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CATEGORIES AND COHOMOLOGY THEORIES 

GRAEME &GAL 

(Receicrd 10 Augusr 1972) 

$0. ISTRODL’CTION 

IN THIS paper I shall describe a method of associating a spectrum, and hence a cohomology 

theory, to a category with a composition-law of a suitable kind. The work is one possible 

formulation of Quillen’s ideas about algebraic K-theory, and I am very grateful to him for 

explaining them to me. 

Two applications of the method are included. The first is to prove the theorem of 

Barratt, Priddy and Quillen [3], [13] relating the space 0°F to the classifying-spaces of the 

symmetric groups. This asserts that the cohomology theory arising from the category of 

finite sets (under disjoint union) is stable cohomotopy. 

The second application is to prove the theorems of Boardman and Vogt [5] asserting 

that various classifying-spaces are infinite-loop-spaces. One advantage of the present 

~ treatment is that it includes the case of BlJ with the H-space structure arising from the 

tensor product. 

One can outline the method as follows. A topological abelian group A has a classifying- 

space BA. If one uses a suitable model BA is itself a topological abelian group with a 

classifying-space B’A’, and so on. The sequence A, BA, B’A, . . is a spectrum, and defines 

a cohomology theory h*. The theories so arising are “classical”: in fact h4(X) = @ H@” 
“20 

(X; n,A). In this paper I shall introduce a generalization of the notion of topological 

abelian group which leads to generalized cohomology theories. Roughly speaking, instead 

of giving a composition-law on a space A one gives for each n a space A, and a homotopy- 

equivalence p,: A, + A x . . . x A and a “n-fold composition-law” m,: A,, + A. The maps 
-“- 

p, and m, are required to satisfy certain conditions corresponding to associativity and 

commutativity of the composition-law. Such structures I have called “T-spaces “. A T-space 

for which all the maps p, are isomorphisms is simply a topological abelian monoid. A 

T-space has a classifying-space which is again a r-space, so it defines a spectrum and hence 

a cohomology theory. 

If %’ is a category one can associate to it a space I%?:/ , its “nerve”, described in [lb]. 
This is a CW-complex which has a O-cell for each object of W, a I-cell for each morphism, 
a 2-cell for each commutative diagram 
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in V, and so on. Now suppose, for example, that sums exist in %. Then 1 %?I does not quite 

acquire a composition-law, but it is precisely a I-space. For example, let W3 be the category 

of diagrams in V of the form 

in which each straight line (such as X, + Xi,, + X,,) is an expression of the middle object 

as a sum of the ends. Then there is an equivalence of categories %‘, + V x %’ x V, taking 

the above diagram to (Xi, _Xz , A’,), which induces a homotopy-equivalence pa: I%‘, 1 + 

IVI x l%l x IVI; and there is a functor %3 -+ %?, taking the diagram to Xi,, , which 

induces a “composition-law ” m3 : I Cs, 1 -+ 1 %?I . Thus %? determines a T-space, and hence a 

cohomology theory. 

The plan of the paper is as follows. $1 introduces T-spaces and shows how they lead 

to spectra. $2 shows how I-spaces arise from categories, and gives the main examples. 

$3 makes precise the relationship between T-spaces and spectra: this is used to prove the 

Barratt-Priddy-Quillen theorem (3.S), but it is otherwise technical and uninteresting. 

$4 concerns the relation between a topological monoid and the loops on its classifying-space. 

Together with 92 it proves the delooping theorems of Boardman and Vogt, but it is important 

mainly because it allows one to restate the Barratt-Priddy-Quillen theorem as a “K- 

theoretical” description of stable cohomotopy which is useful in applications (cf. [U]). 

$5 shows how ring-like categories lead to ring-spectra, a question I hope to pursue elsewhere. 

Throughout the paper I have used “ space ” to mean “ compactly generated space ” [ 191, 

and products of spaces are always formed in that category. 

$1. ~-SPACES 

Suppose A is an abelian group. If 8 is a map which to each integer iE(l, 2, . . . , m} 

associates a subset 0(i) of (1, 2, . . , n} let us define 8*: A” + A” by B*(a,, . . . , cl”) = 

(b,,..., b,), where bi = c aj. (If 6?(i) is empty this means that bi = 0.) Obviously the com- 
jetl(i) 

position-law of A is described (very wastefully) by giving all such maps 8*. That motivates 



CATEGORIESAKD COHOMOLOGYTHEORIES 295 

the following pair of definitions, in which the set of subsets of a set T is denoted by B(T), 

and the set {I, 2, . . . , n} is denoted by n. 

Definition 1.1. r is the category whose objects are all finite sets, and whose morphisms 

from S to T are the maps 0: S + P(T) such that O(a) and e(p) are disjoint when a # /I. 

The composite of 8: S -+ 9(T) and 4: T + 9(U) is II/: S + 9(V), where $(a) =B v ) 4(B). 
E LI 

Definition 1.2. A I-space is a contravariant functor A from I to topological spaces 

such that 

(i) A(0) is contractible, and 

(ii) for any n the map pn: A(n) --f A(1) x . . . x A(1) induced by the maps ik: 1 + n in I?, 
+n- 

where i,(l) = {k} c n, is a homotopy-equivalence. 

One should think of a I-space A as a kind of structure with A(1) as “underlying space”. 

Before defining the classifying-space of a r-space I must make two remarks. The first 

is that a I-space is a simplicial space with additional structure. Recall [ 161 that a simplicial 

space is a contravariant functor A: A + (spaces), where A is the category whose objects are 

the finite ordered sets [m] = (0, 1, . . . , m}, and whose morphisms are all non-decreasing 

maps. There is a covariant functor A --f T which takes [m] to m and f: [m] -, [n] to B(i) =. 

{jEn: f(i - 1) <j 5 f(i)}. Using this functor one can regard T-spaces as simplicial spaces. 

Secondly, recall ([12], [ 161) that a simplicial space A has a realization 1 A 1 as a topo- 

logical space. (The realization I shall use here is not quite the usual one: it is discussed in 

Appendix A.) If A is a r-space its realization will mean the realization of the simplicial 

space it defines. (A more intrinsic definition will be given in (3.2).) 

Definition 1.3. If A is a T-space, its classifying-space is the r-space BA such that, 

for any finite set S, BA(S) is the realization of the r-space T H A(S x T). 

To validate this definition one must check that (S, T) I-+ S x T is a functor from r x I- 

to r, and also that BA satisfies the conditions of Definition 1.2. The latter follows from the 
equivalence A(n x m) -+ A(m)“, using (A.2) (ii) and (iii) of the Appendix. 

If A is a T-space the spaces A(l), BA(l), B’A(l), . . . form a spectrum, denoted by BA. 
For the realization of A contains a subspace, its “ l-skeleton”, naturally homotopy- 
equivalent to the suspension of A(l), giving up to homotopy a map SA(1) + 1 Al = BA(l). 

