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Abstract. Early in 1925 H. Weyl finished his great series of publica-
tions on the representation of Lie groups and started the studies for his
Philosophie der Mathematik und Naturwissenschaften delivered to the
editors in summer 1926. He was in touch with M. Born and got to know
of the developments in the Göttingen group around Born, Heisenberg
and Jordan in early summer 1925. After a conversation with Born in
September 1925 he started to develop ideas of his own how to quantize
the mechanical observables of a system and communicated them to Born
and Jordan in October 1925. In these letters he proposed the basic idea
of a group theoretic approach to quantization, which he presented to the
scientific public in his 1927 paper Quantenmechanik und Gruppentheo-
rie. This paper had a long and difficult reception history for several
decades.

1. Introduction

There are many stories to be told about Hermann Weyl’s involvement in
quantum mechanics. Among them:

– 1918–1923, Weyl’s rising awareness of the role of quantum structures
in the constitution of matter during his phase of a dynamistic matter
explanation in the frame of the Mie-Hilbert-Weyl program,1

– 1925–1927, backstage involvement in the new QM leading to his
published contribution to the topic (Weyl 1927) quoted as QMG in
the sequel,

– 1927/28 lecture course and book publication on Groups and Quan-
tum Mechanics, quoted as GQM,

– 1929, Weyl’s contribution to the general relativistic Dirac equation
(Fock-Weyl theory),

– 1930ff. study of the role of spin coupling for molecular bounds,
second edition of GQM, and later contributions.

This is too much for a conference talk. Here I shall concentrate on the
second item. For items 4 see (Scholz 2005), for 3 and 5 (Scholz 2006), for
item 1 with a link to 4 (Scholz 2004a, Scholz 2004b).
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The reason for this choice is that Weyl’s contributions to QM during the
period 1925 – 1927 may be of particular interest for this conference. It
contains a direct communication between him and two of the main protag-
onists of the ‘new’ quantum mechanics, Max Born and Pascual Jordan, in
late summer and early autumn 1925. Moreover we find here a very early
formulation of a structural approach to quantization. This may be helpful to
understand historically, and perhaps more widely, a mathematician’s view
of the relationship mathematics — physics in foundational aspects.2

During the years 1924 and 1925 Weyl worked hard on his great series on
the representation theory of Lie groups, beautifully described in (Hawkins
2000). It was finished in April 1925 (Weyl 1925/1926). Then he started
intense reading work for his contribution to Philosophie der Mathematik
und Naturwissenschaften in Handbuch der Philosophie. He took this task
very seriously; it occupied him well into the year 1926. In his letter to Born
of Sep. 27, 1925, he characterized himself as “fettered to the deep swamp
of philosophy (gefesselt an das tiefe Moor der Philosophie)”. This did not
hinder him, on the other hand, to follow very closely what was going on
inside the Göttingen group of theoretical physics during 1925, with its great
step towards a new kind of mathematized quantum mechanics.

Already earlier in the 1920s, Weyl had found two topics in modern physics,
in which group representations became important. The first topic was in
general relativity and differential geometry. The representation theory of
the special linear group SLnR, showed that there is a mathematical reason
for the structural importance of tensors in differential geometry.3 The second
point became clear to him, when Elie Cartan proved that the algebraic part
of Weyl’s analysis of the space problem could be answered by the use of
group representations more easily.4

When Weyl learned from M. Born in September 1925 of the recent Göt-
tingen work in quantum mechanics, he immediately tried to link the new
theory to the representation theory of groups. Already in autumn 1925 he
started to investigate inhowfar group representations might help to under-
stand the Göttingen quantization procedure and, in particular, how they
shed light on the role of the Heisenberg commutation rule (section 2 be-
low). His approach led directly to the study of abelian ray representations.
He even made first steps towards what later turned into Weyl quantization
(section 3). Both ideas were first published in QMG (Weyl 1927). This
contribution ends with some remarks on Weyl’s indications on interacting
and/or relativistic systems (section 4) and a short outlook on reception and
repercussions of Weyl’s proposals (section 5).

2Here “foundational” is understood in the sense of foundations of physics, not as foun-
dations of mathematics.

3All irreducible representations of SL2R, arise as subrepresentations of tensor prod-
ucts of the natural representation with certain symmetry properties. Thus infinitesimal
structures of classical differential geometry have a good chance to be expressible in terms
of vector and tensor fields.

