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1. Introduction

Several cohomology theories are equipped with a multiplicative structure, called
cup products. In the case of deRham cohomology of varieties over the complex
numbers this cup product equals the wedge product of forms. In 1958 W.S.
Massey introduced (see [Ma1]) higher order cohomology operations, called Massey
products in the literature, which generalize the concept of cup products.

Massey products Mℓ(A1, . . . , Aℓ) are partially defined up to some indetermi-
nacy on ℓ-tuples of cohomology classes in the respective cohomology theory.
The triple Massey product M3(A1, A2, A3) of the cohomology classes A1, A2, A3

is defined, if the cup products A1 ∪ A2 and A2 ∪ A3 vanish. The fourfold
product M4(A1, A2, A3, A4) is defined if the triple products M3(A1, A2, A3) and
M3(A2, A3, A4) are defined and are vanishing in some special sense which will be
defined in chapter 2, definition 2.7.

Whereas the definition of the products looks somehow crucial, they can be
found in different applications. W. S. Massey gave a first interpretation of the
higher products in 1968 (see [Ma2]). He interprets the products as higher linking
numbers. He calculates a first example, the so called Borromean rings. These
three rings are configured in the three sphere in a way, such that two of them
are unlinked but all the three are inseperable. Massey associates a nontrivial
triple product to these rings in order to distinguish them from unlinked rings.
We review this example in 2.9.

The well known theorem of Deligne, Griffiths, Morgan and Sullivan states
that all the higher Massey products are vanishing in the deRham cohomology
of smooth compact Kähler manifolds, or equivalently smooth projective varieties
over C (see [DGMS], chapter 6, or [GM]). We will present this in 2.10. More
general they state the vanishing of higher Massey products, if the complex which
computes the cohomology is formal (for this see also [DGMS], chapter 4, and
[GM]).

Our point of interest are Massey triple products in the Deligne-Beilinson co-
homology of smooth projective varieties over the complex numbers. Not much is
known about this topic. C. Deninger examines in [Den] Massey products in the
real Deligne-Beilinson cohomology. He gets an explicit formula for the products
using the resolution of the real Deligne-Beilinson complex introduced by J. I.
Burgos in [Bu3]. Deninger also computes a non trivial Massey triple product on
an affine curve.

T. Wenger also treats Massey products in his PhD thesis [Wen]. He generalizes
the concept to absolute cohomology theories. He criterion for vanishing of the
products in absolute Hodge theory, if the cohomology classes are assiociated to
some invertible function f or 1 − f . He also gets a presentation of cohomology
classes in absolute Hodge cohomology.

For the case of integer valued Deligne-Beiliinson cohomology of smooth pro-
jective varieties no statements are given in the literature to our knowledge. We
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restrict ourselves in this thesis to the case where the cohomology classes arise
from algebraic cycles. Therefore Massey products take values in CHn(X, 1).

The obvious question is, do the products vanish. We can almost say no. Almost
in the sense that up to now we were not able to find a highly nontrivial example.
But we state an example (see example 3.32) which is not zero, but torsion (see
definition 3.27 since the products are not uniquely defined).

We will give some criterion when the products are vanishing or are torsion via
homological triviality of the algebraic cycles. This and the already mentioned
example are presented in section 3.

In chapter 4 we present a relation between height pairings and Massey prod-
ucts. This result is quite astonishing since height pairings are a priori absolutely
different defined and can be calculated in the situation of a curve as the cross-
ratio of some rational functions. As a corollary we get that the difference of two
special height pairings is always torsion, whereas the single height pairings can
take almost every value. I am very gratefull to Stefan Müller-Stach who inspired
me to look at height pairings.

Since at least to us it was not possible to construct a nontrivial example, we
examine in section 5 Massey products in smooth families of algebraic varieties
π : X −−→ S, where S is a smooth affine curve. The natural question in this setup
is: are the products constant or not. We use the concept of Griffiths infinitesimal
invariant, to decide this question. The result and actually the main result is that

we can construct via intersection theory an obstruction class M̃ to the constance
of the products which lives on the boundary X̄ −X of the family. More precisely

the class M̃ lives in the singular cohomology of the boundary. We also give a way
how one should be able to construct this class only using rational equivalence.

If not presented in the respective passage, technical details to hypercohomology
can be found in the appendix 6.
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Irgendwo muß man zwei Stimmen hören. Vielleicht liegen sie bloß wie
stumm auf den Blättern eines Tagebuchs nebeneinander und ineinan-
der, die dunkle, tiefe, plötzlich mit einem Sprung um sich selbst gestellte
Stimme der Frau, wie die Seiten es fügen, von der weichen, weiten,
gedehnten Stimme des Mannes umschlossen, von dieser verästelt, un-
fertig liegengebliebenen Stimme, zwischen der das, was sie noch nicht
zu bedecken Zeit fand, hervorschaut. Vielleicht auch dies nicht. Vielle-
icht aber gibt es irgendwo in der Welt einen Punkt, wohin diese zwei,
überall sonst aus der matten Verwirrung der alltäglichen Geräusche sich
kaum heraushebenden Stimmen wie zwei Strahlen schießen und sich in-
einander schlingen, irgendwo, vielleicht sollte man diesen Punkt suchen
wollen, dessen Nähe man hier nur an einer Unruhe gewart wie die Be-
wegung einer Musik, die noch nicht hörbar, sich schon mit schweren
unklaren Falten in dem undurchrissenen Vorhang der Ferne abdrückt....

Aus Robert Musils Die Versuchung der stillen Veronika





2. Massey Products

In this section we review the Definition of Massey products, state their basic
properties and finally give some examples. The presentation follows the work of
Kraines [Kr] for the classical Massey products and in a modified (there called
linearized) version the work of C. Deninger [Den]. These definitions differ from
the original one by W.S. Massey [Ma1] by a different sign convention.

Remark 2.1. A more general definition of the products can be found in [May].
Here they are called Matric Massey products.

2.1. Massey products in the cohomology of Complexes of R-Modules.
We are working in the following situation. Let R be a commutative ring, and

for p ∈ N let C•(p) be a complex of R-modules, with differential d, together with
maps of complexes

∪ : C•(p) ⊗̂ C•(p′) −−→ C•(p+ p′),

where C•(p) ⊗̂ C•(p′) denotes the simple complex associated to the double complex
C•(p)⊗ C•(p′), i.e. in degree n we have

(C•(p) ⊗̂ C•(p′))n =
⊕

q+q′=n

Cq(p)⊗ Cq
′

(p′)

with differential

d : (C•(p) ⊗̂ C•(p′))n −−→ (C•(p) ⊗̂ C•(p′))n+1

d(α⊗ β) = dα⊗ β + (−1)deg αα⊗ β.

Furthermore we assume that ∪ is associative in the sense that we have

∪ ◦ (id⊗ ∪) = ∪ ◦ (∪⊗ id).

Now ∪ induces an associative cup product on the bigraded cohomology groups
H∗(C•(∗)), where

Hq(C•(p)) =
ker(d : Cq(p) −−→ Cq+1(p))

im(d : Cq−1(p) −−→ Cq(p))

To be complete we give the general definition of ℓ-fold Massey products. Later
we will restrict ourselves to the triple products we are concerned with.

Definition and Theorem 2.2. For ℓ ≥ 2 and integers q1, . . . , qℓ and p1, . . . , pℓ
let define

qs,t =

t∑

i=s

(qi − 1) and ps,t =

t∑

i=s

pi for 1 ≤ s ≤ t ≤ ℓ.

Furthermore for a ∈ Cq(p), we denote by ā the twist (−1)qa.

(1) For cohomology classes Ai ∈ Hqi(C•(pi)), 1 ≤ i ≤ ℓ we say the ℓ-fold
Massey product Mℓ(A1, . . . , Aℓ) is defined, if there exists a collection M
of cochains

as,t ∈ C
qs,t+1(ps,t)
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for 1 ≤ s ≤ t ≤ ℓ and (s, t) 6= (1, ℓ), such that ai = ai,i is a representative
for Ai for 1 ≤ i ≤ ℓ and

das,t =
t−1∑

i=s

ās,i ∪ ai+1,t for 1 ≤ t− s ≤ ℓ− 2.

The collectionM is called a defining system for ℓ-fold Massey product
Mℓ(A1, . . . , Aℓ).

(2) The associated cochain

c(M) =
s−1∑

i=1

ā1,i ∪ ai+1,ℓ ∈ C
q1,ℓ+2(p1,ℓ)

is closed.
(3) We call the associated cohomology class C(M) a representative for the

ℓ-fold product

Mℓ(A1, . . . , Aℓ) ⊂ Hq1ℓ+2(p1ℓ)

which consists of all cohomology classes C(M), where M is a defining
system for Mℓ(A1, . . . , Aℓ).

(4) This definition is independent of the choice of the representatives of the
Ai.

For the proof see [Kr], Theorem 3.
Before we concentrate on triple products, we list two properties of Massey

products needed later.

Properties 2.3.

(1) Scalar Multiplication: Assume Mℓ(A1, . . . , Aℓ) is defined, then for any
r ∈ R and any 1 ≤ k ≤ ℓ, the product Mℓ(A1, . . . , rAk, . . . , Aℓ) is defined
and we have

rMℓ(A1, . . . , Aℓ) ⊂Mℓ(A1, . . . , rAk, . . . , Aℓ).

(2) Functoriality: Let C•(∗) −−→ G•(∗) be a map of complexes of R-modules
compatible with the cup product structure, then we have

g(Mℓ(A1, . . . , Aℓ)) ⊂Mℓ(g(A1), . . . , g(Aℓ)).

For the proof see [Kr].

Remark 2.4. There is no strict additivity property, i.e. let
Mℓ(A1, . . . , Ak, . . . , Aℓ) and Mℓ(A1, . . . , A

′
k, . . . , Aℓ) be defined. Certainly the ℓ-

fold product Mℓ(A1, . . . , Ak + A′
k, . . . , Aℓ) is defined. But in general

Mℓ(A1, . . . , Ak, . . . , Aℓ) +Mℓ(A1, . . . , A
′
k, . . . , Aℓ) 6= Mℓ(A1, . . . , Ak +A′

k, . . . , Aℓ).

Also there is no inclusion, neither in the one direction, nor in the other. But what
we will prove later in 2.6 for the special case of triple products is, that there are
common representatives for both, i.e. for M3(A1, A2, A3) + Mℓ(A

′
1, A2, A3) and

Mℓ(A1 + A′
1, A2, A3) and the other two possibilities.
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In the case of Massey triple products (ℓ = 3) the above definition becomes
more transparent. We simplify the notation and write qs,t for qs + qt instead of
qs + qt − 2 and q1,2,3 for q1 + q2 + q3.

Take cohomology classes Ai ∈ Hqi(pi), such that M3(A1, A2, A3) is defined.
This means that we find a collection of cochains, the defining system M,

ai ∈ C
qi(pi) for i = 1, 2, 3 and a1,2 ∈ C

q1,2−1(p1,2) , a2,3 ∈ C
q2,3−1(p2,3),

such that the ai are representatives for Ai and

da1,2 = ā1 ∪ a2

da2,3 = ā2 ∪ a3.

In particular A1 ∪ A2 and A2 ∪ A3 are zero.
The cochain

c(M) = ā1 ∪ a2,3 + ā1,2 ∪ a3 = (−1)q1a1 ∪ a2,3 + (−1)q1,2−1a1,2 ∪ a3 ∈ C
q1,2,31(p1,2,3)

is closed.
The cochains a1,2 and a2,3 are well defined modulo closed cochains, i.e. well

defined modulo the groups Hq1,2−1(C•(p1,2)) resp. Hq2,3−1(C•(p2,3)). Therefore
the image of C(M) under

τ : Hq1,2,3−1(C•(p1,2,3)) −−→
Hq1,2,3−1(C•(p1,2,3))

Hq1,2−1(C•(p1,2)) ∪A3 + A1 ∪Hq2,3−1(C•(p2,3))

is well defined.
The definition of Massey products changed here from cosets to an element of a

quotient group. We will denote by M3(A1, A2, A3) the set of all representatives.

Remark 2.5. Keep in mind that always, when we are talking about indeter-
minacy we mean the subgroup

A1 ∪H
q2,3−1(C•(p2,3)) +Hq1,2−1(C•(p1,2)) ∪ A3

of Hq1,2,3−1(p1,2,3).

Let us rephrase the properties of 2.3 in the case of triple products.

Properties 2.6.

(1) Additivity 1 Let M3(A1, A2, A3) and M3(A
′
1, A2, A3) be defined. Then

M3(A1 + A′
1, A2, A3) is defined and we have

(M3(A1, A2, A3) +M3(A
′
1, A2, A3)) ∩M3(A1 + A′

1, A2, A3) 6= ∅.

If M3(A1, A2, A3) and M3(A1, A2, A
′
3) are defined we have

(M3(A1, A2, A3) +M3(A1, A2, A
′
3)) ∩M3(A1, A2, A3 + A′

3) 6= ∅.

Note that we treat Massey products here as the set of all its representa-
tives.
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(2) Additivity 2 Assume that M3(A1, A2, A3) and M3(A1, A
′
2, A3) are defined,

then again M3(A1, A2 + A′
2, A3) is defined and moreover we have

M3(A1, A2, A3) +M3(A1, A
′
2, A3) = M3(A1, A2 + A′

2, A3)

(3) Scalar Multiplication: Assume M3(A1, A2, A3) is defined, then for any r ∈
R the productsM3(rA1, A2, A3), M3(A1, rA2, A3) andM3(A1, A2, rA3) are
defined and each contain rM3(A1, A2, A3) as a subset.

(4) Functoriality: Let C•(∗)
g
−−→ G•(∗) be a map of complexes of R-modules

compatible with the cup product structure, then we have

g(M3(A1, A2, A3)) ⊂M3(g(A1), g(A2), g(A3)).

Proof. We just have to prove the first two points, since points (3) and (4) are just
special cases of the properties listed in 2.3. Let a1, a2, a3, a

′
3 be representatives

for A1, A2, A3 and A′
1. By the assumptions we can find a1,2, a

′
1,2, a2,3 with

da1,2 = ā1 ∪ a2, da
′
1,2 = ā′1 ∪ a2 and da2,3 = ā2 ∪ a3. Obviously we have d(a1,2 +

a′1,2) = (ā1 + ā′1) ∪ a2 = ¯a1 + a′1 ∪ a2. This yields representatives

[ā1 ∪ a2,3 + ā1,2 ∪ a3] for M3(A1, A2, A3)

and

[ā′1 ∪ a2,3 + ā′1,2 ∪ a3] for M3(A
′
1, A2, A3).

The sum of these classes is

[(ā1 + ā′1) ∪ a2,3 + (ā1,2 + ā′1,2) ∪ a3]

and this is obviously a representative of M3(A1 + A′
1, A2, A3).

The second point follows similarly. Let {a1, a2, a3, a1,2, a2,3} and
{a1, a

′
2, a3, a

′
1,2, a

′
2,3} be defining systems forM3(A1, A2, A3), resp. M3(A1, A

′
2, A3).

Then we can construct the representative [ā1 ∪ (a2,3 + a′2,3) + (ā1,2 + ā′1,2)∪ a3] of
M3(A1, A2 + A′

2, A3). Certainly this representative lives in the intersection

(M3(A1, A2, A3) +M3(A1, A
′
2, A3)) ∩M3(A1, A2 + A′

2, A3).

As sets we have

M3(A1, A2, A3) +M3(A1, A
′
2, A3)

= [ā1 ∪ a2,3 + ā1,2 ∪ a3] + [ā1 ∪ a
′
2,3 + ā′1,2 ∪ a3]

+A1 ∪H
q2,3−1(C•(p1,2)) +Hq2,3−1(C•(p1,2)) ∪ A3

= [ā1∪(a2,3+a
′
2,3)+(ā1,2+ā

′
1,2)∪a3]+A1∪H

q2,3−1(C•(p1,2))+H
q2,3−1(C•(p1,2))∪A3

= M3(A1, A2 + A′
2, A3).

Hence equality holds. �

One point of interest and actually the main point we are concerned with is the
question of vanishing of Massey triple products.
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Definition and Theorem 2.7. We say that M3(A1, A2, A3) for cohomology
classes Ai ∈ Hqi(pi), i = 1, 2, 3 vanishes if one of the following equivalent condi-
tions holds

(1) M3(A1, A2, A3) is zero viewed as an element of the quotient group

Hq1,2,3−1(C•(p1,2,3))

Hq1,2−1(C•(p1,2)) ∪ A3 + A1 ∪Hq2,3−1(C•(p2,3))

(2) There exists a defining system M consisting of representatives ai ∈ C
qi(pi)

of Ai, for i = 1, 2, 3 and ai,i+1 ∈ Cqii+1(pi,i+1), such that

[(−1)q1a1 ∪ a2,3 + (−1)q1,2−1a1,2 ∪ a3]

is of the form

A1 ∪ A2,3 + A1,2 ∪A3

for suitable Ai,j ∈ Hqi,j−1(pi,j). In other words we find a representative
living in the indeterminacy.

(3) For M3(A1, A2, A3) viewed as the set of all representatives of the triple
product we have

M3(A1, A2, A3) = Hq1,2−1(C•(p1,2) ∪ A3 + A1 ∪H
q2,3−1(C•(p2,3).

Especially there is a defining system M = {a1, a2, a3, a1,2, a2,3} in the
respective C•(•) such that the associated cycle

c(M) = [(−1)q1a1 ∪ a2,3 + (−1)q1,2−1a1,2 ∪ a3] = [0].

Proof. (2) follows by definition from (1). By definition 2.2 M3(A1, A2, A3) is
independent of the choice of representatives ai ∈ Cqi. The elements a1,2 and a2,3

are well defined up to closed classes, i.e. elements representing a cohomology
class in Hq1,2−1(C•(p1,2), resp. Hq2,3−1(p2,3). On the other hand we can modify
the chains ai,j by classes living in Hqi,j−1(pi,j), which means that we also change
the classes Ai,j by the same class to reach each class in the indeterminacy, which
implies (3). The implication of (1) by (3) again is obvious. �

Remark 2.8. C. Deninger modified in [Den] the definition of general ℓ-fold
Massey products to get a linearized version. The problem is that the higher
products do not form homomorphisms of groups, since in the original definition
the indeterminacy of the choice of a defining system does not form a subgroup
of the corresponding cohomology group. However in the case of triple products
both definitions agree (and as mentioned above, the indeterminacy does form a
subgroup), hence we get homomorphisms

D(M3) −−→ T (M3) =
Hq1,2,3−1(p1,2,3)

Hq1(p1) ∪Hq2,3−1(p2,3) +Hq1,2−1 ∪Hq3(p3)

where

D(M3) = ker(∪ ⊗ id) ∩ ker(id⊗∪) ⊂ Hq1(p1)⊗ Hq2(p2)⊗Hq3(p3).
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For more details the interested reader is referred to the article of C. Deninger
[Den].

