A-Rings and Adams operations in algebraic K-theory

WOLFGANG K. SEILER

The purpose of this talk is to outline the construction of Adams operations on the algebraic
K-theory of a quasi-projective scheme X, and to prove that K,(X) can be decomposed
into the eigenspaces of these operations. These eigenspaces are the absolute cohomology
of X, which will be used extensively in subsequent talks.

Adams operations are defined in terms of A-rings, i.e. rings with maps that “behave
like the exterior powers in representation rings”. Unfortunately, these maps cannot be
defined directly on the K-theory; therefore we have to study the general theory of \-rings,
and then to transfer the A-structure from representation rings to K-groups. In many cases,
proofs will only be sketched; a reader who wants more details, will find a coinplete account
of the general theory of A-rings in [A-T}, and for Adams operations on the K-theory of a
ring, he can consult [H] or [K]; the first announcement of a A-structure on the K-theory
of a ring can be found in [Q1]. I shall follow the terminology of [H|; what I call a A-ring,
is called pre-A-ring in [K], and a A-ring in the sense of [K] is called a special A-ring here.

For a group G and a commutative ring A with unity, let

P, denote the category of finitely generated projective A-modules,

(&) the category of finitely generated projective A-modules with G-action,
K,(A) the Grothendieck group of P, with respect to exact sequences,
R(G,A)  the Grothendieck group of P,(G) with respect to exact sequences,

R4 (G,A) the Grothendieck group of P,(G) with respect to direct sums.

Then K;(A) and R(G, A) are rings (with @ as addition and ® as multiplication), which
i

admit maps A\': R — R; M ~— A M. The notion of a \-ring formalizes this situation:
Definition: A A\-ring R is a coMutative ring with unity, together with maps \': R — R,
1 € IN,, such that

(1) X(z)=1 VzeR

(2) A(z)==z VzeR

i
(3) XN(z+y)=D_ M(2)}“(y) VYz,yeR.

v=0



Putting
Ale) = 2 X (@) ¥,
i>0
(1)-(3) are equivalent to saying that \,;: R — 1+ R[[t]]* is a homomorphism of abelian
groups. An element z € R has A-dimension n, if \;(z) is a polynomial of degree n.

What is A\ (zy)?

Suppose, z =z, +...+2, and ¥y = y; +...+ y,, are sums of one-dimensional

elements, whose products are one-dimensional, too. Then
Ty = z 2;Yjs A (a:,-yj) =1+2zy;t,
i3

hence
A (zy) = H 1+ a:,-yjt).
)
H,-,J- (1 +X.Y; t) € Z[X,,...X,,Y;,...Y,, ][t] is symmetric in the X; and the Y}, therefore
it can be written as
[T+x56) =3 Piley(X),. s 0, (X); (¥ )s oo 7 (¥)) -,
£,7 =0

where o;, 7; are the elementary symmetric functions in the X respectively Y,, and the P;

are universal polynomials with integer coefficients, not depending on the ring R. Because
of (3), we have X (z) = 0;(2,,...,,) and M(y) = ‘rj(yl, ey Y,,)s SO We get

(4) X(zy) =P, (A(z),..., A" (2); A (9), ..., A™(9)) -
Similarly, A'o)/(z) can be computed as
(5) )\ioAj(x) =Pl,j ()tl(a:),...,xj(z)),
where the P, . again are universal polynomials with integer coefficients.

4
Definition: A A-ring R is called special, if (4) and (5) are satisfied.

In a special A-ring, we have A, (1) = X,(A\%(z)) =1 +¢, hence
(6) X(1)=0 Vi>1.

A trivial example of a special \-ring is Z itself with the A-operations \'(n) = ("‘), it is
clear from (8) and the definition of a A-ring, that this is the only special A-ring structure
on Z. Similarly, we can get a special \-ring structure on other rings in which binomial
coefficents exist; this leads to the

Definition: A binomial \-ring is a commutative ring with unity, which is torsion free as
an abelian group, for every z € R and every i € IN contains (f), and whose A-operations

are given by X (z) = (%).

More important special A-rings are given by the following



Example: R(G, A) is a special A-ring.

Idea of proof: For every given finite set of representations, a category C’ is constructed,
in which each of these modules is a sum of one-dimensional elements, so that the same
calculations as above give (4) and (5). C’ can be constructed inductively: It obviously
suffices to construct a category C”, in which a one-dimensional summand can be split from
one given module M. Here the idea is to consider modules over the symmetric algebra
$(M), where the module induced by M itself has a one-dimensional quotient, given by
the linear functions on § (M). For details, see [S]. .