4(Hawkins 2000, Scholz 2004b)
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2. From commutation rules to abelian ray representations

Shortly before leaving for a visit to the US of America, Max Born visited
Zürich in September 1925 and informed Weyl on the recent progress in QM
made at Göttingen. This led to a short correspondence between Born and
Weyl (Weyl to Born Sept. 27, 1925, Born to Weyl Oct. 3, 1925) and, after
Born’s departure, between Weyl and Jordan ( Weyl to Jordan Oct. 13, 1925,
Jordan to Weyl, Nov. 1925, and two postcards, Weyl to Jordan, Nov. 23
and 25, 1925). The correspondence took place in the time lapsed between
the submission and publication of Born’s and Jordan’s common article on
quantum mechanics (Born 1925).5

Apparently Born had explained the content of this paper to Weyl. The
latter wrote to Born:

Dear Herr Born!
Your Ansatz for quantum theory has impressed me tremen-
dously. I have figured out (zurecht gelegt) the mathematical
side of it for myself, perhaps it may be useful for your further
progress . . . (Weyl Ms1925a).6

In his “Zurechtlegung des Mathematischen” Weyl immediately passed
over from the matrices p, q etc. of Born, Heisenberg, and Jordan to the
“one-parameter group which results from the infinitesimal transformation
1 + δp by iteration” (the δ was introduced by Weyl to characterize the limit
process δp for δ → 0),

P (s) = eps = 1+sp+
s2

2!
p2 . . . , Q(t) = eqt = 1+tq+

t2

2!
q2 . . . (s, t ∈ R) .

That is, he considered the p, q as infinitesimal generators of 1-parameter
groups. He did not touch analytical details of domains of definition etc..7

This move was motivated by Weyl’s recent experiences with Lie groups.
There he had studied the consequences of the shift from the infinitesimal
group (now, Lie algebra) to the finite one (the Lie group itself) for the
corresponding representations. He had found valuable new insights by such
a shift from the infinitesimal to the integral (finite) point of view.

In the context presented to him by Born, Weyl realized that the Heisen-
berg commutation rule for the infinitesimal operators

(1) pq − qp = ~ 1,

with ~ “a number” (Weyl omitted the imaginary unit i), was (and is)
equivalent to the quasi-commutation rule for the integral operators P :=
P (1), Q := Q(1)

(2) PQ = αQP, with α(s, t) complex factor.

5Submission date, 27 Sept., publication 28 November 1925.
6The German original is even nicer: “Lieber Herr Born, Ihr Ansatz zur Quantenthe-

orie hat auf mich gewaltigen Eindruck gemacht. Ich habe mir das Mathematische dazu
folgendermaßen zurecht gelegt, vielleicht kann Ihnen das bei der weiteren Durchführung
behülflich sein . . . .”

7This state of affairs pertained well into 1927. Even Hilbert in his lecture course
in winter semester 1926/27 and (Hilbert/Nordheim/vonNeumann 1927) did not specify
domains of definition (Majer e.a. 2008). This situation started only to be changed with
von Neumann’s first own contribution on the foundations of QM. Cf. (Lacki 2000).
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Figure 1. Weyl to Born, 27 Sept. 1925, page 1
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This looked like an easy reason for the validity of Heisenberg commutation
in quantum mechanics, where states were represented by functions or vectors
up to a non- vanishing complex factor only, if normalized up to a phase
factor α, |α| = 1, “. . . which one [could] deny any physical meaning” (Weyl
Ms1925a).

In this sense the integral version (2) of the commutation rule seemed more
basic to Weyl. He started to explore first conclusions of it for algebraic
expressions of p and q, which we do not go into here (we come back to this
question in the discussion of Weyl’s letter to Jordan).

Born’s reaction was polite,
Dear Herr Weyl,
It was a great pleasure for me to see that our new quan-
tum mechanics attracts your interest. In the meantime, we
have made considerable progress and are now sure that our
approach covers the most important aspects of the atomic
structure. . . . (Born Ms 1925)

But apparently he was not particularly interested in Weyl’s proposal. In the
last phrase Born referred to his joint paper with Jordan, just submitted to
Zeitschrift für Physik. Then he continued:

It is very fine that you have thought about our formulas;
we have derived these formulas in our way, even if not as
elegantly as you, and intend to publish the subject in this
form, because your method is difficult for physicists to access.
(ibid)8

So Weyl was left alone with his proposal to pass over to the integral version
of the infinitesimal transformations.

He saw the opportunity to come back to the question in a direct com-
munication with the younger colleague a little later. On 13 Nov. 1925 he
received proofs of Born and Jordan’s paper, “against ackowledgement of re-
ceipt and by express mail! (eingeschrieben und durch Eilboten !)”, as he
remarked with some surprise in his first letter to Jordan. He did not go into
the details of the paper but referred to his letter to Born, in which he had
done some of the calculations in his own approach, and added some other
comments.

