ... Lo 151
4 Topology . . . . . . . . . .o e e e e e e e 157
Part II. Discriminantal arrangements and Lie algebra homology . . . . . . . . . . . 163
5 Free Liealgebras . . . . . . . . . . . . .. ..o 163
6 Contravariantform. II. . . . . . . . . . . . . . ..o 170
7 Knizhnik-Zamolodchikov equations . . . . . . . . . . . . .. . ... 182
References . . . . . . . . . . ..o Lo e 193
Introduction

The paper is devoted to the study of cohomology of one-dimensional local
systems over complements of hyperplanes in complex affine spaces.

It consists of two parts. The first part (Sects. 1-4) contains several results
concerning arbitrary affine arrangements. It may be considered as the continua-
tion of the theme initiated by Arnold, Brieskorn, Orlik-Solomon,... ([Br, OS,
C]). In the second part (Sects. 5-7), which contains main results of the paper,
we study arrangements of a special kind (“discriminantal” ones). We show that
cohomology of certain local systems over them are closely connected with ho-
mology of nilpotent subalgebras of Kac-Moody type Lie bialgebras. The Gauss-
Manin connection which arises in natural variations of these arrangements is
given by Knizhnik-Zamolodchikov differential equations [KZ] first appeared
in Conformal field theory. The main result of the paper yields (under certain

* Current address: Institute for Advanced Study, School of Mathematics, Princeton NJ 08540,
USA
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conditions) the complete set of solutions of the last equations in terms of general-
ized hypergeometric integrals.

0.1 Contents of Part I. Let ¥ be a finite arrangement, i.e. collection of affine
hyperplanes H in a complex affine space V. We put Y (%)= () H; U(¥)=V
He¥

— Y(%). Denote by Q'(U(%)) the de Rham complex of holomorphic forms over
U. Let (%)<= (U(%¥)) be the DG-subalgebra over Z generated by forms
1(H)=d logfy, He%¥, where fz=0 is an equation of H. By [Br] the above inclu-
sion induces the isomorphism &/?(%);=H?(U(%¥); 2ni)’Z). Abusing the lan-
guage, we'll denote elements 1(H,)-1(H,)- ... 1(H,) simply by H,-...-H,.

According to Orlik-Solomon, [OS], relations in «/"(%)z admit a nice descrip-
tion in terms of the combinatorics of €. In Sects. 1, 2 we review general algebraic
facts about /" (€)z. Most of them are known.

We reprove (Theorem 1.6.5) a theorem of Bjorner stating that all groups
AP (€)y are free and giving natural bases of them. We put .o&/" (%)= o (%), ® C'.
Introduce a differential d*: &/"(¢)y— .o/ ~'(¥), by formula d*(H,-...-H,)=
Y(—1)H, ...ﬁi...Hp if Hy, ..., H, are in general position, and zero otherwise.
The only less standard result of § 1 is Theorem 1.7.2 that says that the complex
(7 *(6)g, d*) may have only the top non-zero homology.

In Sect. 2 we introduce the flag complex (#°(€)z, d). The group FP(¥),
may be defined simply as the dual group &/?(%);. Let us call an edge of ¥
any non-empty intersection of its hyperplanes. Denote by % the set of all edges
of codimension i. We show that #7(%); may be defined as groups which have
as generators all flags of €: L!> ... oI, I'e%’, subject to certain relations.
d: FP(@)g— FP* (%) is adjoint to d*. We put F'(4)=F (%), ® C.

Suppose that a map a: ¥ - C is given. We call such a map a collection
of exponents for €. Put w(a)= )Y, a(H)H. Define the differential d=d(a):

He%
oA (€)— "1 (€) to be the left multiplication by w(a). In Sect. 3, which is the
core of the first part, we introduce and study a certain map of complexes

0.1.1) S'=S(a): (F'(€),d)— (L (%), 4d).

Namely, for an edge L put S(L)=) a(H)He</", the sum taken over all He®¥
containing L. The map S?: #?(%)— «/P(%) assigns to a flag F=(L'> ... oI?)
an element. SP(F)=S(L') S(I?)...S(IF). Since F (€)= o/ ?(€)*, S” may be consid-
ered as a bilinear form on #?(%). It is symmetric. Complexes (F (%), d), (<" (%),
d(a)), and the form S’ are main personages of our story.

The first main result of Part I is Theorem 3.7 which calculates the determi-
nant of S". In particular, its zeroes are numbers a(L):= ). a(H).

H-L

In view of results of § 6, this theorem may be considered as a generalization
of the Shapovalov determinant formula [Sh]

In Sect. 4 we clarify the topological meaning of objects studied in §§ 1-3.
We show (Theorem 4.3) that there is a natural isomorphism H'(F (%), d)
=H(V, Y(¥); D).

! This notation slightly differs from that of §§ 1-2
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A collection of exponents a defines an integrable connection V(a) on the
trivial one-dimensional bundle over U(¥) with the connection form
Y a(H)dlog fy.

He%

Denote by Q'(¥ (a)) the corresponding holomorphic de Rham complex over
U(%). We have H'(Q' (L (a)))=H (U(%¥); &(a)) where ¥ (a) is the local system
of horizontal sections of V(a). The inclusion /" (%)< Q' (U(%)) is the map of
complexes (/' (%), d(a)) > Q' (£ (a)). So we get the morphism

0.1.2) 1(a): H' (&4 (%),d(a)) - H (U (%), ¥ (a)).

Note that 1(0) is an isomorphism by Orlik-Solomon. The second main result
of Part I is Theorem 4.6 which says that 1(4a) is isomorphism for all AeC except
for a discrete set, not containing zero. One may imagine the cohomology of
o/" (%) as the “quasiclassical” part of H'(U (%), < (a)). In n° 4.7 we show that
(under certain assumptions) the map induced by S” in cohomology is the “quasi-
classical limit” of the canonical map from the locally finite (near Y (%)) to the
ordinary cohomology of ¥ (a).

Note that it would be interesting to study the Jantzen filtration on «/°(%)
induced by the form S’(a) (see discussion in 4.8).

0.2 Contents of Part II. Denote by %y the set of hyperplanes H;;: t;—t;=0,
1<i<j<Nin CV. Let p} : €"*¥ - C" be the projection on the first n coordinates.
For z=(zy, ..., z,)e U(%,) denote by %, y(z) the arrangement induced by %,
in (pY) " (z)=CN.

Let us fix the following data.

(a) A finite dimensional vector space b;

(b) a symmetric non-degenerate bilinear form (,) on b;
(c) linearly independent functionals o, ..., «,€bh*;

(d) arbitrary functionals A4,, ..., 4,€bh*;

(e) a non-zero complex number x.

For every r-tuple of nonnegative integers 1=(k,, ..., k,), define a collection
of exponents a(4): €,y — C, where N=) k;, as follows. To every coordinate
t; in €"*V assign a covector a(t)eb*: put a(t)=4; if 1<i<n; a(t)=—o; if

j-1 Jj
n+ Y k,<isn+ Y k,.

p=1 p=1

Put a(A)(H;;)=(x(t;), a(t;)/x. (We induce a scalar product on h* by means
of the isomorphism h=bh* defined by (,).) This defines also exponents on all
(gn;N(z)'

On the other hand, we assign to the data (a){(c) a Lie algebra g with genera-
tors f;, e;, i=1, ..., r and [ subject to Kac-Moody type relations, see 6.1. Roughly
speaking, g is a “Kac-Moody algebra without Serre relations”. One has the
decomposition g=n_ @ h@ n, where n_ (resp. n,) denote the subalgebra gener-
ated by f; (resp., e)). 1, are free. Similarly to [D, n® 3], one introduces a cobracket
on g (see 6.14) making it the Lie bialgebra.

A weight Aeb* defines a Verma module M(A) over g. As a n_-
module M(A) is isomorphic to the enveloping algebra Un_. Put
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M=M(4,)® ... ®M(A,). The main result of § 5 is Theorem 5.13 which estab-
lishes natural isomorphisms of complexes

0.2.1) C.n-, M), = FV " @, n(2).

Here A=(k,...,k,) is as above; X, is the product of symmetric groups
2, X ... X Z_; it acts naturally on F', o/", (+)** denotes invariants; C, denotes
the standard chain complex of a Lie algebra with coefficients in a module.
For o g-module 4 A, denotes the component of weight 4 —Zk; a;: {xeA|h-x
={A—ZXk;a;, hyx for all heh}, A=%4;. Note that both sides of (0.2.1) and
the isomorphism do not depend on data (a)—(d).

In §6 one introduces certain symmetric bilinear form on g and M, which
induce the form on C,(n_, M). The main result is Theorem 6.6 which asserts
that (0.2.1) maps this form to the form S on & defined in §3. We also define
(6.15-6.17) on the dual space M* a canonical structure of the module over
the classical double D(b)=b @ b* [D, n° 13] of the Borel subalgebra b=n_ @®.
(0.2.1) induces isomorphism of complexes

0.2.2) C.n*, M*) —— /N (€, n(2)~

(Theorem 6.16.2).

Here n* is considered as a Lie algebra by means of the above mentioned
cobracket, and the structure of the n*-module on M* is the part of the above
mentioned structure of the D(b)-module.

We mention also Remarks 6.8.12 and 6.8.10 which allow to define explicitly
the action of g on appropriate Orlik-Solomon spaces.

Note that results of §§ 5, 6 resemble the classical link between representations
of semisimple Lie algebras and 2-modules over flag spaces (see for example,

[BB)).

Knizhnik-Zamolodchikov equations

The canonical tensor Qeb®b* @ b* ® b defines linear operators Q on tensor
products M (A)* ® M(A’)* through the D(b)-module structure on M(AV)* (see
0.2).
Let Q;; denote the operator on M*=M(4,)*® ... ® M(4,)* acting as Q
on M(A4;)* ® M(4)* and as identity on other factors. They induce endomorph-
isms of C,(n_, M*) which respect the weight decomposition. The main result
of § 7 is Theorem 7.2.5 which asserts that the Gauss-Manin connection arising
in groups HY(o/;.5(2)) when a point ze U(%,) is moving, is mapped by (0.2.2)
to the connection in a trivial bundle with a fiber Hy,(n* , M*) whose horizontal
sections are given by the Knizhnik-Zamolodchikov system

Ly 2un® iy n

K Zi_Zj

(0.2.3) %n(z)=

jFi
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Theorem 4.6 mentioned in 0.1 says that for general k integrals over covariant-

ly constant relative cycles in U(%,. y) provide the complete space of solutions
of (0.2.3).

0.3 Appearance of Lie bialgebras in the above considerations is not accidental.
All this story is only the “quasiclassical” part of the whole picture. One may
calculate the cohomology of the above local systems using cochains instead
of differential forms. This will lead to the “quantization” of the picture. For
example, g will be replaced by its quantum deformation, [D]. On this way
one may obtain an explicit version of Kohno’s theorem on monodromy of
KZ systems [K]. For details, see [SV 3].

0.4 Let us say a few words about the history of the subject. As we have already
mentioned, the equations of type (0.2.3) first appeared in physics, as equations
satisfied by correlation functions in certain models of Conformal field theory,
[KZ]. Physicists first discovered that such correlation functions admit represen-
tation as generalized hypergeometric integrals (they call them “Feigin-Fuchs
integrals”) ([DF]). Our starting point was [CF] where such integral solutions
of KZ equations with g=sl(2), and n=4 were written down. The case g=sl(2)
and arbitrary n was studied in an interesting work [L]. In [SV1, SV2] we
announced the solution for arbitrary Kac-Moody Lie algebras. Partial results
in this direction were obtained also in [DJMM, M]. Note also an interesting
work [Ch]. The present paper provides complete proofs of the results of [SV 1,
SV 2] in a more general framework.

0.5 We are deeply grateful to A. Beilinson, I. Cherednik, A. Giventhal, M. Kapranov, D.
Lebedev as well as to all other participants of the Moscow University seminar on Conformal
field theory for very helpful discussions and the interest to the work. We also thank P. Deligne
for usefull remarks and the referee for correction of a number of misprints.

Notations

N - the set of non-negative integers; for neN, [n]={1, ..., n} ([n]=0 if n=0).
4 I — the cardinality of a set I.
X, — symmetric group of permutations of the set [p]; for ceX, |o|eZ/2Z is
the parity of o.

For a k-vector space V, V* denotes the dual vector space Hom,(V, k). If
A is an abelian group. A*:=Homy(4, Z). [

Part I. Cohomology of local systems over complements of hyperplanes
1 Orlik-Solomon algebra

1.0 Let us fix an N-dimensional complex affine space V.

1.1 Let us call an arrangement a finite collection ¥ of affine hyperplanes in
V. An edge of € is a non-empty intersection of hyperplanes of ; a vertex
is a O-dimensional edge. We'll denote by %” (respectively, %,) the set of all



144 V.V. Schechtman and A.N. Varchenko

edges of codimension p (resp., of dimension p). So ¢* =%. We put ¢°=%y={V}.
We'll call € central if () H=+0.

He¥

1.2 Let us say that hyperplanes H,,..., H, are in general position if
codimy (H,N...nH,)=p. So, if p>N then any p-tuple of hyperplanes is not
in general position.

Let ¥ be an arrangement. Define abelian groups &/7(%), 0< p< N, as follows.
For p=0 put o/*(4)=Z. For p=1 «/?(%) is generated by p-tuples (H,, ..., H,),
H,e%, subject to the following relations:

(1.2.1) (Hy, ..., H)=0
if H, ..., H, are not in general position;
(1.22) (Hd(l)’ ) Ho'(p))z(— l)ldl(Hh ey Hp)

for any o€, ; for any (p+1)-tuple H,, ..., H,., which is not in general position
and such that Hyn...NH,,, +0,

p+1

(1.2.3) Y (-Vi(H,, ..., H, ..., Hyy)=0.
i=1

N
The direct sum /" (4)= P #*(%¥) is a graded skew commutative algebra
p=1

with respect to the multiplication (Hy, ..., H,)-(H),..., H)=(H;, ..., H,,

Y ..., Hy). We'll denote (Hy, ..., H,) by H,-...-H,. &/°(%) is called the Orlik-
Solomon algebra of €.

1.3 For an edge L of € put ¢(L)={He%|H > L}. Inclusions ¥(L)— % induce
the map

(1.3.1) P A*(€ (L) - L7 (%)

Legr

1.3.2 Lemma. (1.3.1) is an isomorphism.

Proof. For Hi, ..., H, in general position let L=H,;n...n H,e%”. Assign to
(H,, ..., H,) the same p-tuple considered as the element of .«7”(¢(L)). One easily
sees that this correctly defines the map /(%) — @ «/P(%4 (L)), which is inverse
to (1.3.1). O

We'll denote by «/?(%), the image of #/?(€ (L)) in =/?(%). So, we have
(1.3.3) AP (€)= P AP(B)..