To say when A(1) is the loop-space of BA(l) one needs to observe that the r-structure 

of A (in fact even its simplicial structure) defines a composition-law on A(1) up to homotopy. 

This law is the composite A(1) x A(1) 2 A(2) 5 A(l), where p;’ is an arbitrary 

homotopy-inverse to the equivalence pz mentioned in the definition of a r-space, and mZ 

is induced by the morphism m2: 1 -+ 2 in I- taking 1 to { 1, 2). The composition-law makes 

A(1) into an H-space. 

PROPOSITION 1.4. If A is a r-space and A(1) is k-connected, then BA(l) is (k + I)- 

connected. Furthermore A(1) is the loop-space of BA(l) fund only if the H-space A(1) has u 

homotopy inverse. 
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Note. The H-spaces B’A(1) for k 2 1 automatically have homotopy inverses. For an 

H-space X has a homotopy inverse if the set of connected components x0(X) is a group and 

X has a numerable covering by sets which are contractible in X. (This follows from [7, 

(6.3,4)].) The realization of a simplicial space has such a numerable covering if the space 

of 0-simplexes is contractible. This was pointed out to me by D. Puppe. 

(I .4) is really a statement about simplicial spaces, so I shall state it in its proper general- 

ity : 

PROPOSITION 1 S. Let [n] i--t A, be a simplicial space such that 

(i) A,, is contractible, and 

n 

(ii) pn = fi ik*: A, -+ A, x . . . x A, is a homotopy-equivalence, where i, : [I] -* [n] is 

k=l 

defined by ik(0) = k - 1, ik(l) = k. 

Then (a) if A, is k-connected 1 A 1 is (k + 1)-connected, and(b) the map A, -+ Q 1 A 1 aa’joint 

to SA, + 1 A 1 is a homotopy-equivalence if and only if A, has a homotopy inverse. 

Proof. (a) The realization 1 A 1 has a natural filtration 

A, = IAl (o)= I&,c ..’ = IAl 

such that IAJ~p,/~A]~p_l~ =F(A~ A ... A A,) (cf. Remark 1 at the end of Appendix A). 
-LJ- 

But SA, is (k + I)-connected, ??(A, A A,) is (2k + I)-connected and so on. 

(b) I shall exhibit a commutative diagram 

A,+ IPA] 

1- 1 

A,+ IAl, 

where IPA I is contractible, and show it is homotopy-Cartesian if A, has a homotopy 

inverse. (“ Homotopy-Cartesian” means that the induced map from A, to the homotopy- 

theoretic fibre-product of A, and I PA I over I A I is a homotopy-equivalence.) 

PA is the usual “ simplicial path-space” of A, i.e. it is the composite A 0 P, where 

P:A.-,Atakes[n]to[n+1]and~:[m]-t[n]to~:[m+l]-t[n+1],where~(O)=Oand 

4(i) = t3(i - 1) + 1 if i > 0. The map PA --f A comes from the transformation id -+ P 

induced by the face-operator a,: [n] + [n + 11. The contractibility of 1 PA I comes from the 

standard simplicial null-homotopy PA x J -+ PA, where J is the simplicial unit interval. 

That the diagram is homotopy-Cartesian follows from 

PROPOSITION 1.6. Let f: A’ + A be a map of simplicial spaces such that for each 0: 

[mm] + [n] in A the diagram 

A,: 5 A6 

I I In fm 

A, A A,,, 
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is homotopy-Cartesian. Then the diagrams 

A” x A:,+ IA’/ 

An: A,-+ 1-11 

are homotopy-Cartesian for each n. 

The application of (1.6) to prove (1.5) is as follows. By assumption (PA), N A;“, 

and the diagram in the hypothesis of (1.6), in the case 0: [0] -+ [n] with .9(O) = n, is equivalent 

to 

‘dn+i 
mn-1 

1 - Al 

pr! I 
4 ----+ point, 

where pr is projection on to the last n factors, and m,, 1 is the composition-law. This diagram 

is homotopy-Cartesian if and only if the composition-law has a homotopy-inverse. If so, 

the cartesianness for other morphisms .9 follows trivially. 

Proof of 1.6. In view of the discussion in Appendix A it suffices to give the proof using 

the realization-functor A I-+ /A 11. Let j[ A II(n) be the part of II.4 /I which is the image of 

u A” x A,. It is homeomorphic to the double mapping-cylinder of (]]A]/(,_,, c A” x A, + 
k<n 
A” x A,). One proves by induction on m that 

A” x 4, + IIA’II~,, 
1 1 

A” x Am + Mll,,, 
is homotopy-Cartesian. If this is true when m = n - 1 then it follows from the hypothesis 

of (1.6) that the left-hand square of 

IM’ll~n-1, +i\” x A:,+A” x A:, 

1 1 1 
IIAllC,-lj +-i\” x A, -+ A” x A, 

is homotopy-Cartesian (the other square being trivially so). Then the inductive step follows 

from 

LEM4A 1.7. Let Y1 c Y, + Y, 

1 1 1 
x, +- x0 -+ x, 

be a commutative diagram of spaces in bchich the squares are homotopy-Cartesian. Let Y -+ X 

be the induced map of double mapping-cylinders. Then 

Yi--+ Y 

1 1 
xi -+ x 

is homotopy-Cartesian for i = 0, 1, 2. 
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This lemma is well-known when all the spaces are CW-complexes. A proof in the 

general case is given in [Id]. 

ToseenowthatA” x ri:,--I]A’il 

1 1 
A.” x A, -+ 11~11 

is homotopy-Cartesian one needs, because /IA/I is equivalent to the infinite telescope of 

WIl,o,-+ IMll(l, 4 ll4(,, +-..I, 
LEMMA 1.8. Let Y, -+ Y, -+ Y, +... 

1 1 1 
x0 -+ x, -+ x, + . . . 

be a commutative diagram such that each square is homotopy-Cartesian. Let Y + X be the 

induced map or telescopes. Then 

Y,- Y 

1 1 
X” + x 

is homotopy-Cartesian for each n. 

(1.8) follows at once from (1.7) because the telescope of (X0 + X1 -+ X, -+ . ..) is the 

double mapping-cylinder of ( 11 Xi +- u Xi -+ n Xi), where the left-hand map takes 
i even all i i odd 

X2, to Xzi by the identity, and Xii_ 1 to ,‘fzi by the given map; and the right-hand map is 

analogous. 