Jordan replied in November (no day specified in the date) answering that
he had seen Weyl’s letter to Born. But also he did not take up the idea
of passing to the one-parameter integral groups.9 He added that in the
meantime he and Born had found their own way to establish the Heisenberg

8“Lieber Herr Weyl,
daß unsere neue Quantenmechanik Ihr Interesse erregt, hat mir große Freude gemacht. Wir
sind inzwischen sehr viel weiter gekommen und sind jetzt ganz sicher, daß unser Ansatz die
wesentlichen Züge der Atomstruktur richtig trifft. Daß Sie sich selbst mit unsern Formeln
beschäftigt haben, ist sehr schön; wir haben diese Formeln uns auch, wenn auch nicht
so elegant, hergeleitet und werden wohl in dieser Form die Sache veröffentlichen, weil Ihr
Verfahren für die Physiker wohl zu schwer ist. . . . ” (Born Ms 1925)

9“Ihren Brief an Prof. Born habe ich seinerzeit mit Interesse gelesen . . . ” (Jordan Ms
1925). Apparently Born had handed over the letter to Jordan during the final preparation
of the manuscript. It remained in Jordan’s hand and is still in his Nachlass (Staatsbiblio-
thek Berlin).
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commutation relation “without any other precondition” from the “equations
of motion”

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
for a Hamilton operator H which could be expressed algebraically by a
polynomial in p and q .

In a footnote he added
When Born talked to you, we still believed that
pq − qp = h

2πi 1 is an independent requirement.10

So, even if Weyl’s proposal to consider integral versions of 1-parameter
operator groups and their natural quasi-commutation rule (2) did not imme-
diately enter the Göttingen discourse on the foundation of QM, he seemed to
have triggered second thoughts of the Göttingen physicists on how to derive
Heisenberg commutation from basic principles of QM (“without any other
precondition”). Born and Jordan succeeded by referring to the Hamilton
operator of the system.

On the other hand, it appeared unnatural for Weyl to consider only poly-
nomial expressions in the basic momentum and localization operators p, q
for H. In his postcards Weyl mentioned an idea to Jordan, which kind of
functions for H (classical Hamiltonian) might be taken into consideration
for a quantum analogue of H.

I conclude that the domain of acceptable functions H is char-
acterized by the Ansatz

(3)
∫ ∫

eξp+ηqϕ(ξ, η)dξdη .

This is less formal than
∑
pmqn (Weyl Ms1925c) (equ. num-

ber added, E.S.).11

The formula has to be read with the imaginary unit in the exponential,∫
ei(ξp+ηq). Weyl was used to omit these to “facilitate reading”, as he felt.12

Thus the integral in the postcard to Jordan indicated something like an
inverse Fourier transform of ϕ. It contained the starting point for Weyl’s
idea of quantization by using operator Fourier integrals. He later explored
and extended the idea and published it in 1927 (QMG). We will come back
to this point in the next section.

Weyl’s idea to look at the operator relations of QM from an integral
point of view lay dormant for more than a year. In autumn 1927, shortly
before his lecture course on group theory and quantum mechanics started,
Weyl finally prepared his s article QMG, (Weyl 1927).13 There he discussed
some basic principles of the representation of physical quantities in QM
by Hermitian forms (in particular simultaneous diagonalizability) as well

10“Als Born Sie sprach, glaubten wir noch daß pq − qp = h
2πi

1 eine unabhängige

Voraussetzung sei.” (Jordan Ms 1925) (emphasis in original)
11“Ich komme darauf, den Bereich der vernünftigen Funktionen H durch den AnsatzR R
eξp+ηqϕ(ξ, η)dξdη wiederzugeben; das ist weniger formal als

P
pmqn.”

12In a slightly different denotational form: “Um der Leserlichkeit willen schreibe ich
oft e(x) statt eix.” (Weyl 1927, below equ. (35)). In the postcard he even used the
exponential form of denotation eξp+ηq itself.

13Submitted October 13, 1927.



WEYL ENTERING THE ’NEW’ QUANTUM MECHANICS DISCOURSE † 7

as the difference of pure states (eigenvectors of a typical observable of the
system under consideration) and mixtures (compositions of pures states in
any mixing ratio).14

We are here more interested in part two. Weyl announced that this section
. . . deals with deeper questions. [. . . ]. It is closely connected
to the question of the essence and correct definition of a
canonical variable. (Weyl 1927, 92)

He continued by criticizing Jordan’s paper (1927) which left “completely
unclear” how to assign a matrix f(Q) to a function f(q) of position coordi-
nates q. Moreover Weyl considered Jordan’s presentation of the concept of
canonical variables “mathematically unsatisfactory and physically unfeasi-
ble”.

Here I believe to have arrived at a deeper insight into the
true state of affairs by the use of group theory. (ibid.)

This insight was gained from extending the approach he had already pro-
posed in his letter to Born in September 1925.

Starting from a Hermitean matrix A, Weyl associated the corresponding
anti-Hermitean

C := i A

and considered the unitary 1-parameter group generated by it,

U(s) = eisA = esC , s ∈ R .

For an abelian group G̃ =< C1, . . . , Ck > generated freely by k such matrices
C1, . . . , Ck, he accordingly got a k-parameter unitary group with typical
element

U(s1, . . . , sk) = e
i

P
ν

sνCν

, s ∈ R .