Le%r
1.4 For He¥ put
(14.1) AP (€ H)=D AP (€), < LF(6)

the sum is taken over all edges Le%” not contained in H. Suppose that €
is central, with the unique vertex v. We can consider 4 as a collection of hyper-
planes in the (N —1)-dimensional projective space IP(V, v) of lines containing
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v . Let us take H as the infinite hyperplane; we get the arrangement ¢ — {H}
in the (N — 1)-dimensional affine space Vy=IP(V, v)\ H. We’ll denote this arrange-
ment €.

We have evident identification

(1.4.2) A (By)= o (€; H).

Conversely, to every arrangement € in V' we can assign by taking its projec-
tive closure the eentral arrangement 4 in the (N + 1)-dimensional linear space
Vtogether with a distinguished (“infinite”) hyperplane H .

1.5 Let ¥ be a central arrangement with the unique vertext v; choose H,€%.
Consider the map

(1.5.1) ANV G Hy) > AN (%)

whichsends H,-...-Hy_, to HyH; ...Hy_.
1.5.2 Lemma. (1.5.1) is an isomorphism.

Proof. The inverse map may be defined as the composition of the map
AN (@) > oV~ 1(%) which sends an N-tuple in general position (H,, ..., Hy), to
N

Y (=1 'H,...H;...Hy, and the projection /N~ Y (¥)—>#¥ (¥, H,) in-
i=1
duced by the decomposition (1.3.3). [J

1.6 Framings and bases. Let us call a framing O of an arrangement % a choice
for every edge L of € of a hyperplane H(L) containing L. For such a framing
O define subsets ;< %, j=0, ..., N inductively: Oy=%,; O,={Le%,|for all
vebo L& H(v)}, ... O;={Le%lfor all LeOyu...00;_,, LtH(L)}, Oy={V}.
Next, let FI;(¢) denote the set of all flags Lo L, <...cL;_, such that L;eC;,
0<i<j—1.

Define the groups &#/" Ji= /N ~J(%; ), 0<j< N, as follows

(1.6.1) AN 0G5 0)= AN (B);
&/N‘J’J(%; (9): @ .SJN—j((g(Lj—l)y H(Lj—l))‘

(Lo=...cLj-1)eFl;(0)

Note that groups .« JJ depend only on the part of the framing ¢, consisting
of H(L), LeC;,0Zi<j—1.
By 1.5.2, we have isomorphisms

(1.6.2) @ NI, ggN it

where for x=Y"x; ., _, €N/

x(Loc...r:L,-‘ne’ij_j((g(Lj—l)’ H(Lj— D) (Lo<= ... CLj—l)EFlj((Q)»
(pj(x)(Loc..,c;Lj_z)= Z x(Loc‘-.ch—l)'H(Lj’ 1)‘

Lj-1>L;-2
Lj-1€0;-1
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By definition,
(1.6.3) LONE, 0= P Z
FeFIn(0)
Define the set
(1.6.4) B(O)={H(Lo¢)-H(L,)-...-H(Ly_ )} =Z™(%)

indexed by all complete flags Ly=...c Ly _,eFIy(0).
From the above follows the

1.6.5 Theorem. [Bj] The group /(%) is free over Z, admitting B(0) as a base.

1.6.6 Example. Suppose that the set ¢ is linearly ordered. Define H(L) to be
the minimal element of € (L). This gives the framing of 4. The corresponding
base of /(%) was considered in [GZ, Theorem 1].

1.6.7 Corollary. H, -...-H,#0 in o/?(%) iff H,, ..., H, are in general position.

Proof. The “only if” part is evident. For the converse, we can suppose that
p=N.If H,, ..., Hy are in general position then we can choose a framing of
% such that H.=H(H,n...nH),i=1,...,N. So, by 1.6.5 H, ... Hy is a member
of a base. []

1.6.8 Corollary. o/7(%)=0 iff €7 =0.
Note that if €7 =@ then 7=0 for all g>p.
1.6.9 By additivity 1.3.2 all groups o/?(%) are free. Define the Euler characteris-

tics

N
1 (€)= ; (= Dirk o™ ~4(®).

1.7 Let € be an arrangement. Define maps d* =d*?: o/?(%€)— /7~ (%) by the
rule

(1.7.1) d*(H,-...-H)= )ﬁ (=1"'Hy-....H;-...-H,

i=1

if Hy, ..., H, are in general position and zero otherwise (cf. 1.6.7).
Evidently, d*od*=0.

Let n=sup{p|.o/?(¥)=+0} =sup{p|€” +0} (cf. 1.6.8).
1.7.2 Theorem. H!(s/"(¥), d*)=0 for i%n.

1.7.3 Remark. If € is central then (&/" (%), d*) is acyclic, [OS]. In fact, the multipli-
cation by any He% gives a contracting homotopy.

1.7.4 Corollary. The group H"(o/ (%), d*)=ker d*" is free. Its rank is equal to
the Euler characteristics (— 1"~ ¥ x(%) (cf. 1.6.9).

1.8 Proof of 1.7.2 If n< N, consider the set €. It is a set of parallel subspaces.
Let us consider a subspace W< V of dimension n transversal to these subspaces.
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The arrangement ¥ W in W induced by € contains vertices, and we have
(in the evident sense) € = (6 N W) x (V/W); A" (€)= oA (€ "W).

Thus, we may, and will, suppose that n= N.

For any He¥ introduce operators of degree zero Ay : o/ (¥) — /" (6),

(1.8.1) Ay(x)=H-d*x+d*(H x).
1.8.2 Lemma. Let x=H, ... H,e /7(%), x+0, Hye%. Then

0 if Hyx+0

A, x=1 2P )
¥ Hox Z (_l)lHo'...'ﬁi‘..,'Hp if‘HOX=O

In the last case Supp(x — Ay, x)=Supp Hy-. .-H, for all i.

Note that Hyx=0 means that H, is parallel to (or contains) the edge
H n...nH,(by 1.6.7).

1.8.3 Now consider the projective closure of € (cf. 1.4). Namely let P=VUH
be a projective closure of V — the union of V and the infinite hyperplane
H_,~IP"~!(C). For H<Vdenote by HcP its closure.

For a p-tuple H,=(H,, ..., H), H,cV, put

(1.8.4) Supp(H)=H,nH,n...nH,nH,.

For a formal linear combination x=Y a, H,, let Supp x be the smallest pro-
jective subspace of H containing all Supp H, with a; 0.

For xe.s/?(%¢), and LcH, let us say that Supp xcL if one can write x
as a linear combination of monomials x=Y a, H,, such that Supp(} a, H;)< L.

From 1.8.2 follows that if Supp x = L then

(1.8.5) Supp(x —Ayx)c L H.

Now suppose that xe /7 (%), d*x=0, p<n. Suppose that x+0. Let us choose
some representative x = Za, H,. We'll prove that x is a d* — boundary by induc-
tion on dim Supp(} a, H,). There exists He% such that Supp(}_a; H)¢Hn H,,
We have Adyx=d* Hx, so x=d*Hx+y where d*y=0 and by (1.8. 5)
Supp y= H,, nSupp(}_a, H,). By induction hypothesis then y=d*z for some z.
This completes the proof of 1 72. O

1.9 Let % be an arrangement. Denote by &,(%) an abelian group whose genera-
tors are all p-tuples (H,, ..., H,) of distinct hyperplanes of & such that
H,n...nH,+0; subject to the skew-symmetry relations

(1.9.1) (Hy1ys s Ho)=(—1)1(H,, ..., H,).
Put & (6)=Z. 6.(6)=P &,(%) is a graded skew commutative algebra with
p

respect to the multiplication (H,, ..., H))-(H}, ..., H)=(H,, ..., H,, H}, ..., H)).
We'll denote (H,, ..., H,) by H, ...H,,.
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For an edge Le%? let &,(%), denote the subgroup of &,(¥) generated by
H, ...H,such that H n...nH,=L. Put

(1.9.2) &1(6)= @ &,(6)..
Le¥¢4q

So, we have

(1.9.3) 6,(6)= (—D &5(%6).
0=qsp

Introduce the differential 0: &,(%) — &,_, (%) by the formula
H,...H)=Y(-1"'H-...-H;-...-H

pe

Clearly, 02=0.
Define maps y =y, : £,(%) — /7(¥) by the rule

..H,e4?(%) if codimH,n...nH,=p

Hl .
(1.94) Yp(H,...H)= {0 otherwise.

We get a map of complexes
(1.9.5) Y: (E.(F),0) > (A (%), d%).
The following result will be needed in § 4.

1.9.6 Theorem. s is quasiisomorphism.

Proof. First let us fix p and let us consider the complex

o' ¥

(1.9.7) LN ) JUNLENY | S BNy BN,

with ¢’ induced by 0.
1.9.8 Lemma. (1.9.7) is a resolution of </*.

Proof. By 1.3.2 we are reduced to the case of central ¢ which is proven in
[GZ, Appendix, p. 33].

Now let
(1.9.9) 0" &9 8175

be also induced by 0. Clearly &4, ¢, 0" is a bicomplex whose associated simple
complex is (&£,, d). So, 1.9.6 follows from 1.9.8 by a standard spectral sequence
argument. []

2 Flag complex

We save the assumptions of § 1.

2.1 Let € be an arrangement. For 0Sp<N denote by FI’(%) the set of all
flags (°>L'>...oIF), €%, 0<i<p. Denote by [] the unique element of
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FI°(%). Denote by FP?(%) the free abelian group on FI?(%), and by Z?(%)
the quotient of #?(%) by the following relations.

For every i, 0<i<p, and a flag with a gap F=(°>L'>..ol '>
[Tl o]P), He®’,

2.1.1) Y F=0

F>F

in #7(%), where the summing is extended over all F=(I°>I'>...oIP)eFIP(%)
such that =T for all j+i.

For Le%” let FP(¥),<FP(¥) denote the subgroup generated by
(I°>...I?) with I? = L. Clearly #°(%), = #?((L)), and

2.12) Fr@)= @ FE),
Le¢r
(cf. 1.3.2).
2.2 Define differentials d: #7(6)— F7*+ (%) by
(2.2.1) dl>..o)= Y (P>..o>IP*).
Lp + legp‘* 1
LpticL

From the relation (2.1.1) follows that d2=0.

2.3 Define maps ¢ = ¢”: oZ/P(6) - FP(%)* as follows. For (H;, ..., H,) in general
position, H,e %, put

23.1)  F(H,,...,H)=(H,>H,>H,,,>...oH,, )eFI’(%)

where H; ;:==H,n...nH,. 5
For a flag Fe FIP(%¥) define a functional 6, Z?(%¥)* as

(1 if F=F
Or (F)_{O otherwise.

For (Hy, ..., H,) in general position, put

(2.3.2) @H - H)= 3 (=D Opu,,. oo

oel,

This defines the map .«/? —» %7*. Clearly, its image lies in the subgroup
FP*c FP* so we get maps

(2.3.3) QP AP (6) > FP(6)*.
2.3.4 Lemma. ¢” define maps of complexes
@' (L(€), d*) > (F(6)*,d*)
where d* in the left hand side is (1.7.1), and d* in the r.h.s. is adjoint to (2.2.1).

2.4 Theorem. (a) All groups F* (%) are free.
(b) All maps @? are isomorphisms.
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The Theorem will be proved a bit later, after some preliminaries.

2.5 For He®% put
(2.5.1) Fr(E; H)= P FP(6).<F*(¥)
L&+ H

(cf. 1.4.1).
Suppose that € is central, with a unique vertex v. In notations of n° 1.4,
we have evident isomorphisms

(2.5.2) F(€; H)=F (Ey).
Define the map
(2.5.3) FN-YE; H)—» F1(¥)

which sends (I°>...oI¥ 1) to (I°>...2IM '5v). Using relations (2.1.1) one
easily sees that (2.5.3) is epimorphic. (We'll prove a bit later that it is isomorph-
ism).

2.6 Proof of 2.4 By (2.1.2) and 1.3.2 one may suppose that & is central with
a unique vertex, and p=N. Let us prove 2.4 by induction on N. Consider
the square

(253)

FN"UE; H) —— FN(¥)

@ (€, H)* Jl lm*
(2.6.1)

AN (G H) —=— /N (6)*

(151)1

Here vertical maps are adjoint to (2.3.3). One verifies that (2.6.1) commutes.

By (2.5.2), (1.4.2) and induction hypothesis, ¢ (%, H)* is iso; by (2.5) the
upper horizontal map is epi. It follows that ¢* and (2.5.3) are isomorphisms,
and we are done by 1.6.5. [J

2.7 Remark. Let € be a central arrangement with the unique vertex. Let K
be the simplicial set associated with the ordered set of edges of €, as in [OS,

; 4]‘From definitions follows the isomorphism #¥(%)*~ H, _,(K).
In particular, 2.6.b follows from [OS, 4.3].
2.8 Corollary. Let n=max {p| #¥(%)+0}. Then H*(F (%), d)=0 for p=+n.
Proof. Follows from 1.7.2 and 2.6. [
2.9 In the course of the proof of 2.6 we have proven the

29.1 Corollary. Let € be a central arrangement with the unique vertex v, He®%.
Then the map (2.5.3) is an isomorphism.
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Let € be arbitrary, @ a framing of €. Denote by FI?(0) the set of all flags

(I°>...oIP) with LeOy_; (see 1.6).

2.9.2 Theorem. The set F I?(0) forms the base of the free abelian group F*(%).

Proof. This is deduced from 2.8.1 in the same way as 1.6.5 from 1.5.2. O

3 Contravariant form

We save the assumptions of §§ 1, 2.

3.0 From now on up to the end of the paper we’ll change slightly notations:
A" (6), F (¥) will be denoted by ' (6)z, ¥ (6)z, and (%), F (%) will denote
the complexifications & (€)e= A (6)z 2 C, F (€)ec=F ()7 ®, C.

3.1 Let € be an arrangement. Suppose that a map a: ¥ —» C is given. We'll
call such a map a collection of exponents for €. For an edge L put

3.1.1) all)= Y a(H).

Put

(3.1.2) w=w(a)= Y aH)HeA' (%)
He®

Define differentials d =d? =d?(a): P (%) — £?* (%) by the rule
(3.1.3) d(x)=w(a)- x.
It is clear that d=0.
3.2 Define maps
(3.2.1) S=8"=8%(a): FP(¥)— A (6)
as follows. For Le®’ put
(3.2.2) S)= Y a(H)Hesl'(6);
HoL,
He®
foraflag F=(I°>L'>...oIP)eFIP(¥) put
(3.2.3) S(F)=S(LY)-S(L?)-...-S(I?).
In other words,
(3.2.4) S(F)=Ya(Hy) a(H,)...a(H,) H, -...-H,,

the sum is taken over all p-tuples (H,, ..., H,) such that H oL He%, 1<i<p.
One easily verifies that (3.2.4) correctly defines maps (3.2.1).