Let’s now present some examples. The first one is the original example given
by W.S. Massey in 1968 in [Ma2], where he interprets the higher products as
higher linking numbers. It can be found in [GM], but we state it here to give the
reader a feeling at what is going on.

Example 2.9. Consider the so called Borromean rings B ⊂ S3

Let X be the complement of B in S3 and consider the rings configured as in the
next picture:

D 3

I 123
C12

D 1

D2

I 12

As one sees in the picture, the three rings are linked, whereas two of them are
unlinked. The first cohomology of X is spanned by the duals of the disks Di,
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i = 1, 2, 3. Let’s denote them by D̃i. The fact that the rings are unlinked gives

in terms of cohomology D̃i ∪ D̃j = 0. The geometric picture is the following.
Obviously D2 ∩D3 = ∅. On the other hand D1 ∩D2 = I1,2 = ∂C1,2, where C1,2

is chosen as in the picture. Therefore we can choose ai,j, such that a2,3 = 0 and

da1,2 = D̃1 ∪ D̃2. This shows that the Massey product M3(D̃1, D̃2, D̃3) is defined

and represented by the form a1,2∪D̃3. This form represents C1,2∩D3 = I1,2,3 which
is an interval whose end points are living on two different circles. Hence its class in

H1(X) does not vanish and the constructed representative ofM3(D̃1, D̃2, D̃3) does
not vanish either. What remains to check is that this representative does not live

in the indeterminacy. The indeterminacy is given by D̃1 ∪H1(X) +H1(X)∪ D̃3.

But two of the three circles are unlinked. As we mentioned before the classes D̃i

span the first cohomology, hence D̃i ∪ D̃j = 0 for i 6= j and a1,2 ∪ D̃3 cannot be

of the form αD̃2
1 + βD̃2

3.
If we assume B′ to be three unlinked circles (we can arrange them in a way,

such that the spanning disks Di are disjoint) then clearly the Massey product

M3(D̃1, D̃2, D̃3) is vanishing. In particular B and B′ are not isotopic.
This example of the Borromean rings was the motivation to interpret Massey

products as higher linking numbers. For more results of this kind the reader is
refered to [Ma2].

The following example, which can also be found in [GM], gives a statement
for the triviality of the products in the deRham cohomology of compact Kähler
manifolds.

Example 2.10. This example is the theorem of P. Deligne, P. Griffiths, J. Mor-
gan and D. Sullivan, which states the vanishing of all Massey products in the
deRham cohomology of compact Kähler Manifolds (see [DGMS], chapter 6, and
[GM]). There Massey products are related to the formality of Differential Graded
Algebras (DGA). For more details on this subject see [DGMS], chapter 4, and
[GM]. The main incredient of the proof is the principle of two types which we
state first. We follow the presentation given in [GM].

Lemma 2.11. Let X be a compact Kähler Manifold and Ep,q(X) the vector space
of C∞ (p, q)-forms on X. Then the deRham cohomology of X is given by

Hn
dR(X,C) =

⊕

p+q=n

Hp,q(X),

where
Hp,q(X) = {φ ∈ Ep,q(X) : dφ = 0}/dEp+q−1(X) ∩Ep,q(X).

Now suppose φ ∈ Ep,q(X), such that φ = dη for some C∞-form η, then we can
find forms η′ ∈ Ep,q−1(X) and η′′ ∈ Ep−1,q(X), such that

φ = dη′

and
φ = dη′′.
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Theorem 2.12. Let X be a compact Kähler manifold and Ai ∈ Hni(X,C) be
deRham classes, such that M3(A1, A2, A3) is defined. Then M3(A1, A2, A3) is
vanishing.

Proof. The wedge product of forms induces an associative cup product in deRham
cohomology. Let Ai for i = 1, 2, 3 be forms, such that M3(A1, A2, A3) is defined.
For simplicity we assume Ai ∈ Hpi,qi(X). Let ai ∈ Epi,qi(X) be some representa-
tive. By 2.10 we can find forms φ1,2 ∈ Ep1,2−1,q1,2(X), φ′

1,2 ∈ E
p1,2,q1,2−1(X), φ2,3 ∈

Ep2,3−1,q2,3 and φ′
2,3 ∈ E

p2,3,q2,3−1(X), such that

dφ1,2 = dφ′
1,2 = ā1 ∧ a2

and

dφ2,3 = dφ′
2,3 = ā2 ∧ a3.

Now φ1,2−φ′
1,2 is closed. Using Hodge decomposition we can vary both forms pre-

serving their type such that the difference becomes exact. We can now construct
two cohomologous representatives of M3(A1, A2, A3), namely

M = ā1 ∧ φ2,3 + φ̄1,2 ∧ a3 ∈ E
q1,2,3−1,q1,2,3(X)

and

M ′ = ā1 ∧ φ
′
2,3 + φ̄′

1,2 ∧ a3 ∈ E
q1,2,3,q1,2,3−1(X).

By the direct sum decomposition and the fact that they are cohomologous, they
have to be exact, which means M3(A1, A2, A3) vanishes. �

The next example shows that this statement is not true anymore for general
Kähler Manifolds. The example is also taken from [DGMS], chapter 4. In the
language of formality the example shows that the deRham complex of a general
Kähler Manifold must not be formal. For this see [DGMS], chapter 4. We will
write the differentialforms as matrices. This differs from the presentation in
[DGMS]

Example 2.13. Let T be the space of upper 3 × 3 triangular matrices over C

with 1 on the diagonal. Let furthermore Γ be the lattice consisting of matrices
of the form 


1 α + iα′ β + iβ′
0 1 γ + iγ′
0 0 1




for α, α′, β, β ′, γ, γ′ ∈ Z. Now let X = T /Γ be the Iwasawa manifold (see
[GH] chapter 3.5.). By mapping

g =




1 a b
0 1 c
0 0 1




15



to the (a, c)-coordinates we see that X has the structure of a fibrebundle over a
complex 2-torus, each fibre being a complex one torus. The form

dgg−1 =




0 da −cda + db
0 0 dc
0 0 0




is a holomorphic form on X. Setting

ω1 =




0 da 0
0 0 0
0 0 0


 , ω2 =




0 0 0
0 0 dc
0 0 0


 , ω3 =




0 0 −cda+ db
0 0 0
0 0 0




One observes that
dω3 = ω1 ∧ ω2,

and therefore ω3 is not closed. Now M3(ω1, ω1, ω2) is defined and we have a
nonexact representative

ω1 ∧ ω3.

Since
ω1 ∧H

1(X) = H1(X) ∧ ω2 = 0

M3(ω1, ω1, ω3) does not vanish.

2.2. Massey products in the Hypercohomology of Complexes of
Sheaves.

Let X be a complex algebraic variety and as before for p ∈ N let F•(p) be a
complex of sheaves of R-modules, R ⊂ C, equipped with a an associative product

∪F : Fn(p)⊗ Fm(p′) −−→ Fn+m(p+ p′),

respecting differentials.
Let furthermore C•(U ,F•) be the Čech resolution of the complex for some open

covering U of X, together with the differential δ (see Appendix A).
Additionally we have the Čech product

(2.1)
∪̌ : Cq(U ,Fn(p))⊗ Cq

′

(U ,Fm(p′)) −−→ Cq+q
′

(U ,Fn(p)⊗ Fm(p′))
(fi0...iq)⊗ (gi0...iq′ ) 7−→ (fi0...iq ⊗ giq...iq+q′ ).

This yields to an associative morphism of complexes

(2.2) ∪̌ : C•(U ,F•(p)) ⊗̂ C•(U ,F•(p′)) −−→ C•(U ,F•(p))⊗F•(p′)).

In the construction of a cup product on Čech Hypercohomology one has to be
careful. Several contraction morphisms introduce signs which have to be under-
stood to obtain a consistent theory. For a general point of view on this subject
see [Del3].

The first contraction is (the notation in what follows is taken from [Den]: the
indices of the complexes are labeled corresponding to the indices of the contrac-
tions, to make clear which parts are contracted):

s1,3 : (C•1(U ,F•2(p))⊗ C•3(U ,F•4(p′))) −−→ C•1,3(U ,F•2(p)⊗F•4(p′))
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which is induced by ∪̌.
After applying the contractions s2,4 and s(1,3)(2,4) we get a map of simple com-

plexes

s(1,3)(2,4)s2,4s1,3(C
•1(U ,F•2(p))⊗ C•3(U ,F•4(p′)))

∪̌
−−→ sC•(U ,F•(p)⊗F•(p′))

(note that sC•(F•) denotes the simple complex associated to the double complex
C•(F•)).

Alternatively we could walk the other way around, which means we build first
the simple complexes sC•(U ,F•(p)) and contract the tensor product of them. In
terms of the above setting this means, we build

s(1,2)(3,4)s1,2s3,4(C
•1(U ,F•2(p))⊗ C•3(U ,F•4(p′))).

By [Del3] there is an isomorphism

(2.3) τ • : s(1,2)(3,4)s1,2s3,4(C
•1(U ,F•2(p))⊗ C•3(U ,F•4(p′)))

−−→ s(1,3)(2,4)s1,3s2,4(C
•1(U ,F•2(p))⊗ C•3(U ,F•4(p′))),

which is multiplication by a sign. Precisely, in degree k̄ = (p1, p2, p3, p4) we have

τ k̄ = (−1)p2p3, see [Den], or in another language [Del3].
Finally we get an associative product

∪̌ ◦ τ • : sC•(U ,F•(p))⊗ sC•(U ,F•(p′)) −−→ sC•(U ,F•(p) ⊗̂F•(p′)).

Setting
C•(p) = lim

→

U

sC•(U ,F•(p))

we get complexes of R-modules.
Finally we can define the desired cup product on the Čech complex

∪ = ∪F ◦ ∪̌ ◦ τ
• : C•(p) ⊗̂ C•(p′) −−→ C•(p+ p′),

which gives by definition 2.1 a theory of Massey products on the Hypercohomol-
ogy Groups H∗(X,F•(∗)).
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3. Massey products in Deligne-Beilinson cohomology

In this section we present Deligne-Beilinson cohomology as introduced by A.
Beilinson in [Be1]. We follow the presentation in Deligne-Beilinson cohomology
by H. Esnault and E. Viehweg [EV1]. Proofs for all statements can be found
there. The second part of this section is devoted to Massey triple products in
Deligne-Beilinson cohomology, and first results about their vanishing. We focus
on the case where the cohomology classes A1, A2, A3 are the classes of algebraic
cycles. We show, that in this case the only possibility to get some nontrivial
example of Massey products is, if none of them is homologically equivalent to
zero.

3.1. Deligne-Beilinson Cohomology.
Let X be an algebraic manifold and φ : A• −−→ B• be a morphism of complexes

of sheaves on X. We define the cone of φ to be the complex

(3.1) Cone(A• φ
−−→ B•) = C•φ := A•[1]⊕ B•,

where Ap[1] = Ap+1. The differentials are given by

(3.2)
dC : Ap+1 ⊕ Bp −−→ Ap+2 ⊕ Bp+1

(a, b) 7−→ (−dA(a), φ(a) + dB(b))

The obvious embedding and projection give rise to a triangle in the derived
category of complexes of sheaves

A• φ
−−→ B•

J
J] [1] 



�

C•φ

A triangle in a derived category is called distinguished, if it is of the above form
or quasiisomorphic to one constructed in this way.

Applying the Hypercohomology functor (see the Appendix) we get the distin-
guished triangle

H∗(A•)
φ

−−−−−−→ H∗(B•)

J
J] [1] 



�

H∗(C•φ)

In other words we get the long exact sequence of Hypercohomology

. . .→ Hq(A•)→ Hq(B•)→ Hq(C•φ)→ Hq+1(A•)→ . . .

A nice reference for this subject is the book of B. Iversen [Iv].
We now list some properties of this construction.
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Properties 3.1. For morphisms of complexes

φ1 : A•
1 −−→ B•

φ2 : A•
2 −−→ B•

let C• be the complex

C• = Cone(A•
1 ⊕A

•
2

φ1−φ2−−−−→ B•)[−1].

Alternatively we can construct C• as follows:

(3.3)
C• = Cone(A•

1

φ1−−→ Cone(A•
2

−φ2−−→ B•))[−1]

= Cone(A•
2

−φ2
−−→ Cone(A•

1

φ1
−−→ B•))[−1].

The three different constructions imply the long exact sequences

(3.4) . . . −−→ Hq(C•) −−→ Hq(A•
1)⊕Hq(A•

2) −−→ Hq(B•) −−→ Hq+1(C•) −−→ . . .

(3.5) . . .Hq(C•) −−→ Hq(A•
1) −−→ Hq(Cone(A•

2

−φ2−−→ B•)) −−→ Hq+1(C•) −−→ . . .

(3.6) . . .Hq(C•) −−→ Hq(A•
2) −−→ Hq(Cone(A•

1

φ1
−−→ B•)) −−→ Hq+1(C•) −−→ . . . .

Let X be smooth of dimension n over C, X̄ a good compactification of X,
i.e. a smooth compactification, such that X̄ − X = Y is a divisor with normal
crossings.

Let Ω•
X̄

(log Y ) be the deRham complex of meromorphic forms on X̄ with log-
arithmic poles along Y . On Ω•

X̄
(log Y ) we have the F -filtration given by

(3.7)
F p = F p(Ω•

X̄(log Y )) = (0→ Ωp

X̄
(log Y )→ Ωp+1

X̄
(log Y )→ . . .→ Ωn

X̄(log Y ))

where Ωp
X(log Y ) lives in degree p. By Deligne [Del1] we have the following

Properties 3.2.
Hq(X,C) = Hq(X̄,Ω•

X̄(log Y ))

The maps
ιp : Hq(X̄, F p+1) −−→ Hq(X̄, F p)

and
ι : Hq(X̄, F p) −−→ Hq(X̄,Ω•

X̄(log Y ))

are injective. Moreover Hq(X,C) carries a mixed Hodge structure given by the
weightfiltration and the maps ι. For more details see [Del1].

By GAGA we can use also algebraic differential forms for the computation of
Hq(X,C).

Now we are able to define the Deligne-Beilinson Complex and the Deligne-
Beilinson cohomology groups.
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Definition 3.3. Let X, X̄ and Y be as above, A ⊂ R be a subring and
A(p) = (2πi)pA ⊂ C. The Deligne-Beilinson Complex of the pair (X, X̄) is
constructed as follows

(3.8) AD(p) = Cone(Rj∗A(p)⊕ F p ǫ−ι
−−→ Rj∗Ω

•
X)[−1]

where ǫ and ι are the obvious maps, and where we may choose for Rj∗Ω•
X any

complex quasi-isomorphic to the log-forms, such that all the maps exist.

Equation 3.3 gives the quasi-isomorphisms

• AD(p)
quis
−−→ Cone(Rj∗A(p)

ǫ
−−→ Cone(F p −ι

−−→ Rj∗Ω•
X))[−1] and

• AD(p)
quis
−−→ Cone(F p −ι

−−→ Rj∗Cone(A(p)
ǫ
−−→ Ω•

X))[−1]

The definition yields the following distinguished triangle

(3.9)

Rj∗Z(p)⊕ F p −−−−−→ Rj∗Ω•
X

J
J] 



�

AD(p)

Remark 3.4. Let X = X̄. The commutative diagram

(3.10)

A(P )D,an=(A(p) −−−−−→ OX −−−−−→ . . . −−−−−→ Ωp−2
X −−−−−→ Ωp−1

X −−−−−→ 0 · · · )

α0

y α1

y αp−1

y αp

y
y

AD(p) =(A(p) −−−−−→ OX −−−−−→ . . . −−−−−→ Ωp−2
X −−−−−→ ΩpX ⊕ Ωp−1

X −−−−−→ Ωp+1
X ⊕ ΩpX · · · )

implies that the complex AD(p)|X is quasi-isomorphic to the complex A(p)D,an,
called the analytic Deligne Complex (see [EV], chapter 1).

We have the following maps

πA : AD(p) −−→ Rj∗A(p) and

πF : AD(p) :−−→ F p

which are the obvious projections, and the compositions

ǫA : AD(p)
πA−−→ Rj∗A(p)

ǫ
−−→ Rj∗Ω

•
X and

ǫF : AD(p)
πF−−→ F p ι

−−→ Rj∗Ω
•
X .

Both, ǫA and ǫF , are homotopic. Finally we denote by η the map

η : Rj∗Ω
•
X −−→ AD(p).

Definition 3.5. Let X be a quasiprojective algebraic manifold, X̄ a good com-
pactification. We define the Deligne-Beilinson cohomology groups with coeffi-
cients in A by

Hq
D(X,A(p)) = Hq(X̄, AD(p))
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The quasi-isomorphisms

Ω<p

X̄
(log Y )

quis
−−→ Cone(F p −−→ Rj∗Ω

•
X),

Rj∗Cone(A(p) −−→ Ω•
X)

quis
−−→ Rj∗C/A(p)

and the long exact sequences 3.4, 3.5 and 3.6 give us

Corollary 3.6. There are long exact sequences

(1) → Hq
D(X,A(p))

πA⊕πF−−−−−→ Hq(X,A(p)) ⊕ F pHq(X, C)
ǫ−ι
−−→ Hq(X, C)

η
−−→ Hq+1

D (X,A(p)) →

(2) → Hq
D(X,A(p)) → Hq(X.A(p))→ Hq(X, C)/F p → Hq+1

D (X,A(p)) →

(3) → Hq
D(X,A(p)) → F pHq(X, C)→ Hq(X, C/A(p)) → Hq+1

D (X,A(p))→

From now on we are working with integer valued Deligne-Beilinson cohomology,
therefore A is replaced by Z.

Examples 3.7.

(1) (p = 0) Here we have ZD(0) = Z and the q-th Deligne-Beilinson cohomol-
ogy Group of ZD(0) is nothing but the q-th singular cohomology.