In QM the commutation of the C-s and U -s may be weakened. The weak-
ening of the commutation relation for the unitary group elements

U(s)U(t) = U(t)U(s) , s, t ∈ Rk

by admitting phase factors

U(s)U(t) = eiα(s,t)U(t)U(s) , α(s, t) ∈ R ,

corresponded to commutation relations for the generators of the form

(4) CjCl − ClCj = i cjl · 1

with skew-symmetric real coefficients (cjl) (commutator form).
Weyl argued that for an irreducible group the commutator form is non-

degenerate (|cjl| 6= 0). By a change of generators it could be normalized to
matrix blocks (

0 1
−1 0

)
,

i.e., to the normal form of a symplectic matrix.

14Von Neumann characterized mixtures in the same year more precisely by a positive
Hermitian operator A with sum of eigenvalues

P
aν = 1 (trace class operators of trace

class norm 1).
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For even k, k = 2n, the new generators (after change of base) can be
written as

iPν , iQν (ν = 1, . . . n)

with Pν , Qν Hermitian and

(5) i(PνQν −QνPν) = c · 1 , c = 1, ~ .

All other commutators are 0. By obvious reasons Weyl called P1, . . . Pn, Q1, . . .
Qn a canonical basis for the representation of G̃.

For operators

A(s) = ei
P

sνPν , B(s) = ei
P

tνQν

W (s, t) := A(s)B(t) ,

the commutation relations acquire the form

(6) A(s)B(t) = e
ic

P
ν

sνtν
B(t)A(s)

The commutative addition for (s, t), (s′, t′) in Rn reappears here slightly
deformed as:

(7) W (s+ s′, t+ t′) = e−ic<s,t>W (s, t)W (s′, t′) ,

where < s, t >:=
∑
ν
sνtν .

Weyl called the ‘deformed’ representation

G̃ := R2n −→ U(H)
(s, t) 7→ W (s, t) = A(s)B(t) ,(8)

with U(H) the unitary group of the Hilbert spaceH, an “irreducible group of
abelian ray rotations”. Later authors would prefer the terminology projective
(or ray) representation of G̃.

Weyl realized that he had found a structural reason, based on group
theoretic considerations, for the canonical pairing of basic observables

Pν , Qν ,

satisfying the Heisenberg commutation relations

(9) [Pν , Qν ] = −i ~1 .

The latter arose naturally as the infinitesimal counterpart of the integral
version for the unitary 1-parameter groups

(10) eisPνeitQν = ei~steitQνeisPν ,

with its commutator phase shift ei~st. In the sequel (10) will be called, as
usual, the Weyl commutation relations.

Weyl showed that in this situation the spectrum of the localization op-
erators Q was the whole real continuum, R, and the pure states could be
characterized by square integrable complex-valued functions on Rn =: G
(G̃ = G× Ĝ), with Ĝ dual of G)

ψ ∈ L2(Rn,C) of norm |ψ| = 1
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on the space of q localizations. Then the operators (8) of the kinematical
group R2n were represented by translations, respectively phase multiplica-
tion operators of the form

(11) A(s)ψ(q) = ψ(q − s) , B(t)ψ(q) = ei<t,q>ψ(q) ,

and the canonically paired basis operators became

(12) Pν : ψ 7→ i
∂ψ

∂qν
, Qν : ψ 7→ qν · ψ .

Weyl commented:
We have thus arrived at Schrödinger’s version [of quantum
mechanics, E.S.]. (Weyl 1927, 122, emphasis in original)15

In the end, the Schrödinger characterization of a free particle turned out
to be nothing but a well chosen basis description of the irreducible ray rep-
resentation of the non-relativistic kinematical group R2n. Moreover, this
argument showed that every irreducible ray representation of R2n was iso-
morphic to the Schrödinger picture of a free particle. Weyl concluded:

The kinematical character of a physical system is expressed
by an irreducible Abelian rotation group the substrate of which
[the set on which it operates, E.S.] is the ray field (Strahlen-
körper) of ‘pure cases’. (Weyl 1927, 118, emphasis in origi-
nal)16

The “kinematical character” of a non-relativistic quantum system with n
continuous non compactified degrees of freedom turned out to be of a rather
simple nature and universally given by the uniquely determined irreducible
unitary ray representation of G̃.

3. Weyl’s approach to the quantization problem

We have seen that already in his postcard to P. Jordan Weyl indicated that
a Fourier transform kind approach might be helpful to delimit the “domain
of reasonable functions H” (3) or, in slightly more generalized terms, for
functions which could be considered as candidates for observables. In his
1927 article Weyl came back to this idea and worked it out in some more
detail.

