
Chapter 1

Category Theory

1.1 Categories, Functors and Natural Transformations

Definition 1.1.1 A category C consists of:

E1) a class Obj C — the objects of C (which need not form a set);

E2) for each pair X, Y of objects of Obj C, a set denoted C(X,Y ) or HomC (X,Y ) — mor-
phisms in the category C from X to Y ;

E3) for each triple X, Y , Z of objects of Obj C, a set function ◦ : C(X,Y ) × C(Y, Z) →
C(X,Z) called composition (where ◦(f, g) is usually written g ◦ f or simply gf);

E4) for each object X of Obj C, an element 1X ∈ C(X,X) — identity morphism of X;

such that:

A1) h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f ∈ C(W,X), g ∈ C(X,Y ), and h ∈ C(Y, Z);

A2) 1Y ◦ f = f and f ◦ 1X = f for all f ∈ C(X,Y ).

A category whose objects form a set is called a small category.

Definition 1.1.2 A (covariant) functor F : C → D consists of:

E1) an object F (X) of Obj D for each object X of Obj C;

E2) a morphism F (g) ∈ D
(

F (X), F (Y )
)

for each morphism g ∈ C(X,Y );

such that:
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A1) F (h ◦ g) = F (h) ◦ F (g) for all g ∈ C(X,Y ), h ∈ C(Y, Z);

A2) F (1X) = 1F (X) for all objects X of ObjC.

Examples:

1. sets; vector spaces over a given field; groups; rings; topological spaces. (These categories
are not small categories)

Note 1: Strictly speaking we should write “sets and set functions”; . . ., “topological spaces
and continuous functions”. Howver frequently we describe a category by specifying only
the objects when, as above, it is understood what the morphisms are.

Note 2: There is not universal agreement as to what is meant by the category of rings.
My definition requires that there exist an identity element 1 for the multiplication and
that 1 6= 0 and that a morphism of rings is required to take 1 to 1. Some people (e.g.
Dummit and Foote), do not require a 1 and they refer to my definition of a ring as “ring
with identity”, whereas I refer to their definition as a “ring without 1”, otherwise known
as an “Rng”. Still other people (e.g. Lang) insist on an identity, but do not require 1 6= 0.

2. The “homotopy category” HoTop is the category whose objects are topological spaces
and whose morphisms HoTop(X,Y ) are homotopy classes of continuous maps from X
to Y . The “pointed homotopy category” HoTop∗ is the category whose objects are topo-
logical spaces with chosen basepoint and morphisms are equivalences classes of basepoint-
preserving continuous maps under basepoint-preserving homotopy.

3. Given a category C and a subclass S of Obj C, the full subcategory of C generated by S
is the category whose objects are S and morphisms S(X,Y ) between objects X and Y
in S is the same as C(X,Y ).

4. Functors can be composed in the obvious way yielding a “Category of small categories”.
(Objects are small categories, and morphisms are functors.)

Note: There is no “Category of categories” since the condition that the morphisms be-
tween any pair object should form a set would not be satisfied.

5. Let C be a category. The opposite category of C is the category, written Cop given by
Obj Cop = Obj C with Cop(X,Y ) := C(Y,X), and the composition g ◦ f in Cop defined
as f ◦ g in C. A contravariant functor from C to D is defined as a functor from Cop to D.
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6. Let S be a partially ordered set. Define a category CS by Obj CS = S and

CS(x, y) =

{

set with one element if x ≤ y;
∅ otherwise

for x, y ∈ S. Since the relevant sets are either empty or singletons there is no choice as to
the definition of ◦ or the element 1x ∈ CS(x, x), and the axioms for partially ordered sets

guarantee that the axioms for a category are satisfied. (This category is a small category.)

7. Let F : C → D be a functor and let D ∈ ObjD. Define a category denoted F//D as
follows. An object of F//D is a pair (X, f) where X ∈ ObjC and f ∈ HomD(F (X), D).
A morphism (X, f)→ (Y, g) consists of a map h : X → Y in HomC(X,Y ) such that

F (X)
F (h) - F (Y )

@
@

@
@

@
f

R 	�
�

�
�

�

g

D

commutes in D.

This is called a comma category. In the special case where F is the identity functor it is
called the “category of objects over D”.