92. CATEGORIES WITH COMPOSITION LAWS 

I refer to [ 161 for a discussion of the “ space ” or “ nerve ” 1 Cc: 1 of a category V. The 

main facts to recall are that I Gf? x %?’ 1 N 1 g 1 x 1 V 1, and that an equivalence of categories 

%? -+ W induces a homotopy-equivalence I%? I --) 1 W I . “ Category ” will always mean 

topological category in the sense of [16], i.e. the set of objects and the set of morphisms have 

topologies for which the structural maps are continuous. 

The reason for introducing r-spaces is that they arise naturally from categories, as we 

shall now see. 

Definition 2.1. A r-category is a contravariant functor % from ?F to categories such that 

(i) E(O) is equivalent to the category with one object and one morphism; 

(ii) for each n the functor p,: V(n) -+ S’(l) x ... x G!?(l) induced by the morphisms 
-“-+ 

ik: 1 -+ n in I- (cf. (1.2)) is an equivalence of categories. 

COROLLARY 2.2. If ‘3’ is a r-category, 1 G”I I is a r-space. 

Here j %‘I means the functor SH I+?(S) I. 

r-categories arise in the following way. Let V be a category in which sums exist (though 

no choices of them are given). If S is a finite set, let 9’(S) denote the category of subsets of S 
and their inclusions-this should not cause confusion with the earlier use of 9(S). Let 
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g(S) denote the category whose objects are the functors from V(S) to which take disjoint 

unions to sums, and whose morphisms are isomorphisms of functors. That means, for 

example, that an object of V(2) is a diagram A, + A,* + A, in %’ which has the universal 

property for expressing A,, as a sum of A, and A,. The morphisms of r were so defined 

that the morphisms from S to T in I- correspond precisely to functors from P(S) to 9(T) 

which preserve disjoint unions. Thus S-%?(S) is a contravariant functor from I- to cate- 

gories. It satisfies the .conditions of Definition 2.1 because, for example, the forgetful 

functor g(2) + % x %‘, which takes (A, --+ A,, +- A,) to (A,, AZ) is an equivalence of cate- 

gories. 

Similarly, if products exist in ??‘?, one has a r-category SH@(S) associated to V with 

its product as composition: one defines e”(S) as the category of contravariant functors 

B(S) --f V which take disjoint unions to products. For a third example, if $9 is the category 

of modules over a commutative ring one can define a r-category %‘o associated to %? and 

its tensor-product: an object of E’(2) is a quadruple (Ml, M,, M,2; r,?), where IY,~: 

M, x M2 -+ M,, is a bilinear map satisfying the universal property for a tensor-product, 

and so on. 

The “most fundamental” r-space is that arising from the category 9’ of finite sets 

under disjoint union, Let us choose a model for Y in which there is one object II for each 

natural number. Then 1 q5(1)1 is u BE,, where C, is the nth symmetric group. I shall call 
nt0 

this r-space BC. We shall not need to know anything about 1 Y(k) 1 for k > 1, but in fact 

I9Wl = U FL x EL x -=,,+.Y& x U 
RI.">0 

and in general 

/y(k) I = u ( fl EL~)I(Z,, x . . . x LJ, m,....,m~ ack 

where m,, = 1 m,. 
=Em 

The following generalization of BC will occur later. Let F be a contravariant functor 

from the category of finite sets and inclusions to the category of topological spaces. Let 

,YF be the topological category whose objects are pairs (S, x), where S is a finite set and 

XEF(S), and whose morphisms from (S, x) to (r, y) are injections 6: S+ T such that 

O*y = x. Then one can form Y,(k) by analogy with Y(k), and kw I Y(k) 1 is a r-space 

providing that for each Sand rthe map F(Su T) -+ F(S) x F(T) is a homotopy-equivalence. 

The most important case is when F(n) = X” for some fixed space X: then I shall call the 

resulting r-space BE,. 

BC,(l) is u (EX,, x Xn)/&. 
"20 

The category of finite-dimensional real vector-spaces under @ leads, as indicated 

above, to a r-space A such that 

A(1) = u BG,, where G, = Cl,(R). 
"20 

In this case 

A(2) = u (EG, x EG, x EG,+,)I(G, x GA 
It>0 
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and so on. The explicitness of this formula makes clear that one can construct such a 

r-space whenever one is given naturally for each finite set S a topological group G(S) 

containing the symmetric group Z(S) of S, and a family of associative natural transforma- 

tions G(S) x G(T) + G(S LI 7). In fact G(S) need be only a topological monoid. providing 

TC, G(S) is a group. The minimal example of this situation is when G(S) is a wreath-product 

E(S) j G for some fixed topological group C. Then the r-space is the same as BE,, intro- 

duced above. More important examples are: 

(a) u BP&, where PL, is the realization of the simplicial group Lvhose k-simplexes 
“20 

are the fibre-preserving PL isomorphisms A’ x K” + A’ x R” over A”; 

(b) u BTop,, defined the same way, but replacing PL isomorphisms by homeo- 
,720 

morphisms; 

Cc) u BF,, where F, is the monoid of proper homotopy-equivalences 
“20 

The relation of the last three spaces to Z x BPL, Z x BTop, and Z x 

cussed in $4. 

W” + an. 

BF will be dis- 

The most complicated example I shall mention arises when one wants to describe the 

tensor-product composition-law on 1 x BO c Z x BO. Let @ be the category of chain- 

complexes of finite length of finite-dimensional real vector-spaces, with chain-homotopy- 

equivalences as morphisms. More precisely, if n = {nili E B is a sequence of positive integers 

almost all zero let K, be the space of chain-complexes E such that E’ = Rni. (K, is a real 

algebraic variety, so has the homotopy-type of a C&‘-complex.) Then oh(V) = u K,. 
n 

The space mar(V) is a similar real algebraic variety. In the Appendix to [ 171 it is proved that 

isomorphism-classes of bundles on a compact space X for the topological groupoid @ 

correspond precisely to elements of KO(X), which implies that 1%’ represents the functor 

KO, i.e. that ]%I N Z x BO. If %‘i is the full subcategory of % spanned by the objects in K,, 

with Z( - l)‘n, = 1 then 1Vi 1 = 1 x BO. The tensor-product of complexes makes ct‘, into a 

T-category. 

93. THE SYMlMETRIC GROUPS M4D STABLE HOhIOTOPY 

We have seen that a r-space gives rise to a spectrum. Conversely we shall see now that 

a spectrum gives rise to a I-space; this section is devoted to working out a precise corres- 

pondence between r-spaces and spectra. We shall begin by making definite conventions 

about spectra. 

A spectrum will mean a sequence of spaces with base-points X = {X0, Xl , .) together 

with closed embeddings X, --t Qxi+, for each k 2 0. Such a spectrum gives rise to a loop- 

spectrum wX, defined by (wX), = U P’X,,, A morphism from a spectrum X to a spectrum 
IttO 

Y will mean a strict morphism from X to oY, i.e. a sequence of maps&: ;U,( --t (WY),, such 

that the diagrams 
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commute. 