3.2.5 Lemma. S’ defines the map of complexes S'=S"(a): (F'(¥), d)— (L (6),

d(a)).
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3.3 If we identify /' (%) with & (¥)* by means of isomorphisms (2.3.3) then
SP may be regarded as bilinear forms on #P”. Let us calculate their value on
a pair of flags (F, F').

Let us call a p-tuple H=(H,, ..., H,), H;€%, adjacent to a flag F if there
exists ce X, such that F=F(H,,), ..., H,,) (see (2.3.1)). Note that such a permu-
tation is unique; denote it og(F).

Then for F, F'e FI?(¥)

(3.3.1) SP(F, F')= % Y (—1)raOeaE) g (H,) .. a(H,)

the summing is taken over all H=(H,, ..., H,) which are adjacent to F and
F'.

3.3.2 Corollary. Forms S" are symmetric.
34 Foraflag F=(I’>L'>...oIP)eFI?(%¥) put

(3.4.1) a(F)= ﬁ a(L).

i=1

_ Suppose that a(L)+0 for all edges L of codimension p. For a p-tuple
H=(H,, ..., H), H;e%, in general position put

(3.4.2) RY(H)= Y (—1)'a(F(cH))"' F(cH)eF"(%)

where 0 H=(H, ), ..., H, ().
One easily verifies that this formula correctly defines the map

(34.3) RP=RP(a): AP (€)—> F"(¥).
3.4.4 Lemma. R? is inverse to S®.

Proof. Since o/P and 7P are spaces of equal dimensions, it suffices to prove
that SPRP=id. Let H,, ..., H, be in general position, L=H,n...nH,. Note
that

(3.44.1) (f(—l)v‘iHl...ﬁ,....Hp). Y a(H)H=a(L)H,...H,

14
i=1 HsL

as follows from (1.2.3). Now let us prove that S’ R?(H, ... H,)=H, ... H, by induc-
tion on p. We have

p i 1
SPRP(H, ...Hp)=i[:_:1(—1)”"‘HSS”_IR”‘I(H1 ..H;...H,)

(induction) P p—i 1
HgLa(H)H = (i;(—n EZL—)Hl...Hi...H,)

(3.4.4.1)
Y aH)H =

HsL

H,...H,.
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3.4.5 Corollary. If a(L)%0 for all edges L of codimension<p then S”(a) is iso.
(cf. Theorem 3.7).

3.5 Remark. Let us consider groups
FP(6)=F(®)/ker SP(a)=SP(FP (%)) = AP (F).

S? induces non-degenerate symmetric forms S? on %7; differentials d, d* on
A" induce differentials on % =@ #P? which are adjoint with respect to S, If
all a(H), He %, are real then S? are real and we have usual “Hodge” decomposi-
tion H*(F" (%))~ {xe #?(¥)|dx=0 and d* x=0}, etc. cf. 6.13, [Kos].

Determinant formula. All SP(a) are linear operators between vector spaces of
equal dimension, depending polynomially on {a(H)}g.e- So, det SP(a) is a poly-
nomial in {a(H)} well defined up to a non-zero multiplicative constant. We'll
write down the formula for it.

3.6 Let % be a central arrangement in C" with a unique vertex. Choose some
He%, and put

(3.6.1) e(®)=x(%n)

where % is as in 1.4 (cf. 1.7.4). From 4.1.5 follows that this number doesn’t
depend on the choice of H.

Now let € be arbitrary. For an edge L of € put
(3.6.2) e(L)y=e(€(L)).

(We consider €(L) as a central arrangement in the normal space to L in V).
Let ¢, be an arrangement in L induced by €, ie. €, ={HNL}yes ppr-
Put

(3.6.3) d?(L)=dim «/?(€ ).

3.7 Theorem. Let € be an arrangement in V =C" with exponents a: € — C. Then
forallp=0

(3.7.1) det SV"P(a)=const- [] [] a(L)® "™

i20 Le%;

(We put e(V)=0; so det S°=1.)

Choose a framing of €. This gives bases in A7(€), F7(¥), see 1.6, 2.9.2.
With respect to these bases, det SY~?(a) is equal to the r.h.s. of (3.7.1) with Const
=1.

3.7.2 Example. Consider an arrangement % on the plane consisting of n lines
going through a point, with exponents a,,...,a,. Then det S?

n n—2
=Const-a, ...an(z ai) .

i=1
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3.8 Corollary. Put

N
(3.8.1) det S'(a)= [] (det S*(a))~ NP
p=0
Then
(38.2) det S*(a)=Const-[] a(L)*®*“x)
L

where the product is taken over all edges of €.

This formula should be compared with [V, Theorem 1.1]. The proof of
3.7 will occupy the rest of the section. It will consist of three steps.

3.9 Step 1. S and Laplace operators

Let % be a central arrangement with a unique vertex v in ¥ =CN.

Matrix elements of SV(a) are homogeneous degree N polynomials in a(H).
In this n° we’ll show that S¥(a) may be decomposed into a product of N opera-
tors whose matrix elements are linear in a(H). (In fact, each framing of ¢ induces
such a decomposition.) These last operators have remarkable form (Const —
Laplace operator).

Choose Hye%

3.9.1 Lemma. The rectangle

SN-UZgy)
FN (@, AN By,
(2.5.2) ll lz
yN_l((&Ho) «Q/N-I((g;HO)
(2.5.3) l‘ SN (%) l(—l)ﬁ’"

FN®) AN (&)
commutes. Here the right vertical arrow is the restriction of (—1)"'d:
AN VG) > AN @) to ANV (E; Ho)= AV~ (6).
Proof. Follows immediately from (3.2.3). [

Now consider the (non-central!) arrangement ¢=% H, in the (N —1)-dimen-
sional space. Let d, d* be differentials in o¢'(C); 4=dd*+d*d. In particular,
JN-1_gN-27%N-1

3.9.2 Lemma. The diagram

dN-1

AN E H) ——  AN(9)

(142) lz lz (15.1)

MN—I((g) a()—4N-1 d”“l(@)

commutes.
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Proof. For H,...Hy_,e/""Y(¢; Hy) d(H,...Hy_,)= Y a(H)H H,...Hy_,.
On the other hand, by (1.2.3) He¥

N—-1
HH,..Hy_,=HoH,..Hy_—HyH Y (—=1)"'H,..H,...Hy_,,

i=1

substituting this, we easily deduce the desired assertion. []

3.10 Step I1. Spectrum of Laplace operators

Let € be a central arrangement with exponents a in ¥V ~C" with a unique
vertex v. Fix some H,e%; put ¢ =§2HO (see 1.4); let d, d* be differentials in
o' (€), A=dd*+d*d. We'll identify € with G\ {H,}.

For every p put &/?=d*(/**(€))=ker(d*: L?(€)— A" (€)= AL*(¥).
For any edge L of € contained in H,, define the subspace /?(L)c .« ?:

(3.10.1) SAP(L)={xes/ ?|Suppx L}

(see 1.8).
Suppose that L=H;~...nH,nH,, H;e¥. Put

(3.10.2) S/P(LY=(E—d*H,)(E—d*H,).. (E—d*H,) A ?,

where E denotes the identity operator.
3.10.3 Lemma. &/?(L)=/?(L). In particular, o/P(L) depend only on L.

Proof. Clearly, o/P(L)Y ./ P. By (1.8.2) #?(LY < «/?(L). On the other hand, if
xe/?, SuppxcHNH,, then Hx=0, whence (E—d*H)x=x, so «/*(L)
c?(L)y. O

Clearly, if L< L, then «/?(L) = «/?(L). Put
(3.10.4) GiP(L)=o"(L) 5, A(L)
L'gL
By 1.8.2 and (3.10.1) subspaces «/?(L) are stable under 4.
3.10.5 Lemma. Operator a(v)-E— A induces on 9+*(L) the multiplication by a(L).
Proof. Al z»= Y. a(H)d*H|z,.1f H> L then H|4,=0;if H L then (E—d*H)

He¥
A P(LycZ P(LNH), so d*H acts as identity on %.P(L), hence A acts as
Y a(H). O

H$ L

Let Le%?*!, Lc H,. Consider %(L) as a central arrangement in the normal

space to L in V; let €=%(L)y, be the corresponding g-dimensional affine ar-
rangement (1.4). Put

(3.10.6) &(L)y=ker(d*: A4UB) - A1 (D))
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By 1.7.4
(3.10.7) e(L)=dim &(L).

Let %, be the arrangement induced by  on L.

Define maps (for i=1)
(3.10.8) w(L): E(L)® A (@) — 92+ (L)

as follows. For xe&(L)c %@ (L)), y=(H,nL)-(H,nL)-...-(H;nL)e o/ (%,)
x-d*(H, ... H)) lies in .&/9* '~ 1(L). By definition, u'(L)(x ® y) is the image of this
element in %2771 (L).

3.10.9 Lemma. Maps u'(L) are epimorphic.

Proof. Put p=q+i—1. Consider z=H,...H,, ,€/?* (%), z+0, He%. Put z
=H,..A, . H,,.
Set I=I(H)={ie[p+1]|Hz;#0}, J=J(H)=[p+1]\I(H). For every I'c
[p+1] HAHy>(() H)nHy iff I'sL If I={i,...,i,}, iy<iz<...<i;
iel’

J={1, sdsh 1 <.-.<Js, put z;,=H; ...H; ; zy=H; ...H; (so z=*z,;z;). Put
d*(Hz)=z,+ Y (—l)kHHi‘...I:Iik...H,-r (note that Hz;=0 in .2/*(%¥)!). One can

k=1
easily show that

(3.109.1) (E—d*H)d*z= +d*(Hz,)d*(z,).

Analogously if we have t hyperplanes H",...,H?€% such that
IHY)cI(H®)c ... I(HY), put K'=T(HO\I(H~ V), K' =I(HV). Then

(3.109.2) (E—d*HY)YE—d*H"Y)...(E—d*HYV)d*:
= +d*(HY zg) d*(H? zg2) ... d*(HY zg) d* 25500y

The lemma follows from this and from Definition 3.10.2. [

3.11 Step I1I. End of the proof of Theorem 3.7 We'll prove (3.7.1) by induction
on N. Maps S? respect decompositions 1.3.2 and (2.1.2); hence we may, and
will, suppose that € is central with a unique vertex v, and p=0.

Choose Hye%, and consider € =%y,. By induction det S¥~'(%) is equal

to
Const [] [] a@y®*®.
i20 Le¥;
So by 3.9.1 and 3.9.2 we have to show that
(3.11.1) det(a@)-E—A""Y~[] J] a@)y®®,

i20 Le%;
L<=Hgo
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_ Clearly, a(v)-E~ a N~2 acts as multiplication by a(v)*® on the subgroup
AV 1 =ker(d*: oA 1 (E€) > AN 2(B) = AN (#). So, it remains to show that

(3.11.2) det(a(®)-E— AV ) imas~ ] T] a(Ly®®,

iz1 Le%,
L<Hg

By 3.10.5 and 3.10.9 the left hand side of (3.11.2) divides the right hand side.
On the other hand, because of independence of det S¥ on the choice of H,,
and by induction on N, the r.hs. divides the Lh.s., so they are proportional.
This completes the proof of Theorem 3.7. [

3.12 Corollary. Maps u'(L) (3.10.8) are isomorphisms.

4 Topology

Let € be an arrangement in ¥, dim V=N.Put Y(¥)= | ) HcV;U(€)=V\Y(%).

He¥

4.1 Orlik-Solomon theorem. Denote by Q' (U (%)) the de Rham complex of holo-
morphic forms over U(%). One has canonical isomorphism

(4.1.1) H QU @) =H (U (¥); ).
For any He® choose an affine equation £, =0 of H; assign to H a I-form
(4.1.2) 1(H)=d log £ Q' (U (%)).

1(H) doesn’t depend on the choice of ;. This assignment defines an inclusion
of graded #-algebras

4.1.3) 1A (6)->Q(U(¥))
which is compatible with differentials if we imply the zero differential on /(%)
[Br, OS].

4.1.4 Theorem (Brieskorn-Orlik-Solomon). 1 is a quasi-isomorphism, i.e. it induces
the isomorphism

A (€)=H(U(%); ©)
which maps o/ *(€)g isomorphically to H? (U (%); 2ni)’Z).
Proof. Follows from [Br, OS] and 1.3.2. [
4.1.5 Corollary.
N
1))=Y (=)' rk H(U(6); Z).

i=0

4.2 For a topological space X denote by C.(X) (resp., C'(X)) the complex of
integer-valued singular chains (resp., cochains) of X. Put C (V, Y(C))=C.(V)/
C.LY(®), C(V, Y(®)=(C.(V, Y(®)*.
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The aim of this and the next n° is to construct (well defined up to a homotopy)
quasiisomorphisms

C(V, Y(6) —>(F (€)z, d).

For an edge L of € put
4.2.1) L=I\({J) HnL); V°=U(%).
HSL

Let us call a marking x of € a choice of a point x(L)eI® for every edge
L (including V). Fix such a marking x. To every flag F=(L'>...oIP), I'e%’;
let us assign the singular p-simplex A(F)=A4,(F): A4A?—V, where 47
={(to, ..., t,)eRP*!|t;20; > t,=1} is the standard oriented p-simplex. Namely,
if x;=(0, ...0, 1, 0...0) with 1 on i-th place, put

(4.22) AF)x)=x(L), AF)O)=x(V),

and extend this map to 47 by R-affinity.
Now define maps

(4.2.3) uP=ul: C?(V,Y(%) > F*(€);

by the rule

(4.2.4) w(@)= Y @(A(F)
FeFlpr(¥)

for peCP(V, Y(%)). One verifies directly that u” define the map of complexes
4.2.5) u=u,: C(V,Y(®)—>(F (€)z,d).

4.2.6 Lemma. Any pair of markings x, x' defines a canonical homotopy
(4.2.6.1) hix,x): C(V,Y(€)—F (€)[—1]

between u, and u,.. In particular, the map induced by (4.2.5) in homology is indepen-
dent of the choice of the marking.