After having arrived at the irreducible ray representation of G̃ ∼= R2n with
canonical basis

iPν , iQν , 1 ≤ ν ≤ n ,

he turned to the interrelation between the quantum system characterized by
it and the classical system with n continuous degrees of freedom, which could
be assigned to the former in a natural (structurally well determined) way.
The latter had the classical momentum and location observables p1, . . . , pn,
q1, . . . qn. Weyl remarked:

15“Damit sind wir bei der Schrödingerschen Fassung angelangt.”
16“Der kinematische Charaktter eines physikalischen Systems findet seinen Ausdruck

in einer irreduziblen Abelschen Drehungsgruppe, deren Substrat der Strahlenkörper der
‘reinen Fälle’ ist.”
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A physical quantity is mathematically defined by its func-
tional expression f(p, q) in the canonical variables p, q. It
remained a problem, how such an expression had to be trans-
ferred to the matrices. (Weyl 1927, 116)17

Weyl reminded the reader that the transfer from classical to quantum ob-
servables was clear only for pure monomials of the form f(p, q) = pk or
ql. Already for mixed monomials of the type p2q it was no longer uniquely
determined how the quantum analogue should be characterized, because of
the non-commutativity of Hermitian operators, P 2Q, QP 2, PQP etc.. To
solve this problem he recommended to use Fourier integrals.

Weyl considered the Fourier transform ξ of f , normalized like

ξ(s, t) = (
1
2π

)n

∫
e−i(ps+qt)f(p, q)dξdη , in short ξ = f̂ ,

and represented f as the Fourier inverse of ξ,

(13) f(p, q) =
∫
ei(ps+qt)ξ(s, t)dsdt , f = ξ̌.

It appeared rather natural to pass over to the operator analogue

(14) F(f) :=
∫
ei(Ps+Qt)ξ(s, t) dsdt =

∫
Ws,t ξ(s, t) dsdt .

For a real-valued square-integrable f , the Fourier transform ξ is itself
square-integrable and satisfies the reality condition

ξ(s, t) = ξ(−s,−t) ,
which again implies Hermiticity of F(f) (Weyl 1927, 116f.). Weyl therefore
considered the resulting F := F(f) as a naturally defined quantum mechan-
ical version of the physical quantity related to f . In the sequel F(f) will be
called the Weyl quantized observable corresponding to f .

He added:
The integral development (42) [our (13), E.S.] is not always
to be understood literally. The essential point is only that
one has a linear combination of the e(pσ + qτ) on the right
hand side [σ, τ correspond to our s, t, e(x) = eix, E.S.], in
which σ and τ take on arbitrary real values. If, e.g., q is a
cyclic coordinate which is to be understood mod 2π (. . . ),
the integration with respect to τ becomes a summation over
all integer numbers τ ; then we have the case of a mixed
continuous-discrete group. (Weyl 1927, 117)18

17“Eine physikalische Größe ist durch ihren Funktionsausdruck f(p, q) in den kanon-
ischen Variablen p, q mathematisch definiert. Es blieb ein Problem, wie ein derartiger
Ausdruck auf die Matrizen zu übertragen war.”

18“Die Integralentwicklung (42) ist nicht immer ganz wörtlich zu verstehen; das
wesentliche ist nur, daß rechts eine lineare Kombination der e(pσ + qτ) steht, in denen σ
und τ beliebige reelle Werte annehmen können. Wenn z.B. q eine zyklische Koordinate
ist, die nur mod. 2π zu verstehen ist, so daß alle in Betracht kommenden Funktionen
periodisch in q mit der Periode 2π sind, so wird die Integration nach τ ersetzt werden
m üssen durch eine Summation über alle ganze Zahlen τ ; wir haben dann den Fall einer
gemischten kontinuierlich-diskreten Gruppe.”
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That is, Weyl envisaged the possibility of the torus group and its dual

(15) G ∼= (S1) n =: Tn , Ĝ ∼= ZZn , G̃ ∼= Tn × ZZn

as an example for a mixed continous-dicrete group and considered Fourier
integral quantization on it.

For the existence of the Fourier integral (13) Weyl could refer to recent pa-
pers by N. Wiener, S. Bochner, G.H. Hardy and J.E. Littlewood on trigono-
metric integrals.19

He had thus arrived at a theoretically satisfying solution of the quanti-
zation problem for classical observables depending only on the kinematical
variables p and q.

Weyl had now at hand two structurally well defined types of composi-
tion of observables on a “kinematical” system, defined by an irreducible ray
representation of G̃ = R2n

(i) composition of classical “physical quantities” f(p, q), g(p, q) (real
valued functions on G) by multiplication, f · g,

(ii) composition of Weyl quantized observables F(f) ◦ F(g), with

F(f) =
∫
ei(Ps+Qt)ξ(s, t) dsdt

F(g) =
∫
ei(Ps+Qt)η(s, t) dsdt for η = ǧ .

Of course these compositions differed essentially, as · is commutative and
◦ obviously non-commutative. Weyl might have easily transported the op-
erator composition back to the functions on the abelian group, defining
f ∗ g =: h ⇐⇒ F(h) = F(f) ◦ F(g). But he did not. He was not so much
interested in the arising new algebraic structure itself, as in the quantum
physical context to which his investigations belonged. The next most press-
ing problem after the derivation of the Schrödinger representation of a free
quantum mechanical system (see above) seemed to be the question, how to
characterize interactions, the “dynamical problem” as Weyl called it.