Similarly there is a comma category D\\F which has as a special case the “category of
objects under D”.

There is always a forgetful functor F//D → C given by (X, f) 7→ X. Similarly there is a
forgetful functor D\\F → C.

We sometimes find it convenient to use the “Milnor-Moore” convention under which when
one sees the name of a space in a place that one is expecting a self-map of that space, it stands
for the identity map on that space.

Given categories C, D the product category C ×D is defined by

Obj (C×D) := (Obj C)× (Obj D) with (C×D)
(

(X,Y ), (X ′, Y ′)
)

:= C(X,X ′)×D(Y, Y ′).
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Definition 1.1.3 Let F,G : C → D be functors. A natural transformation η : F → G consists

of a morphism ηX ∈ D
(

F (X), G(X)
)

for each object X of Obj C such that

F (X)
ηX- G(X)

F (Y )

F (f)

? ηY - G(Y )

G(f)

?

commutes in D for all f ∈ C(X,Y ).

Let I denote the category coming (as described above) from the ordered set
{

{0, 1} | 0 ≺ 1
}

.
The notation is motivated by the fact that in Section 5 we shall associate a topological space to
a small category, and the space corresponding to the category I is the unit interval I := [0, 1].

It is easy to see

Proposition 1.1.4 Let C,D be categories. A natural transformation η : F → G determines,
and is uniquely determined by, a functor C × I → D whose restrictions to the subcategories
whose objects are (Obj C, 0) and (Obj C, 1) are F and G respectively.

If ∃ morphisms f : X → Y and g : Y → X such that gf = 1X and fg = 1Y then X and Y
are called isomorphic (written X ∼= Y ) and f and g are called isomorphisms.

A morphism f : X → Y in C which has the property that for any α, β : W → X, fα = fβ
only when α = β is called a monomorphism in C. A morphism f : X → Y in C which has the
property that for any α, β : Y → Z, αf = βf only when α = β is called an epimorphism. Note
that while is isomorphism must be both a monomorphism and an epimorphism, a morphism
which is both a monomophism and an epimorphism need not be an isomorphism.

A functor F : C → D for which there exists a functor G : D → C such that GF = 1C

and FG = 1D is called an isomorphism of categories.
Let F,G : C → D be functors. A natural transformation η : F → G such that ηX : F (X)→

G(X) is an isomorphism for all X ∈ Obj C is called a natural equivalence.
A functor F : C → D for which there exists a functor G : D → C such that there exists a

natural equivalences GF → 1C and FG→ 1D is called an equivalence of categories.

The statement that two categories are equivalent can be a nontrivial theorem.

Example 1.1.5
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Theorem (Gelfand-Naimark) The functor

X 7→ {continuous complex-valued function on X}

is an equivalence between the categories of compact topological spaces and the opposite category
of the category of abelian C∗-algebras.

An object P ∈ Obj C is called a projective object in C if given any epimomorphism g :
B -- A and any momorphism f : P → A there exists a “lift” f ′ : P → B (not necessarily
unique) such that gf ′ = f .

P

@
@

@
@

@

f

R

B

∃f ′

? g -- A

Given an object M ∈ Obj C, an epimorphism P -- M in which P is projective is called
a projective presentation of M .

If every object of a category has a projective presentation, the category is said to have enough
projectives. Enough for what? We shall see when we come to discuss projective resolutions.
(See Section 3.1)

Dually, we call Q ∈ Obj C an injective object in C if given any monomorphism g : A > - B
and any morphism A → Q there exists an “extension” f ′ : B → Q (not necessarily unique)
such that f ′g = f . If every object of a category has a monomorphism to an injective object
then the category is said to have enough injectives.

Examples:

1. If R is a ring then RN is projective in the category of R-modules. A projective object
of this form is called a free R-module. In the category R-modules, the following are
equivalent:

(a) P is projective

(b) ∃Q such that P ⊕Q is free

(c) If g : B - P is surjective then g has a “right splitting”; that is, ∃ s : P - B
such that gs = 1P
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For some rings, for example PID’s, the only projective modules are free, but in general a
ring can have projective modules which are not free.

2. In the category of abelian groups, Z is projective, however it is not injective. For example:
the inclusion Z ⊂ - Q is a monomorphism but the identity map 1Z does not admit an
extension to Q.

