
l-ßings and Adams operations in algebraic ff.theory

WoIrcINc K. SEILER

The purpose of this^ talk is to ouüline the construction of Adams operations on the algebraic
K.theory of a quasi-projective scheme X, and to prove that K"(XI can be decomposed
into the eigenspaces of these operations. These eigenspaces are the absolute cohomology
ol X, which will be used extensively in subsequent talks.

Adarn^" operations are defined in terms of }-rings, i.e. rirgr with maps that nbehave

like the exterior powers in representation rings'. Unfortunately, these maps cannot be
defined directly on the K-theory; therefore we have to study the general theory of l-rings,
and then to transfer the )-structure from representation ringt to K-groups. In many cases,
proofs will only be sketched; a reader who wants more details, will find a complete accorurt
of the general theory of }-rings in [A-Tl, and for Adams operations on the K.theory of a
ring, he can consult [EJ or [K]; the first announcement of a Ä-structure on the K.theory
of a ring can be found i" [Q11. I shall follow the terminology of [B]; what I call a ].ring,
is called pre-I-ring i" [Kl, and a )-tit s in the sensc of [KJ is called a special l.tirs here.

For a group G and a cornynutative ring Ä with unity, let

PA

PnG)
Ko(Ä)
n(c,Ä)

denote the category of finitely generated projective Ä.modules,
the category of finitely generated projective Ä-modules with G-action,
the Grothendieck group of, Pa with respect to exact sequences,

the Grothendieck group of Pa(G) with respect to exact Eequences,

the Grothendieck group oI Pa(G) with respeet to direct surrur.Ro(c,Ä)

Then Iq(Ä) and ,R(G,Ä) are:"*r (with (E as addition and I as multiplication),which

admit maps Ii: .R * ß; M r+ hn'f . The notion of a }-ring formalizes this situation:

Definition: Ä t-rirrg .R is a conmutative ring with wüty, together with maps It: I -* .R,
i e lNo, such that

( 1 )  Ä o ( c )  : 1  Y a G R

( 2 )  1 1 ( c )  : s  V s e . R

(B) r,( '  + y) : i  x blxi-, (y) Y ,,ye .R.
v--O



Putting

\ ( ' )  : I I ' ( c )  t t ,
j > 0

(1)-(3) are equivalent to saying that Ir:.R --+ 1+ft[[üll* is a homomorphism of abelian

groups. An element s C J? has Ä-dimension rz, il trr(o) is a polynomial of degree rL.

What is ld (ry')?

Supposet  5 :  s r  *  . . . *&n and y  -  Vr  * . . . *y^  are  sums of  one-d imens iona l

elements, whose products are one-dimensional, too. Then

sy: l r ;v i ,  Är ( t iy r . )  :1*  ü ; ! ; t t
i r j

hence

t,('y) : II (r + a;vit|.
t i

f ' lr, j  (t+Xrf, t) eZ[Xr, -..Xn,Yr,.. -y-l[t] is sy"'" 'etric in the X; and the Y;, therefore

it can be written as

[ I t t  +x iy iü)  : f  O(or (x ) , . . . ,  o^(xh r r (y ) , . . . ,  , ^ (Y l )  . t ' ,
i, j i-o

where o;t ri are the elementary symmetricfunctions in the Xp respectively Ys, and the Pt

are universal polynomials with integer coefficients, not depending on the ring .R. Because

of  (3) ,  we have t t (c)  :  o ; ( r r , . . . ,s , . )  and l i (y)  :  r i (gr , . . . ,  g^) ,  so we get

(4 )  Ä t ( ry )  -  p .  ( r t  ( r ) , . . . ,  ) " ( " ) ;  11(y ) , . . . ,  r - (s ) )  .

Similarly, Idofr(r) can be computed as

(5 )  I i " ) , ( " )  :  P i , j  ( f t  ( r ) , . . . , I t ( " ) )  ,

where the P,.; again are universal polynomials with integer coefficients.

Deffnition: A l-rirrg R is called special, if (*) and (5) are satisfred.

In a special l-titg, we have Ir(t) : It(Io(")) : 1 * ü, hence

(o )  r t ( t )  : e  v i>1 .