(2) (p = q = 1) By the quasi-isomorphism of remark 3.4 we get

Z(1)D
quis
−−→ (Z(1) −−→ OX)

qis
−−→ O∗

X [−1],

thus

H1
D(X,Z(1)) = H0(X,O∗

X).

(3) (p = 1, q = 2) By remark 3.4 we have a similar quasi-isomorphism, which
yields the exact sequence

0 −−→ Pic0(X) = H1(X,OX)/H1(X,Z(1)) −−→

H2
D(X,Z(1)) = H1(X,O∗

X) = Pic(X) −−→ H2(X; Z(1)) −−→ . . .

3.2. Products in Deligne-Beilinson cohomology.
The Deligne-Beilinson cohomology carries a product structure. Later in this

chapter we will define a cycle map, which is compatible with the intersection of
cycles.

For α ∈ R we define a product

∪α : ZD(p)⊗ ZD(p′) −−→ ZD(p+ p′)

given on the level of local sections by
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(3.11)

zq ∈ Z(q) fq ∈ F q
D

ωq ∈ Ω•
X

zp ∈ Z(p) zp · zq ∈ Z(p + q) 0 (1 − α)zp · ωq ∈ Ω•
X

fp ∈ F pD 0 fp ∧ fq ∈ F p+qD (−1)deg fp · α · fp ∧ ωq ∈ Ω•
X

ωp αωpzq ∈ Ω•
X (1 − α)ωp ∧ fq ∈ Ω•

X 0

Verifying that ∪α respects the differential, i.e.

d(γ ∪α γ
′) = d(γ) ∪α γ

′ + (−1)νγ ∪α d(γ
′),

where γ lives in degree ν, yields the following

Proposition 3.8. ∪α for α ∈ R as defined above has the following properties:

(1) Let γ, γ′ be in degree ν, ν ′ resp., then

γ ∪α γ
′ = (−1)νν

′

γ′ ∪1−α γ

Moreover ∪ 1
2

is anticommutative .

(2) ∪0 and ∪1 are associative.

(3) For each α, β ∈ R the products ∪α and ∪β are homotopic.

(4) The products ∪α are compatible with the products on Rj∗Z(p) and F p, i.e.

ǫZ(γ ∪α γ
′) = ǫZ(γ) ∪Z ǫZ(γ′)

and
ǫF (γ ∪α γ

′) = ǫF (γ) ∧ ǫF (γ′).

For the proof see [EV1] Proposition 3.5.
We get the following rules:

Lemma 3.9. For sections γ and ω of ZD(p), resp. Rj∗Ω
•
X we have

(1) γ ∪0 η(ω) = η(ǫZ(γ) ∧ ω)

(2) γ ∪1 η(ω) = (−1)deg ǫF (γ)η(ǫF ∧ ω)

(3) η(ω) ∪0 γ = η(ω ∧ ǫF (γ))

(4) η(ω) ∪1 γ = η(ω ∧ ǫZ(γ))

The proof follows immediately from the multiplication table 3.11.
Therefore the products ∪α are compatible with the morphisms in the distin-

guished triangle 3.9, which gives

Theorem 3.10. ∪α induces a product ∪ on HD(X) :=
⊕

p,qH
q
D(X,Z(p)), making

it into a bigraded ring with unit. Let γ ∈ Hq
D(X,Z(p)) and γ′ ∈ Hq′

D (X,Z(p)).
Then we have

γ ∪ γ′ = (−1)qq
′

γ′ ∪ γ.
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Moreover point 4 of proposition 3.8 and lemma 3.9 translate directly into coho-
mology. The image of H(X,C) :=

⊕
qH

q(X,C) under η is a square zero ideal

in the bigraded ring HD(X).

See [EV1] Theorem 3.9.

3.3. The Cycle map in the Deligne-Beilinson Cohomology and Grif-
fith’s Intermediate Jacobian. There is also the notion of Deligne-Beilinson
cohomology with support. For generalities on cohomology with support on a
subvariety see the Appendix. We denote by Zp(X) the group of codimension p
cycles on X.

Definition 3.11. Let first assume X to be projective. Let A ∈ Zp(X) sup-
ported in |A| and U = X − |A| its complement. We define the Deligne-Beilinson
cohomology Groups with support on A (see also chapters 4 and 5) as

Hq
D|A|(X,Z(p)) = H

q
|A|(X,ZD(p))

Similar as before, this definition fits into a long exact sequence of cohomology
groups

0→ H2p
D|A|(X,Z(p))

(πZ ,πF )
−−−−→ H2p

|A|(X,Z(p))⊕H2p
|A|(X,F

p)
τ=ǫ−ι
−−−→ H2p

|A|(X,C)→ . . . .

Note that 2p − 1 is smaller than the real codimension of A in X. Therefore
H2p−1

|A| (X,C) vanishes and the map (πZ, πF ) is injective.

Let moreover denote by

cZ : Zp(X) −−→ H2p(X,Z(p))

and

cF : Z(X) −−→ H2p(X,F p)

the classical cycle maps (see [EV1], chapter 6). Obviously τ((cZ(A), cF (A)) = 0.
Since (πZ , πF ) is injective, we can assume (cZ(A), cF (A)) to be an element of
H2p

D|A|(X,Z(p)). Let us denote it by cD(A).

Its image under the morphism

H2p
D|A|(X,Z(p)) −−→ H2p

D (X,Z(p))

will be the cycle class of A denoted by γ(A) from now on.

Remark 3.12. For noncompact X we work on a good compactification X̄.
We construct the cycle class of Ā in H2p

D (X̄,Z(p)) and map it afterwards into

H2p
D (X,Z(p)). For more details on this see [EV1] 7.2.

The next proposition asserts that the intersection product of cycles is compat-
ible with the cup product in Deligne-Beilinson cohomology.

Moreover Deligne-Beilinson cohomology respects rational equivalence of cycles.
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Proposition 3.13. For rational equivalent cycles A1, A2 ∈ Zp(X) we have
γ(A1) = γ(A2).

See [EV1] 7.6.
Thereby the cycle map γ factors through CHp(X) and we get well defined maps

(also denoted by γ)

γ : CHp(X) −→ H2p
D (X,Z(p)).

The cup product in Deligne-Beilinson cohomology is compatible with the inter-

section in Z•(X).

Proposition 3.14. Let A, A′ be codimension p, resp. p′ cycles on X. If they
intersect proper, i.e. A ∩A′ is defined and a codimension p+ p′ cycle, ∪ induces
maps

∪ : H2p
D|A|(X,Z(p))⊗H2p′

D|A′|(X,Z(p′)) −−→ H
2(p+p′)
D|A∩A′|(X,Z(p + p′)).

We have the equalities

cD(A) ∪ cD(A′) = cD(A ∩ A′)

and
γ(A) ∪ γ(A′) = γ(A ∩ A′)

Propositions 3.13 and 3.14 yield

Proposition 3.15. Let denote by H•
D(X) the subring

H•
D(X) =

⊕

p

H2p
D (X,Z(p)) ⊂ HD(X) =

⊕

p,q

Hq
D(X,Z(p)).

Then we have a homomorphism of rings

γ : CH•(X) −→ H•
D(X)

Moreover the map γ respects

f ∗ : CH•(X) −−→ CH•(X ′)

for morphisms f : X ′ −−→ X.

For a proof of this see [EV1], 7.7..

We recall the definition of Griffiths Intermediate Jacobian.

Definition 3.16. Let X be a projective variety defined over the complex num-
bers. By Deligne’s description of Hodge theory [Del1] F pHq(X,C) is defined as
Hq(X,F p) and additionally the quotient group Hq(X,C)/F p is isomorphic to
Hq(X,Ω<p

X ).
The image of H2p−1(X,Z(p)) in H2p−1(X,C)/F p is a lattice. Therefore the

group
J p(X) = H2p−1(X,C)/H2p−1(X,Z(p)) + F pH2p−1(X,C)
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is a complex torus. We call J p(X) the p-th Intermediate Jacobian of X.

Let us denote by CHp
h(X) the group of cycles homologically equivalent to zero

modulo rational equivalence. Then there is a map

AJX : CHp
h(X) −−→ J p(X)

called the Abel-Jacobi map, given by integration.

If we denote by Hdgp(X) the the group of codimension p Hodge cycles of X,
i.e.

Hdgp(X) = ker(H2p(X,Z(p))⊕ F pH2p(X,C)
ǫ−ι
−−→ H2p(X,C)),

we get a commutative diagram

(3.12)
CHp

h(X) →֒ CHp(X)
↓ ↓ ց

0 −−→ J p(X) −−→ H2p
D (X,Z(p)) −−→ Hdgp(X) −−→ 0.

Let us denote by J •(X) the ideal
⊕

p J
p(X) of the commutative ring H•

D(X).
By theorem 3.10 we get the following

Corollary 3.17. J •(X) is an ideal of square zero in H•
D(X).

If we denote by γ0 the restriction of γ : CHp(X) −−→ H2p
D (X,Z(p)) to CHp

h(X)
we get as a last consequence

Corollary 3.18. The map

γ0 : CHp
h(X) −−→ J p(X)

is the Abel-Jacobi map

3.4. Massey products in Deligne-Beilinson Cohomology.
In this section we give first properties of Massey products in Deligne-Beilinson

cohomology. We will discuss some cases where the triviality of the products is
obvious. Trivial means vanishing in the sense of 2.7 or torsion (which will be
defined in 3.27).

In 3.32 we construct a first example of Massey triple products in Deligne Beilin-
son cohomology, which will be torsion, but not zero. In chapter 4 this example
will be related to height pairings.

By proposition 3.8 the complex ZD(p) is equipped with maps of complexes ∪α
for α ∈ R

∪α : ZD(p)⊗ ZD(p′) −−→ ZD(p+ p′)

given by the multiplication table 3.11.
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For open coverings U of X there is the Čech product on the double complex of
Z-modules C•(U ,Z(•)) given by

∪̌ : Cq(U ,ZD(p))⊗ Cq
′

(U ,ZD(p′)) −−→ Cq+q
′

(U ,ZD(p+ p′))
(fi0...iq)⊗ (gj0...jq′ ) 7−→ (fi0...iq ⊗ giq ...iq+q′ )

All in all the conditions of 2.2 are fulfilled and we get

Proposition 3.19. For

Cq(p) = lim
→

U

sCq(U ,ZD(p))

and
∪̌α = ∪α ◦ ∪̌ ◦ τ

we get a product on the bigraded complex

C =
⊕

p,q

Cq(p),

which gives C the structure of a ring. Moreover there is a well defined theory of
Massey products in Deligne-Beilinson cohomology.

There is a short exact sequence of complexes

0 −−→ C•−1(U ,Ω•
X)

η
−−→ C•(U ,ZD(p)) −−→ C•(U ,Z(p))⊕ C•(U , F p) −−→ 0.

As in theorem 3.10 we get

Lemma 3.20. The image of
⊕

p,q C
q(U ,Ωp

X) is an ideal of square zero in C.

Proof. the statement follows immediately from the multiplication table 3.11. �

As a first consequence for Massey products we get

Proposition 3.21. Let Ai ∈ Hqi
D (X,Z(pi)) be classes living in the image of η.

Then

(1) M3(A1, A2, A3) is defined.

(2) M3(A1, A2, A3) is vanishing.

Proof. By 3.10 we have A1 ∪ A2 = 0 and A2 ∪ A3 = 0. Thus M3(A1, A2, A3) is
defined. Chose representatives ai ∈ Cqi(U ,ZD(pi)). Then we have for each α ∈ R

by lemma 3.20
a1∪̌αa2 = a2∪̌αa3 = 0.

Therefore we can choose a defining system

M = {ai,j ∈ C
qi,j−1|1 ≤ i ≤ j ≤ 3}

with a1,2 = a2,3 = 0 (see the definition of Massey products 2.2). By definition
M3(A1, A2, A3) is represented by

M = [(−1)p1a1 ∪ 0 + (−1)p1,2−10 ∪ a3] = [0].

�
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For the remainder of the chapter let X be smooth projective over C. First we

state a lemma, which will be frequently used in the sequel.

Lemma 3.22. Let q < 2p. Then

ǫZ(Hq
D(X,Z(p))) = ǫF (Hq

D(X,Z(p))) = 0.

Proof. Remember the long exact sequence

→ Hq−1(X, C)
η
−−→ Hq

D(X, Z(p))
πZ⊕πF−−−−→ Hq(X, Z(p))⊕F pHq(X, C)

ǫ−ι
−−→ Hq(X, C)→ .

The sequence implies ǫZ(Ai) = ǫF (Ai) (remember ǫZ = ǫ ◦ πZ and ǫF = ι ◦ πF ).
On the other hand Hodge Theory gives

F pHq(X,C) =
⊕

k+ℓ=q,k≥p

Hℓ(X,Ωk
X)

and

F pHq(X,C) =
⊕

k+ℓ=q,ℓ≥p

Hℓ(X,Ωk
X).

This shows that q < 2p forces the intersection

F pHq(X,C) ∩ F pHq(X,C)

to be zero.

Additionally ǫZ(Ai) = ǫZ(Ai), thus ǫZ(Ai) = ǫF (Ai) = 0. �

Proposition 3.23. Let Ai ∈ H
qi
D (X,Z(pi)) for i = 1, 2, 3. Assume furthermore

qi < 2pi. Then there exist integers ni for i = 1, 2, 3, such that

• M3(n1A1, n2A2, n3A3) is defined.

• M3(n1A1, n2A2, n3A3) vanishes in the sense of 2.7. Moreover there is just
one representative: zero.

Proof. By lemma 3.22 πZ(Ai) lives in the kernel of

ǫ : Hqi(X,Z(pi)) −−→ Hqi(X,C).

Hence πZ(Ai) must be zero or torsion in Hqi(X,Z(pi)). Therefore we find natural
numbers ni for i = 1, 2, 3, such that niAi lives in the image of the map

η : Hqi−1(X,C) −−→ Hqi
D (X,Z(pi)).

Applying proposition 3.21 gives the vanishing of M3(A1, A2, A3).
Moreover there is no indeterminacy. By the same argument as above we have

Hq
D(X,Z(p)) ∪Hq′

D (X,Z(p′)) = 0

for q < 2p and q′ < 2p′. �
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The proposition implies that we should focus on the case where qi ≥ 2pi.
Therefore we are working from now on with cohomology classes which are the
cycle classes of algebraic codimension pi cycles, i.e. qi = 2pi.

As a next step we allow A2 to be a homologically non trivial Deligne-class,
whereas πZ(A1) = πZ(A3) = 0. This will yield to an explicit formula, which only
includes the cohomology classes A1, A2, A3.

Proposition 3.24. Let Ai ∈ H
2pi
D (X,Z(pi)) for i = 1, 2, 3. Assume that

M3(A1, A2, A3) is defined and there are cohomology classes [α1] ∈ H2p1−1(X,C)
and [α3] ∈ H2p3−1(X,C) such that

η([α1]) = A1 and η[α3] = A3.

Then the indeterminacy vanishes and the Massey product is represented by the

cohomology class

M3(A1, A2, A3) = −η([α1] ∧ ι(ǫF (A2)) ∧ [α3]).

In order to proof the proposition we will need the following homological

Lemma 3.25. Let

A• ρ
−−−→ B•

J
J]ǫ 



�
η

D•

be a distinguished triangle of complexes of sheaves, where

D• = Cone(A• ρ
−−→ B•).

Take Čech resolutions C•(U , •), together with the Čech differentials δ (see the

Appendix) to calculate the Hypercohomology H•(X, •) of the respective complex.
Let [α] ∈ Hq(X,B•) with representative α ∈ Cq(U ,B•). Assume η(α) = δψ for
some ψ ∈ Cq(U ,D•), i.e. η([α]) = 0.

Then

(1) ϕ := ǫ(ψ) is closed.

(2) ρ([ϕ]) = [α]

Proof. The distinguished triangle yields the commutative diagram

o −−−→ Cq−1(U ,B•) −−−→ Cq−1(U ,D•) −−−→ Cq−1(U ,A•[1]) −−−→ 0

δ

y δ

y δ

y
0 −−−→ Cq(U ,B•) −−−→ Cq(U ,D•) −−−→ Cq(U ,A•[1])

which implies

28



ψ
ǫ

−−−→ ϕ −−−→ 0

δ

y δ

y

α
η

−−−→ δψ −−−→ 0

The statement follows from the commutativity of the diagrams.

In order to prove the second point we write ψ = ψB ⊕ ψA (in this notion
ψA = ǫ(ψ) = φ). The differential of the cone construction and the assumptions
give

η(α) = (α, 0) = δ(ψ) = (δ(ψB)− ρ(φ), δ(φ)).

Therefore α differs from ρ(φ) by the exact cocycle δ(ψB). Thus

[α] = ρ([φ]).

�

We can now prove proposition 3.24.

Proof. Choose representatives

ai ∈ C
2pi(U ,ZD(pi)) for Ai , i = 1, 2, 3

such that

a1 = η(α1) and a3 = η(α3)

for

αi ∈ C
2pi−1(X,Ω•

X).

The product rules of lemma 3.9 translate directly to the level of Čech cochains.

Therefore

a1 ∪0 a2 = η(α1 ∧ ǫF (a2)) = da1,2

and

a2 ∪0 a3 = η(ǫZ(a2) ∧ α3) = da2,3.

By definition

M = [a1 ∪0 a2,3 − a1,2 ∪0 a3] = [η(α1 ∧ ǫF (a2,3)− ǫZ(a1,2) ∧ α3)]

= [η(α1 ∧ ǫF (a2,3)− ǫZ(a1,2) ∧ α3))]

is a representative of M3(A1, A2, A3).

The distinguished triangle

Z(p))⊕ F p
D −−−−−→ Ω•

X

J
J] 



�

ZD(p)

induces the exact sequence of Čech complexes for some suitable open covering
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U of X:

0 −−→ C•(U ,Ω•
X)

η
−−→ C•(U ,ZD(•)) −−→ C•(U ,Z(•))⊕ C•(U , F •) −−→ 0.

The cochains ai,j fulfill the assumptions of lemma 3.25 and we obtain

(3.13) [(ǫZ − ǫF )(a1,2)] = [α1] ∧ ǫF (A2)

[(ǫZ − ǫF )(a2,3)] = ǫZ(A2) ∧ [α3].