4. Reflections on the “dynamical problem”

Section III of Weyl’s article dealt with the dynamical problem. While the
“kinematics” of a system characterized by a continuous group G ∼= Rn was
uniquely determined by its number n of degrees of freedom, the same did
not hold true for the dynamics, taking interactions into account.

Up to now the approach claims general validity. The sit-
uation is less comfortable for the dynamical problem which
is closely bound to the role of space and time in quantum
physics. (Weyl 1927, 123, emph. in original)20

Weyl immediately hit on a strict limitation for contemporary quantum
physics, which was bound to the different roles played by space and time in
Galilean and in relativistic quantum physics. In non-relativistic QM, time

19(Wiener 1926, Bochner 1927, Hardy/Littlewood 1926)
20“Die bisherigen Ansätze beanspruchen allgemeine Geltung. Nicht so günstig steht

es mit dem dynamischen Problem, das eng mit der Frage nach der Rolle zusammenhängt,
welche Raum und Zeit in der Quantenphysik spielen.”
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was an independent variable, and even the only one, of a system in the
following sense:

Independent variables are no measurable quantities, they are
a cognitive spider web of coordinates arbitrarily spread out
over the world. The dependence of a physical quantity on
these variables can therefore not be controlled by measure-
ment; only if several physical quantities are in play, one can
arrive at relations between the observable quantities by elim-
ination of the independent variables.(Weyl 1927, 124)21

Now Weyl indicated a critical difference between field physics and rela-
tivistic quantum mechanics on the one side and Galilean QM on the other.
Field theory deals with state quantities (Zustandsgrößen), i.e., observables,
which are “spread out in space and time”, while in particle mechanics time
may be considered as an independent variable. A relativistic quantum de-
scription of the electron, e.g., has to consider spatial coordinates and time
as state quantities, “really marked space and, of course, also really marked
time” and thus as observables represented by Hermitian forms (or opera-
tors).

In contrast to this state of affairs, non-relativistic mechanics
is in the comfortable situation to be able to ignore time as a
state quantity, while relativistic mechanics needs measurable
time coordinates of the particles together with measurable
space coordinates. (Weyl 1927, 124)22

The dynamical law of non-relativistic QM could therefore be given in the
Schrödinger picture by

dψ

dt
=
i

~
E · ψ

(with this sign!), where “ iE is the infinitesimal unitary mapping coupled
to the Hermitian form E which represents energy” (ibid, 124).23

For relativistic quantum physics the situation appeared still rather in-
conclusive, and Weyl indicated only the direction of research one had to
pursue:

If one wants to remove the criticized deficiency of the con-
cept of time in the old pre-relativistic quantum mechanics,
the measurable quantities time t and energy E have to be
included as another conjugate pair. This can also be seen
from the action principle of analytic mechanics; the dynam-
ical law disappears completely. The relativistic treatment of

21“Die unabhängigen Veränderlichen sind keine gemessenen Größen, sie sind ein
willkürlich in die Welt hineingetragenes gedachtes Koordinatenspinngewebe. Die
Abhängigkeit einer physikalischen Größe von diesen Variablen ist also auch nicht etwas
durch Messung zu Kontrollierendes; erst wenn mehrere physikalische Größen vorliegen,
kommt man durch Elimination der unabhängigen Veränderlichen zu Beziehungen zwis-
chen beobachtbaren Größen.”

22“Diesem Sachverhalt gegenüber ist die nicht-relativistische Mechanik in der
glücklichen Lage, die Zeit als Zustandsgröße ignorieren zu können, während die Rela-
tivitätsmechanik parallel mit den meßbaren Raumkoordinaten auch die meßbaren Zeitko-
ordinaten der Teilchen benötigt.”

23Apparently Weyl followed here (Schrödinger 1926, 112) = (Schrödinger 1927, 142).
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an electron in the electromagnetic field by Schrödinger e. a.
corresponds to this point of view.24 A more general formu-
lation is not yet available. (Weyl 1927, 127)25

“Inclusion” of time and energy as another canonical pair of variables for a
relativistic approach would surely imply to take care also for the relativistic
transformations between different observers, i.e., the consideration of a ray
representations of the Poincaré group with conjugate pairs of translation
variables (R4×R4)oSO(1, 3) (with o for the semi-direct product). However,
Weyl left it with the indication quoted above. It would be taken up only
much later by E. Wigner and G. Mackey.