Ä trivial gaample of a special ,\-ring is Z itself with the Ä-operations Ät(") : (l); it is

clear from (O) and the definition of a Ä-ring, that this is the only special l-ring structure

on Z. girnilafly, we can get a special l-tirs structure on other tittgs in which binomial

coefficents exist; this leads to the

Definition: A binomial Ä-ring is a conmutative ring with unity, which is üorsion free as

an abelian group, for every u € R and every f e lN contains (i), and whose L-operations

are given by Ii (r) : (i) .

N{ore important special }-rings are given by the following



Example: R(G,ä) is a special Ä-ring.

Ideo of proot: For every given finite set of representations, a category C' is constructed,

in which each of these modules is a sum of one-dimensional elements, so that the same

calculations as above gtn'. (4) and (5). C' can be constructed inductively: It obviously

suffices to construct a category C" rhwhich a one-dimensional summand can be split from

one given module M. Here the idea is to consider modules over the syrnmetric algebra

S(Äy'), where the module induced by M itself has a one-dimensional quotient, given by

the linear functions on S (.&f). For details, see [S]. ,

The use of the splitting principle in this proof is something very courmon in the theory

of special Ä-rings; in fact, the important thing about special l-rings is, that they behave

as if every element were a sum of one-dimensional elements. More precisely, we have the

l-verification principle: Let p be an operation on the category of special \-rings,

that is a fwtctortal familv of maps FfiR --+ ft. Then p is given by ^ polynomial P in

ZVt, 12,...1, and in order to prove that a certain p is given by P, it suffices to vert{y

this for srrm.s o{ one-dimensional elements.

Idea ol proot: Let (J - ZIXrI'(X), tt(X),...1 be the free special l-ring generated by

one variable X. For every special l-ritts .R, and every ü € .R, there exists a unique

homomorphism %U + R with p(X) : &t and because of the functoriality of p, the

polynomial P : Fu(X) € U describes p.Make f,): Zltrrl2r...l into a special Ä-ring via

I, (g;) : I * f;ü; then truncated pieces of U can be mapped to truncated pieces of O by

It (x) * o{") (fr , . . ., fr,),

where oj") ir the rth elementary symmetric function in rz variables. In O, every element

is a sum of one-dimensional elements, so inductively one shows the verification principle.

For details, see [A-Tl, theorem 3.2. 
.

In order to deftne Chern classes, we need a modification of the )-operations, the

so-called 7-op erations

t i z R  - r . R ;  s ä  Ä t ( " + i -  1 ) ,

which can also be defined by

rr(t) : D 7; bl{ : I,/(r-ry(").
j > 0

We call a special l-ring .R augmented, if there is an .9-linear homomorphism of l-rings

ezB --+ ,S to a binomial sub-I-ring .9 of -R. In an augmented special l-ring, the 7-

operations deftne a natural filtration, the 7-filtration, whose graded pieces are

|  |  d  r -  \
f i , ,  :  ( t t ' ( r r ) .  . . 1 i , ( r , )  

|  n ,  e  E ,  \ ; r 2 n ) r ,

where

and .ä is the kernel of the augmentation e. We call cr,(r) : 7" (s- "(t)) mod ft,.+, the

rzth universal Chern class of s e R.



The Adamg-operations r/ß:.R -+ R are defined by

,!,r("'): I ,l,h (rlüt : -, d los I'-' (") 
.

l > r

For a one-dimensional c. this means that

hence ,lto(r) - sh. Letting N*(or r...oh) denote the polynomial in the elementary sym-

metric functions for which

/ \
N o  

[ " ,  
( r r r .  . . r n l ,  . . . ,  o t  ( e r r . . . r t " l )  -  u f  + .  .  . *  s f  ,

the l-veriftcation principle shows that

, l to  ( r ) :  lVt (Ät  ( t ) '  .  .  . '  Ao( t ) ) .

Lemmaz The ,ttk are homomorphisms of l-rings, nd ,ltk orlte:{rke. I{ R is auganented

with e: R + S, they are also ,S-Iinear.

Proot: By the l-verification principle, it suffices to consider sums of one-dimensional

elemenüs; for these we have

d* (D s; *Ds j) : E' l  + X nf :, l ,k(f " ') +,|,b(f n )
ür((r",) (rnj)):D ,fy!: ( l"r) .(r ' i)

:,l,h(f ',) . ' * (f v;)

ot ' *  (  xe( f  r t ) )  :  { )h  (o r ( r r , . . . , " " ) )  :  oe( " f , . . . , r f ), \ |

: \s(l ",*) : ^e{)h(f ',)

,l'* (4"(f 'r)) : ,!,k (f "f) : E ,fe : ,l'rt (D",) .