Q is injective in the category of abelian groups. (See below.)

3. For any ring R, the category of R-modules has enough projectives. In detail, let M be
an R-module. Choose a (possibly infinite) generating set {xj}j∈J . The map R|J | → M
whose restriction to the jth summand is given by r 7→ rxj is a projective presentation
of M .

4. An R-module is called divisible if for all x ∈M and r ∈ R, ∃ y ∈M s.t. x = ry.

Proposition 1.1.6 Let R be a integral domain and let M be an injective R-modules.
Than M is divisible.

Proof: Suppose x ∈M and r ∈M . Let A = B = R (as a module over itself) and define
g : A → B by g(a) = ra. Since R is an integral domain, g is an monomorphism. Define
f : A → M by f(a) := ax. Since M is injective, there exists an extension f ′ : B → M .
Set y := f ′(1). Then ry = f ′(r) = f(1) = x.

Proposition 1.1.7 Let R be a PID. Then an R-module is injective iff it is divisible.

Proof: As above, if M is injective then it is divisible.

Suppose now that M is divisible. Let g : A ⊂ - B be a monomorphism and let f : A→
M . Consider the set S of pairs (X, fX), whereX is an R-submodule of B which contains A
and fX : X → Q is an extension of f . Partially order the set S by (X, fX) ≺ (Y, fY ) if
X ⊂ Y and fY |X = fX . The union of any totally ordered chain in S admits a map to M
extending the maps in the chain, and so forms an upper bound for the chain. Thus by
Zorn’s lemma, S has a maximal element, say (N,FN). It suffices to show N = B since
then we set f ′ := fN . If N ( B, choose b ∈ B−N and let N ′ = N + 〈b〉 ⊂ B. Consider
the ideal I := {r ∈ R | rb ∈ N}. If I = ∅ then N ′ = N⊕〈b〉 ⊂ B, and we choose arbitrary
m ∈M . Otherwise, since R is a PID, write I = (s) for some s ∈ R. Using divisibility find
m ∈ M such that sm = fN(sb). Define fN ′ : N ′ → M by fN ′ |N := fN and fN ′(b) := m.
This gives an extension of fN to N ′ contradicting maximality of N ′.
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Corollary 1.1.8 Q and Q/Z are injective in the category of abelian groups (equivalently
Z-modules).

Proposition 1.1.9 For any ring R, the category of R-modules has enough injectives.

Proof: Consider first the case where R = Z. Let A be an abelian group. For each nonzero
a ∈ A, there exists a homomorphism φa : 〈a〉 → Q/Z given by φ(a) = x where x ∈ Q/Z is
an element whose order is divisible by the order of a, choosing arbitrary x if the order of a
is infinite. Using the fact that Q/Z is injective, choose an extension φ′ : A→ Q/Z of φa.
Define Φ′ : A → ∏

a∈A Q/Z to be the map whose projection onto the ath factor is φa.
Then Φ′ is injective, and since, in general, a product of injective modules is injective, Φ′

is an injective presentation of A.

Now let R be arbitrary. Set R̄ := HomZ(R,Q/Z), with r acting via (rf)(x) := f(xr) (so
that s

(

rf)
)

(x) = (rf)(xs) = f(xsr) =
(

(sr)
)

f(x)). Using the fact that Q/Z is a divisible
abelian group, we can check that R̄ is an injective R-module. In detail, suppose g :
A ⊂ - B is an injection ofR-modules, and let f : A→ R̄ be anR-module homomorphism.
Then f determines (and is determined by) the morphism f̄ : A→ Q/Z of abelian groups
given f̄(a) = f(a)(1). (Given f̄ , we can recover f by f(a)(r) = f̄(ra).) Since Q/Z is
injective as a Z-module, there exists an extension f̄ ′ : B → Q/Z ∈ HomZ(B,QZ). As
above, f̄ ′ determines an R-module homomorphism f ′ : B → R̄ and f̄ ′ will be the desired
extension of f .