To define the r-space associated to a spectrum observe that if P is a space with a 

base-point p, there is a covariant functor from r to spaces which takes the finite set 5 to 

PSandthemap~:S~3(7Jto0,:PS-,Pr. where {O,(s)), = .Y, if B E S(Z), and {Q,(.Y)~, = pO 

if p 4 Q(r) for all r $ .S. Similarly if P is a spectrum one can define a covariant functor Sb Ps 

from r to spectra such that (P’), = (P,)‘. 

Definition 3.1, The r-space AX associated to a spectrum X is nw (AX)(n) = 

Mor(S x ... x S; X), where S is the sphere-spectrum. 
-n- 

To check that AX is a r-space. i.e. that (AX)(n) --t {(AX)( 1))” is a homotopy-equivalence, 

observe that 

(AX)(n) = Mor(S x ... x S; X) r Mor(S v ... v S; X) = (.Mor(S: X)]“. 

The pair of functors (r-spaces) ~?(spectra) that we have defined are adjoint. To see 

this one defines the spectrum associated to a r-space in a new way. 

if ,4 is a r-space and P is a space with base-point one can define a r-space P @A such 

that, for a finite set S, (P @‘4)(S) is the quotient of the disjoint union u P” x A’(n x S) 
“20 

by the equivalence-relation which identifies (p, 8*a) E Pm x A’(m x S) with (B,p, a) EP” x 

,4’(n x S) for all 0: m -+ n in r. (A’ is the thickening ~,4 of .J described in Appendix A.) 

PROPOSITION 3.2. For TV 2 0, B”,4 4 s” @ ff, rvhere S” is the n-sphere. 

I shall postpone the proof. In \ irtue of the proposition there are maps (Sri))) x A(m) --+ 

B”A(1) for each II and nz, and thus a map of spectra (S x . x S) x A(m) + BA. This leads 
+n- 

to 

PROPOSITION 3.3. For every r-space A there is a natural map A + ABA of r-spaces, and 

for an-v spectrum X a natural nlorphistn BAX + X, making the fimctors A and B adj’oint. 

Proof. To define A --, ABA one must define for each m a map .4(m) -+ Mor(S”; BA). 

This we have just found. 

To define BAX -+ X one must give for each n and m compatible maps (S”)m x 

Mor(S”‘: X) ---t (wX), These are provided by evaluation. 

The adjointness of the functors is equivalent to the fact that the composites B -BAB + B 

and A + ABA -+ A are the identity, which is easy to check. 

To make it supple enough for our purposes we need to add more morphisms to the 

category of r-spaces. Let us call a map A ---) A’ of r-spaces an equitdence if for each S in I- 

the map A(S) - .4’(S) is a Hurewicz fibration with contractible fibres. We shall formally 

adjoin (cf. [S]) inverses of all equivalences to the category. To be precise, we define a weak 
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morphisnz of I-spaces from ,4 to .4’ as a diagram (‘4 + 2 - .4’) in CL hich A + A is an equi- 

valence. Two such diagrams (A + .?r - .4’) and (4 + .x2 - .4’) are identified if there are 
- - 

equivalences A --+ A,. A -+ A2 such that 

commutes. The composite of (‘4 t .x + A’) and (A’ +- ,;i’ -+ .4”) is (A +. B -+ A”), where 

B = 2 x A’ 2’. 

Let 271 be the category of I-spaces and homotopy-classes of weak morphisms. The 

significance of this category is that a map A + A’ of r-spaces such that A(1) -+ A’(1) is a 

homotopy-equivalence is invertible in d. (In fact its inverse is (.4’ +- A x ,.PA’ -+ A), 

where PA’ is the I-space of unbased paths in A’.) We shall relate .D’ to the category 9”p of 

spectra and homotopy-classes of morphisms. 

If .4 + A’ is an equivalence of I-spaces then BA + B.4’ is a homotopy-equivalence, so B 

induces a functor B: .d + .Y,‘/. Similarly A induces A: 9’“p -+ d, and the functors d F? 9’1 

are still adjoint. The outcome of this discussion is the following reformulation of (1.4). 

PROPOSITION 3.4. (a) There are adjoint fkctors B: _I/ -+ Y,i and A: 9’“p + d. For any 

r-space A the spectrum BA is connective, i.e. n,(BqA) = 0 for p < q; and for any spectrum 

X rhe H-space AX(l) has a homotopy inverse. 

(b) /f A is a r-space the adjunction A + ABA is an isomorphism in d IY and only if 

A(1) has a homotopy inverse. 

(c) If X is a spectrum the adjunction BAX -+ X is an isomorphism in Y/l if and only if X 

is connective. 

Now we can prove very simply the theorem of Barratt-Priddy-Quillen. 

PROPOSITION 3.5. If BC is the r-space described in $2 arising from the category offinite 

sets, then the associated spectrum B(B.Z) is equivalent to the sphere-spectrum S. 

Proof. It is enough to give an isomorphism of functors of X. 

Hom,/(B(BC); X) z Hom,,,(S; X) = x,(X). 

By adjointness it suffices to give Hom,(BC; AX) z q,(X); and so, because n,(X) = n,(AX(l)), 

to give an isomorphism Hom,(BE; 4) = n,(A(l)) functorial for r-spaces A. 

Recall that E(1) = u BZ.,; and let E = BZ,, a single point of BZ(1). Under any weak 
!I>0 

morphism BC -+ A the point 6 is associated with a definite connected component of A(l), SO 

one has a transformation Hom,(BZ; A) -+ n,(A(l)). 

To construct its inverse, suppose a is a point of A(1). Let F, be the homotopy-theoretical 
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fibre of pn; A(n) - A(1)" at the point (a, a. . . . , a). This is a contractible space, and n+-+ F, 

is a contravariant functor on the category of finite sets and inclusions. As in $2. construct the 

category S“r of pairs (n, x E F,,), and the associated I-space BC,. An object of Y,(k) can be 

described as a pair (8, x). where 8: k - n is a morphism in I such that Q(k) = n, and .Y E F,. 

By the composition F, - A(n) " - A(k) each such object determines a point of ,4(k). 

If two objects of YF-(k) are related by a morphism they have the same image in A(k), so there 

is a map / .S“F(k) I + A(k), i.e. a morphism BE_, --+ A. But the forgetful map BZ, + B.Z is an 

isomorphism in ,d, so we have associated to a E A(1) a morphism BZ 4 A in d. To show 

that it depends only on the component of A(1) in which n lies. let a’ be another point in the 

same component, and let r be a path from a to a’. Form BZF. like BC,, but using a’ instead 

of a; and form BIF,, using the homotopy-theoretical fibre-product of ([0, I]“2 A(1)" 

+----- A(n)) instead of F,. Then there is a commutative diagram 

in which the indicated maps are isomorphisms in si’. That completes the proof. 