In order to show that the ring homomorphisms r/e are ̂ 9-linear, it suffices to show that

their restrictions to ^9 are the identity map. This follows from (*d is in fact equivalent

to) the fact that, according to our definition, ^9 is a binomial )-ring: In such a ring,

\(") : D (;)to, which we can write formally as (t + ü)8. Since all the usual identities

for (1 + t)" can be proved using purely formal properties of binomial coefficents, we have

)_, (") : ( l  - ü)', and

hence ,ltr ("): c for all &. 
r

Lemma: In an augmented special l-ring:, for s € Er,, ail rlh(r) - kn . u lie in fin+r.

Proof: The |rh are l-homomorphisrns, and thus coynmute with the 7-operations; since

they are ^9-linear, and RnR^ C fir,*-, it suffices to show that

, ! 'o( t " ( " ) )  -  kntn(" )  e  f in+r  Vs e.ä.



In complete analogy to the )-veriftcation principler w€ have a 7-verification principle,

which allows us to consider elements of 7-dimension one only. Therefore, let s : D s;

with Tb): 1 * c;t .  Then 1 * si  has l-r l i rnension one, hence , l th(r: l :  (1 + sd)h - 1'

and

, l 'h (t" (D ", )) - knln (D r, )
:  r l t h ( o " ( " r , . . . , r r ) )  -  h n o n ( " r , . . ' , t r )

:  o n ( r ! , h  ( " r ) ,  . . . r r l , h ( r r ) )  -  k n o n ( " r , .  . . r r r l

:  o n ( t t  *  r r ) o  -  1 , . . . ,  ( 1  * s , ) o  -  r )  -  k n o n ( r r , . . . , " , )

:  k n o o ( " r , . . . ,  t r )  *  h i g h e r  t e r m s  -  k n o n ( " r , .  . . , , r r l  .

This is a symmetric polynomial of degree bigger than ra, and thus an element of An+l. 
.

Ilefinition: The l-frItration is called IocaIIy nilpotent, ff for every s e fr' there exisüs

an JV € lN, such that fd'(t) ..1i, (t) : O whenever ! i, ) N.It is called nilpotent, ff

there exisüs an N € lN, such that ft^ : 0 for aII n > N.

Def in i t ion :  z^ f r :ker [ ( t - -e" )  . . - (oo-e)  t r t * f r ]  .

Corollary: I{ the 1-frItration is locally nilpotent, then j{ : U Znfr.

Proof: Every s e fr, generates a sub-)-ring of .R with nilpotent 7-filtration, and in such a

rins the corollary is immediate from the le-ma. 
.

Theorem 1: Let R be an aaguented special l-"irrg with localfu nilpotent 1-fiItration.
Then

^äoa -ön ,
i = 1

where Y; fu the h; -eigenspace of dh g l, k ) L. V; does not depend on k.

Proof: We show that Z^fr8 Q = O,L'I/;:

pn:nffiz znfr.oe * y,,
i * n '

is a projection with kernel Zn-rfrrbecause II,L , bl,o - 1r; ) vanishes on Z^fr; continue by

induction. Now let (. and ,t be different numbers; we haveto show that l.:ker (ttr'ß - /ti)

coincid.es with ker(rl,e - ftl. Define Z^fr: kerll|= , (rt., - *ri) with frj:& for i + i,

and ro; : l. As above, we have U z^fr - fr,,and sincu fli*i blt* -hi):fIi*,(et - fr.r) is
multiplication with a non-zero scalar on Y,, (rltt - t;l must vanish on 4 n Znfr, for all n.

Therefore Y,:U (u, n Z^R) ües in the kernel of (o!,e - U). 
r

K(X,A) "r a special l-ring

Let A be a cornmutative ring with unity, and X

K-cohomologT group K(X,Ä) is defined as

K(X,A):  [X, l ro(a) x BGL(Ä)+] ,

a finite pointed CW-complex. The



where IXrYI denotes the set of all homotopy classes of base point presenring continuous

maps from X to Y. The reduced K-cohomology is

fr(x,Ä) : L.'(n1x,Ä) * nr(Ä)) : [x,BcL(Ä)+] .