In 1927, and still in summer 1928, Weyl apparently hoped that the group
theoretic approach might be a guide to field quantization also, at first in the
non-relativistic case, but then perhaps even in the relativistic one. At the
end of §44 of the first edition of GQM in which he sketched the quantization
of the wave equation according to Jordan and Pauli, he expressed confidence
in the method to quantize the electromagnetic and the electron wave. Then
he continued (curly brackets { . . . } denote passages which were omitted in
the second edition 1931 and the English translation, angular brackets <
. . .> an addition in the second edition):

We have thus discovered the correct way to quantize the field
equations (. . . ) defining light waves and electron waves {The
exact execution is the next task of quantum physics. The
preservation of relativistic invariance seems to offer serious
difficulties [reference to (Jordan/Pauli 1928) and (Mie 1928),
E.S.] }. Here again we find <, as in the case of the spinning
electron,> that quantum kinematics is not to be restricted
by the assumption of Heisenberg’s specialized commutation
rules. {And again it is group theory which furnishes us with
the natural general form, as is shown in the next section.
. . . } (Weyl 1928, 1st ed. 1928, 203), (Weyl 1931, 253)26

24Weyl quoted (Schrödinger 1927, 163ff.), reprinted from (Schrödinger 1926, 133ff.).
25“Will man den gerügten Mangel des Zeitbegriffs der alten vorrelativistischen

Mechanik aufheben, so werden die meßbaren Größen: Zeit t und Energie E, als ein weiteres
kanonisches Paar auftreten, wie ja bereits das Wirkungsprinzip der analytischen Mechanik
erkennen läßt; das dynamische Gesetz kommt ganz in Fortfall. Die Behandlung eines Elek-
trons im elektromagnetischen Feld nach der Relativitätstheorie durch Schrödinger u. a.
entspricht bereits diesem Standpunkt.[Fussnote mit Hinweis auf (Schrödinger 1927, 163ff.)]
Eine allgemeinere Formulierung liegt noch nicht vor.”

26“Damit ist der Weg gezeigt, wie die Licht- und Elektronenwellen umfassenden Feld-
gleichungen in richtiger Weise zu quantisieren sind. {Die genaue Durchführung ist die
nächste Aufgabe der Quantenphysik; die Wahrung der relativistischen Invarianz scheint
dabei noch ernste Schwierigkeiten zu bereiten. [Verweis auf (Jordan/Pauli 1928) and
(Mie 1928), E.S.]} Es hat sich hier von neuem <, wie beim Spin der Elektronen,> die
Notwendigkeit herausgestellt, die Quantenkinematik nicht an das spezielle Schema der
Heisenbergschen Vertauschungsrelationen zu binden.” Robertson’s translation of the first
sentence in (Weyl 1931) has been corrected by obvious reasons (“ . . . electron waves and
matter waves . . . ” is non-sensical and not in agreement with the original).
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The “next section” of the first edition comprised the content of (Weyl
1927).27 Thus even at the time when he finished his book on Gruppenthe-
orie und Quantenmechanik (GQM), Weyl apparently had the impression
that the study of irreducible ray representations and a group theoretically
founded approach to quantization ought to be helpful for a full solution of
the“dynamical problem” of quantum physics, i.e., the study of interactions
and for relativistic systems. His colleagues in physics started to attack such
problems by introducing the method of field quantization.

By the early 1930s Weyl became more cautious. His physics colleagues
had embarked even more strongly on the program of field quantization,
including the relativistic case. The great problems of divergent field expres-
sions, even for perturbation developments, were accumulating. Weyl did no
longer try to pursue his own approach against the mainstream of the (still
very small) quantum physics community; he may have felt that he should
no longer insist on the superiority of the group approach to the foundations
of quantum physics, if he himself did no longer continue to work along these
lines.28 In the second edition of GQM, and thus in the English translation,
the (curly) bracketed sentences no longer appeared.

Notwithstanding this shift at the turn to the 1930s, Weyl had good rea-
sons in the late 1920s to be content with his group theoretic approach to the
foundations of QM. He had arrived at a convincing structural characteriza-
tion of what he called the “quantum kinematics” of physical systems. For n
continuous degrees of freedom, the quantum kinematics was even uniquely
determined by n. Not so, however, for discrete systems in which the non-
commutative product structure of the algebra of observables might become
more involved. Weyl indicated very cautiously that such structures might
perhaps be useful for the understanding of atomic systems; but he was far
from claiming so (Weyl 1928, 207) (Weyl 1931, 276).

5. Outlook and repercussions

Weyl’s approach to quantization was so general that for decades to come
it did not attract much attention of physicists. At the beginning it even
attracted very few successor investigations inside mathematics and was not
noticed in the foundation of QM discourse, which was exclusively shaped
by the Hilbert and von Neumann view until the 1950s. Although the im-
mediate reception of Weyl’s early contributions to QM until about 1927, in
particular his (Weyl 1927), was very sparse, its repercussion turned out to
be remarkably strong in the long range. Of course, this question touches a
difficult matter and deserves much closer and more detailed scrutiny. Here
I can give only a very rough first outline. It will be given in form of a pro-
visional list of investigations which seem to count as follow up stories to the
proposals made by Weyl between 1925 and 1927.

27In the second edition and in the English translation new sections on the quantization
of the Maxwell-Dirac field and on relativistic invariance were inserted before the section
on quantum kinematics (Weyl 1931, §§ 12, 13).

28The non-uniqueness problem for irreducible unitary representations of infinite dimen-
sional degrees of freedom, and thus for quantum field theory, was realized only in the 1950s
(Summers 2001); it seems unlikely that Weyl expected a problem in this respect already
at the turn to the 1930s.