The same argument proves more generally. 

PROPOSITION 3.6. If X is a space, and BE, is the r-space described in $2 lvith BE,(l) = 

u (EC, x X”)& , then B(BEx) is equicalent to SX, the suspension-spectrum of X. 
“20 

Note. (SX), is defined as S”(X+), the n-fold reduced suspension of the union of X and 

a disjoint base-point. 

Proof. One modifies the foregoing argument to prove that Hom,(BE,; A) = [X; A(l)] 

for any I-space .4. To do so, given f: X -+ A(l), define F, as the homotopy-theoretical 

fibre-product of (X” 2 A(1)" 2 A(n)), and proceed as before. 

I shall end this section with the proof of (3.2). For the sake of clarity I shall ignore the 

question of thickening; i.e. in the following discussion the realization of a simplicial space 

has its classical meaning, and (P 0 A)(S) means a certain quotient of u P” x A(n x S). 

Then we shall see that s” @ 4 is.homeomorphic to B”A. The correct argukents proceed as 

in Appendix A, and lead to S” 0 A N B”A. 

When n = 1 one has to prove that 
C 

u A” x A(n x S) /A = 
“20 1 c 

u (.S')" x A(n x L?))jr 
“20 

in what I hope is obvious notation. A point of A” can be represented by (tl, . . , t,), where 

0 5 t, I t, I ... I t, < 1. Regarding S’ as [0, I] with its ends identified one can think of 

(tr, . . . 9 t,) as a point of (S‘)“; thus one has a map A” -+ (S’)” inducing a map between the 

foregoing spaces. It is surjective because I contains the permutations of n, so that any 

point of (.S1)” x A(n x S) is equivalent to one with the coordinates (tl, . . . , t,) in ascending 
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order. Injectivity is also easy to check, and the inverse map is obviously continuous on the 

images of the sets A” x A(n x 5). with respect to which St @ A has the weak topology. 

The case n > I follows now by 

LEMMA 3.7. If Xand Yaw spaces with base-points, and A is a r-space, then X @ ( Y Q A) = 

(XA Y)@A. 

Proof. It is enough to show that i IJ X” x Y” x A(m x n)j:I =cqJJO (X A Y)q x 
.m, nt0 

A(q) 

1 
/II. Define a map from left to right by taking (,yi, . . x,: yl, . . . y,; a) to ({xi A )‘j; a) E 

(x A Y),” x A(m x n). Define a map from right to left by taking ({.K~ A yij.; a) to ({.yi); (~~1; 

O*a) E X4 x Y4 x A(q x q), where 0: q x q --t q is .S+-+Sn (diagonal). I shall omit the veri- 

fication that the two maps are well-defined and inverse to each other. 

$4. MAKLUC no LVTO A GROUP: THE GROTHESDIECK COFSTRUCTION LU 
HOMOTOPY THEORY? 

We have associated to a I-space A a spectrum BA = (B,, B,, . . .I. It has the property 

that B, + QBk+, is a homotopy-equivalence when k 2 I. because then B, is connected. 

But B, -+ RB, is a homotopy-equivalence only if the H-space B, has a homotopy inverse, 

which is usually not the case. Then one needs to identify the infinite-loop-space RB,. The 

reason this is important is that in practice one begins with a category (8 with a composition- 

law, and ends with a cohomology theory kg represented by the spectrum (Bk), where B, = 

1 VI. One would like to know the relationship between the monoid-valued functor XH 

[X; ]g[] and the group-valued functor X++&(X) = [X; RB,]. Of course there is a natural 

transformation [X; 1 %I ] -+ k”,(X). In practice [X; j ‘iI ] is the monoid of isomorphism- 

classes of V-bundles on X, in some appropriate sense. The following proposition seems to 

cover all the interesting cases. 

PROPOSITION Lt. 1. Suppose that I @ / is of the homotopy-type of a C W-complex, and that 

n,( I %? j ) contains a cojnal free abelian monoid. Then the transformation [ ; IV / ] 4 k” is 

universal among transformations 0 : [ ; I4f: / ] --f F, where F is a representable abelian-group- 

valued homotopy-functor on compact spaces, and 0 is a transformation of monoid-valued 

functors. 

The proof will be given at the end of this section. 

Returning to I-spaces, I shall associate naturally to a I-space .-i another I-space A’ 

with a map A + A’ with the following properties: 

(a) n,(A’) is the abelian group associated to the monoid z = n,(A); and 

(b) BA ---f BA’ is a weak equivalence of spectra. 

The construction of A’ from A is simple but not very practical, so it is important that 

one can construct more practically another space T, such that A(1) + A’(1) factorizes 

through T, and T,, -+ A’(1) induces an isomorphism of homology. In other words, A’(1) is 

t This section is greatly indebted to discussions with Quillen. Cf. also [2], [4], [IS]. 
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obtained from T, by abelianizing the fundamental group in Quillen‘s sense. In the basic 

example where .-t(l) is u BS,. one has T, N Z x BEJ:. Similarly. for any ring R, the 
R10 

category of finitely generated projective R-modules leads to a r-space rl for which T, - 

K,(R) x BGL,( R). 

To construct .-I’, recall from $1 the functor P: A -+ A taking [X-l to [k + 11. Define Pd: 

A x r -+ (spaces) by P,d[(k], m) = .4(P( [X-l) x m), where P([k]) is regarded as an object of T 

by means of the standard functor A - r. Then 4’(m) is defined as the realization of the 

simplicial space [kIMAL; = P.-I([k]. m) :,,,,m, Pd4([k], 
h 

m). where x denotes the 

homotopy-theoretical fibre-product. 

One obtains a transformation .1 - rl’ as the composite 

.4(m) = ‘4(m) x A(O) A(O) c ,4(m) t A( + *-l(m) k .A(O, .4(m) = A:(m) = A’(m), 

where the third step is induced by the canonical map .4(O) - A(m). 

In case the construction of il seems mysterious I should explain that it is the trans- 

literation into the context of r-spaces of the followin g method for trying to construct 

homotopy-theoretically the envelopin g group of a topological monoid. 

Let M be a topological monoid. Let C’,\[ be the topological category whose space of 

objects is M x /\I. and whose space of morphisms from (ml. nz2) to (m’,, nl;) is 

(Thus the complete space of morphisms of Cnr is itl x M x :\I.) XI is embedded in ] C,,, ] by 

identifying m E M with the object (~2, 1); and one can show that 1 C,$, 1 is homotopy-equi- 

valent to RB,lf providing bf is sufficiently homotopy-commutative. By definition ] C,,,] is 

the realizatic?ii of a simplicial space whose k-simplexes are _lfk+’ = hfk+’ x Mk Mk+’ ; and, 

because realization commutes with fibre-products, / C,,, ] = E&f x BM E&f. 