The most important examples are of course the cases X: ^Sn, when

K(s',Ä) : [s',I(o(Ä) x BGr(Ä)n] : 
{äffl(Ä)*) [: ;:; 

: Kn(Ä).

The main result of this talk is

Theorem 2: K(X,,Ä) is a special \-ring with aug entation K(X,Ä) * H0(Spec A,Z),

whose 7-frItration is IocaIIy nilpotent. There are Ad.ams operations

$k:K(X,Ä)  *  K(X,A) ,

which are ring homomorphisms, and K(X,Ä) 8A - @V;, where Y; fu the ki-eigenspace

of ,th. On K^(A),the ,l,h cornrrute withthe cup product lJ:K^(a)"f"(Ä) * K^+"(Ä).

Here, the augmentation K(XrAl - Bo(Spec ArZ) is given by the canonical pro.

iection to .Ifo(Ä), fotlowed by the homomorphism Ko(Ä) -r Ho(Spec A,Zl assigning to

every projective module on Ä its (local) rank, considered as a locally constant function

from Spec A to Z.

Corollaryz Let V be a regilar quasi-projective scheme over a fteld. Then the groups

K^(VI are special A-rings, and their Ailams operations contmute withthe grailed product

on K,(Y) : CIK,,,(Y).

Proot: For affine schemes, this is the theorem, md by Jouanolou's device ([Jl, Lemma 1.5

and Prop. 1.6, or [Q2], 97 14.2l', the K-theory of every regular quasi-projective scheme over

a field is isomorphic to the .üf-theory of a cerüain affine scheme. 
.

Definition: For K^(V), Y;:H?'- ^ (u,a(4) i" mr absolute cohomology of V .

The idea for the proof of theorem 2 is, to relate K(XrAl to the special }-rins

R(or(X),Ä). This must be done in a functorial wäyr of course, because or(Xl:0 for the

cases in which we are mostly interested.

Definition: Let F, G be finctors from the pointed homotopy category of frnite CW-

complexes to the category o{ pointed seüs. A morphism of functors g. F -> G is called

universal with respect to the spaces in a class C , ff {or each Z e C, each morphism of

functow F + I. , Zl factors in a unique way over G.

Example: The universal property of the *-construction ([GI, theorem 2.5 or [Bl, th.o.

remL.Zl is equivalentto sayingthat [. ,BGL(Ä)] * [. ,nCl(Ä)*J is universalwithrespect

to .El-spaces.

(Reca l l thatan.H-space isatopo logt . " lspaceXtogetherwi thaproduct l tzXxX*X,

such that both multiplicationsby constants, i.e. the maps {*} * X -> X and Xx {*} * X,

are homotopy equivalent to the identity map.)



We shall show that there is a morphism of functoß pzR(nr( .),Ä) * K(- ,Al, which
is universal with respect to those fl-spaces all of whose connected components are again

Il-spaces. In analogy u k(XrA) rwe deftne

fr,1c,e1 : ker(*(",Ä) * n(< 1>,Ä) : Jfo(Ä)),
and

frr (c, Ä) : lr.r(n* (G, A) * Ae (< t >, o)).

Lemmaz There is amorphismo[functort $rfrr(or(.),Ä) * i{(.,Ä) ,whichisuniversal
with respect to H-spaces.

Proof: Let p: ",(X) + Aut(P) be a representation on a projective module P.By definition,

there exists a projective mod,rle Q, such that P @Q = An is a free Ä-module; therefore p

can be extended to a homomorphism p':rr(X) * Gl"(A),* Gl(A),By ffi, 1e"""a3.2,

/ it determined by p up to co4iugation by Gl(A). p' defines a map Brr(X) + BGL(Ä),
which we can compose with the canonical map BGL(Ä) --+ BGt(Ä)* and the 2-coskeleton

X + Brr(X), to get the desired map ,üblzX + BGL(Ä)*. Since p' is defined up to
corfugation by Cl(A), this map is well-defined up to the action of ,ü(, (Ä) : o, (nCl(Ä)*)

on BGL(Ä)*. But this action is trivial modulo homotopy, because BGL(Ä)* is an If-
space with respect to the product defined by the direct sum of matrices.