Let M be an R-module and for 0 6= m ∈M let (m) be the R-submodule of M generated
by (m). By the special case above, we get a nonzero homomorphism ψm : (m) → Q/Z
of abelian groups. As in the preceding paragraph, ψm determines a nonzero R-module
homorphism ψm : (m) → R̄. Since R̄ is an injective R-module there exists an extension
φm : M → R̄ of ψm. Define φ : M → ∏

06=m∈M R̄ to be the map whose projection to the

mth factor is given by ψm. Then ψ is injective and
∏

06=m∈M R̄ in an injective R-module,
so ψ forms an injective presentation of M .

1.2 Universal Constructions

Definition 1.2.1 Let C be a small category and let F : C → X be a functor.
An object L of Obj X together with morphisms {λC : L → F (C)}C∈Obj C is called a limit

of the functor F ,written lim←−
C

F if λD = F (f) ◦ λC for every morphism f : C → D in C, and
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if given any object Y of Obj X together with morphisms {yC : Y → F (C)}C∈Obj C satisfying
yD = F (f) ◦ yC for every morphism f : C → D in CS, there exists unique φ : Y → L such that

λCφ = yC for all C ∈ Obj C.
Dually a colimit lim−→

C

F of the functor F is an object L of Obj X together with morphisms

{λC : F (C) → L}C∈Obj C such that λC = λD ◦ F (f) for every morphism f : C → D in CS,

and given any object Y of Obj X together with morphisms {yC : F (C)→ Y }C∈Obj C satisfying
yC = yD ◦ F (f) for every morphism f : C → D in CS, there exists unique φ : L→ Y such that

φλC = yC for all C ∈ Obj C.

As in calculus, limits (and colimits) do not necessarily exist, but if they exist they are
unique, at least up to isomorphism, as recorded in the following proposition. As a consequence
of which we usually refer to “the limit” (or colimit) rather than “a limit”.

Proposition 1.2.2 Limits and colimits of a given functor are unique (if one exists).

Proof: Since a colimit is simply a limit over the “opposite category”, it suffices to consider the
case of limits.

Given limits L and L′ of the same functor, use the existence statement of the universal
property applied to L to produce a morphism L′ → L and use the same property applied to L′

to produce a morphism L→ L′. Then use the uniqueness statement in the universal property
to show that the compositions L→ L′ → L and L′ → L→ L′ are the identity.

An important special case is where the functor is a diagram, defined as follows.

Definition 1.2.3 Let S be a partially ordered set with associated category CS. A diagram

in X indexed by S consists of a functor from CS to X.

Given a diagram D : CS → X, we sometimes write Xj for D(j).

Examples:

1. Let J be a set made into a partially ordered set in which no pair of distinct elements are
comparable. A diagram in X indexed by J is simply an object Xj for each j ∈ J . The
limit of this diagram, if it exists, is written

∏

j∈J Xj and called the product of the set of
objects {Xj}j∈J . Its universal property can be stated as saying that the product comes
with a projection map to each factor and that a morphism into the product is uniquely
determined by a morphism into each of the factors.

Dually, the colimit of this diagram is called the coproduct of the set of objects {Xj}j∈J ,
written

∐

j∈J Xj.
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2. Consider the special case of the preceding example in which the set J is the empty set.
The existence portion of the universal property of limit is satisfied by every object in the
category, but L satisfies the uniqueness property if and only if there is a unique morphism
from X to L for each X in Obj, X. Such a limit (if it exists) is called terminal object
of X. Similary a colimit over the empty set would be an initial object, an object with a
unique morphism into each other object. An object of X which is both an initial object
and a terminal object is called a zero oject. A terminal object is often written as ∗, or, in
the case of an additive category (see below) as 0.

If a category has a zero object ∗ then for pair of objectsX, Y the compositionX → ∗ → Y
of the unique maps into and out of the zero object is called the zero morphism from X
to Y , and is often written as ∗ or 0.

(a) In the category of sets, ∅ is an initial object, and a singleton set is a terminal object
— there is no zero object.

(b) In the category of vector spaces over some field, the vector space 0 is a zero object.

(c) In the category of rings (which, recall, means “rings with identity” in my termi-
nology), Z is an initial object and there is no terminal object (and thus no zero
object).

Example 1.2.4 Suppose C is a category with an initial object X. Let cX : C → C be
the constant functor cX(Y ) = X and cX(f) = 1X for all objects Y and all morphisms
f : Y → Y ′. Then there is a natural transformation η : cX → 1C given by ηY := αY :
X → Y , where αY is the unique morphism from X to Y .