I shall prove that BA -+ BA’ is a weak homotopy-equivalence by calculating the 

homology of A’(1) with coefficients in a field F. If H is the Pontrjagin ring H,(A( 1)) then 

the simplicial module obtained by taking the homology term by term of the simplicial space 

whose realization is A’( 1) is precisely the bar-construction for calculating Tor:(H @ H, F), 

where H @ H is regarded as an H-module by the diagonal map of the Hopf algebra H. 

LEVMA 4.2. (i) (H @ H) Off F = H[n-‘I, bvhere TC = n,(.-l(l)) c H. 

(ii) Tor”(H @ H, F) = 0 if i > 0. 

In view of the lemma (which will be proved below) the standard spectral sequence [16] 

converging to H’ = H,(A’(l)) is trivial, and H’ = H[n-‘I. NOLV compare the standard 

spectral sequences converging to H,(B.4(1)) and H,(B.-I’(l)). Their El-terms are the bar- 

constructions for calculating Tor,H(F, F) and Tor,H’(F, F). But because Tor commutes with 

localization. and F[n-‘1 = F, these are the same, and so H,(B.4(1)) A H,(BA’(l)). As 

both spaces are connected H-spaces it follows that BA(1) -+ BA’(1) is a weak homotopy- 

equivalence: and similarly BkA(l) - BkA’(l) for k > 1. 

TOP Vol. 13 No. 3-H 
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Proof of 4.2. (i) The Hopf algebra H[rt-‘1 has an involution (“inversion”) c extending 

the obvious involution in dimension 0. Define H@ H- H[rr-‘1 by x @~H.T.c(~). This 

induces a surjection (H @ H) @ HF-* H[;:-‘I. A map in the other direction is defined by 

x p -’ e+x @p; one checks by induction on dimension that it is the inverse. 

(ii) Because Tor commutes with localization and ;i acts trivially on Fit suffices to prove 

this when H is replaced by H[TI- ‘1. But because H[;i-’ ] has an involution H[n-'1 @ H[n-‘1 

is as H[TI-‘l-module via the diagonal action isomorphic to H[z-‘I@ H[Y’] vvith the 

left-hand H[rt-‘l-action. But the latter is obviously flat. 

I shall construct T,, for simplicity only in the special case (which includes all the exam- 

ples I know) where A(1) is a topological monoid !tf and one can find discrete submonoid 

11 of M whose image in x = ;i,,M is cofinal. Then ,-1’(l) is up to homotopy the space of the 

category C,%, described above, and it contains the space of the category C,vI+, whose space of 

objects is M x g and whose morphisms from (m,, ml) to (m’,. m;) are the set {mEp: 
mlm = m;, m2 m = m;>. Define T,,,,, = / C,M,,\. The spectral sequence for H,(T,,,,,) begins 

with the bar-construction for Tor,Ft”l(H @ F[p], F), where H = H,(Af). By a lemma like 

(4.2) (but simpler) one has (H @ F[,u]) @FLtil F z H[LL-‘I, and Tori = 0 for i > 0. Comparing 

with the spectral sequence for H,(I C,wI), and observing that H[p-‘1 = H[n-‘I, one finds 

that H,(T.\,.,)z H,(A’(l)). 

The most important case of the construction of T,,,., is when /l = IN, the natural 

numbers. Then if e is the generator of ,n the space T,,,., is (up to homotopy) just the telescope 

of the sequence 
xe xe xe 

M - 1M - M - . ‘. . 

I conclude this section with the proof of (4.1). Again I shall assume for simplicity that 

]%‘I is a topological monoid M. By a direct limit argument one is reduced at once to the 

case where rc = 7c, M is finitely generated, and then one can suppose that the cofinal monoid 

is N, and can lift it back to a submonoid ,U of M, generated by e E M. 

Let 0: [ ; M] + F be a transformation of the kind envisaged, where F is represented 

by an H-space B. If X is a compact space then [X; T,,,] is the direct limit of the sequence of 

sets 
[X; M] -+ [X; M] -+ [X; ‘M] -+. . . , 

where each map is addition of the constant map E E [A’; &I] with value e EM. But O(E) has 

an additive inverse in F(X), so 0 induces a transformation [X; T,tr,p] + F(X). By [I] (1.5) 

this is induced by a map 0: T,,,, -+ B, unique up to weak homotopy. Byobstruction-theory, 

because H,(T,,,) 2 H,( j C,%, / ), this extends uniquely to 0 : / C,w j -+ B. But 1 C,,i I represents 

kg, so one has shown that transformations [ ; / %;/ ] -+ F extend uniquely to kg -+ F, 

proving (4.1). 

55. RLNG SPECTRA 

It often happens that a category has two composition-laws analogous to those of a 

ring. For example, in the category of finite sets one has disjoint union and also the Cartesian 

product, and in the category of finitely generated modules over a commutative ring one has 
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the direct sum and also the tensor-product. In these cases the spectrum associated to the 

category is a ring spectrum, as the following discussion shows. 

Definition 5.1. A multiplication on a r-space A is a contravariant functor A: r x r -+ 

(spaces) together with natural transformations 

i, : A(S, T) -+ A(S), i, : ii(S, T) + A(T), 

m: ri(S, T) -+ A(S x T). 

functorial for S and Tin r, such that for each S and T the map i, x i,: A(S, T) --i A(S) x 

A(T) is a homotopy-equivalence. 

A multiplication on A defines a pairing of spectra BA A BA -+ BA. More generally, 

it defines for any pointed spaces X and Y a pairing (X0 A) A (Y 0 A) --) (X A Y) @A, 

where I have written X @ A for (X @ A)(l) and so on. To see this, let (X, Y) @ A denote the 

quotient of IJ (X” x Y” x A(n, m)) by the equivalence-relation generated by ((x, JJ), 
n,m>O 

(0, 4)*a) - ((0,x, qb*y), a). In view of (5.1) there is a homotopy-equivalence (X, Y) @ A^ + 

(X@ A) x (Y @ A) induced by i, x i2. On the other hand m induces (X. Y) @ 2 -+ X@ 

(Y @ A) E (X A Y) @ A. Inverting the homotopy-equivalence gives one (X @ A) x (Y @ A) 

-+ (,I’, Y) @A, which is trivial on (X@ A) v (Y @ A), and so defines the desired pairing. 