Since Massey products are independent of the representatives of the cohomol-

ogy classes Ai, we can choose [α1] and [α3] after variation with elements of
F piH2pi−1(X,C), such that [α1] ∧ ǫF (A2) and ǫZ(A2) ∧ [α3] are integervalued,
i.e. live in ǫ(H2pij (X,Z(pij))). Furthermore we obtain the equalities

(3.14)
[α1] ∧ ǫF (A2) = [α1] ∧ ǫF (A2)

ǫZ(A2) ∧ [α3] = ǫZ(A2) ∧ [α3].

On the other hand we have by lemma 3.22

F pijH2pij−1(X,C) ∩ F pijH2pij−1(X,C) = 0.

Thus we can assume

[ǫF (a1,2)] = [ǫF (a2,3)] = [0].

Equation 3.13 translates to

[ǫZ(a1,2)] = [α1] ∧ ǫF (A2)

Therefore

M = η([α1] ∧ [ǫF (a2,3)]− [ǫZ(a1,2)] ∧ [α3]) = −η([α1] ∧ ǫF (A2) ∧ [α3]).

By lemma 3.22 and the product rules 3.9, the indeterminacy is given by

η([α1]) ∪H
2p1,2−1
D (X,Z(p1,2)) +H

2p1,2−1
D (X,Z(p1,2)) ∪ η([α3])

= η([α1] ∧ ǫF (H
2p1,2−1
D (X,Z(p1,2))) + ǫZ(H

2p1,2−1
D (X,Z(p1,2))) ∧ [α3]).

But again

ǫF (H
2p1,2−1
D (X,Z(p1,2)))

and

ǫZ(H
2p1,2−1
D (X,Z(p1,2)))

have to vanish. Hence there is no indeterminacy and we are done. �

Corollary 3.26. The same holds true, if we assume πZ(A1) and πZ(A3) to be
torsion in Hqi(X,Z(pi)).
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We want to define what it means that Massey products are torsion. A naive
definition would be the following. We find a natural number ν and a representa-
tive M of M3(A1, A2, A3), such that νM = 0. But we have to be careful, since
this definition is not sufficient in the general setup. But in the end it will turn
out, that in our situation the naive definition is equivalent to the one we state
here.

Definition and Theorem 3.27. Let Ai ∈ H
qi
D (X,Z(pi)) be Deligne cohomol-

ogy classes, such that M3(A1, A2, A3) is defined. We say that M3(A1, A2, A3) is
torsion if one of the following two equivalent definitions holds.

(1) There exists a representative M of M3(A1, A2, A3) and a natural number
ν such that

νM = A1 ∪Ψ2,3 + Ψ1,2 ∪A3

for suitable Ψi,j ∈ H
qi,j−1
D (X,Z(pi,j)).

(2) There exists a natural number ν such that

νM3(A1, A2, A3) ⊂ A1 ∪H
2q2,3−1
D (X,Z(p2,3)) +H

q1,2−1
D (X,Z(p1,2)) ∪ A3.

Proof. It is enough to proof that 1 implies 2, since the other implication is obvious.
Let M ′ be another representative of M3(A1, A2, A3). This representative dif-

fers from M by a term of the form A1 ∪ Υ2,3 + Υ1,2 ∪ A3 for suitable Υi,j ∈

H
qi,j−1
D (X,Z(pi,j)). Therefore

νM ′ = ν(M + A1 ∪Υ2,3 + Υ1,2 ∪ A3)

= νM + νA1 ∪Υ2,3 + νΥ1,2 ∪ A3

= A1 ∪Ψ2,3 + Ψ1,2 ∪A3 + A1 ∪ (νΥ2,3) + (νΥ1,2) ∪A3

= A1 ∪ (Ψ2,3 + νΥ2,3) + (Ψ1,2 + νΥ1,2) ∪ A3,

which shows that for each representative M of M3(A1, A2, A3) the multiple νM

lives in the indeterminacy A1 ∪ H
q2,3−1
D (X,Z(p2,3)) + H

q1,2−1
D (X,Z(p1,2)) ∪ A3.

Moreover we have shown that the integer ν works for all representatives of
M3(A1, A2, A3). �

Remark 3.28. The point why the naive access νM = 0 fails is that, in gen-
eral, we can not divide by ν in Hq

D(X,Z(p)). But in our situation, where the
Ai are the cycle classes of codimension pi cycles on X, Ψi,j of definition 3.27

lives in H
2pi,j−1
D (X,Z(pi,j)). Thus some multiple of Ψi,j lives in the image of

H2pi,j−2(X,C). After lifting this multiple to H2pi,j−2(X,C) we can divide by ν

and map it again to H
2pi,j−1
D (X,Z(pi,j)). Remind that this procedure depends on

the choice of the lifting, therefore the received class is not unique.

Let us make this more precise.

Proposition 3.29. Let Ai ∈ H2pi
D (X,Z(pi)), such that M3(A1, A2, A3) is de-

fined. Then M3(A1, A2, A3) is torsion if and only if we find a representative M
of M3(A1, A2, A3) and some natural number ν, such that νM = 0.
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Proof. We need only to prove that the definition of torsion 3.27 implies the exis-
tence of some M and some ν with νM = 0.

Let ai ∈ C2pi(ZD(pi)) representing Ai, a1,2 ∈ C2p1,2−1(ZD(p1,2)) and
a2,3 ∈ C

2p2,3−1(ZD(p2,3)) with

da1,2 = a1 ∪ a2

da2,3 = a2 ∪ a3.

By assumption we find some integer ν and Ψi,j ∈ H
2pi,j−1
D (X,Z(pi,j)) such that

[a1 ∪ a2,3 − a1,2 ∪ a3] = A1 ∪Ψ2,3 + Ψ1,2 ∪A3.

Replacing ν and Ψi,j by some suitable multiple, we can assume that Ψi,j = η(Φi,j)

for Φi,j ∈ H2pi,j−2(X,C). Let φi,j ∈ C2pi,j−2(Ω•
X) be corresponding cochains. The

cochain

a1 ∪ (a2,3 − η(
1

ν
φ2,3))− (a1,2 + η(

1

ν
φ1,2)) ∪ a3.

is a representative of M3(A1, A2, A3). The following calculation gives the desired
result

ν[a1 ∪ (a2,3 − η(
1

ν
φ2,3))− (a1,2 + η(

1

ν
φ1,2)) ∪ a3]

= ν[a1 ∪ a2,3 − a1,2 ∪ a3]− ν[a1 ∪ η(
1

ν
φ2,3) + η(

1

ν
φ1,2) ∪ a3]

= A1 ∪Ψ2,3 + Ψ1,2 ∪ A3 − [a1 ∪ η(φ2,3) + η(φ1,2 ∪ A3]

= A1 ∪Ψ2,3 + Ψ1,2 ∪A3 − (A1 ∪Ψ2,3 + Ψ1,2 ∪ A3) = 0.

�

Lemma 3.30. Let A ∈ Hk(X,C) and Z ∈ Hℓ(X,Z). Assume τ = A ∧ Z ∈
Hk+ℓ(X,Z), then there exists Q ∈ Hℓ(X,Q) such that τ = A ∧ Z = Q ∧ Z.

Proof. Since A ∧ Z = A ∧ Z = Ā ∧ Z, we can assume A ∈ Hk(X,R). Now
fix a basis for Hk(X,R), Hℓ(X,Z) and Hk+ℓ(X,R), respecting the integral and
rational structure. Then the map

Hk(X,R)
φ
−−→ Hk+ℓ(X,R)

X 7→ X ∧ Z

is linear and can be represented in the chosen basis by an integral matrix M . Now
we have MA = τ , which implies that there is at least one solution for the linear
equation MX = τ . By elementary Gauss transformations we find a solution with
Q-coefficients. �

Corollary 3.31. Under the assumptions made in proposition 3.24,
M3(A1, A2, A3) is torsion.
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Proof. By lemma 3.30 we can find classes [q1] and [q3], such that

[α1] ∧ ǫF (A2) = [q1] ∧ ǫF (A2)

and

ǫZ(A2) ∧ [α3] = ǫF (A2) ∧ [q3].

By proposition 3.24 M3(A1, A2, A3) is represented by

−η([α1] ∧ ǫF (A2) ∧ [α3]) = −η([q1] ∧ ǫF (A2) ∧ [q3]),

which is the image of a Q-valued cohomology class [q], which implies, that some
multiple of [q] lives in H2p1,2,3−1(X,Z(p1,2,3)) and therefore in the kernel of η. �

We will now present an example, which shows that the products in proposition
3.24 do not have to be zero.

Example 3.32. Let X = E1 × E2 be the product of two elliptic curves over C.
Denote by p1 and p2 the projections. Let dz1, dz̄1, resp. dz2, dz̄2 the basis of
global E0,1- and E1,0-forms and dxj = 1

2
(dzj ∧ dz̄j) and dyj = 1

2i
(dzj ∧ dz̄j) the

real dual basis.
By construction we know, that

H1(X,R(p)) =< p∗1dx1, p
∗
1dy1, p

∗
2dx2, p

∗
2dy2 >R(p),

where R(q) = Z,Q,R,C.

Let [α1] be the cohomology class of the q-division point 1
q
p∗1dx1 and [α3] the

class of the q- division point 1
q
p∗1dy1 in Pic0(X).

Write Ai = η([αi]) ∈ H2
D(X,Z(1)) for i = 1, 3 and let A2 ∈ H2

D(X,Z(1)) be in
the preimage of the class

q(p∗1(dx1 ∧ dy1) + p∗2(dx2 ∧ dy2)).

Note that the isomorphism between Alb (X) and Pic0(X) is given by the map

τ : Pic0(X) −−→ Alb (X)
ω 7−→ ω ∧ (p∗1(dx1 ∧ dy1) + p∗2(dx2 ∧ dy2)).

The construction of the Ai implies

A1 ∪ A2 = A2 ∪ A3 = 0 ∈ H4
D(X,Z(2)),

since both classes are zero in Alb (X). Therefore M3(A1, A2, A3) is defined.
By proposition 3.24 M3(A1, A2, A3) is represented by the cohomology class

M3(A1, A2, A3) = −η([α1]∧ ǫF (A2) ∧ [α3]) = −η(
1

q
p∗1dx1 ∧ p

∗
1dy1 ∧ p

∗
2dx2 ∧ p

∗
2dy2)

which is Q-valued. For q > 1 this class is not zero in H5
D(X,Z(3)).

Proposition 3.24 says that there is no indeterminacy, hence M3(A1, A2, A3) does
not vanish.
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We can generalize the statement on torsion of Massey products in proposition
3.24:

Proposition 3.33. Let Ai ∈ H
2pi
D (X,Z(pi)) for i = 1, 2, 3 be Deligne classes, such

that M3(A1, A2, A3) is defined. Assume that Ai = η([αi]), [αi] ∈ H2pi−1(X,C) for

at least one of the Ai, then M3(A1, A2, A3) is torsion in H
2p1,2,3−1
D (X,Z(p1,2,3)).

Proof. Since the proof is quite technical, we give a short outline of it.
We distinguish between two cases. On the one hand A2 is homologically equiv-

alent to zero, and on the other hand A1 is homologically equivalent to zero. The
proof of the second case implies by symmetry the case, where A3 is homologically
equivalent to zero.

In both cases the first step is to prove that M3(A1, η([q2]), A3), resp.
M3(η([q1]), A2, A3) is torsion for suitable chosen classes qi ∈ H2pi−1(X,Q(pi)).
In the second step we will reduce the Massey products M3(A1, η([α2]), A3) and
M3(η([α1]), A2, A3) to the products M3(A1, η([q2]), A3), resp. M3(η([q1]), A2, A3).

Let us assume first A2 = η([α2]) for [α2] ∈ H2p2−1(X,C). Lemma 3.30 gives us
classes [q2], [q̃2] ∈ H2p2−1(X,Q(p2)), such that

(3.15)
ǫZ(A1) ∧ [α2] = ǫZ(A1) ∧ [q2]

[α2] ∧ ǫF (A3) = [q̃2] ∧ ǫF (A3).

We can find some natural number n ∈ N, s.th.

n([q2]− [q̃2]) ∈ H
2p2−1(X,Z(p2)).

Therefore

nη(ǫZ(A1) ∧ ([q2]− [q̃2])) = nη(([q2]− [q̃2]) ∧ ǫF (A3)) = 0,

which implies - after replacing A2 by nA2 - that we find a unique [q2] fulfilling

equations 3.15 simultaneously. Note that n ∈ Z, therefore we can apply point
three of the properties 2.6 and we get

nM3(A1, A2, A3) ⊂M3(A1, nA2, A3).

By the choice of [q2] the Massey product M3(A1, η([q2]), A3) is defined. Further-
more we can find some number ν ∈ N, such that ν[q2] ∈ H2p2−1(X,Z(p2)). Since
Massey products behave well under scalar multiplication (see see again point
three of properties 2.6), we have

νM3(A1, η([q2]), A3) ⊂M3(A1, η(ν[q2]), A3) = M3(A1, [0], A3).

M3(A1, [0], A3) vanishes, thus

νM3(A1, η([q2]), A3) ⊂ M3(A1, [0], A3)

= A1 ∪H
2p2,3−1
D (X,Z(p2,3)) +H

2p1,2−1
D (X,Z(p1,2)) ∪A3.

Therefore M3(A1, η([q2]), A3) is torsion (see definition 3.27).
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Next we prove, that M3(A1, η([α2]− [q2]), A3) vanishes.
By the choice of [q2] (see equations 3.15) we find φ1,2 ∈ Cp1,2−2(U ,Ω•

X) and
φ2,3 ∈ Cp2,3−2(U ,Ω•

X), such that

ǫZ(a1) ∧ (α2 − q2) = dφ1,2

and

(α2 − q2) ∧ ǫF (a3) = dφ2,3.

In other words M3(ǫZ(A1), [α2]− [q2], ǫF (A3)) is defined in the deRham cohomol-

ogy of X and the cohomology class

(3.16) M̃ = [ǫZ(A1) ∧ φ2,3 − φ1,2 ∧ ǫF (A3)]

is a representative of it. The theorem of Deligne, Griffiths, Morgan and Sulli-

van (see example 2.10) implies that M3(ǫZ(A1), [α2] − [q2], ǫF (A3)) vanishes (see
definition 2.7). Thus

M3(ǫZ(A1), [α2]−[q2], ǫF (A3)) = ǫZ(A1)∧H
2p2,3−2(X,C)+H2p1,2−2(X,C)∧ǫF (A3).

On the other hand we can construct a representative M of

M3(A1, η([α2]− [q2]), A3) as follows:
Choose a1,2 ∈ Cp1,2−1(U ,ZD(p1,2)) and a2,3 ∈ Cp2,3−1(U ,ZD(p2,3)) with

a1,2 = η(φ1,2)

a2,3 = η(φ2,3).

Equation 3.16 implies

M = [a1 ∪ η(φ2,3)− η(φ1,2) ∪ a3)] = η([ǫZ(a1) ∧ φ2,3 − φ1,2 ∧ ǫF (a3)]) = η(M̃)

∈ η(ǫZ(A1) ∧H
2p2,3−2(X,C) +H2p1,2−2(X,C) ∧ ǫF (A3))

= A1 ∧ η(H
2p2,3−2(X,C)) +H2p1,2−2(X,C) ∧ A3

⊂ A1 ∪H
2p2,3−1
D (X,Z(p2,3)) +H

2p1,2−1
D (X,Z(p1,2)) ∧ A3.

This implies in terms of definition 2.7 the vanishing of M3(A1, η([α2]− [q2]), A3)

and moreover the vanishing of M3(A1, nη([α2]− [q2]), A3) for all numbers n ∈ N.
Taking the integer ν with ν[q2] ∈ H

2p2−1(X,Z(p2)) we obtain again by 2.3

M3(A1, η(ν([α2]− [q2])), A3) = M3(A1, η(ν[α2]− ν[q2]), A3)

= M3(A1, η(ν[α2]), A3).

Therefore

νM3(A1, η([α2]), A3) ⊂M3(A1, νη([α2]), A3)

= M3(A1, νη([α2]−[q2]), A3) = A1∪H
2p2,3−1
D (X,Z(p2,3))+H

2p1,2−1
D (X,Z(p1,2))∪A3.

Thus M3(A1, A2, A3) is torsion by definition 3.27, which proves the first case.

In order to prove the second case let A1 = η([α1]), for [α1] ∈ H2p1−1(X,C).
Note that by lemma 3.22

η([α1]) ∪H
2p2,3−1
D (X,Z(p2,3)) = 0.
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the indeterminacy is therefore given by

H
2p1,2−1
D (X,Z(p1,2)) ∪ A3,

By lemma 3.30 we find a class [q1] ∈ H2p1−1(X,Q(p1)) with representative
q1 ∈ C2p1−1(U ,Ω•

X), such that

[q1] ∧ ǫF (A2) = [α1] ∧ ǫF (A2).

As in the first case we show that M3(η([q1], A2, A3) is torsion.

We find a natural number ν, such that ν[q1] lives in H2p1−1(X,Z(p1)). This
implies

νM3(η([q1]), A2, A3) ⊂M3(η(ν[q1]), A2, A3) = M3([0], A2, A3).

But M3([0], A2, A3) vanishes. Therefore

νM3(η([q1]), A2, A3) ⊂ H
2p1,2−1
D (X,Z(p1,2)) ∪ A3,

which shows that M3(η([q1]), A2, A3) is torsion.

The next step is to prove the vanishing of M3(η([α1] − [q1]), A2, A3). By the
choice of q1 we find φ1,2 ∈ C

2p1,2−1(U ,Ω•
X) and φ2,3 ∈ C

2p2,3−1(U ,Ω•
X), such that

(α1 − q1) ∧ ǫF (a2) = dφ1,2

and
ǫF (a2) ∧ ǫF (a2) = dφ2,3.

Thus the Massey product M3([α1] − [q1], ǫF (A2), ǫF (A3)) is defined and the co-

homology class

(3.17) M̃ = [(α1 − q1) ∧ φ2,3 − φ1,2 ∧ ǫF (a3)]

is a representative of it. As in the first case the theorem of Deligne, Griffiths,
Morgan, Sullivan 2.10 implies the vanishing of M3([α1]− [q1], A2, A3). Therefore

M̃ ∈M3([α1]− [q1], ǫF (A2), ǫF (A3))

= ([α1]− [q1]) ∧H
2p1,2−1(X,C) +H2p1,2−2(X,C) ∧ ǫF (A3).