For a triple of markings x, x', x" h(x, x')+ h(x', x"') is homotopic to h(x, x").
(Recall that for a graded group 4 =@ A? A[n] denotes the shifted graded group
(A[n]yP=4""")

Proof. To construct h(x, x'), it is sufficient to suppose that x(L)=x'(L) for all
edges L except for a one. Suppose for example that x(L)=x'(L) for all L except
for V. Then we can assign to every p-flag F=(L'...I?) a (p+ 1)-simplex A(F)
— an affine span of (x'(V), x(V), x(L), ..., x(I?)). This defines the map (4.2.6.1).
Details are left to the reader. []

4.3 Theorem. Maps (4.2.5) are quasiisomorphisms.

Proof. We'll prove that the adjoint maps
(4.3.1) u*: (' (€)z,d*) > C(V, Y(¥))

are quasiisomorphisms.
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Let us choose some linear order on €. Consider the bicomplex C,, with

Cou= @ C,(Hyn..nH,);
iy <..<igq
Coo=C,(V).

Differentials C,,—C,_, , are boundary operators is C,, and C,,—»C,,
are Cech dlfferentlals Denote by Tot C_, the corresponding 31mp1e complex

We have evident map Tot C,,— C (V Y (%)) which is quasiisomorphism by
Mayer-Vietoris. The spectral sequence associated with C,, degenerates at E!
and E' is isomorphic to the complex (&,(%), ), studied in 1.9. So, by 1.9.6
we have canonical isomorphisms H' (7" (%)z, d*)= H (V, Y(%)).

Any marking of ¢ induces the map .o/°(%); — Tot C,, whose composition
with Tot C_— C(V, Y(%)) is equal to the map (4.3.1). One easily sees that the
induced map in homology is inverse to the one constructed by using the spectral
sequence. []

4.4 By 4.1.4 and 2.4 we have natural isomorphisms
4.4.1) FP(6)2=H,(U(%),Z).

Let us construct these isomorphisms explicitly. Namely, to each flag F=
(L' >...oI?) we associate a map (defined up to a homotopy)

(4.4.2) c(F): S'Y-U(®)

from a p-dimensional torus to U (%). The image under c(F) of a canonical genera-
tor of H,((S')?, Z) in H,(U (%), Z) will give the map (4.4.1).

We define ¢(F) by induction on p. For p=1 it is a small circle around
L'. For p>1 ¢(F) is a product of a circle around L' by c(F) where F' =
(I?>...oI?) considered as a flag in L.

Alternatively, one may define c¢(F) as follows. Suppose that p=N. Choose
some He® such that HNL¥~'=L" Such a choice defines a diffeomorphism
of U(%)(small neighbourhood of IY) with C* x U (%) where € =%y, (see 1.4).
We put ¢(F) to be the product of a circle around zero in C* by ¢(L' >...o LN !):
(8')? 7! - U (%) defined by induction.

From the second description one can show that

4.4.3) { 1(H,...H)=(—1)"
c(F)
if F=F(H,, ..., Hy,) for some geX,, and zero otherwise. It follows that

the assignment Frc(F) induces the 1somorphism (4.4.1). Note that we have
obtained the geometric interpretation of isomorphisms 2.3.3.

4.5 Now suppose that a collection of exponents a: € — C is given. Denote by
&#(a) a line bundle over U(%) with an integrable connection which is trivial
as a bundle and whose connection

4.5.1) d(a): 0> Q*

is equal to d+1(w)=d+ 2y a(H) dlog{y, d being the de Rham differential.
Denote by Q'(£(a)) the complex of U (%)-sections of the holomorphic de Rham
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complex of #(a). Thus, Q' (¥ (a))=Q (U(¥)) as a graded vector space, with the
differential d(a),

4.5.2) d(a)(x)=dx+1(w) A x.

We'll denote by ¥ (a) the sheaf (over U (%)) of horizontal sections of ¥ (a).
Thus, we have the de Rham isomorphism

(4.53) H'(Q(Z(a))=H (U(%); & (a)).
The inclusion (4.1.3) induces the map of complexes
(4.5.4) 1(a): (4" (%),d(a)) — Q2 (<L (a)).

When a=0, we return to the situation of n° 4.1. Simple examples for dim V
=1 show that (4.5.4) is not always a quasiisomorphism.

Let us consider the family i1(1a) depending on AeC (by definition,
(Aa)(H)= Aa(H)). Here is the main result of this section.

4.6 Theorem. There exists an open set W< C containing 0, which is a complement
of the set of zeroes of some holomorphic function and such that 1(Aa) is a quasiiso-
morphism for all Le W.

Proof. Let us choose a finite subcomplex X «U(%) such that this inclusion
is a homotopy equivalence. Let us consider the cochain complex of X with
coefficients in ¥ (la): C'=C(X; ¥ (La)ly). Let us choose over each cell of X
branches of log¢y; for all He%. This gives branches of /¢

=[] exp(Za(H) log¢y), hence a base in each finite dimensional space C?, enu-
He®

merated by p-cells of X. Differentials d(1): C* — CP*! are matrices with entries
of the form +exp(4b), beC.
By the de Rham theorem, the integration map

(4.6.1) [ @& (a)-C

is a quasiisomorphism. Denote by

(4.6.2) I(A): (L (6), Ad(a)) > (C",d(2)
the composition of 1(4a) and (4.6.1).

I(4) is a map of complexes of finite dimensional vector spaces. I(4) may
be represented as a convergent in some neighbourhood of 0 power series

(4.6.3) 1))=Y I;-1.
i=0
The same is true for d(4):

(4.6.4) d()= i d;- 20,

i=0
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4.6.5 Lemma. Let (A", d(1)) be a complex of finite dimensional complex vector
spaces with the differential depending on a complex parameter A holomorphic in
a neighbourhood of zero. Suppose that (A", d(0)) is acyclic.

Then (A°, d(A)) is acyclic for sufficiently small A.

Proof. Let d(A)= ) d; A’ be the Taylor series of d(1) at 0. We have d(4)>=0
iz0
which means that

(4.6.5.1) Y d,d;_,=0
r=0

for all i>0.
Let us consider the space of cocycles ZP(A)=Ker(d?(A): A7 — AP*1). One
can see that Z?(1) for sufficiently small 1 is generated by x(1)= ) x; ', M€Z,
izM
such that d(1) x(4)=0. Let x(1) be such a cocycle; we have to show that it
is a coboundary for small A. Multiplying it by AM we may suppose that M =0,
ie. x(A)=) x;A. We have

i20
(4.6.52) S d,x;_,=0
p=0
for all i=0. 4
Let us look for y(4)= Y y; 4’ such that
120
(4.6.5.3) d(2) y()=x(3).

Step I. There exists a formal solution of (4.6.5.3). In fact, (4.6.5.3) is equivalent
to the infinite system

(4.6.5.3); Y dyyio =X,

p=0

i=0. Let us solve it by induction on i. We have dy x,=0, so xq=d, y, for
some y, since (4", d,) is acyclic. Suppose we have solved (4.6.5.3) for i<k. We
have to find y, such that

(4.65.4) xk=dky0+dk_1 y1+"'+d0yk'

It suffices to show that

k
do (xk— Z dy yk—n)=0'
h

=1
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We have by induction

k
doxi=— ), diX—y=—

i=1 i

M=

k—i
Z d; dp Yi-i-p
p=0

]

1

k k—1 k
= Z (z dn—pdp)yk—n= Z dO dnyk——na
n=1

n=1\p=0

and we are done.

Step I11. We can choose a solution y(4) to (4.6.5.3) convergent in a neighbourhood
of zero.

Indeed, since x(4), d(1) are convergent for small /4, there exist constants
A, M>1 such that |x;|, |d;| <AM' for all i. On every step of solving (4.6.5.4)
we solve an equation of the form x=d, y. We may suppose that, given x such
that d, x=0, we choose y such that |y|<M|x|. Then one shows by induction
that |y;| < 42'M?*!, The Lemma is proved. []

4.6.6 Corollary. Let f(A): (4", d(A)— (A", d’(A)) be a map of complexes of finite
dimensional complex vector spaces with f (1), d(2), d’ (1) depending holomorphically
on A for small A. Suppose that f(0) is a quasiisomorphism.

Then f (1) is a quasiisomorphism for small A.

Proof. Apply 4.6.5 to the cone of f(1). [

Now, applying the above corollary to I(1) (4.6.2) we get the assertion of
Theorem 4.6. [

4.6.7 Remark. The idea of the above proof arose from the discussion with Misha
Kapranov who explained to us the work [N]. We are very gratefull to him.

4.6.8 Remark. Theorem 4.6 proves a weak form of a conjecture made by Aomoto
[A]

4.7 Remarks on relative cohomology. Let us denote by C,,(U(%); < (a)) the
complex of complex singular chains whose symplices may have a boundary
on Y(%). Let C;, be the corresponding cochain complex. By definition

(47.1) H(C;;(U(%); L (@) =H(V, j, & (a))
where j: U(6) < V.

Fix a marking x of & as in 4.2, and branches of log ¢, he® in a neighbour-
hood of x(V). Then the rule (4.2.4) defines the map of complexes

4.7.2) u'(a): C; (U(%); L(a) = (F (%), d).
It seems very probable that it is always a quasiisomorphism (cf. 4.3).

Consider a symplex A4(F) for some FeFIP(%). Put as usually /**=
[1exp(Aa(H) log £y).
H
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4.7.3 Lemma. Suppose that a(F)#0 (¢f. (3.4.1)). For any H,, ..., H,e%

p

5l(H,...Hp)ﬂa=%+0(/rv+l) (2 —0)

A(F)
where
(=
T

if F=F(H,), ..., H,,) for some 6€X,, and A=0 otherwise (cf. 3.4.2).

Proof. The case p=1 is elementary. The general case is reduced to the p-th
power of this one, using the monoidal transformation associated with F. [

Suppose that € has a vertex, dim V' =N. Consider the canonical map
S(2a): HN(V, j, & (Aa) > HY(V, j, & (a)).

Suppose that (4.7.2) is a quasiisomorphism, and a(L)#0 for every edge L
of .

If we identify HY(V, j, & (la)) with HY(# (%)) and HY(V, j, ¥ (La)) with
H" (2" (¥), d(Aa)) for small 1 by 4.6, then from 4.7.3 and 3.4.4 follows that

(4.7.4) S(Aa)=I"S¥(@@)+0(A¥" 1Y)  (A-0)

(Note that S¥(Ala)=A"SV(a).)
Presumably, the same holds without the assumption that a(L)#+0 for
all L.

4.8 Remarks on Jantzen filtration. Using the form S(a), one can define the Jant-
zen filtration on groups 7' (%), cf. [J]. For arrangements studied in Part II
it gives in particular the usual Jantzen filtration on Verma modules. Consider
an arrangement % defined after (1.4.2). Put a(H )= — Y a(H). We have &/ GE
He%

oA (€YD " (¥) [1]. Suppose that conditions of 4.6 fulfilled, so that we can iden-
tify H (/" (%), d(a)) with H (U (%), ¥ (a)). It seems then plausible that the filtration
on H'(«#"(#¥) [1]) induced by the Jantzen filtration on H'(s/"(€)) coincides with
the weight filtration on H' (U (%); & (a)) when the last one is defined. cf. [BB,
§5].

In particular, it would be very interesting to compare H'(# (%)) (cf. 3.5)
with the Goresky-MacPherson cohomology H'(U(%); ji, < ().

Part I1. Discriminantal arrangements and Lie algebra homology
5 Free Lie algebras

5.1 Discriminantal arrangements. Let €V be an affine complex space with coordi-
nates t,, ..., ty. We'll denote by € the arrangement in CV consisting of hyper-
planes

(5.1.1) H

ti—t;=0; 1<i<j<N.

ij* J
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SO, (gl = ¢.

Thus, U(%y) is the space of N-tuples of distinct points in C!. Let z=
(zys ..., 2,)€U(%,). We'll denote by €, y(z) an arrangement in €V consisting
of hyperplanes

(5.1.2) Hi: t;—z;=0, 1=ZisN; 1<j<n
H;; 1<i<j<N.

Thus,

(5.1.3) U(€,.n2)=p"(2),

where p: U(%,+y)— U(%,) is the projection on the first n coordinates. We put
%0’ N ::(gN .

5.2 The symmetric group Xy acts on €V by the permutation of coordinates.
This induces the action of 2y on sets of edges of ¥, y(z), n=0. Introduce the
action of X on groups 7' (€, x(2)), F (%, n(z)) by the rules

(5.2.1) o(Hy-...-H)=(—1)\"'6H,-...-0H,

p

(5.2.2) oL} >..oIP)=(— 1)L >...o0 ).

Isomorphisms ¢ (2.3.3) respect this action.

5.3 Fix an integer r=1, and denote by n the free Lie algebra on generators
fis ..., f., and by Un its envelopping algebra. For an N-tuple I =(i,, ..., iy)e[r]"
put

(5.31) f}=ﬁnﬁn—1"’ﬁleUn

(532 U =L/ Uin- s Lo Ui, fi,] - JEM
More generally, for n tuples I,, ..., I,; 1,e[r]"/, put

(533) Jroot,=I1,® ... ® f1,€(Un)®™.

Let A=(k,, ..., k,)eIN". Put |1]|:= Z k;=N. Denote by 2 (1) the set of all
ji=1
N-tuples I=(iy, ..., iy)e[r]" such that card{p|i,=j}=k; for all j, 1<j<r. Set
(Un), (resp., n;) to be the subspace of Un (resp., of n) generated by all f; (resp.,
[£]), Ie2(A). Clearly, n,=nn(Un),.
More generally, let A”n denote the p-th exterior power. Denote by
[47Pn ® (U n)®"], the subspace of A?n ® (Un)®" generated by all

(5.3.4) LSAALf A AL @M,

such that J;u...UJ,ul, U...UI,eZ(4).
We have weight decompositions

(5.3.5) APn@Un)®r= P [ n@Un)®"],.

AeNr
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5.4 For a Lie algebra g and a g-module M we’ll denote by C,(g, M) the standard
chain complex of g with coefficients in M. So,

(54.1) C,(g, M)=APg@ M;

p
(542)d(g,An..Ag @M= (=1 L g, A ASiA..AE @gim
i=1
+ Y (=D)g A ASGALL AN A,

1=i<jsp
A [gjagi] ®m.

In notations of 5.3, we have the weight decompositions

(5.4.3) C.n,(Un)®)= @ C.(n, [ Un)®"),

AeNr
5.5 Let A=(ky, ..., k,)eIN", N=|4|. Put
(5.5.1) =2, X X2y
We consider. 2, as a subgrqup of 2;, with X, acting by permutations

ji—1 i—1 J
on {Z ky,+1, > k,+2,..., Y kp}c:[N]. So, X, acts on F' (%)), & (%)4),
p=1 p=1 p=1
etc. Fix z=(zy, ..., z,)eU(%,) and put €,y =€ . n(2).
The aim of this § is to construct canonical isomorphisms

(552) .P='I{).,p,n): Cp(n’(Un)®n)—~—"g7N—p(%n;N)

defined for all p if n=1, and for p=1 if n=0. These isomorphisms will be
compatible with differentials in C, and #".