The use of the splitting principle in this proof is something very common in the theory
of special A-rings; in fact, the important thing about special A-rings is, that they behave

as if every element were a sum of one-dimensional elements. More precisely, we have the

A-verification principle: Let u be an operation on the category of special \-rings,
that is a functorial family of maps pgp: R — R. Then p is given by a polynomial P in
Z[),)3,...], and in order to prove that a certain p is given by P, it suffices to verify
this for sums of one-dimensional elements.

Idea of proof: Let U = Z[X, ?(X),3(X),...] be the free special A\-ring generated by
one variable X. For every special A-ring R, and every z € R, there exists a unique
homomorphism ©:U — R with ©(X) = z, and because of the functoriality of #, the
polynomial P = py;(X) € U describes u. Make 3 = Z|¢,, ;‘2; ...] into a special A-ring via
A¢(s;) = 14 ¢;t; then truncated pieces of U can be mapped to truncated pieces of {1 by

N(X) o™ (510000 80)s

where a‘(") is the ¢t} elementary symmetric function in n variables. In 0, every element
is a sum of one-dimensional elements, so inductively one shows the verification principle.
For details, see [A-T], theorem 3.2. .

In order to define Chern classes, we need a modification of the A-operations, the
so-called y-operations
vY:R—R; zw N(z+1i—1),
which can also be defined by
7 (2) = ‘/;; 7 (@)t = Aj1-)()-

We call a special A\-ring R augmented, if there is an S-linear homomorphism of A-rings
e:R — S to a binomial sub-A-ring S of R. In an augmented special A-ring, the «-

operations define a natural filtration, the v-filtration, whose graded pieces are

a:,,eﬁ, Z"'VZ")S’

where < --- >¢ stands for the S-module generated by the elements inside the brackets,

R, =(7(z) " (z,)

and R is the kernel of the augmentation e. We call ¢, (z) = 9" (z — ¢(z)) mod R,,, the

th

n*" universal Chern class of z € R.



The Adams-operations ¢*: R — R are defined by

be(e) = T pk(o) th = —e D0EAelE)

k>1 dt

For a one-dimensional z, this means that

hence ¢¥(z) = z*. Letting N, (0,,...0,) denote the polynomial in the elementary sym-
metric functions for which

Nk(al(a:l,...mn), cen ak(xl,...,xn)) =gk .. 2k,

the A-verification principle shows that

¥¥(2) = N (X (2)s - -+, A (2))-

Lemma: The ¢* are homomorphisms of A-rings, and ¥* o ¢ = ¢*¢, H R is augmented
with €: R — S, they are also S-linear. k

Proof: By the MA-verification principle, it suffices to consider sums of one-dimensional
elements; for these we have

*(Tz+Ty) =Teo+Tut=¢(Ta)+v*(Ty,)

#((£2)-(Zv))=Eats = (£2t) - (£4)
—9(Sa) #(S,)

vt (2(T2;)) =9 (0y(2, .. -,2,)) = 0y(*, ..., 2*)
=3(Dat) =294 (T)

#((Tn)) = (Set) =Eatt=v ().

In order to show that the ring homomorphisms ¢* are S-linear, it suffices to show that
their restrictions to S are the identity map. This follows from (and is in fact equivalent
to) the fact that, according to our definition, S is a binomial \-ring: In such a ring,

= Y (f)t*, which we can write formally as (1 + ¢)*. Since all the usual identities
for (14t)* can be proved using purely formal properties of binomial coefficents, we have
A_(zg)=(1-1t)%, and

h(o)= ZEUS _tellog -

(e e e [ RS
hence ¢*(z) =z for all k. .

Lemma: In an augmented special \-ring, for z € R,,, all *(z) — k" -z liein R,
Proof: The ¥* are A-homomorphisms, and thus commute with the y-operations; since

they are S-linear,and R, R,, C R , it suffices to show that

n+m

p*(y"(z)) — k"v"(¢) € R,,, Yz €ER.



In complete analogy to the \-verification principle, we have a y-verification principle,
which allows us to consider elements of y-dimension one only. Therefore, let z =) 2;
with v,(z;) = 1+ 2;t. Then 1+ z; has A-dimension one, hence ¥*(z;) = (1 + z;)* — 1,
and
(1" (2 2)) - k(T 2)
=¢* (o (2,5 2,)) — k0, (2)5...,2,)
=0, (¥*(21), .., ¥*(2,)) = k"0, (215 -y 2,)
k k
=0n((1+“’1) —1,...,(1+2,) - 1) — k"o, (2,...,2,)

=k"o, (2,,...,2,) + higher terms — k"o (z,,...,2,) .
This is a symmetric polynomial of degree bigger than n, and thus an element of R, ;. .

