$\left.\begin{array}{l}\text { differential } \\ \text { twisted } \\ \text { nonabelian }\end{array}\right\}$ cohomology

Urs Schreiber

June 9, 2009

Abstract

based on joint work with John Baez, Thomas Nikolaus, Hisham Sati, Zoran Škoda, Jim Stasheff, Danny Stevenson, Konrad Waldorf goal:

- understand background fields for σ-model QFTs structurally:
- such that quantization to extended QFTs can be understood structurally by extension

- with two extra bits of structure
- with smooth higher degree form connection: differential cocycles
- twisted by charges: twisted cocycles

Smooth nonabelian cohomology. claim: twists with higher connection find natural home in differential nonabelian cohomology
setup:

- take "spaces" not in Top, but in the $(\infty, 1)$-topos $\infty \mathrm{Grpd}^{\infty}$ of smooth ∞-groupoids (∞-stacks on Diff)
- nonabelian generalization of sheaf cohomology: cohomology is hom

$$
\mathbf{H}(X, A):=\operatorname{Maps}_{\infty \operatorname{Grpd}^{\infty}}(X, A)
$$

twists: for $A \rightarrow \hat{B} \rightarrow B$ a fibration sequence of smooth ∞-groupoids, for $c \in \mathbf{H}(X, B)$ a B-cocycle, the
c-twisted A-cohomology is the homotopy pullback

Examples.

fibration sequence	twist	twisted cocycles	remarks
$\mathbf{B} U(n) \rightarrow \mathbf{B} P U(n) \rightarrow \mathbf{B}^{2} U(1)$	lifting gerbe	twisted vector bundle gerbe module	Freed-Witten anomaly cancellation
$\mathbf{B S t r i n g}(n) \rightarrow \mathbf{B S p i n}(n) \rightarrow \mathbf{B}^{3} U(1)$	Chern-Simons 2-gerbe	twisted String-bundles	Green-Schwarz anomaly cancellation
$\mathbf{B F i v e b r a n e}(n) \rightarrow \mathbf{B S t r i n g}(n) \rightarrow \mathbf{B}^{7} U(1)$	Chern-Simons 6-gerbe	twisted Fivebrane-bundles	dual Green-Schwarz anomaly cancellation
$\mathbf{B}^{2} U(1) \rightarrow \mathbf{B}\left(U(1) \rightarrow \mathbb{Z}_{2}\right) \rightarrow \mathbf{B} \mathbb{Z}_{2}$	orientifold	orientifold gerbe	

connections and parallel transport

- for every X there is smooth fundamental path ∞-groupoid $X \hookrightarrow \Pi(X)$
define nonabelian differential cohomology to be twisted relative cohomology for that

fibration sequence	twist	twisted cocycles	remarks
	curvature char. forms	higher connections	relative cohomoloy for $X \hookrightarrow \Pi(X)$: connection is "curvature-twisted" flat cocycle

unwrapping shows that differential cocycles are given by diagrams as:

volume holonomy is evaluation of $\Pi(X) \rightarrow \mathbf{B} A$ on chains

- check: differential refinement of twisted nonabelian cocycles does produce the desired background fields here: example of computation for twisted String-bundles with connection:

Connection data in terms of local L_{∞}-algebra valued forms This diagram of smooth ∞-groupoids translates into the following kind of diagram of L_{∞}-algebroids; (for the case of twisted String connection with μ the 3 -cocycle on $\mathfrak{g}=\mathfrak{s o}(n)$).

The following diagram is a labeled map for the above one.

Now, chasing the generators of the graded-commutative algebras through this diagram and recording the condition imposed by the respect of the morphisms of DGCAs for differentials, one finds that in components the commutativity of this diagram encodes the following differential form data and the following relations on that.

Here, as usual, $P \in W(\mathfrak{g})$ is the invariant polynomial on \mathfrak{g} in transgression with with the cocycle $\mu \in \mathrm{CE}(\mathfrak{g})$. With $\left\{t^{a}\right\}$ a fixed chosen basis of \mathfrak{g}^{*} in degree 1 and $\left\{r^{a}\right\}$ the corresponding basis in degree 2,
we have $P=P_{a b} r^{a} \wedge r^{b}$ and $\mu=\mu_{a b c} t^{a} \wedge t^{b} \wedge t^{c}$ and $\operatorname{cs}=P_{a b} t^{b} \wedge r^{a}+\frac{1}{6} \mu_{a b c} t^{a} \wedge t^{b} \wedge t^{c}$. So we have found in particular

curvature	$H_{3}:=d B+C_{3}-\mathrm{CS}\left(A, F_{A}\right)$
Bianchi identity	$d H_{3}=\mathcal{G}_{4}-\left\langle F_{A} \wedge F_{A}\right\rangle$

This is the familiar twisted Bianchi identity from the Green-Schwarz mechanism.