In the examples mentioned above cne can define a multiplication on the relevant 

r-spaces. It arises from the existence of “multilinear” morphisms in the categories. For 

example, let V be the category of finitely generated projective modules over a fixed commuta- 

tive ring. Define %‘(S, T), for finite sets Sand T. as the category whose objects are quadruples 

(X, Y, Z; p), where X: P(S) -+ %’ and Y: P(T) -+ % and Z: P(S x T) + G9 are functors which 

take disjoint unions to direct sums, and ,u is a collection of natural bilinear maps p(,,: 

X(G) x Y(r) -+ Z(a x 5) expressing Z(a x 7) as the tensor-product of X(a) and Y(7). Then 

(S, T)- I%V, T)I . 15 a multiplication on S++ 1 V(S) j. 

To obtain ring-spectra in which the multiplication is strongly homotopy-associative 

and homotopy-commutative one must begin with sequences A,, A2, . . , where A, is a 

contravariant functor from r x . . x r to spaces, A, being a r-space, A, a multiplication 
+k- 

on A,, and so on, together with appropriate transformations between them, one for each 

morphism in I-. From this data one obtains ring-spectra possessing a spectrum of units. 

I shall return to this question elsewhere. 

APPENDIX A. THE REALIZATION OF SMPLICIAL SPACESt 

If A = {AJ is a simplicial space one usually defines its realization [I61 as 1 A / = 

P 
A” x A, /-, 

1 
where the equivalence relation - is generated by (5, O*a) - (B,c, a) for 

“2.0 

all < EAT, A E A,, and 8: [m] + [n] in A. The functor A I+ 1 A 1 commutes with products, 

which is very convenient, but has two disadvantages: 

t This appendix is indebted to discussions with D. B. A. Epstein, D. Puppe, V. Puppe. and R. Vogt. I am 
very grateful for their help. 
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(i) it can take one out of the category ^IL- of spaces of the homotopy-type of a CW- 

complex, and 

(ii) a map A --t .-I’ of simplicial spaces such that A, --f AA is a homotopy-equivalence for 

each n does not necessarily induce a homotopy-equivalence i ,-l j -+ j A’ j . 

TO remedy the disadvantages one can use a modified realization .4 H 11‘4 I!. Any 0: 

[WI] -+ [n] in A can be factorized canonically [m] 2 [r] 2 [n] with $ surjective and ri/ 

injective-such ri/ and 4 are called ‘* face ” and ‘* degeneracy *’ maps respectively. One can 

construct /A 1 in two stages. by first attaching the spaces A” x A, to each other by using the 

relations (<, e*a) Y (Q, <, a) for all injective 0, and then collapsing the “ degenerate parts” 

by using the surjective 0. The space obtained after the first stage I shall call I/A I/. If I/A/In is 

the part of it coming from A’ x Ak for k 5 n then /I.-!il, is obtained from ji,4iln_, by 

attaching A” x A, by a map defined on the subspace A” x A, c A” x A,, where A” is the 

boundary of A”. And /[A/j is the homotopy-direct-limit of the IjA /I,, 

P~o~oslrro~ A. 1. The functor A t-+ /I A I/ has the properties 

(i) if each A, is in -ty then so is /I A 11, 

(ii) if A -+ A’ is u sinzpliciul map such that A, 2 ‘4: for each n then 11~1 /I 2 /I.-I’ll, 

(iii) (]A x A’I]: \lAlj x \lA’ll for any A, A’, 

(iv) if.4 is good (us defined below) then II A /I L 1 A I. 

Of these (i) and (ii) are obvious, and (iii) is a theorem of D. B. A. Epstein which will be 

proved below, as will (iv). 

There are many disadvantages of the functor A F+ 11 A II : for example the filtration of 

I)A/j by the /All,, is not what one expects. 

Another approach is to thicken the spaces A, slightly before constructing the realization. 

There are n surjective maps [n] + [n - I], to which correspond n copies A,,i of A,_, 

embedded as retracts in A,. If G is a subset of {I, . , n> let A,,, = ifi A,,;. (Thus An,+ = An .I 

Define 5, A as the generalized mapping-cylinder of the lattice {A,,,), i.e. as the union of the 

subspaces [0, 11” x A,., of [0, 11” x A,,, with the limit topology. Then r,A is homotopy- 

equivalent to A,, and it is easy to see that [n] HT,, A is a simplicial space tA with a map 

rA -+ A. There is a natural inclusion Ij A(\ c 1 tA 1 : in fact 11 A\\ is the realization of the simph- 

cial space [n] H u A, ,d. 
CC" 

PROPOSITION A.2. Thefimctor A w / TA 1 has the four properties listed above for .-l b 11 All, 

and furthermore 

(v) IIA II 2+ / TA I for any A, and 

(vi) rA is goodfor any A. 

Before defining ” good ” and proving (A. 1) and (A.2) I shall mention another realization- 

functor. Let simp(A) be the category of simplexes of A: an object is a pair ([n], u) with 

a E A,, and a morphism ([n], a) --+ ([ml, b) is a morphism 8: [n] --t [m] in A such that 6*b = a. 
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One topologizes the objects as u ‘4,. and the morphisms as fl ,-!,, so that simp(.4) is a 
n 0 

topological category. (In some sense ~ simp(.-l) 1 is a barycentric subdivision of 1 A / .) 

PROPOSITION A.3. 1 simp(A) j - j rA / = II.1 I/ for any A. 

There seems no doubt that the appropriate homotopy-type to call the realization of A 

is that of the three spaces of (A.3). Goo&ess is a condition ensuring that the naive realization 

/ A / has the desired homotopy-type.? To be precise 

Definition A.-!. A simplicial space 4 isgoonif for each n and i the inclusion ,4L,,i --) .A, is a 

closed cofibration. 

Remarks. 

(i) Each of the three functors ,4 H II.4 /I, 4 H 1 rA I, A H j simp(il) 1 first replaces rl by 

a good simplicial space then forms the naive realization of that. 

(ii) The product of two good simplicial spaces is good. 

(iii) The simplicial space arising from a topological monoid is good if and only if the 

monoid is locally contractible at I. (“ Locally” refers to a “ halo” [7].) 

Proofs. Of the statements to be proved (A.1) (i) and (ii) and (A.2) (vi) are easy, and 

the rest of (A.l) and (A.2) follows from them and (A.1) (iv). Thus (A.]) (ii) implies that 

]jrAjl L ]/ilj]; but s4 is good, so 1ir.J 11 N 1 r,4 1 giving (A.2) (v), and hence (A.2) (i), (ii), 

and (iv). And rii x TA ' is good, so, by (A.2) (ii) and (iv), because s,,(4 x ,4’)2 5, A x r, A’, 

lT(/i Xii')1 Nj T/i x rA'l = 1 TA 1 x / TA' 1, giving (A.2) (iii), and hence (A. 1) (iii), So one is 

reduced to proving (A.l) (iv). The proof of this will prove simultaneously that 

j simp(il) I-2 I Al when ,4 is good, and hence that / simp(rl) = / TAI for all A, proving 

(A.3). 