Definition: The y-filtration is called locally nilpotent, if for every z € R, there exists
an N € IN, such that v'1(z)---4'r(z) = 0 whenever i, > N. It is called nilpotent, if
there exists an N € IN, such that R, =0 for all n > N.

Definition: Z,5 =ker [(¥* — k) --- (4% — k) : R — F] .

Corollary: If the y-filtration is locally nilpotent, then B =J ané.
Proof: Every z € R generates a sub-)-ring of R with nilpotent y-filtration, and in such a

ring the corollary is immediate from the lemma. .

Theorem 1: Let R be an augmented special \-ring with locally nilpotent «-filtration.
Then '

where V; is the k'-eigenspace of ¥* ® 1, k > 1. V; does not depend on k.

Proof: We show that Z R@ Q = @™ ,V;:

k_ ki .
=1 ﬁn_:-’ : Z,R@Q—V,
i£n

is a projection with kernel Z __lﬁ, because ]I, (¥* — k?) vanishes on Z,R; continue by
induction. Now let £ and k be different numbers; we have to show that V; = ker (¢* — k)
coincides with ker (¢ — £7). Define Z, & = ker[I", (¢~: —rj) with ;= k for j #1,
and &, = £. As above, we have U Z,R = R, and since ], (4% — k%) = I];; (k' — #) is
multiplication with a non-zero scalar on V;, (¢¢ — £¢) must vanish on V;NZ LR for all n.
Therefore V; = |J (V‘ n Znﬁ) lies in the kernel of (¢ — £7). .

K(X,A) as a special A-ring

Let A be a commutative ring with unity, and X a finite pointed CW-complex. The
K-cohomology group K (X, A) is defined as

K(X,A) = [X, K,(4) x BGL(4)*],



where [X,Y] denotes the set of all homotopy classes of base point preserving continuous
maps from X to Y. The reduced K-cohomology is

E(X,4) =ker(K (X, 4) — K,(4)) = [X,BGL(4)"].
The most important examples are of course the cases X = S”, when

7"(BGL(A)*) forn>0

K(S™,A) = [S", K,(4) x BGL(4)*] = { K, (4) for 1= 0

= K, (A).

The main result of this talk is

Theorem 2: K (X, A) is a special \-ring with augmentation K(X,A) — H(Spec A, Z),

whose «-filtration is locally nilpotent. There are Adams operations
Yv*: K(X,A)— K(X, A),

which are ring homomorphisms, and K(X,A) ® Q = & V,, where V; is the k*-eigenspace

of Y*. On K, (A), the ¥* commute with the cup product U: K, (A)x K, (A) — K, . .(A).

Here, the augmentation K{(X,A) — H’(Spec A, Z) is given by the canonical pro-
jection to K;(A), followed by the homomorphism K,(A) — H’(Spec A,Z) assigning to
every projective module on A its (local) rank, considered as a locally constant function
from Spec A to Z.

Corollary: Let V be a regular quasi-projective scheme over a field. Then the groups
K, (V) are special A-rings, and their Adams operations commute with the graded product
on K,(V)=®K,,(V).

Proof: For affine schemes, this is the theorem, and by Jouanolou’s device ([J], Lemma 1.5
and Prop. 1.6, or [Q2], §7,4.2), the K-theory of every regular quasi-projective scheme over

a field is isomorphic to the K-theory of a certain affine scheme.
n

Definition: For K (V), V; = H}"'"‘ (V, Q(i)) is the absolute cohomology of V.

The idea for the proof of theorem 2 is, to relate K(X,A) to the special A-ring
R(7,(X), A). This must be done in a functorial way, of course, because 7, (X) = 0 for the
cages in which we are mostly interested.

Definition: Let F, G be functors from the pointed homotopy category of finite CW-
complexes to the category of pointed sets. A morphism of functors ¢: F — G is called
universal with respect to the spaces in a class C, if for each Z € C, each morphism of
functors F — |-, Z] factors in a unique way over G.

Example: The universal property of the +-construction ([G], theorem 2.5 or [H], theo-
rem 2.2) is equivalent to saying that [- ,BGL(A)] — [ ,BGL(A)*] is universal with respect
to H-spaces.

(Recall that an H-space is a topological space X together with a product u: X x X — X,
such that both multiplications by constants, i.e. the maps {#*} xX — X and X x {*} — X,
are homotopy equivalent to the identity map.)