On the other hand we construct a representative M of M3(η([α1]−[q1]), A2, A3)
as follows:

Choose
a1,2 = η(φ1,2) ∈ C

2p1,2−1(U ,ZD(p1,2))

and

a2,3 ∈ C
2p2,3−1(U ,ZD(p2,3)) with ǫF (a2,3) = φ2,3.

The choice of a1,2 and a2,3 yields

M = [η(α1 − q1) ∪ a2,3 − a1,2 ∪ a3] = [η((α1 − q1) ∧ ǫF (a2,3)− φ1,2 ∧ ǫF (a3))

= η([(α1 − q1) ∧ φ2,3 − φ1,2 ∧ ǫF (a3)]) = η(M̃).

36



The vanishing of M̃ in the deRham cohomology of X and the product rules of

3.9 imply

η(M̃) ∈ η(([α1]− [q1]) ∧H
2p2,3−1(X,C) +H2p1,2−2(X,C) ∧ ǫF (A3)

⊂ η([α1]− [q1]) ∪H
2p2,3−1
D (X,Z(p2,3)) +H

2p1,2−1
D (X,Z(p1,2)) ∪ A3.

Therefore M3(η([α1]− [q1]), A2, A3) vanishes and moreover

M3(nη([α1]− [q1], A2, A3) vanishes for all numbers n ∈ N.

To finish the proof let ν be the integer with ν[q1] ∈ H2p1−1(X,Z(p1)). We get

M3(νη([α1]− [q1]), A2, A3) = M3(νη([α1])− νη([q1]), A2, A3)

= M3(νη([α1]), A2, A3).

This implies

νM3(η([α1]), A2, A3) ⊂M3(νη([α1]), A2, A3)) ⊂ H
2p1,2−1
D (X,Z(p1,2)) ∪A3,

which proves the second case. �

We have shown up to now that the only interesting case for Massey products
is the case where all the cycles Ai, for i = 1, 2, 3 are homologically nontrivial.
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4. Massey products and Height Pairings

In this section we present a relation between Massey products and height pair-
ings. height pairings are of particular interest in Arakelov theory. But they are
also of interest in the study of algebraic cycles on complex varieties. Let X be
a smooth projective variety defined over the complex numbers and A ∈ Zp(X)
and B ∈ Zq(X) be algebraic cycles of codimension p and q. Assume furthermore
that A ∩ B = ∅. The classical height pairing associates to them a real number
< A,B >, which is bilinear in its entries (see [M-S2]). We use here a refinement
of the classical height pairing, which is due to S. Müller-Stach (see [M-S2]). We
assume that one of the cycles, let say A, vanishes under the Abel Jacobi map,
i.e. AJX(A) = 0. We obtain a C∗ valued height pairing. After identifying C∗

with C/Z(n + 1) via the exponential map, we obtain as a result, that in special
situations the Massey Product is nothing else than the difference of two height
pairings. But let us first give the definition of the refined height pairing. We fol-
low the presentation given in [M-S2]. For the various definitions of the classical
height pairing, the interested reader is also referred to [M-S2] and to the article
of A. Beilinson [Be2]. There A. Beilinson states some conjectures about height
pairings for varieties defined over algebraic number fields.

4.1. Definition of the Height Pairing.
Let X be a projective variety of dimension n over C. Let A, B be two cycles

of codimension p, resp. q, such that

(1) p+ q = n + 1
(2) A ∩ B = ∅
(3) The cycle class γ(A) ∈ H2p

D (X,Z(p)) is zero
(4) B is homologically equivalent to zero.

Let U = X −A, then there is the long exact sequence (see 3.11)

−−→ H2p−1
D (U,Z(p)) −−→ H2p

D|A|(X,Z(p))
τ
−−→ H2p

D (X,Z(p)) −−→

Denote by cA the class of A in H2p
D|A|(X,Z(p)). By the assumptions we know

τ(cA) = 0, hence lifts to a class φA ∈ H
2p−1
D (U,Z(p)). The cup product induces a

pairing

<,>: H2p−1
D (U,Z(p))×H2q

D|B|(X,Z(q)) −−→ H2n+1
D|B| (U,Z(n+ 1))

∼=
−−→ H2n+1

D|B| (X,Z(n + 1)) −−→ H2n+1
D (X,Z(n + 1)) ∼= C∗

The isomorphism H2n+1
D|B| (U,Z(n + 1)) ∼= H2n+1

D|B| (X,Z(n + 1)) is caused by the

disjointness of A and B.
The pairing < φA, cA > is well defined, because the indeterminacy of the lifting

φA is H2p−1
D (X,Z(p)) and as in 3.23 we have, since B is homologically equivalent

to zero,
H2p−1

D (X,Z(p)) ∪ γ(B) = 0.

We can now define the desired height pairing:
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Definition 4.1. Let X, A and B be as above. Then we define the C∗-valued
height pairing as follows

< A,B >=< φA, cB > .

Remark 4.2. In the definition we identify H2n+1
D (X,Z(n + 1)) ∼= C/Z(n + 1)

with C∗. To avoid confusion we use C/Z(n + 1) for calculations in the sequel.

4.2. Massey Products as a Difference of Two Height Pairings.
Since we want to use the concept of cohomology with support on some closed

subvariety, we will calculate in this section Deligne-Beilinson cohomology for a
smooth complex projective variety X via the canonical flasque resolution of Gode-
ment recalled in the Appendix. Furthermore we have to show as in the case of
Čech Hypercohomology (see subsection 2.2), that the resolution is compatible
with the cup product on H•

D(X,Z(p)).
For sheaves F and H denote by G•(∗) their Godement resolutions. There is an

associative map
∪̃ : Gp(F)⊗ Gq(H) −−→ Gp+q(F ⊗H)

given by

σ∪̃τ(x0, . . . , xp+q) = σ(x0, . . . , xp)(xp+q)⊗ τ(xp+1, . . . , xp+q)

(see the interpretation of sections of G•(F•) in the Appendix) This defines a
morphism of complexes

∪̃ : G•(F)⊗ G•(H) −−→ G•(F ⊗H).

As in the case of the Čech product ∪̌ this translates to morphisms of double
complexes

∪̃ : G•(F•)⊗ G•(H•) −−→ G•(F• ⊗H•)

where F• and H• are complexes of sheaves.
Again we have to take care about the signs. Let as in subsection 2.2 denote by

s the different contractions. We have an isomorphism

(4.1) τ • : s(1,2)(3,4)s1,2s3,4(G
•1(F•2(p))⊗ G•3(F•4(p′)))

−−→ s(1,3)(2,4)s1,3s2,4(G
•1(F•2(p))⊗ G•3(F•4(p′))).

Replacing the complexes F•(∗) by the Deligne-Beilinson Complexes ZD(∗) we get
for α ∈ R well defined products

∪̃α = ∪α ◦ ∪̃ ◦ τ : G•(ZD(p))⊗ G•(ZD(p′)) −−→ G•(ZD(p+ p′))

As a consequence we get a theory of Massey products in Deligne cohomology by
using this resolution, which by the functoriality of Massey products is the same
as the one presented in section 3.4.

Let Z be a codimension p cycle on X and U = X − Z its complement. The
resolution G•(X) = G•(X,ZD(•)) gives rise to the short exact sequence of com-
plexes

0 −−→ G•|Z|(X) −−→ G•(X) −−→ G•(U) −−→ 0,
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where G•|Z|(X) denotes the subcomplex of G•(X) supported on Z. This yields the
long exact sequence of cohomology groups

. . . −−→ Hq−1
D (U, Z(p)) −−→ Hq

D|Z|(X, Z(p)) −−→ Hq
D(X, Z(p)) −−→ Hq

D(U, Z(p)) −−→ . . .

already used in the definition of the C∗ valued height pairing.
Let furthermore A, B be cycles on X of codimension p, resp. q and U ⊂ X an

open subset. ∪̃α gives associative maps

(4.2) ∪̃α : G•|A|(X,ZD(∗))⊗ G•|B|(U,ZD(∗)) −−→ G•|A∩B|(U,ZD(∗)).

This map yields the pairing

∪ : H•
D|A|(X,Z(∗))⊗H•

D|B|(U,Z(∗)) −−→ H•
D|A∩B|(U,Z(∗)).

We can now state the main theorem of this chapter.

Theorem 4.3. Let Ai for i = 1, 2, 3 be algebraic cycles of codimension pi on a
n-dimensional smooth projective algebraic variety X, with cycle classes γ(Ai) ∈
H2pi

D (X,Z(pi)), such that

(1) p1 + p2 + p3 = n+ 1
(2) A1 and A3 are homologically equivalent to zero
(3) A1 ∩A2 ∩ A3 = ∅
(4) M3(γ(A1), γ(A2), γ(A3)) is defined.

Then

M3(γ(A1), γ(A2), γ(A3)) =< A1, A2 ∩ A3 > − < A1 ∩A2, A3 >

Remark 4.4. To avoid confusion, we identify here H5
D(X,Z(3)) with C/Z(3).

Therefore we write M3(A1, A2, A3) as a difference and not as a quotient of the
height pairings.

Before proving theorem 4.3 we state a lemma which is an immediate conse-
quence of the construction of the boundary morphism.

Lemma 4.5. Let
0 −−→ A• η

−−→ B• ǫ
−−→ C• −−→ 0

be a short exact sequence of complexes of O-modules. The canonical flasque res-
olution or Čech resolution for some open covering where all the classes are living
gives the short exact sequence

0 −−→ G•(A•)
η
−−→ G•(B•)

ǫ
−−→ G•(C•) −−→ 0

which yields to the long exact sequence of hypercohomology groups

. . . −−→ Hp−1(X, C•)
ρ
−−→ Hp(X,A•)

η
−−→ Hp(X,B•)

ǫ
−−→ Hp(X, C•)

ρ
−−→ . . .

Given a class [a] ∈ Hp(X,A•) with representative a ∈ Gp(A•), such that η([a]) =
0. By assumption there exists a lifting, let’s say φ ∈ Gp−1(B•), with δ(φ) = η(a).
Then

(1) δ(ǫ(φ)) = 0, i.e. [ǫ(φ)] is a well defined cohomology class
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(2) ρ([ǫ(φ)]) = [a].

In other words we can [a] to [ǫ(φ)] ∈ Hp−1(X, C•).

Proof of Lemma 4.5:
The commutative diagram

(4.3)

0 −−−→ Gp−1(A•)
η

−−−→ Gp−1(B•)
ǫ

−−−→ Gp−1(C•) −−−→ 0

δ

y δ

y δ

y

0 −−−→ Gp(A•)
η

−−−→ Gp(B•)
ǫ

−−−→ Gp(C•) −−−→ 0

implies
δ(ǫ(φ)) = ǫ(δ(φ)) = ǫ(η(a)) = 0,

i.e. ǫ(φ) is closed.
The second point is the construction of the boundary map

ρ : Hp−1(C•) −−→ Hp(A•),

which we recall: Let c ∈ Gp−1(C•) be a closed cochain. We want to construct
ρ([c]).

Lift c to some b ∈ Gp−1(B•) with

ǫ(b) = c.

Since δ(c) = 0, we can find a ∈ Gp(A•), such that

δ(b) = η(a).

Since η is injective, a is unique and

δ(a) = 0.

Let b′ ∈ Gp−1(B•) be another lifting of c. Then

b′ − b = η(α)

for some α ∈ Gp−1(A•).
Let a′ ∈ Gp(A•) be the class with

δ(b′) = η(a′).

But
δ(b′) = δ(b+ η(α′)) = η(a+ δ(α′)).

Since η is injective
a′ = a+ δ(α′)

and therefore
[a] = [a′].

Thus the map
ρ : Hp−1(C•) −−→ Hp(A•)

given by
ρ([c]) = [a]
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is well defined and gives the long exact sequence of cohomology groups.
In the situation of the lemma ǫ(φ) certainly lifts to φ. By assumption we have

δ(φ) = η(a).

Therefore
ρ([ǫ(φ)]) = [a].

�

Let us now prove the theorem.
Proof of Theorem 4.3: We will write G•(X) instead of G•(X,ZD(∗)) in the

sequel. Let ai ∈ G2pi(X) be representatives for γ(Ai). We may choose ai to be of
the form

ai = η(γi) for γi ∈ G
2pi
|Ai|

(X,ZsD(pi)).

By the pairing 4.2 we find

γi,j ∈ G
2pi,j
|Ai∩Aj |

(X)

with

(4.4) γi,j = γi∪̃0γj .

Therefore
ai∪̃0aj = η(γi,j).

By assumption M3(γ(A1), γ(A2), γ(A3)) is defined. Therefore we find a1,2 ∈
G2p1,2−1(X) and a2,3 ∈ G2p2,3−1(X) with

δ(a1,2) = a1∪̃0a2

and
δ(a2,3 = a2∪̃0a3.

By definition

M = [a1∪̃0a2,3 − a1,2∪̃0a3] ∈ H
2p1,2,3−1
D (X,Z(p1,2,3))

is a representative of M3(γ(A1), γ(A2), γ(A3)).
Since 2p1,2,3 − 1 = 2n+ 1 the cochains

a1∪̃0a2,3 and a1,2∪̃0a3

are closed.
By proposition 3.24 the indeterminacy of M3(γ(A1), γ(A2), γ(A3)) is zero.

Therefore the cohomology classes

[a1∪̃0a2,3] and [a1,2∪̃0a3]

are defined unambigously.
We show in the sequel that

[a1∪̃0a2,3] =< A1, A2 ∩A3 > .

By assumption
η([γ2,3]) = [a2∪̃0a3] = [0].
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Lemma 4.5 implies that

δ(ǫ(a2,3)) = 0

and

ρ([ǫ(a2,3)]) = [γ2,3].

Let U2,3 = X − (A2 ∩ A3), then A1 ⊂ U2,3. Thus

G•|A1|(U2,3) ∼= G
•
|A1|(X).

The product ∪̃0 induces the commutative diagram
(4.5)

G2p1
|A1|

(X) ⊗ G2p2,3−1(X)
id⊗ǫ
−−−−→ G2p1

|A1|
(X) ⊗ G2p23−1(U23, ZsD(p2,3))

∪̃
−−−−→ G2n+1

|A1|
(U23)

∪̃

y ∼=

y

G2n+1
|A1|

(X)
id
−→ G2n+1

|A1|
(X)

η

y η

y

G2n+1(X)
id
−→ G2n+1(X)

Inserting the data we have yields

γ1 ⊗ a2,3 7→ γ1 ⊗ ǫ(a2,3) 7→ γ1∪̃0ǫ(a2,3)
↓ ↓

η(γ1)∪̃0a2,3 = η(γ1∪̃0ǫ(a2,3)).

The term

η(γ1)∪̃0a2,3 = a1∪̃0a2,3

is the first term of M = [a1∪̃0a2,3 − a1,2∪̃0a3].
The term

η(γ1∪̃0ǫ(a2,3))

represents by construction < A1, A2,3 > (see the definition of the height pairing).
Therefore

[a1∪̃0a2,3] =< A1, A2 ∩ A3 > .

By symmetry the equality

[a1,2∪̃0a3] =< A1 ∩A2, A3 >

holds also.

�

As a corollary we get

Corollary 4.6. Let the situation be as in 4.3, then the height pairings < A1, A2∩
A3 > and < A1 ∩ A2, A3 > are defined. Moreover the difference (or by remark
4.4 quotient) of these height pairings is always torsion.

We translate a special case of the example 3.32 to the situation of height
pairings.
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Example 4.7. Let E be an elliptic curve, given by the equation

y2 = x(x− 1)(x− λ)

and X = E ×E.
E is a covering of the projective line

π : E −−→ P1

with ramification points
P0 , P1 , Pλ , P∞.

The nontrivial twodivision points in Pic0(E) are given by

P0 − P∞ , P1 − p∞ , Pλ − P∞.

For an arbitrary point Q ∈ E we have

P∞ +Q ∼rat P∞ +Q+ (
y + y(Q)

x− x(Q)
) ∼rat Q

′
1 +Q′

2.

Here (f) denotes the divisor associated to the rational function f and Q, Q1, Q2

are the zeroes of the function y − y(Q). Prime denotes Galois conjugation.
We can write the point P1 − P∞ in the form

H = P1 +Q−Q′
1 −Q

′
2.

Let D = P0 − P∞ be another twodivision point and let A be an ample (1, 1)
Divisor on X. If we denote by p1 and p2 the two projections from X to the
elliptic curve E, we see that the Massey product

M = M3(γ(p
∗
1(D)), γ(2A), γ(p∗1(H)))

is defined.
By theorem 4.3 we can calculate M as

< p∗1(D), 2A ∩ p∗1(H) > − < p∗1(D) ∩ 2A, p∗1(H) > .

Using projection formula and the fact that A is an ample (1, 1) divisor we can
calculate the above terms on E via

M =< D, 2H > − < 2D,H > .

Now we can write
2D = (x)

and

2H =

(
(x− 1)

x2 − 2x(Q)x+ x(Q)2

y2 + 2y(Q)y + y(Q)2

)
= (h)

The calculation given in [M-S2] yields

M = log

(∏
j h(Dj)

bj

∏
i x(Hi)ai

)
= log

(
x(Q′

1)x(Q
′
2)h(0)

x(1)x(Q)h(∞)

)

= log

(
−
x(Q′

1)x(Q2)
′x(Q)2

x(Q)y(Q)2

)
= log

(
−
x(Q)x(Q1)x(Q2)

y(Q)2

)
= log(−1).
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We should explain some equalities. The last equality holds, since Q,Q1, Q2 are
the solutions of the equation y − y(Q).

h(0) = −
x(Q)2

y(Q)2

and

h(∞) = lim
x→∞

(x− 1)
x2 − 2x(Q)x+ x(Q)2

y2 + 2y(Q)y + y(Q)2
= 1.

Applying the exponential function we get

exp(2M) = 1.

This corresponds to the result obtained in example 3.32.