If A is a simplicial space and F is a cocariant functor from A to spaces, written [rz] H F, , 

I shall write F(A) for 
! 

u F, x .4 ’ /- , where 
Ilk0 9 

- is the equivalence relation (<, O*a) - 

(0,(, a) for 0 in A. 

LEMMA A.5. If F, F’: A + (spaces) are two couariant jknctors, and T: F -+ F’ is a trans- 

formation, then T: F(A) -+ F’(A) fbr any good simpiicial space A providing 

(i) F,: Fi for each n, and 

(ii) F(B,) -+ F,, and F’(B,) -+ F,’ are cojibrations for each n, w’here B,, is the boundary 

of the n-simplex, regarded as a simpliciai set in the usual way. 

Applying the lemma when F is [n]++ /I [n]li and F’ is [n] H I [n] I = A” gives one I],4 II 2 

I A 1 when A is good. When F is [n] H j simp([n]) I and F’ is [r~]++ A” one gets I simp(A) 1 --t 

/A 1. In each case the cofibration-condition is satisfied because any monomorphism of 

simplicial sets becomes a cofibration on realization. 

-t Similar conditions have been studied by May [Ill. 
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Proof of A.5. F(‘ii) is lim F,(A). where F,(A) is the push-out (amalgamated sum) of 
- 

the diagram 

F,_,(.-l)+(f, x A$u(f(B,) x A,>LF” x .A,, 

nhere At = uA,,~ is the degenerate part of il,. The hypotheses imply that i is a cofibration 

[lo]. Similarly for F’. One concludes inductively that FJ.4) -+ F;(A) for all n; and hence 

that F(A) - F’(A) because F,_,(.-l) + F,(A) and F;_,(A) -+ F;(A) are cofibrations. 

Remarks. 

(1). In the body of this paper “realization” means the functor A F+ 1 sA 1 ; but I have 

nevertheless written it just 1 A I. Occasionally this might lead to confusion: for example in 

the proof of (1.5) uhen I write 1 .-l 1 cpj/ / A / cp_1j = Sp(A1 A . . . A A,) one must remember 

that for this to be true for badly behaved spaces A must first be replaced by its thickening 

s/i. 

(2) If A is the simplicial space associated to a topological monoid iV, i.e. if A, = M”, 

then sA is associated to the “whiskered monoid” M’ = itf u (Ii [O. l] (cf. [I I]). 

(3) If A is a r-space then TA (formed from the simplicial structure of A only) is 

naturally a r-space. In fact the degeneracy operations in the categories A and I- can be 

identified with each other. 

APPESDIX B. RELATIONSHIP \\‘ITH THE APPROACH OF BOARDXIAS-VOGT AXD MAY 

I shall begin with some general remarks. Let us call a topological category whose 

space of objects is discrete a category of operators. If K is such a category I shall call a 

continuous contravariant functor A from K to spaces a K-diagram. (“ Continuous” means 

that Mor,(S; T) x .-I(T) + A(S) is continuous for all objects S, T of K.) If one has a contin- 

uous functor 71: K -+ RI between categories of operators one can regard an M-diagram B as 

a K-diagram n*B. And if A is a K-diagram one can form an iv-diagram n* rl by defining 

(n* A)(S) as the realization of the simplicial space whose k-simplexes are 

LI Mor,,,(.S; nTO) x Mor,(T,; T,) x .‘. x Mor,(T,_,; T,) x A(T,). 
TO, Ti, cob(K) 

There are natural transformations pi* x*B --+ B and A -+ X*X* A. 

A map of K-diagrams A -+ A’ will be called an equivalence if A(S) + A’(S) is a homo- 

topy-equivalence for each object S of K. A functor n: K --f bf between categories of operators 

will be called an equivalence if ob K=- ob &J and mor K=- mor M. 

PROPOSITION B.l. If TK: K -+ M is an equicalence then .-I -+ x*x, A and xi* n*B -+ B are 

equivalences for any K-diagram A and bJ-diagram B. 

PROPOSITION B.2. For any category of operators K there is an equicalence R : ?? -+ K with 

the following property: if A is a K-diagram, and there is gicen a homotopy equicalence h,: 

A(S) + A’(S) for each object S of K, then there is a!?-diagram A” \c*ith an equicalence jr*A --+ A” 

such that A”(S) = A’(6) for each S. 



Cr’.TEGORIES Ah-D COHOMOLOGY THEORIES 311 

These two propositions can be used to relate r-spaces to spaces with an “.operad- 

action” in the sense of May [I I]. An operad furnishes an example of a category of operators 

K whose objects are the natural numbers. with an equivalence ~7: K - I-. An action of the 

operad K on a space X gives a K-diagram il such that .4(n) = X”. It follows from (B. I) that 

the associated r-diagram z* A is a r-space. On the other hand if ,4 is a r-space and one 

applies (B.2) with K = II to the homotopy-equivalences p,: .4(n) + .-i(l)” one obtains a 

r-diagram in which all the spaces are products of copies of .4(l). This has the essential 

properties of one of May’s operad-actions. 

The proof of (B.l) is very simple. If in the expression for (.X*X* .-t)(S) = (rc*ri)(zS) 

one replaces Mor,,(nS; XT,) by Mor,(S; 7,) one does not change its homotopy-type. But 

then one has precisely the space of the category S, .4 of pairs (0. a) with 0: S -+ Tin K and 

UEA(T). This space collapses to ,4(S). An analogous argument applies to z* rr*B. 

The proof of (B.2) is of more interest. I call the category R the “explosion“ of K: it 

occurs in various connections: in fact a R-diagram is precisely what should be called a 

*’ homotopy-commutative K-diagram. ” (The construction has been studied by R. Leitch 

[9].) By definition Mor,(S; T) is the space of the category of paths in K from S to T. Such a 

path means a pair (n, 0) where n is a natural number and 0: [II] --* K is a functor such that 

0(O) = S and O(n) = T. A morphism (n, 0) -+ (m, 4) is a $: [n] --t [nz] in A such that & = 8. 

Composition of morphisms in K is induced by concatenation of paths. 

To prove (B.2) one begins by observing that the space Mor,(S; T) is a union made up 

of one (n - I)-dimensional cube for each path of n steps from S to T. Thus a point of it can 

be represented. 

01 
(S = s, 81 s, - ” 0” 

-S, = T; t, , t,_l) with 0 I ti < 1. 

One associates to this point the map 

l%, A(o,)a,,(W(o,). .rs,_ I(t,-,)~(~,w,“: A’(U + ~‘(&A 

where k, is a homotopy-inverse to h,, and c,(t), for 0 I t I I, is a homotopy from h,k, 

to the identity. 

1. 
2. 
3. 

4. 

5. 

6. 
7. 
8. 

9. 
10. 
11. 
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