We'll construct (5.5.2) after some preliminaries on the geometry of the ar-
rangement %, y.

5.6 Edges and flags of €,,y. For a non-empty subset J ={j,, ..., j,} =[N] put

(5.6.1) L,=H, . nH,

p—1
s e-NH; s €Bh N

Jri2 Jp-1ip

So, if p=1, then L,=C". For ie[n] put

(5.6.2) L;=H nHi,n...nHj €6} y.
Put I =C.
Given non-intersecting subsets J,, ..., J,; Iy, ..., I,=[N], put

P n
(5.6.3) L,=(ﬂ L,k)n(ﬂ L',i).
k=1 i=1

It is clear that edges of the shape (5.6.3) exhaust all edges of €, 5. It is
convenient to picture an edge (5.6.3) as a graph of the following sort.
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It has two kinds of vertices: N circles and n crosses which are enumerated
by numbers from 1 to N and from 1 to n respectively. For each J, (resp. I,)
we successively connect by edges all circles o;, jeJ, (resp., all circles o;, i€l
and a cross x,;) in the order induced from [N] (we put x, to the end of the
chain). So we get a picture like this:

9 4 6 7 2 3 1 5 8
0 0—0—0 0—0 O0—0—x x o

We'll call connected components of a graph islands. Islands that do not
contain a cross are called swimming; they correspond to sets J,; those that
contain a cross are called fixed; the corresponding to sets I,. All the picture
is called an archipelago.

Edges of €,y are in one-to-one correspondence with archipelagos. Given
an edge L, to define an edge L = L of codimension 1 is the same as to connect
two swimming islands of L or to fasten a swimming islands to a fixed one.
(It is not allowed to connect two fixed islands.)

A flag is a growing archipelago.

5.6.4 Relations in flag groups # (€,,y)- Suppose we have a non-complete flag
F=(I'>..oLl>I*?>...o1IP). Let us draw the archipelago of I:

Islands)

(we don’t distinguish fixed and swimming islands). To pass from I to Li*?
we have to make twice a connection of two islands. This gives two types of
relations in &

1 2
C 5 C D C Yy
(5.64) (a) + ) 1
( Y C D C Sy =0
and
,——1 ~~~~~ 2 —_—
( 5 C S O
+ /_2__\
(5.6.4) (b) 5 ¢ )
+ 1

where we labelled connecting edges to represent the order of connections.

5.7 Multiplication of flags. Given two subsets J<[N], I<[n], denote by
€1,;=%nn the subset consisting of all hyperplanes H; ;, with j,, j,eJ, and
Hj; with jeJ, iel.

Jiia
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Given subsets J, J'<[N]; I, I'=[n] such that JnJ'=@; InI'=0, define
maps

(5.7.1) or FIN(G )X FIN(G, ;)= FIP (% 1y i)

as follows. For F=F(H,, ..., H)eFI’(6,,,), FF=F(H,, ..., H)eFl (%, ,),put
FoF'=F(H,, ..., H,, Hy, ..., H}). It is clear that this correctly defines (5.7.1).

5.7.2 Lemma. (i) The map (5.7.1) correctly defines the map
(5.7.2.1) FPC.)QFUEC1.;) > FP U EC o150 0)
(ii) For all xe F2(%}.,), ye F(€.)

(5.7.2.2) xoy=(—1)P1yox.

Proof. Follows easily from Remarks 5.6.4. [

5.8 Suppose that A=(1, 1, ..., 1). So, N=r, and 2, ={e}. In this n° we’ll define
isomorphisms (5.5.2) for this case.

5.8.1 Let us define commutators gen of length £ =/(g), l =/ <N, by induction
on ¢ as follows. Commutators of length 1 are all f;,, 1<i<N. A commutator
of length # > 1 is an expression of the form g=[g,, g,], where g; is a commutator
of length 7, /=¢,+7¢,, and the sets of f;’s which are contained in g, and
2., do not intersect. We’ll denote the set of f;’s contained in g, by |g|. So, £(g)
= #|gl.

5.8.2 Now let us assign to every commutator g a number b(g)eZ/27Z (“the
bracket sign” of g) as follows. Set b(f)=0; b([g,, g,1)=b(g,)+b(g2)
+£(g,) mod 2.

5.8.3 Example. For J<[N], b([f;1)=(3 J—1) mod 2.

5.8.4 Let g be a commutator. Let us assign to g the flag FI(g)e FI/® (%,
as follows. Put FI(f)=01 (the flag of length 0). If g=[g,, g,], and Fl(g;) we
know, consider the flag Fl(g,)o Fl(g,) of length £(g)—2. Fl(g) is, by definition,
Fl(g,) Fl(g,), completed by the edge L,,.

5.8.5 Example. FOI‘ J={j1, ...,j,}, Fl([f-’]):F(Hjljz’ Hj2j3’ ey Hj[—ljl)'
Finally, put

(5.8.6) F(@=(—1)®Fl(ge F'® (o, 5)-
587 ForI={iy,...,i;}<[N], 1<i<n, set
Fi(f)=FH. ,H, ..., H)eF (€.
Now let zeC,(n, (U, n)®"),,

(5.8.8) Z=g A 8p-1 N - . NE1 RS, ®f,_ ®...0f,
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where all g; are commutators, £(g)=¢;, |g;|=J;. Let {f;,, ..., f;,} be the list
of fs in z read from right to left. Define a(z)e Zy by a(z)(j)=i;. Put

(5.8.9) ¥ (z)=(—1)"" Lienp f1)oF2(f)e ...

o F'(fy)oF(g1)o .o F (g,).

5.8.10 Example. (n=1). H%(fx Afy-1 A oo Afis1 ®fi Sy .- SO=F(H}, ..., H}).
5.8.11 Lemma. The rule (5.8.9) correctly defines maps

qlp : Cp(n9 (Un)®n)l - eg,’N—p((gn;N)'
Proof. We have to verify that ¥, respects the Jacobi identity and skew commutati-
vity in g;. This follows from relations 5.6.4(b) and 5.6.4(a) respectively. []

The next lemma will explain rather combersome choice of the sign in (5.8.9).
Let us introduce operators
05120 057 Cp(m, (UM®") > Cpy(n, (Um)®"),
1=5j1<j,Sp; 15j<p; 1=5iZn: for z=g,A ... A g ®X,®...®x;.

(58.12) 0, () =gyA o ABLA o B A o8y ALE1r 8] @ Xn® o @ X1,
(5.8.13) B(2)=gpA ... AGiA . AE I ®X,... QX ® ... R Xy.

-So,
(5.8.14) d@)= Y (—1yi*ig; z)+Z( 1y~10i(2)

Jj1<j2

(cf. (5.4.2)).

Let z be as in (5.8.8). By definition, ¥ (z)=(— 1@ FI(z), Fl(z)eFI¥~*. The
last edge of Fl(z) is Ly, . y,1,,..,1,=L(2). Let d;;, L(2) (resp, 0% L(z)) denote
the codimension 1 subedge of L(z) obtained by the connection of islands J,
and J;, (resp., J; and I)) (see 5.6). Let 0;, ;, Fl(z) (0% Fl(2)) denote the flag obtamed
by addlng to F I(z) the edge 0;,;, L(z) (0 L(2)); put 0;,;, ¥ (2)=(—1y®9,,;, Fl(2),
05 ¥ (2)=(—1yD 3 Fl(2).

5.8.15 Lemma. (i) Y(fyAfy-1A ... Ai®1I®...®1)=[].
(i1) For z of the form (5.8.8) and all j,,j,,J, i

P (0),;,@)=(—1y1"109; ;, P(2);
P@i(@)=(—1y 10 ¥ (2).

J1jz2

Proof. Direct check. []

5.8.16 Corollary. ¥ .=(¥,) defines the map of complexes ¥.: C.(n, (Un)®"),
= FN T (Cnin)-

Conversely, properties 5.8.15(i) and (ii) determine the map ¥ uniquely, and
allow to define the inverse map.
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Namely, let us assign to every flag Fe F ' “7(%,,y) an element ¥’ (F)e C,(n,(Un)®"),
of the form

(5.8.17) PR =(— 1P g, Agy A A RX® ... ® X,

where all g; are commutators, and x; are products of commutators. This element
will have the property: if J;=|g;|, and I;=set of f;s contained in x;, then the
lastedge of Fis Ly, y .11

We’ll construct ¥’ (F) by induction on N —p. Put

(5.8.18) P =fu Ayt A A[LRIRI®...® L.

Now let F=(®>..oI¥ 7P, F=([>..o[N P, [P l=
Ly, ..syovits,...rpr If LN 77 is obtained from LY7?~! by connecting two islands
Ji and J}, (j, <j,) (resp., J;, I,), then put

(5.8.19) Y(F)=(—1y"729; , (¥'(F)
(resp.,
(5.8.20) Y(F)=(—1Y"1 0%V (F)).

One verifies, using (5.6.4), that these rules correctly define maps
(5.8.21) V' FNT(En) — Cpn, (Un)®7),.

By 5.8.15 they are inverse to ¥. So we get

5.9 Theorem. Suppose that 2=(1, 1, ..., 1). The maps ¥ (5.8.16) define isomorph-
isms of complexes :

Y: C.(n, (Un)®"),——F N7 (B n)-

5.10 Remark. In the previous considerations we can readily put N=oc0, n to
be the free Lie algebra on f;, f5,...; A=(1, 1,...). We get the isomorphism

¥ Coo— (n’ (Un)®n)l-~—’gr((gn;oo)-

5.11 Now let A=(ky, ..., k,)e N" be arbitrary, N=|A|. Introduce a free Lie alge-
bra it with generators fj, ..., fy. The inclusion X, X defined in 5.5 induces
the action of X, on #i by permutation of f;s, whence the action of X, on C.(fi,
(UR)®n).

Define the map of Lie algebras n — fi by putting

ki
(5.11.1) fi> Z ﬂ(i)_,_j,
j=1
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i-1
where k()= ) k,.Itinduces the map of complexes C,(n, (U n)®") - C. (i, (U #t)®")*2,
r=1

Let
(5.11.2) s: C.n,(Un)®"), - C,(f, (U it)®")3»

where 7=(1, 1, ..., 1), be the composition of the previous map with the projection
onto the Z-component.

On the other hand, define the map of Lie algebras i — n by putting
(5.11.3) fi=fi  if k()<j<k(@i+1).

It induces the map C.(#, (Ui1)®"); > C.(n, (Un)®"),. Let

(5.11.4) m: C.({ (UR)®)3* - C.(n, (Un)®"),

be its restriction to X,-invariants.
The compositions sw and ns are equal to the multiplication by # X,. Hence,
we get

5.12 Proposition. The map s (5.11.2) is an isomorphism.

We may apply the results of 5.8, 5.9 to it. Note that the isomorphism 5.9
is compatible with the action of X',. So, we get

5.13 Theorem. The composition of s (5.11.2) and ¥ (5.9) applied to 7, 7, gives
the isomorphism of complexes

lP = Y{A,n): C.(n’ (Un)®")l;>g7;N—.((gn;N)E}"

5.14 Examples. 1. Let n=1,r=1. ¥(f")= Y, (—1)'F(H} ), ..., Hiwm)-
celm

2.n=1r=2 'P(flefl):F(Hé’ H;’H%)~F(Hi’ H%aHé)

6 Contravariant form, I1

6.1 Fix a finite dimensional complex vector space }) together with a non-degener-
ate symmetric bilinear form (,) on it. Denote by b: h* -} the isomorphism
induced by (,). By means of b we transfer the form (,) to bh*; we’ll denote
it also by (,).

Fix a finite set of linear independent covectors {a;, ..., a,} =h* We'll call
o; simple roots. Put h;=b(a;); b;;=(o;, o) =<hy, ;5 B=(b; ) j=1-



Arrangements of hyperplanes and Lie algebra homology 171

Denote by g=g(B) the Lie algebra with generators e,, f;, i=1,...,r, and
heb; subject to the relations

[ei’fj] = 5ij hi;
(6.1.1) [hyel=<hape; [hfil=—<hw)f;
[h,H]=0
foralli,j=1,...,r, h heb.
We'll denote by n=n_ (resp., by n,) the Lie subalgebra of g generated
by f; (resp., e;), i=1, ..., r. These subalgebras are free [K, Theorem 9.2(b)]. We'll
identify n with the Lie algebra studied in § 5. In particular, the decomposition

n= 6-)n,1 is defined as in loc. cit. We have the natural decomposition g=
AeNr

n_®h@dn,.Put b=n@h; it is a Lie subalgebra of g.

6.2 Bilinear forms

6.2.1 Lemma-definition. There is a unique bilinear form K (,) on g such that

(i) K coincides with (,) on b; K is zero on n_ and n,; § and n_®n, are
orthogonal,

(il) K(f;, ej)=K(e],f;)=5U, i,j=1, ceey 1y
(i) K is g-invariant, i.e.

K([x,y],2)=K(x, [y, z])

for all x, y, zeg.
This form is symmetric.

Proof. The same as in [K, §2.2]. [

Denote by t: g — g the Lie algebra automorphism which is (— 1) on b, and
maps f; to —e;, e; to —f; (“the Chevalley involution™). We have

(6.2.2) K(tx,1y)=K(x,))

for all x, yeg.
Define the bilinear form S on g by the rule

(6.2.3) S(x, y)=K(tx,y).
From (6.2.2) follows that S is symmetric. We have
(6.2.4) S([x,y], 2)=S(x, [ty z]).

This follows from the invariance of K and (6.2.2).
The subspaces n_, b, n, are pairwise orthogonal with respect to S. The
restriction of S to n is uniquely determined by the properties

(6.2.5) S(fi, fi)=—0i;
(626) S ([f;’ x]’ y) = S(xa [eh )’])

The subspaces n; =n, AeIN" are pairwise orthogonal with respect to S.
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6.3 Relation with Kac-Moody algebras. Suppose that b;#0 for all i. Put a;;

2b;;
- bll
in [K, § 1.2]; the isomorphism maps generators &;e§(A) to e;; f; to f,, and

; A=(a;;); j=1. Our algebra g(B) is isomorphic to the algebra g(A) defined

is identity on b. This isomorphism maps the form K to the form (- | ) defined
in [K, Ch. 2]. L

We have Ker K=KerScg. The quotient g(B)=g(B)/KerS is the Kac-
Moody Lie algebra associated with A. Suppose that 4 is a generalized Cartan
matrix, that is, a;;€Z, a;;<0 for i%j. Then the Gabber-Kac theorem [K, Theo-
rem 9.11] asserts that Ker S is generated by Serre elements (adf)"/(f; and
(ade)i(ey), nij=—a;;+ 1, i+j.