Remark 4.8. As we have seen the height pairing

< D, 2H >=
h(0)

h(∞)
= −

x(Q)2

y(Q)2

depends on the choice of the point Q. But Q was chosen arbitrarily. Thus the
height pairing is not invariant under rational equivalence of cycles. Theorem 4.3
implies that the difference is invariant, since M3(A1, A2, A3) is invariant under
rational equivalence. Moreover the difference of the two height pairings is always
torsion, whereas the height pairings < D, 2H > and < 2D,H > are not torsion
at all.
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5. Infinitesimal Variations of Massey products

As mentioned in the introduction, we want to study the behaviour of Massey
products in smooth families π : X −−→ S. To be precise, we start again with
codimension pi cycles Ai on X, which also are of codimension pi on the fibres
Xs = π−1(s). We assume that the Massey products are defined on the fibres
for all s ∈ S. By the previous chapter we know that on Xs a representative M
of M3(A1s, A2s, A3s) (where Ais = Ai|Xs) lives in H

2p1,2,3−1
D (Xs,Z(p1,2,3)) and are

homologically trivial up to torsion. Therefore we can associate to a representative
M ofM3(A1, A2, A3) a sectionM of the sheaf of intermediate Jacobians and apply
the Gauss-Manin connection ∇.

The notation is as follows:
We have the diagram

X
j

−−−→ X̄ ←−−− Y

π

y π̄

y π̄

y

S
i

−−−→ S̄ ←−−− Σ

where X̄ and S̄ are good compactifications of X resp. S and where i, j are
the embeddings. Furthermore we assume π to be smooth and that Y and Σ are
divisors with normal crossings.

5.1. Gauss-Manin-Connection and Griffiths Infinitesimal Invariant.

We will first give an algebraic construction of the Gauss-Manin-Connection on
the local system defined fibrewise by Hq(Xs,C). We follow the presentation given
in the article of N.M. Katz [Ka2]. See also the article of M. Green in [GMV],
[Del4], [Ka1] and [Zu].

Let Ω•
X̄

(log Y ) be the deRham complex of algebraic differential forms with log-
arithmic singularities on Y , and let Ω•

X̄/S̄
(log Y ) be the relative deRham complex

of the family π : X −−→ S with logarithmic singularities along Y .
We can filter the complex Ω•

X̄
(log Y ) in two different ways. The first filtration

is given by

F p(Ω•
X̄(log Y ))i =

{
0 for i < p

Ωi
X̄

(log Y ) for i ≥ p

On the other hand there is the short exact sequence

0 −−→ π̄∗Ω1
S̄(log Σ) −−→ Ω1

X̄(log Y ) −−→ Ω1
X̄/S̄(log Y ) −−→ 0.

The sequence induces the second filtration G•(Ω•
X̄

(log Y )) given by

Gp(Ω•
X̄(log Y )) = im(π̄∗Ωp

S̄
(log Σ)⊗OX̄ Ω•−p

X̄
(log Y ) −−→ Ω•

X̄(log Y )).

The associated graded pieces Grp = Gp/Gp+1 are

Grp(Ω•
X̄(log Y)) = π̄∗Ωp

S̄
(log Y)⊗OX̄

Ω•−p

X̄/S̄
(log Y).
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There is the Leray spectral sequence

Ea,b
1 = Ωa

S̄(log Σ)⊗Rbπ̄∗Ω
•
X̄/S̄(log Y )⇒ Ra+bπ̄∗Ω

•
X̄(log Y )

whose d1 differential is given by

d1 : Ωa
S̄(log Σ)⊗Rbπ̄∗Ω

•−a
X̄/S̄
−−→ Ωa+1

S̄
(log Σ)⊗Rbπ̄∗Ω

•−a−1
X̄/S̄

(log Y ).

Remark 5.1. For a = 0 the differential d1 is the Gauss-Manin Connection

∇ : Rbπ̄∗Ω
•
X̄/S̄(log Y ) −−→ Ω1

S̄(log Σ)⊗Rbπ̄∗Ω
•−1
X̄/S̄

(log Y ).

∇ is an integrable connection. It gives rise to the complex

Rqπ̄∗Ω
•
X̄/S̄(log Y )

∇
−−→ Ω1

S̄(log Σ)⊗Rqπ̄∗Ω
•
X̄/S̄(log Y )

∇
−−→ . . . .

By [Del4], II.6.10, the Hypercohomology of this complex computes H∗(S,Rqπ∗C).
We define the relative analogue of the F-filtration by

F p(Ω•
X̄/S̄(log Y ))i =

{
0 for i < p

Ωi
X̄/S̄

(log Y ) for i ≥ p

If we take the higher direct image sheaves and look at a fibre Xs for s ∈ S, we
have

Rqπ̄∗F
p(Ω•

X̄/S̄(log Y ))⊗ k(s) = F pHq(Xs,C) = Hq(Xs, F
pΩ•

Xs).

Proposition 5.2. ∇ preserves the filtration F by a shift of one, i.e.

∇(Rqπ̄∗F
pΩ•

X̄/S̄(log Y )) ⊂ Ω1
S̄(log Σ)⊗Rqπ̄∗F

p−1Ω•−1
X̄/S̄

(log Y ).

Proof. By construction ∇ is the connecting morphism of the short exact sequence

0 −−→ Gr1 −−→ G0/G1 −−→ Gr0 −−→ 0

which is a consequence of the following exact sequence

0 −−→ π̄∗Ω1
S̄(log Σ)⊗ Ωp−1

X̄/S̄
(log Y ) −−→ Ωp

X̄
(log Y ) −−→ Ωp

X̄/S̄
(log Y ) −−→ 0.

Taking the higher direct images we get the map

∇ : Rqπ̄∗Ω
p

X̄/S̄
(log Y ) −−→ Rq+1π̄∗(π̄

∗Ω1
S̄(log Σ)⊗ Ωp−1

X̄/S̄
(log Y ))

= Ω1
S̄(log Σ)⊗Rqπ̄∗Ω

p−1

X̄/S̄
(log Y )

which proves the proposition. �

We define the family of (p, q)-th intermediate Jacobians (see [ZZ] and [GMV]).

Definition 5.3. For the diagram

X
j

−−−→ X̄ ←−−− Y

π

y π̄

y π̄

y

S
i

−−−→ S̄ ←−−− Σ
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the family of (p, q)-th intermediate Jacobians is

J p,q := Rq−1π̄∗Rj∗C/(R
q−1π̄∗Rj∗Z(p) + F pRq−1π̄∗Rj∗C).

The family comes together with a map

πp,q : J p,q −−→ S̄

with

π−1
p,q(s) = J p,q(Xs) = Hq−1(Xs,C)/(Hq−1(Xs,Z(p)) + F pHq−1(Xs,C))

= kerHq
D(Xs,ZD(p)) −−→ Hq(Xs,Z(p)) for s ∈ S.

Definition 5.4. Let ν ∈ H0(S̄,J p,q) be a section. We say that ν satisfies the
infinitesimal condition for normal functions, if there exists a lifting ν to
some ν̃ ∈ H0(S̄, Rq−1π̄∗Rj∗C) = H0(S̄,Rq−1π̄∗Ω

•
X̄/S̄

(log Y )), such that

∇(ν̃) ∈ H0(S̄,Ω1
S̄(log Σ)⊗ F p−1Rq−1π̄∗Ω

•
X̄/S̄(log Y )).

Definition and Theorem 5.5. Let ν ∈ H0(S̄,J p,q) be a section. We call ν a
normal function, if ν satisfies the infinitesimal condition for normal functions
5.4. This definition is independent of the chosen lifting ν̃ ∈ H0(S̄, Rq−1π̄∗Rj∗C).

Proof. The lifting ν̃ only depends on classes

z ∈ H0(S̄, Rq−1π̄∗Rj∗Z(p))

and
f ∈ H0(S̄, F pRq−1π̄∗Ω

•
X̄/S̄(log Y )⊗OS̄).

For those we have
∇(z) = 0

since integral classes are locally constant and

∇(f) ∈ Ω1
S̄(log Σ)⊗ F p−1Rq−1π̄∗Ω

•−1
X̄/S̄

(log Y ).

�

Definition 5.6. The Gauss-Manin connection induces maps

Ωk
S̄(log Σ)⊗F p−kRq−1π̄∗Ω

•−k
X̄/S̄

(log Y ) −−→ Ωk+1
S̄

(log Σ)⊗F q−k−1Rq−1π̄∗Ω
•−k−1
X̄/S̄

(log Y ).

Setting

(5.1) Kkp,q = Ωk
S̄(log Σ)⊗ F p−kRq−1π̄∗Ω

•−k
X̄/S̄

(log Y )

we get a complex (K•
p,q,∇), which we call the (p, q)-th Koszul complex asso-

ciated to the family π : X −−→ S.

Let
ν : S̄ −−→ J p,q

be a normal function of π : X −−→ S. Since ∇2 = 0 we get an element

∇(ν̃) ∈ H0(S̄,Ω1
S̄(log Σ)⊗ F p−1Rq−1π̄∗Ω

•−1
X̄/S̄

(log Y )) −−→ H0(H1(S̄,K•
p,q)).
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On the other hand the lifting ν̃ only depends on elements coming from
Rq−1π̄∗Rj∗Z(p), which vanish under ∇, or on some f ∈ F pRq−1π̄∗Ω

•
X̄/S̄

(log Y ),

but ∇(f) ∈ ∇(K0
p,q), hence vanishes in H1(K•

p,q). Thus the following definition is
well defined.

Definition 5.7. The element ∇(ν̃) gives a well defined element

δ(ν) ∈ H1(K•
p,q).

We call δ(ν) Griffiths Infinitesimal Invariant of the normal function ν.

Definition 5.8. A normal function is called constant, if δ(ν) = 0

In the next chapter we will associate a normal function to a Deligne cohomology
class. It will allow us to formulate a criteria for Deligne cohomology classes to be
constant.
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5.2. Relative Deligne-Beilinson-cohomology.

Since we are dealing with smooth families, we need a relative version of Deligne-
Beilinson-cohomology. We present first the construction of F. El Zein and S.
Zucker (see [ZZ]) in a globalized setup, which is possible as stated in the remark
after definition 2, chapter 3 [ZZ]. But this construction is not sufficient for what
we need. Therefore we will construct the relative Deligne-Beilinson-cohomology
in a different way corresponding to the construction of the Deligne-Beilinson-
Cohomolgy in chapter 3.1.

Let the situation be as in 5.1 and assume furthermore, that S is a smooth
curve.

In the derived category there are morphisms

Rj∗Z(p) −−→ Rj∗C
∼=
−−→ Ω•

X̄(log Y ) −−→ Ω•
X̄/S̄(log Y ) −−→ Ω<p

X̄/S̄
(log Y ),

where the Quasi Isomorphism

Rj∗C
∼=
−−→ Ω•

X̄(log Y )

has been constructed in [Del1], chapter 3.1.
Let us denote by ǫp the composition map

ǫp : Rj∗Z(p) −−→ Ω<p

X̄/S̄
(log Y ).

For the realization of the morphism ǫp see [ZZ], chapter 3.

Definition 5.9.

(1) We call the complex

DX/S(p) := Cone(Rj∗Z(p)
ǫp
−−→ Ω<p

X̄/S̄
(log Y ))

the p-th relative Deligne Complex of the family π : X −−→ S.
(2) The sheaf of (p,q)-th relative Deligne Groups on S̄ is defined as:

Dq
X/S(p) := Rqπ̄∗DX/S(p).

Properties 5.10.

(1) Let denote by Zp(X) the group of codimension p cycles on X, then there
is a map

(5.2) ν : Zp(X) −−→ H0(S̄,R2pπ̄∗DX/S(p))

constructed via the natural projection

ZD(p) −−→ DX/S .

By construction ν respects rational equivalence, therefore we get well a
defined map

(5.3) ν : CHp(X) −−→ H0(S̄,R2pπ̄∗DX/S(p)).
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(2) For s ∈ S denote by Zp(Xs) the subgroup of cycles Z ∈ Zp(X), for which
T ∩Xs is defined. Then by slicing theory (see [Ki1], chapter 3) the map
ν of 5.2 restricts to

(5.4) ν : Zp(Xs) −−→ H2p
D (Xs,Z(p)).

For more details on this see [ZZ], chapter 3.
Next we state the alternative construction of relative Deligne-Beilinson coho-

mology.

Definition 5.11.

(1) We call the complex

ZD/S(p) := Cone(Rj∗Z(p)⊕ F pΩ•
X̄/S̄(log Y )

ǫ−ι
−−→ Rj∗Ω

•
X/S)

the p-th Relative Deligne-Beilinson Complex of the family
π : X −−→ S.

(2) The groups

Hq
D/S(X,Z(p)) := Hq(X̄,ZD/S(p))

are called the relative Deligne-Beilinson cohomology groups.

The complex ZD/S(p) lives in the following two short exact sequences

0 −−→ N (p) −−→ ZD(p) −−→ ZD/S(p) −−→ 0

where N (p) is the complex

N (p) := Cone(π̄∗Ω1
S̄(log Σ)⊗ F p−1Ω•

X̄/S̄(log Σ)) −−→ Rj∗(π
∗Ω1

S ⊗ Ω•
X/S)

and

0 −−→ Ω•
X̄/S̄(log Y )[−1] −−→ ZD/S(p) −−→ Rj∗Z(p)⊕ F pΩ•

X̄/S̄(log Y ) −−→ 0

Proposition 5.12. The complexes ZD/S(p) and DX/S(p) are quasi isomorphic.

Proof. By equation 3.3 we can construct ZD/S(p) as

Cone(Rj∗Z(p) −−→ Cone(F pΩ•
X̄/S̄(log Y ) −−→ Rj∗Ω

•
X/S)).

The complexes

Cone(F pΩ•
X̄/S̄(log Y ) −−→ Rj∗Ω

•
X/S) and Ω<p

X̄/S̄
(log Y )

are quasi isomorphic. Therefore the proposition follows by 6.5 (see the Appendix).
�

The properties of 5.10 translate directly to the complex ZD/S. Putting together
all the data, we get the following commutative diagram.It will be important in
the sequel.
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(5.5)
0 0 0
↓ ↓ ↓

0 → π̄∗Ω1
S̄
(log Σ) ⊗ Ω•−1

X̄/S̄
(log Y ))[−1] → N (p) → π̄∗Ω1

S̄
(log Σ) ⊗ F p−1Ω•−1

X̄/S̄
(log Y ) → 0

↓ ↓ ↓
0 → Ω•

X̄
(log Y )[−1] → ZD(p) → Rj∗Z(p) ⊕ F pΩ•

X̄
(log Y ) → 0

↓ ↓ ↓
0 → Ω•

X̄/S̄
(log Y )[−1] → ZD/S(p) → Rj∗Z(p) ⊕ F pΩ•

X̄/S̄
(log Y ) → 0

↓ ↓ ↓
0 0 0

As a next step we construct a normal function νA associated to a Deligne coho-
mology class A ∈ Hq

D(X,Z(p)), where A is homologically equivalent to zero on
the fibres Xs. We will show, that this function satisfies the infinitesimal condi-
tion for normal functions, which enables us to calculate its infinitesimal invariant
δ(νA). Finally we show that we can read the infinitesimal invariant δ(νA) in the
cohomology class ǫF (A).

Let the situation be as above and let A ∈ Hq
D(X,Z(p)) such that its class

ǫF (A) ∈ F pHq(X̄,Ω•
X̄

(log Y )) vanishes on the fibres Xs, i.e. ǫF (A) maps to zero
under the map

H0(S̄,Rqπ̄∗F
pΩ•

X̄(log Y )) −−→ H0(S̄,Rqπ̄∗F
pΩ•

X̄/S̄(log Y )).

Taking the higher direct images of the commutative diagram 5.5 we get

52



Let us denote by λ the map

λ : H0(S̄,Rqπ̄∗ZD(p)) −−→ H0(S̄,Rqπ̄∗ZD/S(p)).

Then λ(A) lifts to a class

νA ∈ H
0(S̄,Rq−1π̄∗Ω

•
X̄/S̄(log Y )).

This lifting is unique up to elements coming from

H0(S̄,Rq−1π̄∗Rj∗Z(p))⊕H0(S̄,Rq−1π̄∗F
pΩ•

X̄/S̄(log Y )).
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Definition and Theorem 5.13. The class νA is a normal function, i.e. it
satisfies the infinitesimal condition for normal functions 5.4. We call νA a normal
function associated to the Deligne cohomology class A ∈ Hq

D(X,Z(p)).

Proof. We have the commutative diagram

H0(S̄Rq−1π̄∗Ω
•
X̄/S̄

(log Y )) → H0(S̄,Rqπ̄∗ZD/S(p))

↓ ∇ ↓
H0(S̄,Ω1

S̄
(log Σ)⊗Rq−1π̄∗Ω

•
X̄/S̄

(log Y )) → H0(S̄,Rq+1π̄∗N (p)).

The class λ(A) maps to zero in H0(S̄,Rq+1π̄∗N (p)). Therefore ∇(νA) maps to
zero in H0(S̄,Rq+1π̄∗N (p)). Thus ∇(νA) lives in the image of the map

H0(S̄,Ω1
S̄(log Σ)⊗ F p−1Rq−1π̄∗Ω

•
X̄/S̄(log Y ))

−−→ H0(S̄,Ω1
S̄(log Σ)⊗Rq−1π̄∗Ω

•
X̄/S̄(log Y )).

This is the infinitesimal condition for normal functions 5.4. �

On the other hand we can construct a class D(A) associated to A as follows:
πF (A) lives in the kernel of the map

H0(S̄,Rqπ̄∗F
pΩ•

X̄(log Y )) −−→ H0(S̄,Rqπ̄∗F
pΩ•

X̄/S̄(log Y )).

First lift ǫF (A) up to classes coming from

H0(S̄,Rq−1π̄∗Rj∗Z(p))⊕H0(S̄,Rq−1π̄∗F
pΩ•

X̄/S̄(log Y ))

to a class

µA ∈ H
0(S̄,Ω1

S̄(log Σ)⊗Rq−1π̄∗F
p−1Ω•

X̄/S̄(log Y )).

Secondly map µA via the horizontal connecting morphism of the diagram of page
??? to the class

D(A) ∈ H0(S̄,Ω1
S̄(log Σ)⊗Rq−2π̄∗Ω

•
X̄/S̄(log Y ))).

Note that the outer vertical connecting morphisms of the diagram are given by
the Gauss Manin connection ∇. This yields to the following

Proposition 5.14. D(A) equals ∇(νA) modulo the image of

H0(S̄,Rqπ̄∗F
pΩ•

X̄/S̄(log Y )).