We shall show that there is a morphism of functors ¢: R(r,(-), A) — K(-, A), which
is universal with respect to those H-spaces all of whose connected components are again
H-spaces. In analogy to I;'(X, A), we define

R(G,4) =ker(R(G,4) - R(<1>,4) = K, (4)),
and
By (G, 4) = ker(Rq (G, 4) — Ry (<13, 4)).
Lemma: There is a morphism of functors ¢: R@ (7,(+),A) = K (-, A), which is universal

with respect to H-spaces.

Proof: Let p:m,(X) — Aut(P) be arepresentation on a projective module P.By definition,
there exists a projective module Q, such that PG Q = A" is a free A-module; therefore p
can be extended to a homomorphism p': 7, (X) — Gi,(4) — GI(A). By [M], lemma 3.2,
¢’ is determined by p up to conjugation by GI(A). g/ defines a map Bx,(X) — BGL(4),
which we can compose with the canonical map BGL(A) — BGL(A)™" and the 2-coskeleton
X — Bm,(X), to get the desired map 9(p): X — BGL(A)*. Since o' is defined up to
conjugation by GI(A), this map is well-defined up to the action of K, (4) = 7, (BGL(4)*)
on BGL(A)*. But this action is trivial modulo homotopy, because BGL(A)* is an H-
space with respect to the product defined by the direct sum of matrices.

For the proof of universality, note that the group ﬁe (7rl (X ),A) is generated, as we

have just seen, by the monoid

M(X) = tim (Hom (r, (X), 61, (4)) 1))
where Gl (A) acts by conjugation. Since BGL,(4) = K(G!,(4),1) is an Eilenberg-
MacLane space, Hom (7, (X),Gl (4)) = [X,BGL,(4)], and one easily concludes that
M(X) — [X,BGL(A)*] is universal with respect to H-spaces by the universal property
of the +-construction. This implies that R, (7,(-),4) — [-,BGL(4)*] = K(-,A) is
universal with respect to H-spaces, too, because [X,BGL(A)*] is already a group. .

Using this lemma, and the fact that Rg (7rl (X),A) is a A-ring, one can easily show
that K(X,A) is a A-ring. Unfortunately, this is not yet enough, because R, ("'1 (X ),A)
is no special \-ring, so we still have to consider R(r,(X), A4).

Lemma: ¢ factors over a morphism of functors é:ﬁ(wl(-),A) — I;'( yA), and ¢ is
universal with respect to H-spaces.

Proof: We must show that ¢ (¢) only depends on the class of p in I%(wl (+), A). For this
we can assume without loss of generality that X = BG is the classifying space of a group,
the map X — Br,(X) causing no trouble. So we must show that ¢(BG) respects exact
sequences: Let 0 — M’ — M — M"” — 0 be an exact sequence of representations o', p,
p". We claim that J(BG)(p) is equal to J)(BG)(p’ @ ¢"). Adding appropriate modules,
we can assume that we have an exact sequence 0 — A? — APT9 — A9 — 0 with free
modules, and that

7 * ! 0
= (8 5) maver=(7 7).

In this situation, ¢(BG)(p) = %(BG)(¢' @ ¢"), because of the following



Lemma: Let Gl, (4) = {(;) € Gl,,(4) }, and let
f:X =B(GI(4) x GI(4)) = Y =1lim BG!, ,(A)

be the map defined by the system of embeddings Gl,(A) x Gl (A) — Gl, (A). Then the
induced map f*:[Y,BGL(A)*] — [X,BGL(A)*] is injective.
Proof: By [Q3], theorem 2', f is a homology isomorphism. Replacing f by its mapping

cylinder, we may assume that f is a cofibration, so we have the exact Puppe sequence
.- — [SX,BGL(4)*] — [CJ,BGL(A)*’] — [Y,BGL(4)*] — [X,BGL(A)"],

where C; is the mapping cone of f. It suffices therefore, to show that [CI,BGL(A)"’]
vanishes. BGL(A)* being an H-space, [C;,BGL(A)*]|= [C’;’,BGL(A)"'], and since f is
a homology isomorphism, C; is acyclic, hence 7, (C;) is perfect, and thus 7, () =0,
and [C},BGL(4)*] =0. _

Now define p: R(r,(-),A) = K(-,A) =[-,K,(4) x BGL(A)*] by setting e(X)(9)
to ([P],#(X)(p)) for every representation p on a projective module P.

Lemma: ¢ is universal with respect to those H-spaces all of whose connected components

are again H-spaces.