6.4 Verma modules. Let Aeh*. Denote by M(A) (“a Verma module”) the g-
module generated by the unique vector v subject to relations n, v=0; hv=
<h, A>v, heh. M(A) is isomorphic to Un as the n-module. We'll use the

notations of §5 for M(A),. If A=(k,, ..., k,) then M(A),1={xeM(A)|hx=

<h, A=Yk oci>-x for all heb}.

i=1

The contragradient module M (A)* is by definition the dual space to M (A)
with the g-module structure defined by the rule {x, g¢)>=<{—1(g2)x, ¢, xe M (A),
peM(A)*, geg.

6.4.1 Lemma-definition. There is a unique bilinear form S on M (A) such that

S, v)=1; S(fix,»)=S8(x,e;));

S(e;x, y)=S8(x, f;y) for all x,ye M(A);i€[r]. S is symmetric. Subspaces M(A),
are pairwise orthogonal with respect to S.

Proof is left to the reader. [

The form § induces the map of g-modules S: M(A) - M (A)*. ker S is the
maximal proper submodule of M(A4), [K, 9.2]. We put L(A):=M (A)/ker S. It
is the irreducible g-module with the highest weight A.

More  generally, define the symmetric form S on spaces
APM@M(A)® ... ® M(A4,), 4;€h*, by the rule

(6.4.2) SEIN . AEOX®...0X,, 1A ... AErRXI® ... ® Xp)

=det(S(g;, g5)- [T S(xi, x)).

i=1
So we get the map of graded spaces
(643) S: C(, M(4)® ... M(4,) > (C.(n, M(4)® ... ® M(4,))*.
Below we’ll introduce the differential on the r.h.s. of (6.4.3) so that S will be

map of complexes.
We'll call the form S the contravariant or the Shapovalov form.
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6.5 Fix a non-zero complex parameter k. For A=(k,, ..., k,)eIN", |A|=N, and
Ay, ..., 4,€h*, define the set of exponents a=a(B, 4,, ..., 4,): €,.y—> C:

(6.5.1) a(H;j)=(— g, —0e()/K
a(H;")=(_°‘u(i)s A)/k.

i—1 i
Here n: [N] - [r] is defined by the rule n(j)=iif ) k,<j< Y k,.
p=1 pr=1
Note that a is X)-invariant, i.e. a(c H)=a(H) for all HE®% .y, 0€X,. It follows
that S: #°(%,,y) > " (€,,5) is Z,-equivariant.
Put for brevity M=M(4,)® ... ® M(4,).
Let us denote by

(652) r’="(l,p,n): Cp(n> M)f _)dN_p((gn;N)EA

the isomorphism, which is the composition of the inverse to the conjugate to
¥ pm (55.2), and ¢~ (2.3.3).
Consider the square

C.(n M), —— C.(n, M)}

(6.5.3) . J, 1’;

FN-. ((gn;N)E,z___S__,MN - ((gn;N)EA

where the upper S is (6.4.5), and the lower S is (3.2.1).
The main result of this section is

6.6 Theorem. One has for all p
n,S=(—=1)"k"Sy,.
This Theorem will be proven below in several steps.

6.7 First, let us introduce certain diagram notation for elements of groups
AP (€,,5), similar to that of § 5.

Namely, we’ll draw a monomial H, -...-H,e.2/?(%,,y) as the following non-
oriented graph. It has n+ N vertices: N circles enumerated from 1 to N and
n crosses enumerated from 1 to n. It has p edges enumerated from 1 to p:
the i-th edge connects circles « and f if H;=H,;, and the a-th circle with
the B-th cross if H;=H?’. So, if we forget the numbers of edges, we obtain
the picture of an edge H; n ... "H,e %%, y, cf. 5.6.

Example. N=4;n=2.

1 3 2 2
o0—0—20 x o——x =H;,H5H
4 3 1 i 2 2 32

6.8 Suppose that 1=(1, 1, ..., 1), N=|A|=r, and n=1. The aim of this n° is
to prove 6.6 for this case and for p=0. Put A=4,, M=M(A). The space M,
has as a base the set of monomials f, =f, ), fov—1)---So1)' V> GEZN.
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Denote by é,e M} the functional equal to 1 on f, () f;2)---fovyv and O on
other monomials. (NB! Pay attention to the inverse order!).
6.8.1 Lemma. n: M% > o/¥(%,.y) maps 9, to

2 N—-1 N

O

(_1)I6l o LN o - O
(1) o(2) o(3) o(N—1) o(N) 1

Proof. Since n is Zy-equivariant, it suffices to prove it for 6=1. This case is
easily deduced from the definitions. []

For any subset I = [N], put A,={ky, ..., ky}, where k;=1if iel, and 0 other-
wise. Set M;:=M, . For example, My,;=M;.

Let ;<= %,,5 be the subarrangement, consisting of all hyperplanes H;; and
H} with i, jel. Put F=F"(%), o/;=A"(%,), where p=3# 1. We have #
=FP(%,.y); L =A¥(%,,y). Define maps

(6.8.2) Y=y M;>F

by the following rule. Let I={i,, ..., i,}, i; < ... <ij,.

Let J=[NI\LI;J={j1, ---sJn-p}»J1<J2< ... <jn—p. Denote by o, the permu-
tation  (iy, ..., ip,  J1>» J2s---sin-p€Zy. For ce€X, put f.=f_
Siow-1y +Jigsy VEM . Set
(6.8.3) Y(f,)=(=De!*led L JHY ... HY ).

to(1)? lo(2)? to(p)

In other words,

(6.8.4) )= fin_, Aino i N oo A, BS)
(cf. 5.8.10). From 5.9 follows that ¥, are isomorphisms.
Let
(6.8.5) n=n;: M¥-> <,
vt

be the composition M¥—— F*—— o/,;. Denote by d,e M} the d-functional
equalto lonf;  fi . ...fi ., vandto 0 on other monomials.
From 6.8.1 follows that

1 2 p—1 p
6.8.6 =|— |0'|+|U‘I| ,O——",O——O e O——mO X
(6.8.6) n;(00)=(—1) i % N

Let jeJ. Put I'=Iu {j}. Define the operator

6.8.7) w;: > Ay
by the formula
(6.8.8) w;()=x-[Y a(H) Hi;+a(H}) Hj].

iel
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Let us consider the square

(6.8.9) " lz l"v

o,
A —— oA,

where e} is the conjugate to the multiplication by e;.
6.8.10 Lemma. If j=j, then

npef=(—1)""kw;n,.
Proof. This follows easily from the relation in A4.,:
6.8.11 Lemma.

cJ
p+1
2 -1 p
o—-0—"—0 0——0
Iy 173 Ip—1 lp
_ i ( 1)p—q O._I__O__z_o cer O 4 o) q+1 O q+20 e O P+1 0
_q=0 iy i, ig j ig+1 ip

Proof of 6.8.11 Induction by p, using the Orlik-Solomon relation

[ ¥ [ ¥ oj
5 /1 /
010+o o+020=0
i k i k i k

(e=o0 or x). O

Now let us consider the Shapovalov form S: M, - M%. For oeXy S(f,)
is the image of the canonical generator of M§ under the composition

€5 €5(2) et (n)

* * S *
M3 My > M 1), 029 M.

From this remark and from 6.8.10 follows 6.6 for A=(1, 1, ..., 1) and p=0.

6.8.12 Remark. In assumptions of 6.8.11 identify spaces .«;, &/;. with the corre-
sponding spaces of differential forms. Define operators resy,, (resp., resgy1): /).
—of; as follows. For a form w=w(t)); take its residue along the hyperplane
t;=t; (resp., t;=z,) and then put t;=¢; (resp., t;=2z,).

One verifies easily that after identification (6.8.5) the operator resy: + Y resy,,
corresponds (up to a sign) to f;* (cf. 6.8.10). iel

6.9 Proof of 6.6 for A=(1, 1,...,1), n=0 and p=1. We'll reduce to the case
n=1, p=0, using the following trick.
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We have the isomorphism of graded algebras
(6.9.1) A (Co.n)—— A (€1:n-1)

which maps H;;to H;_; ;_,if i,j>1,and H,; to H{_,. It induces the isomorph-
ism of flag groups. On the other hand, consider the algebra §=g(B) correspond-
ing to the (r—1)x (r—1) matrix B=(b;;):=b;., j+,)i;2;. Let M =M(A) be the
d-module with the highest weight A= —a,. Put 7=(1, 1, ..., 1). We have the

commutative square of isomorphisms r—1times
b 4
n, ——— yN—l((go;N)
(6.9.2) g 1, 1, (o217
¥
M;—— 9N—1(%1;N)

where y maps [ fiy, (fix_1s - Lfipo fido J @22 t0 fiy oy fin i m1v e Jiymn B

One easily verifies by induction on N that the isomorphism y maps the
form S on n, to (—1) times the form S on Mj. The isomorphism (6.9.1) is
compatible with the form S. Hence, the case n=0, p=1 follows from the case
n=1, p=0 proven in 6.8.

6.10 Proof of 6.6 for A=(1,...,1), n=1 and arbitrary p. For a subset Ic[N]
put n;=n;, where 4, is defined as in 6.8. We have the natural S-orthogonal
decomposition

(A"n®M)1=(-D(n,l®...®n,p®M,)

the sum is taken over all decompositions of [N] in the disjoint union
Jl.. LI
Analogously, we have the S-orthogonal decomposition

FNPE =0 yN-p(%l;N)LJl,..,,JP;I

(see 5.6.3). By definition,  respects these decompositions, and 6.6 follows from
the particular cases proven in 6.8, 6.9.

The case of A=(l, ..., 1), arbitrary p and arbitrary n is proven similarly
and we leave it to the reader.

Thus, we have proven 6.6 for 1=(1, ..., 1).

6.11 Proof of 6.6 for an arbitrary A. Let A=(k,, ..., k,), N=|A|. Fix some map
n: [N] - [r] with % n~'(j)=k; for all j. Introduce the new N x N matrix B=(b;)),
where b; i=brw =g Let §=g(B) be the corresponding Lie algebra with generators
éia i Eb'
Let Aeh* be a weight. Choose a weight Aeh* such that <k, 4> =<{h,g.,
A for all ie[N]. Put M =M (A); M= M (A). Put I=(1, 1, ..., 1). For any subset
Numes

I<=[N] define M, as in 6.8. Set A(I)=(k}, ..., k;) where k= # (Inn™'(j)).
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Define maps
(6.11.1) n: My— M,y

be the formula n,(f;,...f;)=frq,) - -fru,)- On the other hand, define averaging
maps

(6.11.2) sp: Mgy — M,

by the formula

(6.11.3) si(f, ...fjp)=pr(s(fjl)S(sz)...s(fjp))
where s(f)= Y. fi;pr: M—M, is the projection to the homogeneous compo-
ien=1()
nent (cf. 5.11.2).
In other words,

(6.11.4) siUpe )= T Th,

the sum being taken over all p-tuples of pairwise distinct integers (i, ..., i,)
such that n(i,)=j, for all k.
Maps s; induce isomorphisms

(6.11.5) M, —— Mo

where X, ;, acts on M, in the evident way (cf. 5.11).

6.11.6 Lemma (“The projection formula”). Let I« [N], iel; put I'=1—{i}.
The square

sy ~
Ml(l) ? MI

en(i) J léi

S/ ~
M,y —— M,

commutes.

Proof. Direct verification. []

6.11.7 Lemma. Squares

SN ~ 5
M, —— M3

le ism

syt w3
Mr 2 fpy

commute.

Proof. Follows from the previous lemma by induction of N (cf. the end of
6.8). O
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This Lemma proves 6.6 for p=0, n=1 and any 1. The case of general p, n
follows from the commutativity of squares

C.(Tl, M)}. — C-(ﬁ’ M)
(6.11.8) s l ls
C.(n’ M)}t — Co(ﬁ’ M)

which in turn follows from 6.11.7 (cf. 6.9 and 6.10).
The proof of 6.6 is complete. [

6.12 Remark. In view of 6.6, the determinant formula 3.7 applied to arrange-
ments %,y appears to be a variant of the Shapovalov determinant formula
[Sh].

6.13 In conditions of 6.6, put g=g/ker S; it is the Kac-Moody Lie algebra
associated with the matrix 4 defined in 6.3. Put n=n/kerScg; L(4))
=M (A;)/ker S — these are irreducible g-modules; L=L; ®...®L,. As in §3,
denote by & the image S(F )= /"

Corollary. The maps ¥ induce isomorphisms of complexes

C.(ﬁ’ L)l —~—’ FN_.((gn;N)S;L
for any AeN".

In the rest of this section we’ll introduce a structure of a Lie bialgebra
on b[D] and a structure of a b-comodule on M=M(4,)® ... ® M(4,). Com-
plexes &/~ ~'(¥,.y) are identified with homogeneous parts of the standard com-
plex C,(n*, M¥*).

6.14 Cobracket. 6.14.1 Lemma-definition. There exists a unique map v:b—>bAb
such that

i) v(=0;v(f)=3%fAh; forall hebh;i=1,...,r;

@) v([x, yD=xv()—yv(x) for all x, yeb, where the action of b on bAb is
the adjoint one: a(bac)=[a, b]ac+anl[b, c] (ie. v is a 1-cocycle of b with
values in b A D).

Proof. Left to the reader (cf. [D, Example 3.2]). [
Let us define the map u: N" - by the formula u(k,, ..., k)= k;h;.

i=1
Note that v([h, x])=h-v(x) for hel, xeb. Hence the cobracket v preserves
the weight decomposition (with respect to the h-action).

6.14.2 Lemma. For every xen;
(i) v(x)=—%u(A) Ax+v(x) wherev(x)_enancbAab.
(ii) For every i

v(Lfi x1)- = fi- v(X) - — (i, (D) fi A x = fi-v(x) - + fi A [hy, x].
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Proof. For x=f; (i) is 6.14.1 (i). Suppose that we know (i) for x. We have v([f;,
xD=fi-v(xX) =4 x-(fin h)=3[f, x] A +h) —(hy, p() finx+ fi-v(x) .
This implies (i) for [ f;, x] and (ii). [J

6.14.3 Lemma. For every xen

18(x,[a,b]) if aen, bel

S(V(x)aa/\b)={s(x, [a,b]) if a,ben.

S is defined on b A b by the rule

_ S(a,¢) S(a,d)
S(aAb,cAd)=det (S(b, o S, d)) (cf. (6.4.2)).