This proposition is a consequence of the following
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Lemma 5.15. Let X
π
−−→ S be a flat family and

0 0 0y
y

y
0 −−−→ A• −−−→ B• −−−→ C• −−−→ 0y

y
y

0 −−−→ D• −−−→ E• −−−→ F • −−−→ 0y
y

y
0 −−−→ G• −−−→ H• −−−→ I• −−−→ 0y

y
y

0 0 0

be a commutative diagram of complexes of sheaves on X and M ∈ H0(S,Rqπ∗E
•)

a global section, which vanishes in H0(S,Rqπ∗I
•).

Furthermore we denote the different connecting morphisms by

d1 : H0(S,Rqπ∗C
•) −−→ H0(S,Rq+1π∗A

•)

d2 : H0(S,Rqπ∗G
•) −−→ H0(S,Rq+1π∗A

•)

d3 : H0(S,Rq−1π∗I
•) −−→ H0(S,Rqπ∗C

•)

d4 : H0(S,Rq−1π∗I
•) −−→ H0(S,Rqπ∗I

•).

Now map firstM to a class in H0(S,Rqπ∗F
•), lift this class to H0(S,Rqπ∗C

•) and
map this under the connecting morphism d1 to the class M1 ∈ H0(S,Rq+1π∗A

•).
On the other side mapM to a class in H0(S,Rqπ∗H

•) lift it to H0(S,Rqπ∗G
•) and

then map it via the connecting morphism d2 to the class M2 ∈ H0(S,Rq+1π∗A
•).

Then M1 equals M2 modulo

d1d3H
0(S,Rqπ∗I

•) + d2d4H
0(S,Rqπ∗I

•).

Proof. The lemma is an immediate consequence of the snake-lemma. �

Corollary 5.16. By construction the class D(A) lives in H1(K•
p,q) (see 5.1).

There we have
D(A) = δ(νA).
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5.3. The infinitesimal invariant of M3(A1, A2, A3).

In this subsection we want to define, when Massey products are called con-
stant. As mentioned before we want to apply the Gauss-Manin connection on
M3(A1, A2, A3). But we have to be careful, since M3(A1, A2, A3) is the set M+I,
where M is a representative of M3(A1, A2, A3) and I denotes the indeterminacy

I = A1 ∪H
2p2,3−1
D (X,Z(p2,3)) +H

2p1,2−1
D (X,Z(p1,2)) ∪ A3.

Therefore we start with examining the behaviour of I under ∇.

Lemma 5.17. Let Ai ∈ Z
pi(X) be codimension pi cycles on X. Denote by Ai also

the corresponding cycle classes in H2pi
D (X,Z(pi)). Assume that M3(A1, A2, A3) is

defined in the Deligne cohomology of X with representative M . Then there exists
some natural number n ∈ N , such that nM is homologically trivial on the fibres
and nM is a representative of M3(A1, nA2, A3).

Proof. Let us denote by πZ the map

πZ : H
2p1,2,3−1
D (Xs,Z(p1,2,3)) −−→ H2p1,2,3−1(Xs,Z(p1,2,3)).

On the fibres we have

F pH2p1,2,3−1(Xs,C) ∩H2p1,2,3−1(Xs,Z(p1,2,3)) = 0.

Therefore the only chance for πZ(M) is to be torsion in H2p1,2,3−1(Xs,Z(p1,2,3)).
Choose n, such that nπZ(M) = 0.

For the second point see the properties 2.6 of Massey triple products. �

Remark 5.18. Lemma 5.17 implies that we can construct a normal function ν as-
sociated to nM and calculate its infinitesimal invariant δ(ν) ∈ H1(K•

2p1,2,3−1,p1,2,3
).

There we can divide by n.
On the other hand πF (M) lives in the kernel of the map

H0(S̄,Rqπ̄∗F
pΩ•

X̄(log Y )) −−→ H0(S̄,Rqπ̄∗F
pΩ•

X̄/S̄(log Y )).

Therefore we can construct the class D(M). Since D(nM) = δ(nM) in
H1(K•

2p1,2,3−1,p1,2,3), the class D(M) has to be equal to δ(nM) divided by n.

Therefore we assume from now on the representatives M of M3(A1, A2, A3) to
be homologically trivial on the fibres Xs.

Proposition 5.19. Let the situation be as in lemma 5.17. Assume that M is ho-
mologically trivial on the fibres (see remark 5.18) and let νM be a normal function
associated to M . Furthermore denote by ǫF/S the composed map

Hq
D(X,Z(p)) −−→ F pHq(X,C) −−→ H0(S̄,Rqπ̄∗Ω

•
X̄/S̄(log Y )).

Then δ(νM) is well defined modulo

I = ǫF/S(A1) ∧ δ(H
2p2,3−1
D (X,Z(p2,3))) + δ(H

2p1,2−1
D (X,Z(p1,2))) ∧ ǫF/S(A3),

where
δ(Hq

D(X,Z(p)))
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is the set of all the possible infinitesimal invariants of normal functions associated
to Deligne cohomology classes living in δ(Hq

D(X,Z(p))).

Proof. M3(A1, A2, A3) is defined to be the set

M3(A1, A2, A3) = M + A1 ∪H
2p2,3−1
D (X,Z(p2,3)) +H

2p1,2−1
D (X,Z(p1,2)) ∪ A3.

Thus another representative of M3(A1, A2, A3), let us denote it by M ′, differs
from M by a term of the form

B = A1 ∪Ψ2,3 + Ψ1,2 ∪A3.

with
ψi,j ∈ H

2pi,j−1
D (X,Z(pi,j)).

By the same argument as above Ψi,j and therefore B are homologically trivial on
the fibres, hence their infinitesimal invariants are defined. What remains to prove
is

δ(B) = ǫF/S(A1) ∪ δ(Ψ2,3) + δ(Ψ1,2) ∪ ǫF/S(A3)

In order to prove this we use first the fact that the product rules of 3.9 translate
directly to the relative Deligne complex ZD/S(p). This implies that we can write
λ(Ψi,j) = η(ψi,j), where again λ denotes the map

λ : H0(S̄,Rqπ̄∗ZD(p)) −−→ H0(S̄,Rqπ̄∗ZD/S(p)).

We have

λ(A1 ∪Ψ2,3) = λ(A1) ∪ λ(Ψ2,3) = η(ǫF (λ(A1)) ∧ ψ2,3) = η(ǫF/S(A1) ∧ ψ2,3).

Note that ψ2,3 is a normal function associated to Ψ2,3.
The term Ψ1,2 ∪ A3 is treated in the same way.
So far we have constructed a normal function associated to B:

νB = ǫF/S(A1) ∧ ψ2,3 + ψ1,2 ∧ ǫF/S(A3).

On the side of the Gauss Manin connection, we have a Leibniz rule, i.e. let α be
a section of Rpπ̄∗Ω

•
X̄/S̄

(log Y ) and β one of Rqπ̄∗Ω
•
X̄/S̄

(log Y ), then we have

∇(α ∧ β) = ∇(α) ∧ β + (−1)pα ∧ ∇(β).

Applying this to B we get

∇(B) = ∇(ǫF/S(A1)) ∧ ψ2,3 + ǫF/S(A1) ∧ ∇(ψ2,3)

+∇(ψ1,2) ∧ ǫF/S(A3)− ψ1,2 ∧∇(ǫF/S(A3))

ǫF/S(Ai) is an integral class, therefore

∇(ǫF/S(Ai)) = 0.

This yields to

∇(B) = ǫF/S(A1) ∧ ∇(ψ2,3) +∇(ψ1,2) ∧ ǫF/S(A3)

and therefore

δ(νB) = ǫF/S(A1) ∧ δ(νΨ2,3) + δ(νΨ1,2) ∧ ǫF/S(A3).
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Since the Ψi,j were chosen arbitrarily, we are done. �

Now we are ready to define the infinitesimal invariant of M3(A1, A2, A3) and
when we call M3(A1, A2, A3) to be constant.

Definition 5.20. Let Ai ∈ H
2pi
D (X,Z(pi)) be Deligne cohomology classes, such

that M3(A1, A2, A3) is defined. Let M be a representative of M3(A1, A2, A3) and
denote by I the set

I = ǫF/S(A1) ∧ δ(H
2p2,3−1
D (X,Z(p2,3))) + δ(H

2p1,2−1
D (X,Z(p2,3))) ∧ ǫF/S(A3).

(1) We call the set

δ(M3(A1, A2, A3)) = δ(νM) + I

the infinitesimal invariant of M3(A1, A2, A3)
(2) M3(A1, A2, A3) is said to be constant if

δ(νM) ∈ I

in other words
δM3(A1, A2, A3) = I

or equivalently
δ(M3(A1, A2, A3)) = 0

in the quotient
H1(K•

2p1,2,3−1,p1,2,3
)/I

Remark 5.21. Proposition 5.19 implies that δ(M3(A1, A2, A3)) does not depend
on the choice of the representative M .

Secondly 5.19 gives in the case of rigidity, that the infinitesimal invariants of
all the representatives M of M3(A1, A2, A3) are of the form

δ(νM) = ǫF/S(A1) ∧ δ(νΨ2,3) + δ(νΨ1,2) ∧ ǫF/S(A3)

for suitable Ψi,j ∈ H
pi,j−1
D (X,Z(pi,j)).

The third implication is, that we really can find a representative M of
M3(A1, A2, A3) such that

δ(M) = 0,

since all the elements of

ǫF/S(A1) ∧ δ(H
2p2,3−1
D (X,Z(p2,3))) + δ(H

2p1,2−1
D (X,Z(p2,3))) ∧ ǫF/S(A3)

are the infinitesimal invariants of some representative of M3(A1, A2, A3).
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5.4. An alternative approach to δ(M3(A1, A2, A3)).
Let us begin with an example.
Assume X = ∆∗× Y , where ∆∗ is the punctured disc and Y is smooth projec-

tive. Let M ∈ H2p−1
D (X,Z(p)), then ǫF (M) maps to zero under the map

F pH2p−1(X̄,Ω•
X̄(log Y )) −−→ H0(∆,R2p−1π̄∗F

pΩ•
X̄/∆(log Y )).

Here ∆ is the disc and π̄ the projection from X̄ to ∆.
As shown in section 5.2 the infinitesimal invariant δ(νM) can be calculated via

lifting ǫF (M) to the class

M̃ ∈ H0(∆,Ω1
∆(log 0)⊗R2p−2π̄∗F

p−1Ω•
X̄/∆(log Y )).

But this object is just isomorphic to

H0(∆,Ω1
∆(log 0))⊗H2p−2(X̄, F p−1Ω•

X̄/∆(log Y ))

= H0(∆,Ω1
∆(log 0))⊗H2p−2(Y, F p−1Ω•

Y ).

In other words we lift ǫF (M) to a class inH2p−2(Y,C) tensorized with a differential
form coming from ∆ with logarithmic poles at zero.

On X̄ this class corresponds to a class supported on the boundary, i.e. we have
a class living in

H2p−1
|Y | (X̄,C).

The aim of the section is to construct a class M̃ supported on the boundary
Y = X̄−X and to compare this class with the infinitesimal invariant δ(νM). For
constructing the class we will use intersection theory, which is possible since we
assume that our cohomology classes Ai are the cycle classes of some codimension
pi cycles on X.

Construction of M̃
Let Ai ∈ Zpi(X) for i = 1, 2, 3 be algebraic cycles of codimension pi. We will

also write Ai for the corresponding cycle class in H2pi
D (X,Z(pi)). We denote by Āi

their compactifications in X̄. Furthermore by intersection theory we can assume
that all the cycles intersect proper also with the boundary Y . We write Ai,j for
the intersection of Ai with Aj and Āi,j for the compactification of Ai,j (and not
for Āi ∩ Āj).

Let’s assume that M3(A1, A2, A3) is defined in the Deligne cohomology of X.
By assumption there exist cycles Bi,j of codimension pi,j and support on Y with

Ā1,2 ∼D B1,2

Ā2,3 ∼D B2,3,

where ∼D stands for Deligne equivalence, i.e. they have the same cycle class
in Deligne Cohomology. This implies certainly that they are also homologically
equivalent.
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Assume that we have chosen the Bi,j in a way that they again intersect properly
with Ai. We construct a cycle of codimension p1,2,3, namely

M̃ = Ā1 ∩ B2,3 − B1,2 ∩ Ā3.

M̃ has support on Y and on X̄ we have

Ā1 ∩B2,3 ∼hom Ā1,2,3

as well as

B1,2 ∩ Ā3 ∼hom Ā1,2,3.

Let’s turn now to cohomology

Lemma 5.22. The cycle class of M̃ in H2p1,2,3(X̄,C) vanishes.

Proof. Since both summands of M̃ are homologically equivalent to Ā1,2,3, M̃
must be homologically trivial on X̄. �

Now we have the exact sequence of cohomology with support

. . . −−→ H2p1,2,3−1(X,C)
ρ
−−→ H

2p1,2,3
|Y | (X̄,C) −−→ H2p1,2,3(X̄,C) −−→ . . . .

By this we can lift the cycle class of M̃ in H
2p1,2,3
|Y | (X̄,C) to a class

M∈ H2p1,2,3−1(X,C).

Proposition 5.23. The class M can be chosen to be ǫF (M), where M is a
representative of M3(A1, A2, A3).

Proof. What we did not mention up to now is the fact, that the cohomology class

M̃ lives already in the image of

H
2p1,2,3
D,|Y | (X̄,Z(p1,2,3))

since on X̄ it is the difference of two Hodge classes supported on Y . We denote
this class by

M̃ ∈ H
2p1,2,3
D,|Y | (X̄,Z(p1,2,3)).

Obviously M̃ is mapping to zero in H
2p1,2,3
D (X̄,Z(p1,2,3)) and we have

ǫF (M̃) = M̃.

Here we denoted by ǫF the corresponding map.

We claim that we can lift M̃ to a class M ∈ H
2p1,2,3−1
D (X,Z(p1,2,3) where M is

a representative of M3(A1, A2, A3).
Denote by S•(p) the complex

S•(p) = Cone(ZD,X̄(p)
f
−−→ ZD,X(p)).
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We get a distinguished triangle

ZD,X̄(p)
f

−−−−−→ ZD,X(p)

J
J] g 



�
ρ

S•(p)

By the 5-lemma S•(p) computes the Deligne Cohomology with support on Y

H•
D,|Y |(X̄,Z(p)).

Let ∪0 be the product of section 3.2 on ZD,X̄(p) as well as on ZD,X(p).
The natural pairing

∪ : Hq
D,|Y |(X̄,Z(p))×Hq′

D (X̄,Z(p′)) −−→ Hq+q′

D,|Y |(X̄,Z(p+ p′))

is induced on the level of sections by ∪0 in the following manner.
Remember that we can realize S•(p) as the direct sum

S•(p) = ZD,X̄(p)⊕ ZD,X(p)[1]

together with the differential

dS = (dZD,X̄
, dZD,X

− f).

We can define the pairing

∪0 : S•(p)× ZD,X̄(p′) −−→ S•(p+ p′)

(a, b)× c −−→ (a ∪0 c, b ∪0 f(c)).

Let C•(∗) denote the Čech resolutions of the complexes.
Choose

ᾱi ∈ C
2pi(ZD,X̄(pi))

representing the Deligne classes Āi.

αi = f(ᾱi) ∈ C
2pi(ZD,X(pi))

represents the cycle class

Ai ∈ H
2pi
D (X,Z(pi)).

Furthermore let

βi,j = (ωi,j, γi,j) ∈ C
2pi,j (S•(pi,j))

be a representative of Bi,j.
By construction we have

g(Bi,j) = Āi,j,

in other words g(βi,j) = ωi,j differs from ᾱi,j by some exact cocycle. Therefore
we can assume ωi,j = ᾱi,j.

On the other hand we know since M3(A1, A2, A3) is defined in Deligne coho-
mology that

f(ᾱi,j) = αi,j = dφi,j for some φi,j ∈ C
2pi,j−1(ZD,X(pi,j)).
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Hence the cocycle

ψi,j = (ᾱi,j , φi,j) ∈ C
2pi,j (S•(pi,j))

represents another lifting of Āi,j to H
2pi,j
D,|Y |(X̄,Z(pi,j)).

ψi,j differs from βi,j by some closed cocycle of the form ρ(ϕi,j) for some ϕ ∈
C2pi,j−1(ZD,X(pi,j)). This is the indeterminacy of Massey products as defined in
2.5. Thus we can choose

φi,j = γi,j.

The class M̃ is now constructed as follows:

M̃ = [ᾱ1 ∪0 ψ2,3 − ψ1,2 ∪0 ᾱ3].

The following simple calculation finishes the proof.

M̃ = [ᾱ1 ∪0 ψ2,3 − ψ1,2 ∪0 ᾱ3]

= [ᾱ1 ∪0 (ᾱ2,3, φ2,3)− (ᾱ1,2, φ1,2) ∪0 ᾱ3]

= [(ᾱ1 ∪0 ᾱ2,3, f(ᾱ1) ∪0 φ2,3)− (ᾱ1,2 ∪0 ᾱ3, φ1,2 ∪0 f(ᾱ3))]

= [(ᾱ1,2,3 − ᾱ1,2,3, α1 ∪0 φ2,3 − φ1,2 ∪0 α3)]

= [g(α1 ∪0 φ2,3 − φ1,2 ∪0 α3)].

[α1∪0φ2,3−φ1,2∪0α3)] is by construction a representative M ofM3(A1, A2, A3). �

Definition 5.24. We say that the cycle class of M̃ vanishes in H
2p1,2,3
|Y | (X̄,C) if

we can write it as

M̃ = ǫF (A1) ∧ ρ(ǫF (Ψ2,3)) + ρ(ǫF (Ψ1,2)) ∧ ǫF (A3)

for classes

Ψi,j ∈ H
2pi,j
D (X, (pi,j)).

Lemma 5.25. The vanishing of M̃ is equivalent to

ǫF (M3(A1, A2, A3)) = ǫF (A1 ∪H
2p2,3−1
D (X,Z(p2,3))−H

2p1,2−1
D (X,Z(p1,2)) ∪A3),

i.e. the image of each representative of M3(A1, A2, A3) lies in the image of the
indeterminacy of M3(A1, A2, A3).

Proof. By definition

M̃ = ǫF (A1) ∧ ρ(ǫF (Ψ2,3)) + ρ(ǫF (Ψ1,2)) ∧ ǫF (A3).

for suitable ψi,j ∈ H
2pi,j−1
D (X,Z(pi,j)). Let M be the lifting of proposition 5.23.