WEYL ENTERING THE ’NEW’ QUANTUM MECHANICS DISCOURSE † 15

(i) A first and immediate next step was made by Marshall Stone and
John von Neumann. They both took up Weyl’s statement of a
uniquely determined structure of irreducible unitary ray represen-
tations of R2n and proved it for n = 1 in L2(R,C) . The result
of this work is (for finite n) the now famous Stone/von Neumann
representation theorem: Up to isomorphism there is exactly one
irreducible abelian ray representation of R2n by unitary operators
(Stone 1930, von Neumann 1931). As we have seen its content and
a sketch of proof, generously passing over the functional analytical
details in silence, goes back to (Weyl 1927).

Only much later a critical analysis of functional analytic precon-
ditions for the equivalence of Heisenberg commutation (9) and Weyl
commutation (10) started. Sufficient conditions were established by
(Rellich 1946) and (Dixmier 1958). The breakdown of uniqueness
for infinite degrees of freedom (and thus for quantum field theory)
started with seminal work by Kurt Friedrichs and Rudof Haag in
the 1950s. Construction of “pathological” counter-examples, disre-
garding the conditions of Rellich and Dixmier, even for the finite
dimensional case (n = 1) followed (Summers 2001).

(ii) A second line of repercussions may be seen in that part of the
work of E. Wigner and V. Bargmann, which dealt with unitary
and semi-unitary ray representations. In particular Wigner’s now
famous work (at the time among physicists completely neglected)
on the irreducible unitary ray representations of the Poincaré group
(Wigner 1939) looks like a next step beyond Weyl’s non-relativistic
quantum kinematics from 1927. It established a basis from which
investigations of relativistic dynamics might start from. But is has
still to be checked in which respect, or perhaps even whether, Wigner
was motivated by Weyl’s work. Wigner surely knew the latter, but
he may have developed his research questions autonomously, in com-
munication with von Neumann, Dirac and others which stood closer
to him than Weyl.29

(iii) A third impact is clearly to be seen in George Mackeys’s work.
Mackey expressedly took up Weyl’s perspective (Mackey 1949) and
developed it into a broader program for the study of irreducible uni-
tary representations of group extensions, H /G, induced from repre-
sentations of a normal subgroup H in G, by what he called systems
of imprimitivity. Starting at first from abelian subgroups H, he real-
ized that the dual group Ĥ led to a pairing characteristic for Weyl’s
analysis (H ∼= Rn ,H × Ĥ ∼= R2n) and generalized it to non-abelian
normal subgroups. His later commentaries on the foundations of
QM, among them (Mackey 1957, Mackey 1963, Mackey 1993a), were

29 Wigner expressedly acknowledged the importance of Dirac’s and von Neumann’s
communications for his work (Wigner 1939, 341/156); whereas he quoted Weyl only in
questions of technical details and (Weyl 1927) not at all. On the other hand, Mackey
is certainly right in the characterization of (Wigner 1939): “This kind of application of
the theory of group representations to quantum mechanics is much more in the spirit of
Weyl’s 1927 paper in the Zeitschrift für Physik than that of most of Wigner’s work up to
this point” (Mackey 1993b, 265).
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seminal for bringing to bear the Weylian perspective in the domain of
foundations of quantum physics. They were so deeply influenced by
the Weylian view, that Mackey even considered his work as the true
successor line of Weyl’s foundational perspective (Mackey 1988b,
Mackey 1988a). His work was influential among mathematicians
(Varadarajan 1970), although apparently not so much among physi-
cists. It seems to contain unexhausted potential.

(iv) Finally, Weyl quantization was taken up by mathematical physicists
from the later 1960s onwards with the rise of deformation quantiza-
tion (Pool 1966). Here the starting point was the idea to translate
the operator product introduced by Weyl’s own quantization

f, g → H := F(f) ◦ F(g)

back to the function space:

f ∗ g =: h⇐⇒ F(h) = H = F(f) ◦ F(g)

Today, this noncommutative product of functions is usually consid-
ered (slightly anachronistically) as Weyl quantization. Weyl’s mixed
continuous-discrete group (15) developed into the noncommutative
torus. This was one step into the newly rising field of noncommuta-
tive geometry and deformation quantization, which is a very active
subfield of present day mathematical physics.

The last two points lead straight into very recent developments of mathe-
matical physics and far beyond the scope of this talk (and my competences).
Nevertheless it seems quite remarkable that at least two of Weyl’s ideas de-
veloped in the first two years after the transition to the ‘new’ quantum
mechanics, turned out to bear fruits in so diverse directions in the long run.
They inspired highly original work for more than half a century and perhaps
contain the potential to continue to do so.

Both ideas happen to have been mentioned at the very beginning of this
phase in Weyl’s correspondence with Born and Jordan, in late summer and
autumn 1925. In this correspondence Weyl contributed to the new quantum
physics discourse in a more personal form, before he turned toward published
expression of his views two years later.
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