For the proof of universality, note that the group fre ("r(X),a) is generated, as we

have just seen, by the monoid
/ \

M(x): lgr (non(",(x) ,GI^(Al\ct^@)
where GI"(AI acts by co4jugation. Since BGt"(Ä) : K(Gl"(Ä),1) is an Eilenberg.

N{aclane space, Hom("r(x) ,GI^(A\) : [X,BGL,.(Ä)I, and one easily concludes that

Ivf$) * [X,BGt(Ä)+] is universal with respect to Il-spaces by the universal property

of the *-construction. This implies that fr, (o, ( . ), Ä) -* [. , BGt(Ä)*] : k(., Ä) is
universal with respect to.t[-spaces, too, because [X,BGt(Ä)*l is already a group. 

r

Using this lemna, md the fact that ft* (rr(X),Ä) is a l-ring, one can easily show

that K(XrÄ) is a l-ring. Unforüunately, this is not yet enough, because ,?, (or(X),Ä)

is no special )-ti*g, so we still have to consider R(er, (X) ,Al.

Lemmaz $ f^ttott over a motphism of fwtctors ö2fr("r( .),Ä) -* I?( .,Ä) , nd ö it

universal with respect to E -spaces.

Proo!: We must show that ,l@ only depends on the class of p in fr(r, (.),Ä). For this

we can assume without loss of generality that )( : BG is the class.fyi"S space of a group,

the map X - Brr(X) causing no trouble. So we must show that {t(BGl respects exact

ltequences: Let 0 + M' + M + M" -r 0 be an exact sequence of representations y', g,
p".We claim that OFC)(pl is equal b &(BG)(p'O /'). Addins appropriate modules,

we can assume that we have an exact sequence 0 --+ AP * AP+q + At --+ 0 with free
modules, md that

, :  ( (  ; , )  
and /  @ p":  ( 'J  , : , )  

.

In this situation, {,(F,Cl(p) :'/(BG) (/ e p"), because of the followins



Lemmaz Let GIo,o(Ä) : {t l t e Glpaq(Ä)}, and let

!, x : B(c,(Ä) x GI(A)) * Y : !r BGIe,q{A)

be the map defrned by the rystemo/.embeddings Gle@)xGlr(Ä) - GIo,o(Ä). Then t'he

induced map t*rlY,BGt(Ä)*l * [X,BGL(Ä)*] is irryecüive.

Proof: Bv [QSl, theorem 2', I is a homology isomorphism. Replacins / bv its mapping

cylinder, we may assume that / is a cofibration, so we have the exact Puppe sequence

...--+ [,sX,BGL(Ä)*J * [c'ncl(Ä)*l - ' [r 'BGL(Ä)*] * [X'BGL(Ä]*] '

where q is the mapping cone of J . It suffices therefore, to show that [Ct, BGt(Ä)*l

vanishes. BGL(Ä)+ beins an -E[-space, l?r,BcL(Ä)*l : l2f ,BGL(Ä)+1, tttd since / is

a homology isomorphism, C7 is acyclic, hence "lC) is perfect, and thus or(Cfl - 0'

and [c1, BcL(Ä)*] : o. 
r

Now def ine ,p:R{trr( . ) ,Ä) -*  K( - ,A):  [ . , I (o(Ä] x BGL(Ä)*|  by sett inr  ,1X)(o]

to ([Pl, PWI(p)) for every representation p on a projective module P.

Lemmat g is universal withrespecttothoseH-spaces allof whose connected componenüs

are again H -spaces.

Proo!: Let Z be such a space, and w:R(trr( .),Ä) -+ l. rzl a morphism of functors.

Let f, - IJoEno(z) Zo and f - L[p.,ro(*lXp be the decompositions of Z and a test

space X into connected components, and choose a base point in each Xg. We have to

find a map K(XrÄ) * lX,Zl extending a,(X), so let / be an element of If(X,A):

lX,Ko(a) *BGt(Ä)+1. The .l.p being connected, / maps each Xp to a single component

IPel*BGL(Ä)+, hence / ir given locally by elements /p elXp,BGt(Ä)+J. Because of

the universality of Ö, and since Zp: Zr(r)(trel) is an.El'spacer w€ get canonical maps

oprlXp,Bct(Ä)*l * lXp,Z9l,whrch can be glued together to give the final *ap. 
r

Corollaryz Each morphism o{tunctors I:.R(rr(.),Ä} -+ .R("t('),Ä) .has a unique ex'

t ens ion  K ( . ,Ä )  *  K ( . ,Ä ) .