The class

M ′ = M − A1 ∪Ψ2,3 −Ψ1,2 ∪ A3

is another representative of M3(A1, A2, A3) with the property

ρ(ǫF (M ′)) = 0
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Thus ǫF (M ′) lifts to a class in H2p1,2,3−1(X̄,C). But this cannot be, since ǫF (M ′)
lives in the image of Deligne cohomology and is therefore integer valued, thus has
only weights bigger or equal one, hence cannot come from H2p1,2,3−1(X̄,C). �

Now we can state the main result of the section

Theorem 5.26. M̃ vanishes if and only if M3(A1, A2, A3) is constant.

Proof. The proof follows from the construction of D(M). �

As an immediate corollary we get

Corollary 5.27. If the family

X̄
π̄
−−→ S̄

is smooth (i.e. Y = ∅), then M3(A1, A2, A3) is constant.

Proof. This result is evident, since we cannot construct any M̃. �
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5.5. some informal discussion.
We try to develop the necessary conditions for constructing a nontrivial exam-

ple.
First we will assume that the cycle Ā2 has proper intersection with the bound-

ary Y . The next point is, that we choose in the rational equivalence classes of A1,
A3, cycles which also intersect Ā2 ∩ Y properly. In the notation of the previous
section this means

Āi ∩ Āj = Āi,j

Let us assume
A1,2 = A1 ∪ A2 ∼rat= 0

A2,3 = A2 ∪ A3 ∼rat= 0

on X.
We can write

Ai,j =
∑

ℓ

Div(rℓi,j)

where the rℓi,j ∈ K(Dℓ
i,j) are rational functions on suitable (pi,j−1)-codimensional

subvarieties Dℓ
i,j .

If we look at the rational functions rℓi,j as rational functions r̄ℓi,j on X̄ (possible

since K(Dℓ
i,j) = K(D̄ℓ

i,j)) we can construct on X̄ the cycles

Bi,j = Āi,j −
∑

ℓ

Div(r̄ℓi,j).

Obviously
Bi,j ∼rat Āi,j

and moreover since both summands equals Ai,j on X, we have

Bi,j ⊂ Y.

Note that the Bi,j are the liftings of the previous section.
We can now construct our class

M̃ = Ā1 ∩B2,3 − B1,2 ∩ Ā3

= −Ā1 ∩
∑

ℓ

Div(r̄ℓ2,3) +
∑

k

Div(r̄k1,2) ∩ Ā3,

since the other both terms equal Ā1 ∩ Ā2 ∩ Ā3. But there is more what vanishes,
namely all the expressions coming from the closure of some relevant cycle on X.
What is left is the expression

−Ā1 ∩
∑

ℓ

Rℓ
2,3 +

∑

k

Rk
1,2 ∩ Ā3,

where Rℓ
i,j denotes the irreducible components of Div(r̄ℓi,j) with support on Y .

Now by dimensional reasons they must be equal to some irreducible components
of Y ∩Dℓ

i,j.
Let us give some example to make the picture a little bit more clear.

64



Assume that A1,2 = Div(f) for some rational function f ∈ K(D) where D
is an irreducible divisor on X and D̄ has proper intersection with Y . Assume
furthermore that Ā2,3 ∼rat 0.

What is left is
M = F ∩ Ā3

where F contains the irreducible components of Div(f̄) which are contained in
Y = π̄−1(0). Since we assumed D̄ and Y to have proper intersection and D̄
irreducible, we know that

F = D̄ ∩ Y.

All in all we get
M = D̄ ∩ Y ∩ Ā3.

Let us consider the case of a constant family Z × S, S a curve X smooth
projective and S̄ − S = {0}, given by the local coordinate z. Now on D we can
write

f =
g

h
where g, h are homogenous polynomials of the same degree on D̄. Since F equals
Y ∩D we know that locally either z divides g or z divides h.

Let D be locally given on Y by the set (Uα, fα) for some open covering Uα and
regular functions fα ∈ O(Uα). Assume additionally, that Ā3 itself is an effective
irreducible divisor given on Y by the set (Vα, gα). Let Vα = Uα, then we get
that locally on Uα our class M is given by the zero-set of the regular functions
fα, gα.
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6. Appendix: Hypercohomology

In this appendix we explain the concept of Hypercohomology and quasiiso-
morphisms of complexes of sheaves and present the two methods of calculating
Hypercohomology used in this thesis. We follow the presentation given in [EV2].

Throughout this appendix let X be a variety over a commutative ring k, O
a sheaf of commutative rings on X (i.e. O = k, O = Z, O = OX) and F• a
complex of O-modules with differential dF .

6.1. General Definition of Hypercohomology.
We begin with several definitions of the objects we are concerned with.

Definition 6.1. We call the sheaf Hi(F•) which is the sheaf associated to the
presheaf given by

Hi(F•) : U 7→
ker(Γ(U,F i)→ Γ(U,F i+1))

im(Γ(U,F i−1)→ Γ(U,F i))
=: Hi(U,F•)

for open sets U in X, the i’th cohomology sheaf of the complex F•.

We can now define Quasi-isomorphisms of complexes of sheaves of O-modules.

Definition 6.2. Let σ : F• −−→ G• be a morphism of complexes of O-modules.
We call σ a Quasi Isomorphism if and only if for all i the induced maps on the
i’th cohomology sheaf

Hi(σ) : Hi(F•) −−→ Hi(G•)

are isomorphisms of sheaves, i.e. for all open sets U ⊂ X the maps

Hi(σ) : Hi(U,F•) −−→ Hi(U,G•)

are isomorphisms.

Example 6.3. LetX be a smooth quasiprojective variety over C with its deRham
complex of holomorphic forms Ω•

X . By the Poincaré lemma, which states that lo-

cally on open disks ∆ closed forms are exact and ker(Γ(∆,OX)
d
−−→ Γ(∆,Ω1

X)) =
C, we have

Hi(Ω•
X) = 0 for i ≥ 1

and
H0(Ω•

X) = C.

Therefore the map

C −−→ Ω•
X = (OX → Ω1

X → . . .→ Ωn
X)

is a quasi-isomorphism.

Definition 6.4. Let X be an algebraic manifold and

φ : A• −−→ B•

be a map of complexes of sheaves on X. We define the cone of φ to be

Cone(A• φ
−−→ B•) = C•φ := A•[1]⊕ B•
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(note A[1]n = An+1) with differential

dC : Cn = An+1 ⊕ Bn −−→ Cn+1 = An+2 ⊕ Bn+1

(a, b) 7→ (−dA(a), φ(a) + dB(b)).

This construction is compatible with Quasi Isomorphims in the following sense:

Proposition 6.5. Let

A• φ
−−−→ B•

α

y β

y

F• ψ
−−−→ G•

be a commutative diagram of complexes of sheaves on an algebraic manifold X.
Assume that α and β are Quasi Isomorphisms. Then the map

η : Cφ −−→ Cψ

given by

η((a, b)) = (α(a), β(b))

is a Quasi Isomorphism.

Proof. Let U be an open subset of X. For all i we get commutative diagrams

Hi(U,A•) −−−−−→ Hi(U,B•) −−−−−→ Hi(U, Cφ) −−−−−→ Hi+1(U,A•) −−−−−→ Hi+1(U,B•)

α

y β

y η

y α

y β

y

Hi(U,F•) −−−−−→ Hi(U,G•) −−−−−→ Hi(U, Cψ) −−−−−→ Hi+1(U,A•) −−−−−→ Hi+1(U,G•).

By assumption the maps α and β are isomorphisms. Therefore the proposition
follows by the five lemma (see [Iv], lemma I.1.7). �

For the sake of simplicity we assume from now on the complexes F• are bounded
below, i.e. F i = 0 for i << 0.

Definition 6.6.

(1) We call anO- module I injective, if the contravariant functorHomO(•, I)
from the category of sheaves of O-modules to itself is right exact, i.e. for
each injective map of O-modules

A −−→ B

the induced map

HomO(B, I) −−→ HomO(A, I)

is surjective.
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(2) Let
ι : F• −−→ I•

be a map of complexes of O-modules bounded below. We call I• an
injective resolution of the complex F• if
(a) ι is a quasi-isomorphism
(b) Ii is an injective O-module for all i.

Remark 6.7. In the case where k is a field and O = k, or all the F i are coherent
sheaves, we now that injective resolutions always exist. (See [Ha], chapter III)

We are now able to define the Hypercohomology of a complex of O-modules.

Definition and Theorem 6.8. Let F• be a complex of O-modules bounded
below and

ι : F• −−→ I•

an injective resolution. We define the i-th Hypercohomology group Hi(X,F•) of
the complex F• to be

Hi(X,F•) :=
ker(Γ(X, Ii) −−→ Γ(X, Ii+1))

im(Γ(X, Ii−1) −−→ Γ(X, Ii))

This definition is independent of the chosen injective resolution and moreover for
quasi-isomorphisms

σ : F• −−→ G•

the induced maps
Hi(X,F•) −−→ Hi(X,G•)

are isomorphisms.

Proof. The independency can be found in [Ha]. The second statement follows
from the fact, that an injective resolution I• of G• is also an injective resolution
of F•. �

Definition 6.9.

(1) We call an O-module A acyclic, if H i(X,A) = 0 for all i ≥ 1, where
H i(X, •) denotes sheaf-cohomology, (see [Ha]).

(2) We call a map of complexes of O-modules σ : F• −−→ A• an acyclic
resolution of the complex F• if
(a) σ is a quasi-isomorphism.
(b) Ai is acyclic for all i.

Proposition 6.10. Let F• be a complex of O-modules and σ : F• −−→ A• an
acyclic resolution of it. Then

Hi(X,F•) ∼=
ker(Γ(X,Ai) −−→ Γ(X,Ai+1))

im(Γ(X,Ai−1) −−→ Γ(X,Ai))
.

For the proof see [Iv].
Similar to sheaf cohomology we get the next
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Proposition 6.11. Let

0 −−→ A• −−→ B• −−→ C• −−→ 0

be a short exact sequence of complexes of bounded below O-modules. Then we
obtain the long exact sequence

. . .→ Hi(X,A•)→ Hi(X,B•)→ Hi(X, C•)→ Hi+1(X,A•)→ . . .

Now as we have presented the generalities on Hypercohomology, we give the
announced methods of calculating it. The first one is

6.2. Čech Hypercohomology.
What follows is a generalization of Čech cohomology of sheaves of O-modules.

Definition 6.12.

(1) Let U = {Uα, α ∈ A ⊂ N} be an open covering of X. We define for a
bounded below complex of O-modules F• its associated Čech-complex

Či(U ,F•) =
⊕

p+q=i

Cp(U ,F q)

where

Cp(U ,F q) =
∏

α0<α1<...<αp

ρ∗F
q|Uα0...αp

with the notation

Uα1...αp = Uα0
∩ . . . ∩ . . . αp

and ρ the corresponding embedding.
(2) We construct the Čech differential δ̌ of Či(U ,F•) as follows: On the one

side we construct a map

δ : Cp(U ,F q) −−→ Cp+1(U ,F q)

with

δ(s)α0,...,αp+1
=

p+1∑

k=0

sα0,...,α̂k,...,αp+1
|Uα0,...,αp+1

,

where α̂k means that we leave out the index αk. Together with the differ-
ential dF of the complex F• we construct the desired map

δ̌ : Cp(U ,F q) −−→ Cp+1(U ,F q)⊕ Cp(U ,F q+1)

δ̌(s) = (−1)p+qδ(s) + dF(s)

for s ∈ Cp(U ,F q).

Proposition 6.13. The map δ̌ gives Č•(U ,F•) the structure of a bounded below
complex of O-modules.
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We can now define the Čech cohomology groups associated to the open covering
U by

Ȟi(U ,F•) :=
ker(Γ(X, Či(U ,F•))

δ̌
−−→ Γ(X, Či+1(U ,F•)))

im(Γ(Či−1(U ,F•))
δ̌
−−→ Γ(Či(U ,F•)))

.

Remark that these groups depend on the chosen open covering U . Taking the
direct limit gives us the well defined Čech cohomology groups of the complex F•.

Definition 6.14. We call

Ȟi(X,F•) := lim
U

Ȟi(U ,F•)

the i’th Čech cohomology group of the complex F•.

As in the case of sheaf cohomology (see [Ha] ex. III.4.4.) we get the following

Proposition 6.15. The natural map

Ȟi(X,F•) −−→ Hi(X,F•)

is an isomorphism.

See [EV2].
The last proposition justifies that we can use Čech Hypercohomology for cal-

culations and may also denote by Hi(X,F•) the Čech Hypercohomology.

6.3. Godement resolution.
Since in chapter 4 and 5 we are working with cohomology with support on a

closed subvariety, we give now the concept of the flasque resolution of sheaves
given by Godement in [Go]. For proofs we refer the reader to this work and
alternatively the book of Kultze [Ku].

Let throughout this section F be a sheaf of O-modules. We define inductively
sheaves Ci(F) by

Γ(U, C0(F)) =
∏

x∈U

Fx

and
Γ(U, Ci(F)) := Γ(U, C0(Ci−1(F))) =

∏

x∈U

Ci−1(F)x

for open subsets U in X.
The sheaves Ci(F) have one important property which allows us to use them

for calculating the cohomology of F .

Definition and Theorem 6.16.

(1) We call a sheaf F flasque, if for all inclusions U ⊂ V of open subsets of
X the restrictionmaps

ρV U : Γ(V,F) −−→ Γ(U,F)

are surjective.
(2) The sheaves Ci(F) are flasque.
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(3) We call a bounded below complex (for simplicity let’s say Gi = 0 for i < 0)
G• with differential d a flasque resolution of the sheaf F , if all the Gi are
flasque and the complex

0 −−→ F −−→ G0 d
−−→ G1 d

−−→ . . .

is exact.
(4) If G• is a flasque resolution of the sheaf F we have

Hp(X,F) =
ker(Γ(X,Gp)

d
−−→ Γ(X,Gp+1))

im(Γ(X,Gp−1)
d
−−→ Γ(X,Gp))

Before we go on in how and why the sheaves Ci(F) compute the cohomology
of F , we give some interpretation of the sections of Ci(F).

Let s be a section of Ci(F) over some open subset U ⊂ X, i.e. s is a map

s : U −−→ Γ(U, Ci(F)) =
∏

x∈U

Ci−1(F)x

with

x0 7−→ s(x0) ∈ C
i1(F)x0

which is not necessarily continuous.
Since by definition Ci−1(F)x0

= limx0∈V (Γ(V, Ci−1(F))) we find some open
subset U(x0) such that

s(x0) ∈ Γ(U(x0), C
i−1(F)).

Again we can interpret s(x0) as a function

s(x0) : U(x0) −−→ Γ(U(x0), C
i−1(F)) =

∏

x∈U(x0)

Ci−2(F)x

x1 7−→ s(x0, x1) ∈ C
i−2(sF )x1

.

Repeating this procedure gives in the end a function

s(x0, . . . , xi) : U × U(x0)× . . .× U(xi) −−→ Fxi

where xi ∈ U(xi).
Since all the sheaves Cj(F) are flasque, we can extend this function to U i+1.

On the other side each such function gives rise to a section of Ci(F).

Now we construct a differential δ̃ making C• into a complex of sheaves.
Let s be a section of Ci(F) over some open subset U ⊂ X. Now by the

interpretation just given we can interpret s as a function

s : U i+1 −−→
∏

x∈U

Fx

s(x0, . . . , xi) ∈ Fxi.
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We can now define δ̃ to be

δ̃(s)(x0, . . . , xi+1) =
i∑

j=0

(−1)js(x0, . . . , x̂j , . . . , xi+1)+

(−1)i+1s(x0, . . . , xi)(xi+1),

where again x̂j means to forget the element xj and the last summand should be
interpreted in the following way: The element s(x0, . . . , xi) ∈ Fxi gives rise to a
continuous function

s : U −−→ Γ(U,F)

with

s(x0, . . . , xi)(y) ∈ Fy.

Now we regard the last summand to be the value of this function in the point
xi+1.

Similar to Čzech cohomology (one verifies that the choice of signs is the same)

it can be shown that δ̃2 = 0. This gives us the following

Proposition 6.17. The sequence

(6.1) 0 −−→ F
ι
−−→ C0(F) −−→ C1(F) −−→ C2(F) −−→ . . .

where ι is the obvious embedding, is exact. Hence the complex C•(F) is a flasque
resolution of F and by this we can compute the cohomology of F via

Hp(X,F) =
ker(Γ(X, Cp(F)) −−→ Γ(X, Cp+1(F)))

im(Γ(X, Cp−1(F)) −−→ Γ(X, Cp(F)))

We now want to extend this somehow canonical flasque resolutions of sheaves
to a flasque resolution of a complex of sheaves. This will be done in the same
way as we did it for the Čech Hypercohomology in the previous section.

But first we define what a flasque resolution of a complex F• is and state that
this resolution computes the Hypercohomology of the complex F•.

Definition and Theorem 6.18.

(1) Let

σ : F• −−→ G•

be a map of bounded below complexes ofO-modules. We call G• a flasque
resolution of the complex F•, if
(a) All the Gi are flasque.
(b) σ is a quasi-isomorphism.

(2) If G• is a flasque resolution of the complex F•, we have

Hp(X,F•) =
ker(Γ(X,Gp)

dG
−−→ Γ(X,Gp+1))

im(Γ(X,Gp−1)
dG
−−→ Γ(X,Gp))

.
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Let F• be a complex of sheaves. We define the flasque sheaves

Gp,q(F•) := Cp(F q).

The differential
δ : Gp,q(F•) −−→ Gp+1,q(F•)⊕ Gp,q+1(F•)

s 7−→ (−1)p+q δ̃(s)⊕ d•F(s).

Obviously δ2 = 0. Therefore δ gives G•(F•),where

Gℓ(F•) =
⊕

p+q=ℓ

Gp,q(F•),

the structure of a complex of O-modules.

Definition and Theorem 6.19. We call Gℓ(F•) the canonical flasque reso-
lution of the complex F•, hence computes the cohomology of F•.

To be precise we should proof, that the embedding

F• −−→ G•(F•)

is indeed a quasi isomorphism. This follows by the fact, that the complexes
G•,q(F•) are flasque resolutions of the sheaves F q.
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