Proof. The first equality is the direct consequence of 6.14.2(i). Let us prove
the second one. For x=f; the both sides are zero. Note that the form S on
b A b has the property

(6.14.4) S(x-y,2)=8(y, —1(x)-2)
if 7(x)-zeb. Suppose that we know 6.14.3 for xen,;. We have
SO(Lfi- x1), a Ab)=S(fi-v(X)—x-v(f),anb)
=SW(x),e;(anb)—SG finlx,hl,anb) if aben.
Put 4)=(0, ...,0, 1,0, ..., 0), so u(A?)=h,.

Ist case. aenyo, ben,. If A=1) then both sides of 6.14.3 for f;, x are zero.
If A+ 29, we have

SO(Lfi» x1), a Ab)=S(v(x), [e;; a] Ab+an[e;, b])—3(hi, u(A) S(fi, ) S(x, b)
==-%S(X, [[ei,al b])+S(X, [a’ [ei’ b]])+%S(x, [eia [a5b]])
=S(x, [e;; [a, b]11)=S(Lfi> x], [a, b]).

2nd case. aen,,, ben,., X', A"+ A?. Then

S(V([fi,X]),a/\ b)=S(V(X), ei'(a/\b))
=S(x> [eia [a’ b]])
=S([f;’,x]a [a’ b])

So, the second equality 6.14.3 is proven for [ f;, x]. [
6.15 Comultiplication. Suppose that n weights A, ..., 4,€b* are given. Put M,

= M (4,) with the generator v; M=M,® ... M,, v=0,® ...®uv,, A=) 4,
i=1
Let b act on b® M by the rule a-(b@m)=[a, b]@®m+a®b-m.
For 1<ign, ¢, beg, m=x,® ... ® x,eM, put b'm=x,®...®@x;_; ®bx;
®x41®...0x,; b (c@m)=[b,c]@m+c®bVm.

6.15.1 Lemma-definition. There exists a unique C-linear map v,;: M->b@M
such that
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(1) vy(h-x)=h-vy(x) for any heb, xeM;

(i) vir(x)=3(b(A)—pu(A) ® x + vy (X)), Vpr(x)En® M, for any xeM, where b:
b* —— 1 is defined in 6.1;

(ii)) vy (P X)=fP vy (x)- — ;@B x for 1Li<r, 1<j<n.

Proof. Left to the reader. []

6.15.2 Lemma. For any x, ye M, acbh

1S8(x,ay) if aeb,

S("M(x)’a®y)={8(x,ay) if aen.

Here S is defined on b @ M by the rule S(a® x, b ® y)=S(a, b) S(x, y) (¢f. (6.4.2)).

Proof. The first equality follows from 6.15.1(ii). Suppose that aen, xeM,,
®...®M, , and we have proven 6.15.2 for a, x and any y. Let us prove it
for f9x. We have

S("M(ﬁ(j)'x),a®y)=S(VM(ﬁ(j)'x)—’a®y)
=S(fP vy (x)-,a® y)—(h;, b(4)— p(A)) S(fi® X, a® ).

Ist case. acnp. We may suppose that a= f;. We have

S vu(x)—, i ®Y)=Sa(x)_, e (£;® )
=S(VM(X)— ’ﬁ®e$j) y):S(x,f; eg!’) y)
=S(x,[—hY+e? £0] y).

We may have two non-trivial possibilities

Ist subcase. yeM,; ®...® M, . Then

S(fPvm(x) -, i ® y)= —(h;, b(A)— (1) S(x, y)
+S(x, el f; y),
S(fi®x,a®y)=—S(x, ).
Hence,

SOu(f %), ;®y)=S(x, e f; ) =S ([P x, £ y).

2nd subcase. yeM;,®...® M, where Aj=1;+A?; 4,=24,—A) for some k=+j,
and A,=4, for all p#k, j. Then S(f,®x, f;®y)=0,

S(x, f;e y)=8(x, fi¥ e y)=S(x, e ¥ y)
=S(f9Vx, P 0)=8S(fPx, f; y)
hence S(vy (f¥ x), ;@ y)=S(fi¥ x, f; ).

2nd case. aen,, X'+ A?. This case is treated similarly, and we leave to the reader.
Lemma is proven. []
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6.15.3 Remark. Let us give a pair of more explicit formulas for v,,. First, for
any xeM

(6.15.3.1) vy(x)-= i fi®e; x+vy(x)- -,

where vy (x)- _en__@M,n__= P n,.
|Al>1
For a N-tuple of pairwise distinct integers (i(1), ..., i(N)), 1<i(j)<r; and
(a(l), ..., a(N)e[n]"

(6.15.3.2) vM(f.‘fz\?fv CANEDY G )

e N Y o
P=115j1<..<jp<N
LAY HE1- @ e 557 F
S S

Both formulas are proved by induction on |A].

6.16 From 3.4.5 follows that for general matrices B (i.e. for matrices B belonging
to a Zarisky dense subset of the set of all r x r-matrices) the map S: b—b*
is an isomorphism. Analogously, for general B and A,, ..., 4, S: M - M* are
isomorphisms. In this case properties 6.14.3 (resp., 6.15.2) uniquely determine
vib—>bAD(resp., vy : b>b® M).

It follows easily that for general B, A,;v is a Lie cobracket (i.e. satisfies the
dual of the Jacobi identity), hence b is a Lie bialgebra, and M is a b-comodule.
Hence, the same is true for any B, 4;. So, we get

6.16.1 Proposition. The map v: b —b A b 6.14.1 defines a structure of a Lie bialge-
bra on b. The map vy,: M —-b® M defines a structure of a b-comodule on M.

Alternatively, one can say that v, v, define the structures of a Lie algebra
on b* and of a b*-module on M*.

Consider n* as a subspace of b* by means of the projection b—-n. n* is
a Lie subalgebra of b*.

Warning. n with its bracket and a cobracket induced by the above bracket
i8 not a Lie bialgebra!
Consider the standard complex C (n*, M*)=~C, (n, M)*. From 6.6 follows

6.16.2 Theorem. The map 1, induces isomorphisms of complexes

C.(n*a M*)). _—’V__) (‘%N‘ ' ((gn; N):A5 d)
for all A.

6.17 Let D(b) be the double of b. Recall [D, n° 13] that this is a Lie algebra
equal to b@®b* as a space, with the bracket on b and b* defined by the Lie
algebra structure on b and b*, and for beb, £eb* [¢, b]=7+Db, Teb*, beb
are defined by the rules 7(c)=7([b, c]), ceb; £'(b)=[¢', ¢] (b), £’ eb*.
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Consider the space M* as in 6.16 and define the action of b@®b* on it.
Namely, for beb, te M*, put bt(x)=t(—bx); the action of b* is defined as in
6.16.

6.17.1 Proposition. The above rule defines on M* the structure of a D(b)-module.

Proof. We have to verify that [/, b] t=¢/bt—b/t for all /eb*, beb, te M*.
As in 6.16 we have to prove this for general B, A;. Suppose that /(+)=S(-,
c), ceb, t(-)=S(-, n), neM. Then [¢, b]=7+b where b=[rc, b] if [tc, b]eb
and 0 otherwise, 7(+)=S(+, [c, tb]) if [c, th]eb and O otherwise. Hence, [b,
£1t(-)=S(-, [tb, c] n). On the other hand, (b£—¢b) t(+)=S(*,(tbc—ctb) n)=S(-
s[thcln). O

7 Knizhnik-Zamolodchikov equations

In this section we calculate the Gauss-Manin connection in the top cohomology
of complexes studied in the previous section.

7.1 Let us save the assumptions and notations from 6.1. Fix A=(k,, ..., k,)eIN";

put N=|i|=) k; fix n weights 4,, ..., 4,€b* n=2. Fix an epimorphism
i=1

n:[N]— [r] with # 1~ '(i)=k;, for all i. Put a(j) = a,;,. Consider the arrangement

%,y in €'V with coordinates (z,, ..., z,; ty, ..., ty). Define the collection of

exponents

a=a(A, ..., Ay;x): €, .n—C
where ke, k%0 is a complex parameter, by the rule

(711) a(zi—zj=0)=(Ai’Aj)/K;
a(t;—z;=0)= —(a(i), 4;)/x;

a(t;—t;=0)=(a(i), x(j))/x
(cf. (6.5.1)).

Denote by %,=%4,(A,, ..., 4,; k) the corresponding line bundle with an
integrable connection over U(%,.y), cf. (4.5), and %, the local system of its
horizontal sections.

Let p: U(%,.y)— U(%,) be the projection on the first n coordinates. Abusing
the language, we’ll denote by z=(z,, ..., z,) a generic point of U(¥%,). Thus,
P&y =U(%,.x(2) (cf. 5.1). We put Z,(2) =%, 1,-1(,)-

Denote by Q'(¥,) the direct image p, of the relative de Rham complex
of %,. It is a complex of vector bundles over U(%,), whose fiber at z is Q'(%),
=Q'(Z,(2)) (cf. 4.5). Cohomology bundles

AL (L) =R'p,(Z)

are supplied with the Gauss-Manin integrable connection Fgy.

Denote by Qus(#(2)) (the complex of Orlik-Solomon forms) the image of
(4.5.4); put Hos(%,(2)) =Im(H (Qos(Z,(2)) = H (2 (Z,(2))). This defines a sub-
complex of bundles Qu(F)o Q(F). Put Rosp,(L)=Im(H (Qos(Z£))
- H(Q'(£))
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It is convenient to represent local sections of Q/(%,) in the form ¢f(t, z)
6(t, z) dt; A ... Adt; where

(7.1.2) 4t 2)= [ (Zm— zg) A AV,

m>m’

. l_[ (ti — Zm)( —a(i), 4m)/K
i,m

- TT (=t )@@

i>i

¢(t, z) is a holomorphic function.

Let X;,=2, x...xZ, act on [N] as follows: the i’th factor X, acts on
n~ (i) by permutations, where we identify =~ ! (i) with [k;] using the order n~ (i)
induced from [N]. This induces the fiberwise action an of X, on Q'(%,) by
the rule

alo(t,z)dt; A.ondt J=00(t,2) 6, dE, A ... AdL,

where o ¢ is obtained from ¢ by permutation of t;”s. This action respects Q.
Evidently, the Gauss-Manin connection is X ;-equivariant.

72 Put Mi=M(A); M=M,®...® M,

For a vector space V denote by Q(V)eV® V* the tautological element. For
leN" put Q7 =Qm)em,®@ni;  Qf =Qneni®n,; Q°=HQ(H)
+QBH*)ehRh*DbH*®H. For any A, A'eh these elements act on
M(A)*® M (A)* by means of b@® b*-action introduced in 6.17. Note that on
(M(A)*Q@ M(A)*), only QF with A< act non-trivially. (We say that A’
=Ky, ..., k)<A=(k,, ..., k,) iff K;<k; for all i). So we may form an infinite
sum

(7.2.1) Q=Y Q; +Q°+Y @}
A A

which acts on M(A)* ® M (A)*.

Let us denote by €;; the operator on M*=M?}® ... ® My acting as Q on
M¥® M} and as the identity on other factors. These operators respect the
weight decomposition. By the same letter we’ll denote the adjoint operators
acting on M.

Let Q;; act on spaces A”n*® M* as the identity on A”n* and as above
on M*,

7.2.2 Lemma. The above action is respects the differential in C (n*, M*).
Proof. This follows from the invariance of Q. [

Clearly, this action respects the weight decomposition.
Denote by #, 4;, C.(n*, .4*), etc. trivial bundles over U(%,) with fibers
M, M, C.(n*, M*), etc. respectively.
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7.2.3 Definition. The Knizhnik-Zamolodchikov connection Vi; on C (n*, #*) is

defined by
0 0 1 Q;;
VKZ(@Z) 5;_;}2. z;—z;

*i J

From the invariance of Q follows that I, is integrable, cf. [Ko].
Note that V, respects the differential in C,, so it induces the integrable
connection on cohomology bundles, which will be denoted by the same letter.
Theorem 6.16.2 defines canonical isomorphisms of complexes of vector bun-
dles

(7.2.4) . C.(n*, M%), —— Qs (L)
Put v * =2, (n*, M*); ¥ ¥=Hy(C.(n*, .#*),). Here is the main result of this

Section.

7.2.5 Theorem. The subsheaf R3s p (%)<= R"p, () is stable with respect to Vgy.
The isomorphism

Ho(n): V75— Rgs py(L)™

maps the Knizhnik-Zamolodchikov connection to the Gauss-Manin connection.

(It is natural to suggest that the same is true for all #(».).) Let us formulate
a more exact assertion.

7.2.5" Theorem. There exist canonical maps of vector bundles
mi: ME—>QVTHL)H
i=1, ..., nsuch that for every xe .#%

ar’(x) 1 Z r’(qu)+d l( )

Oz K [T, zi—2z

where d is the differential in Q'(%,).
Clearly, 7.2.5 follows from 7.2.5'. 7.2.5" will be proven in n° 7.3-7.10.

7.2.6 Corollary. There exists a constant A such that for |k|> A the inclusion
R3s P« (%) =R p, (#,) becomes an equality.

Proof. Fix z°e U(%,). By Theorem 4.6 there exists 4 such that
(*) Hgs(p™'(2), Zi(2)=H"(p™ ' (2), £.(2))

for z=2° and |k|> A. Since Rgsp, is stable with respect to Vgy it follows that
it is a vector bundle; hence the (*) holds for every zeU(%,). [

Let us denote by %, the local system of horizontal sections of .%;; put ¥,(z)
=% | p-1(z» 26 U(%,). Homology groups Hy(p™ ' (2), 9;(2)*) form a vector bundle
Hy over U(%,) with an integrable connection. In fact, #y is dual to R¥p (%))
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For A(z)eHy(p™ ! (2), ¥,(2)*) put

(7.2.7) xa(2)= [ nev,.

A(z)

7.2.8 Corollary. If A=(4(2)) is a local horizontal section of #)y, then a V,-valued
function x 4(z) satisfies the KZ differential equations

(7.2.8.1) 0%a(®) _ 1 ¢ Qi 14(2)

b
0z; K5 zi—z;

i=1,.., n
There exists A>0 such that for all k, |k|> A, functions y, for all A form
a complete space of solutions of 7.2.8.1. [

M (A)=M (A)/ker S, M;= M (A,) these are §-modules (Verma modules); let M (4)*
be contragradient modules. The Killing form K induces the non-degenerate
pairing between root spaces g, and g_, (cf. [K, Theorem 2.2 (d)].