The proo! is simple diagram chasing, because K(XrA). : lX,Ko(a) " BCL(Ä)+], tnd

all connected components of Ko(Ä) x BGt(Ä)* are homeomorphic to BGL(Ä)+, and

therefore are .E[-spaces. 
,

Sirni lar ly,eachmorphismoffunctors $R(nt( . ) ,Ä) x-R(rr( ' ) 'Ä) ' * .R(n1( ' ) 'Ä) has

a nnique extensio" If( . ,A) x I(( .,Ä) * K(.,Ä). With this we are ready for the

Proof of thcorem 2: It is clear that the property of being a special l'ring extends

from ft(or(X),Ä) to K(XrÄ), because all axioms can be translated into existence and

equality of certain maps, and these maps are functorial for .R("t (')'Ä). In order to show

the localnilpotency of the 7-filtration, it suffi.ces to consider the cases s € fr(XrÄ),and

u e lX,lfo(Ä)l.Let ftrst ü be an element of k(X,Ä) : [X,BGL(Ä)*]. Since X is a

finite CW.complex, o already lies in some [X,nCf,"(Ä)*]. IV. starü by showing that 'y]

is trivial on [X,BGL,.(Ä)*l for & ) n. For this it suffices to show that ?] is trivial on all

elements of the form lpl- ["] i" fr("r(X),Ä), where p is an arbitrary, and rz the trivial



representation of degree z. For such an element,

r[pl- ["J) :1tfip}fu("' [t]) : lt(tpl) ' (t - t)".

Since [pl ir of degree n, and the ]-operations on ^R(G, Ä) are exterior powers, ]r ([pl) it

a polynomial of degree n, and zt([pl) : \/(r-rl([p]) has (t - t)" as its denominator,

hence tfipl- ["]) is a polynomial of degree at most rz. Thus t@l is a polynomial for

each c, in particular zr (-") is a polynomial, too, and t@|. z, (-") : 7t(0) : 1, i.e.,

we have two polynomials whose product is one, and this means Uv [Al, lernrna 3.1.4, that

there exists an N such that 1r(rl" .. .In(r)"" vanishes whenever f, iui > N. For the

case s € [X,Ifo(Ä)l, it suffices to consider the ring lfo(Ä) itseH, because [X,I(o(Ä)] is a

(tossiblv empty) sum of copies of If'(a). But for c € If'(Ä), t@) is also a polynodd,

because s represents an Ä-module of ftnite rank, so the szune :rrgurnent as above can be

applied.

Therefore K(XrAl is a special l-ring, and thus has Adams operations. In order

to show that the kernel of the augmentation map decomposes into a direct sum of their

eigenspaces, we must show that Eo(Spec A,,Z) is a binomial l-"irg, but this is clear,

because H0(Spec ArZl consists of locally consta,nt firnctions with values in Z, which

behave locally like integers. Since the Adams operations are trivial on a binomial l,trg,

Ho(Spec ArZ) is a direct summand of their l-eigenspace, hence the decomposition can be

extended from the kernel of the augmentation map to the whole of K(X,Ä).

Finally, we still have to show that the Adams operations on K^(A) cornrnute with

the cup product, that is we have to show that

,t h (ru y) : rl'o (r) u rlh (y) V s € K^(A), a G K"(A).

This is easily seen from the diagram

K(s-,Ä) x.tr(^9",Ä) r l lxü! ,  K(s' ,Ä) x

I  r l * r i  p i*p i  I
.rf(s^ X s^,Ä) x lr(s- x ̂ sn,Ä) üDxüD , rr(s- X s',Ä) x

I r=*urtiplication , I

",  A)

.t((S- x S", Ä) ü' t .t((^9- x

l l
I((,s'. A .9n, Ä) o- ) .ür(.5- A

i l l l
I f  (Sm+n, Ä) Ü- ,  K(S-+

where the upper and the third square cornrnute by functori.lity, and the second one,

because d& ir a ring homomourhism. 
.

I((,S", Ä)

K(,5- x S

S",  Ä)

,S", Ä)

" r A l  ,
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