Proof: Let Z be such a space, and w:R(m,(-),A) — [-,Z] a morphism of functors.
Let Z = ]I
space X into connected components, and choose a base point in each X,. We have to
find a map K(X,A) — [X,Z] extending w(X}), so let f be an element of K(X,A) =
[X, Ky (A) x BGL(A)*]. The X, being connected, f maps each X, toa single component
[Pﬂ] x BGL(A)™", hence f is given locally by elements f, € [X ﬂ,BGL(A)'*]. Because of
the universality of {, and since Z; = w(*)([Ps]) is an H-space, we get canonical maps
gp° [Xp,BGL(A)+] — [Xﬁ, Z,), which can be glued together to give the final map. .

xenw

o(2) Lo and X = Hgero(x) Xp be the decompositions of Z and a test

Corollary: Each morphism of functors A: R(r,(-),A) — R(r,(-),A) has a unique ex-
tension K(-,A) — K(-,A).

The proof is simple diagram chasing, because K(X,A) = [X, K (A) x BGL(A)*], and
all connected components of K,(A) x BGL(A)* are homeomorphic to BGL(A)™, and
therefore are H-spaces.

Similarly, each morphism of functors u: R(r,(-),A) xR(7,(-),A) — R(x,(-),A) has
a unique extension K(-,A)x K(-,A) — K(-,A). With this we are ready for the
Proof of theorem 32: It is clear that the property of being a special A-ring extends
from R(r,(X),A) to K(X,A), because all axioms can be translated into existence and
equality of certain maps, and these maps are functorial for R(x,(-),A). In order to show
the local nilpotency of the y-filtration, it suffices to consider the cases z € K (X,A), and
z € [X,K°(A)]. Let first z be an element of I?I’(X,A) = [X,BGL(A)"]. Since X is a
finite CW-complex, 2 already lies in some [X,BGL, (4)"]. We start by showing that ~*
is trivial on [X,BGL,(A)*] for k¥ > n. For this it suffices to show that ~* is trivial on all
elements of the form [p] — [n] in R(7,(X),A), where p is an arbitrary, and n the trivial



representation of degree n. For such an element,

7 ([e] = [n]) = % ([o]) /el - [1]) = % ([o]) - (1 = )"

Since [p] is of degree n, and the A-operations on R(G, A) are exterior powers, X, ([¢]) is
a polynomial of degree n, and 7,([o]) = Xt/(l_‘)([p]) has (1 —t)" as its denominator,
hence 4,([¢] — [n]) is a polynomial of degree at most n. Thus 4,(z) is a polynomial for
each z, in particular 7,(—z) is a polynomial, too, and 7,(2) - 7,(—2) = %(0) = 1, i.e,,
we have two polynomials whose product is one, and this means by [A], lemma 3.1.4, that
there exists an N such that 4!(2)”* ---y"(2)"" vanishes whenever ) jv; > N. For the
case z € [X, K,(A)], it suffices to consider the ring K(A) itself, because [X, K (A)]is a
(possibly empty) sum of copies of K,(A). But for z € K;(4), 7,(z) is also a polynomial,
because z represents an A-module of finite rank, so the same argument as above can be

applied.

Therefore K (X, A) is a special A-ring, and thus has Adams operations. In order
to show that the kernel of the augmentation map decomposes into a direct sum of their
eigenspaces, we must show that H%Spec A,Z) is a binomial A-ring, but this is clear,
because H%Spec A,Z) consists of locally constant functions with values in Z, which
behave locally like integers. Since the Adams operations are trivial on a binomial A-ring,
H%Spec A, Z) is a direct summand of their 1-eigenspace, hence the decomposition can be
extended from the kernel of the augmentation map to the whole of K(X, A).

Finally, we still have to show that the Adams operations on K, (A) commute with
the cup product, that is we have to show that

¥ (U y) = ¢*(2) UyF(y) Vze K, (A),y € K, (4).

This is easily seen from the diagram

K(S™,A) x K(S™, A) $tx gt » K(S™, A)x K(S™, A)
| pixri pixpi |
K(S™x S A) x K(S™ x §7,4) -£2x8°, K(Sm x §7 A) x K(S™ x S™, A)
p=multiplication B
K(S™ x S™, A) s » K(S™ x S",A)
K(S™ A S™, A) gt »  K(S™AS™, A)
K(Sm+",A) _yt , K(Sm"'",A) ,

where the upper and the third square commute by functoriality, and the second one,

because ¥ is a ring homomorphism.
n
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