Let 2,€9,®a_, be the corresponding element. Let us form a (possibly infi-
nite) sum

Now let us consider the Kac-Moody algebra g=g(B)/ker S (cf. 6.3); put

(7.2.9) a=ya,

as in (7.2.1). Put M=M, ®...® M,; define operators Q;; on M and M* as
after 7.2.1. Put

(7.2.10) V,= (r] ker(e;: M — M).

i=1

The projection M, — M, induces the map V, - V.
Let 7,(z) be the image of y,(z) (7.2.7) in V.

7.2.11 Corollary. In conditions of (7.2.8) j,(z) satisfies the system of differential
equations

(7.2.11.1) 0 -A(z)=%z 2

=7 >
dz; jEiiT 4]

14(2).

Proof. Follows from 7.2.8 and an easy assertion from linear algebra:

7.2.11.2 Lemma. For A=(ky, ..., k,), a=— Y k;o; the action of Qf on M(A)®
i=1

M(A’) coincides with the action of Q,. [

7.2.12 Remark. Just Egs. (7.2.11.1) were discovered by Knizhnik and Zamolod-
chikov in [KZ].

7.3 Let us review the definition of =1, from (7.2.4).
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Let 2(4; n) denote the set of all pairs (y, €), where y: [N]—[r] is a map
such that # y~'(i))=k; for all i; &: [N]—[n] is any non-decreasing map. To
every (y, £)e#(4; n) we associate an element

(7.3.1) f0.9=/1,®..8/,eM;®...0M,),

where I,,=(y(a), y(a+1),...,7(b)) if e"'(m)=[a, b]:={ila<i<b}, a<b; f;
=frwSra+1)--Sr0) VmEMp; f1,, =0, (the vaccum vector of M,,) if ¢~ (m)=0.
The set {f(y, &)}, (. e)eP(4; n) forms a base of M. Denote by {5(y, &)
=0;,®...®9J,,} the dual base of M*.

Denote by £ =4,y the subring of the field of rational functions C(z,, ..., z,;
ty, ..., ty) generated by all fractions (t;—¢)~", (t;—z)"", (z;—z)"". To every
(y, 8)eP(4; n) we assign @ (y, )€ Z as follows.

Choose a bijection p: [N]— [N] such that y(a)=y(b) implies np(a)=mnp(b).
So, p maps 7y~ ! (i) isomorphically onto ! (i). Put

b—1
(7.3.2) Om=Pml(t, Z)=(~ oty —toa+ 1) N tomy—2Zm) !
ife ' (m)=[a, b],a<b;if e~ (m)=0, put @, =1.
Set
(7.3.3) 0, 8=) 0(p,...0,)

the sum being taken over all o€X;, where X, acts on # by permutations of
t;’s as described above.
By definition.

1
(7.3.4) 11(5(’)),8))=W¢(‘y,8)-f1'dt1/\.../\dtN.

The map just constructed coincides with (6.5.2) for p=0, and “standard”
n defined as after (6.5.1). This follows from 6.8.1. The case of arbitrary = is
reduced to this one after renumbering of t;s.

7.4 Now we begin the proof of 7.2.5'. First let us introduce a diagram notation
(similar to that of § 6) for some elements of the ring Z=4%,,y (see 7.3). Consider
an element x of # which is a product of pairwise distinct factors (¢;—t;)"",
(ti—z)~ "', or (z;—z))~'. We'll depict as a directed graph: it has n+ N coloured
and numbered vertices: n white ones which are in 1—1 correspondence with
the set z,, ..., z,, and N black ones which are in 1—1 correspondence with
ti,-..,ty. The arrows are in 1—1 correspondence with inverse differences
belonging to x: the i-th black vertex is connected with the j-th black vertex
@ — @ iff there is a factor (t,—¢;) ™' in x, the same with ® -0, 0 — 0. Sometimes
i Jj i J 1 J

we’ll omit the isolated vertices which are not a boundary of any arrow. If we

do not want to indicate the colour of a vertice, we’ll depict it as a cross x.
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le
2
Example. 3l T=(t1—t3)“(zl-—t3)“(zl—zz)_1(zz~t2)"'
C[————)O
le [ 4
[ R (R e e A R IR R
10 o O——>O0
2 1 2

Abusing the language, sometimes we’ll denote by the same picture an element
¢(t, z)e# and differential form @(t, z) £,(t, z)-dt, A ... Adiy.
Here is the key relation in £:

7.4.1 Lemma. / x\ + \ / =0.
X X

. . X XX
It implies )

X\ 2
7.4.2 Circle lemma. =0

\/

i+1 X
1

(In i-th picture the arrow connecting i-th and (i + 1)-th vertices is omitted.)

xi+1
74.3 Lemma x-—>>2<———>x — x
1 i
—z X ——> —_— X —> X —> X —> —_—> X
i=1 1 j i+1  j+1 i
7.4.4 Lemma Xi+p
’[i+1
X—> X—> —_—> X =
1 2 i
= Z X —> X -——-—>x——>x———>x-~-——~?x——->x——>‘x—-_>...
0§j,,§...§jl§i1 2 ip i+1 jp+1 Jp—1 i+p—1 jp_1+1
S X X X >t —— X,
J1 i+1 j+1 i

Progf. Follows from 7.4.3. [

7.5 Suppose that A=(1, 1, ..., 1), so N=r, Z,={e}; suppose that n: [N]—[r]
is identity. In notation of 7.3, let us consider a form n=n#(y, &) corresponding
to some (y, g)e Z(4; n). The diagram corresponding to # has the following shape:
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I
051 f { }

Let us call connected components of it branches (they are similar to islands
of § 5). The m-th branch has the form

Y o e O [e]
y@  ya+1) 7(b) m

if e~ 1(m)=[a, b]. Sometimes we’ll draw it without marking internal black ver-
tices: ® >0 .
(@) m.
For an arrow X——X let us call its weight the number w(a)=(w(s), w(t))/x,
N

where w(®)= —o;, w(®)=4,. For i, je[n], i+ let us introduce differential form

V.jn as follows. Its diagram is the sum of all diagrams obtained from (7.5.1)
by adding one arrow connecting a point in i-th branch with a point in j-th
branch, multiplied by the weight of an arrow:

(7.5.2) Vin=Z -w(a)

7.5.3 Example.

o —

° .'(Als—'aZ) T .'(Al’AZ)
] e

So we get linear operators
(7.54) Vit Q0s(Z) = Q5s(Zy).
Forn=¢-£,dt, A ... ndtyeQN (&) put
%_Jn=(—1)i‘1(p-/,1dt1/\ v At A L AdEy.

Here is the first key point.
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7.5.5 Lemma.
=3 Ty~ (S /01, 1y, )

JjFi
where the sum in the second summand is taken over all p lying in the i-th branch.
ie. pe{y(a), y(a+1), ..., ()}, ¢~ ' ()=[a, b].
Proof. By differentiation. []

7.5.6 Now suppose that A is arbitrary. Then forms #(y, &) are sums of forms
of the type (7.5.1).
Operators V; defined by (7.5.2) are X;-equivariant, and one has the same
formula as in 7.5.5, with the evident modification of the exact form summand.
Theorem 7.2.5" will follow from

7.5.7 Lemma. For every xe M¥

ln(Q )

—Zj

11 ()_‘

The proof will occupy next n°s.
We may, and shall suppose that n=2. Put ¥ =V, ,.

7.6 First we’ll calculate the action of Q=Q,,. We'll use notation: f;, ;.

=fi, - Jins Uy i) =00 UL Uiy, fin] - -], the same with e/’s.
7.6.1 Lemma. Let f=f;, ., , e=e; ;eUg, x=fveM(A). Then ex=0if ¢>N;

and
ex= Y fil‘-'ﬁp,'“ﬁpq

1Spi<..<pgEN

Lo lefi, 1 £, 3] s fi, 1oy o i
ifg<N.

Proof. We have ex=efv=[e, f]v. By the Leibniz rule [a, bc]=[a, b]c+b[a, c],
we have

[e.f10= 3 fiyoooliys L i1 fy oo st

This proves 7.6.1 for g=1. For g>1 use induction on q: [e, f; ] is the sum
of products of g—1 e;’s, and we may use the induction hypothesis. []

7.6.2 Lemma. We have an identity in U g:
[... [ei, ...iN]afj,]aszl ]afm] =K([ei1A..iN]’ [f“m]) th'
Proof. K([e;,. i) [f;..;in) =K@, f;,) where é=[...[[e; i) f,] fi.] -],

Sin_ l]—Za e;. Hence, K(¢, f;,)=a,,. On the other hand the left hand side of
7 6 2 1s [e le] aJN N
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In notations of 7.2, put Q,= ) @Q,, the sum is taken over all roots a of
la|=q
length g, i.e. equal to a sum of g simple roots. Here is the key

7.6.3 Lemma. We have an equality in M, ® M , :
gq(ﬁl...in Ul ® y)

N
= Z fi,_...iji...I,q...iN v ® [fil...jq] y(“i,qa A= Z fxij),

15j1<..<jg=N i=jgt1

v, €M the generator, yeM ,.

Proof. Fix a root a, || = g. Choose a base {¢{’} in g, consisting of simple commu-
tators [e;, ;. 1. Let { £} be the dual base in §_,. We have

Qa‘(fn...m Uy ®J’)=(Z e&i) ®fofi))‘(fi1...iw v ®Y)

D D W AN o

1Sj1<...<jg<N i

Sy Mgy arin 1 ®Ly=(we put [1=Lf,..;,])
Z Zﬁ,...?j‘...qu...iNhijqf}jq+l...iN

1Sj1<...<jgSN i

® K(e(l)’ [fJ] (l) Y.

But Y K(e®, [f,Dfi"=[f,] if [f;]1€§_,, and zero otherwise. The lemma fol-
lows." O

7.6.2

7.7 Suppose that K is non-degenerate on g. For a positive root a =)k} o; consid-
er two operators: Q,eg,®g_, actmg M, ®M,, and QF=Qf e(g_)*Rg_,,
A=k, ..., k) acting on M¥ ® M% asin 7. 2

7.7.1 Lemma. Q¥ is adjoint to Q,.

Proof. For feg_,, peM¥, xeM;, {f ¢, x)=<p, —f-x>. On the other hand,
if 6=S(-, f)eg*,, <6-¢, x)=<p, —1f x). This follows from the commutativity
of

n ® M —M,

If 2,=Ye?®fY, then Q¥=3 6 @[ where 6 =5(-, te”). The lemma fol-
lows. [
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7.8 Insertions. Given two sequences of distinct symbols (a,,...,a);
(bys ..., by_i), and 1 =m=k, we’ll denote by I(ay, ..., ax; by, ..., by_y; m) the
set of all insertions of the second sequence into the first one, i.e. the set of
all sequences (cy, ..., cy) such that

@ {cys.-sent={ay, ...,a}ul{by, ..., by-i};

(ii) c,,=a; for some 1<p, <p,<...<p,=N;c, =b; for some 1=¢,<q,<...
<qn-x<N;

(i) gy +1=pp.

m—1+N—k

We have #I(ay,...,ac; b,....by_y; m)=( m—2 ) Put I(ay, ..., a;

k
bys.ouby_=1J Iay, ..., a; by, ..., by_y; m).
m=1

Let us identify elements of X with sequences (i, ..., iy)e[N]" by the rule
geXy(a(1), ..., a(N)). For 1 £k < N denote by T,(N)< X the subset consisting

of sequences (iy, ..., iy) such that i, <i, < ... <i_ <[ =N>i, > ... >iy. Put
N

T(N)= | T,(N). We have # R(N)z(]lj_ll); §T(N)=2"".
k=1 —
We have the identity in U n:

N

(7.8.1) [finl= 2 (=D¥F Y Juin

k=1 (it .-+ in)€ T (N)

Set S,(N)=I(1,2, ..., k; N, N—1, ..., k+1)

7.8.2 Example. N=3. T;: {321)}; Ty: {(132), 231)}; Ty: {(123)}. S;:
(321)}58,: {(132),(312)};55: {123)).

7.8.3 Lemma. S,(N)=T,(N) !, i.e. c€S,(N)<>a~ ' T,(N).
Proof. Left to the reader. [
Note that if (i, ..., iy)eS,(N) then iy=k.

7.9 Let us return to the assumptions of 7.7. The base of (M; ® M), constitute
all monomials {f;, ; v,®f;, ., iy U2} Let {0;, ;, @3, , i} be the dual base
of (M| ® M3),.

Set Q=Y Qr.

lul=q

ptl 4
79.1 Lemma. Q;—'(5i1...ip®5ip+1...i;v)= Z Z Z Zéj1~'-jp+q®5ip+qkt‘-~i1\l

m=1k=1ceTr(q)

p
(~1)""‘-(oc,-wk, A=Y, ozij> where the internal summation is taken over all
j=m

(_]1, ...,jp+q)GI(i1, ey lp, ip+a“l(1)’ ey ip+o'“(q); m).

Proof. This follows from 7.6.3 and 7.7.1. [
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7.10 End of the proof of 7.5.7

First suppose that A=(1,1,...,1). Let us consider the form Vg(x), x=
0iy..i,®0;,,,..iy- Diagrams (7.5.2) included in it have the shape

i ip+1
(7.10.1)

1 2

Using the Circle Lemma 7.4.2, we may present (7.10.1) as a sum (with +1
coefficients) of diagrams of 3 types:

(7.10.2) I
(a) (b) ©
A diagram of type (b) is equal to ;ﬁi— One checks directly that the sum
1742 0
of all diagrams of type (b) (with their coefficients) is equal to 1 M
Let us consider a diagram of type (c) KZim%
iy ip+l
ip+k
7.10.3 E = 1 im E ip+q
(7.10.3) l Z1—2, E
1 2 1 2

By using 7.4.4 twice we transform the connected component to the standard
shape o——-——><]>

Suppose that K is non-degenerate on g. From 7.9.1 follows that the sum
1 7(Q* x)
K z,—2,
corresponds to the twofold application to 7.4.4 to (7.10.3)). Analogously, the

1 n(@ x)' This proves 7.5.7

K Z,—2,
when K is non-degenerate and A=(1, 1, ..., 1). The case of an arbitrary A follows
by symmetrization.

Both sides of 7.5.7 are polynomial functions on matrix elements of B=(b;;),
and by (3.4.5) they are equal for a Zarisky dense subset of matrices B, hence
they are equal for all B. This completes the proof of 7.5.7 and of Theorem
7.25. O

of diagrams (7.10.3) is equal to (the summation in the r.h.s. of 7.9.1

sum of diagrams of type (7.10.2) (a) is equal to
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7.11 Remark. One can express Theorem 7.2.5" in a more simple way. The map
n defines the map

ii: M¥ —QY(U(%,+n)).

The proof of Theorem 7.2.5" shows that the following assertion holds
Theorem 7.2.5” For all xe M¥

1 g
2= 3 @9 175,

i<j z J
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