Similarly if C has a terminal object X then there is natural transformation 1C → cX .

3. Let J be the partially ordered set x, y, z with x ≺ z, y ≺ z (and x, y not comparable). A
diagram D : J → X can be pictured as

X

Y
g - Z

f

?

where X = D(x), Y = D(y) and Z = D(z).
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The limit of such a diagram would be an object P together with morphisms P → X and
P → Y such that

P
iX - X

Y

iY

? g - Z

f

?

commutes and for which any object P ′ with morphisms i′X , i′Y into X and Y making the
diagram commute, there is a unique morphism Φ : P ′ → P such that i′X = iX ◦ Φ and
i′Y = iY ◦ Φ. Such a limit is called the pullback of f and g.

The dual concept, called a pushout is the colimit over a diagram from the opposite category
of J .

Example 1.2.5 Pushouts exist in the category of groups.

Let A,G,H be groups, and let α : A → G, β : A → H group homomorphisms, The
pushout of α and β in the category of groups is given by the “amalgamated free product”,
G ∗A H, defined as follows. Elements of G∗AH are “words” w1 . . . wn where for each j
either wj ∈ G or wj ∈ H, modulo relations generated by

(

gα(a)
)

h = g
(

β(a)h
)

. (Thus
every element can be written as a word alternating between elements of G and H.)

Example 1.2.6 Let R be a ring and let I and J be two-sided ideals in R.

The pullback of the inclusions I →֒ R, J →֒ R exists and is given by the ideal I ∩ J .

The pushout of the inclusions I ∩ J →֒ I, I ∩ J →֒ J exists and is given by the ideal
I + J := {x ∈ R | x = i+ j for some i ∈ I and some j ∈ J}.

4. In the special case of a pullback of f : X → Z, g : Y → Z in which X is a zero object (and
f is the unique map from it to Z) the pullback is called the kernel of g. Strictly speaking,
the kernel is a pair (K, iY ) where iY : K → Y . It has the property that g ◦ iY = ∗ and
that given any object K ′ with a map i′Y : K ′ → Y such that g ◦ i′Y = ∗, there is a unique
morphism Φ : K ′ → K such that iY ◦ Φ = i′Y .

The dual concept of cokernel of g is the pushout of g with the unique map to the zero
object.
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5. A partially ordered set J having the property that ∀i, j ∈ J ∃k s.t. i ≺ k and j ≺ k is
called a directed set. A diagram indexed by a directed set is called a direct system and
the colimit of such a diagram is called the direct limit of the system. We write lim−→

J

D(j)

for the direct limit of the diagram D (if it exists).

The dual notions are as follows. A diagram indexed by partially ordered set J which has
the property that ∀i, j ∈ J ∃k s.t. k ≺ i and k ≺ j is called an inverse system and the
limit of such a diagram is called the inverse limit of the system, written lim←−

J

D(j).

An important special case is where the partially ordered set is the integers, and which
case we sometimes write lim−→

n

Xn and lim←−
n

Xn for the direct and inverse limits.

The following properties, familiar from calculus, hold:

(a) If the system stablilizes (that is, ∃j such that Xj → Xj′ is an isomorphism for
all j′ ≻ j) then the direct limit is isomorphic to Xj.

(b) Changing the value of finitely many terms (or any initial portion) of a sequence does
not affect the limit. More precisely, for any j, the direct limit of the entire system
is isomorphic to the direct limit of the subsystem indexed by {n | n ≻ j}.
More generally, the direct limit is isomorphic to the direct limit over any cofinal
subsystem where a cofinal subsystem S is one having the property that ∀j ∈ J∃x ∈ S
such that j ≺ s. Thus, as in calculus, a limit over the even integers equals the limit
of the entire sequence, assuming the limits exists.

The analogous statements hold for inverse limits.

In the special case where the diagram has values in a category of sets, if the mapsXj → Xj′

are injections then lim−→
J

D(j) ∼= ∪JXj and lim←−
J

D(j) ∼= ∩JXj.

1.3 Additive and Abelian Categories

Definition 1.3.1 A category C is called an additive category if:

1) it has a zero object;

2) the product exists for every pair of objects of Obj C;

3) for every pair of objects X, Y of Obj C, C(X,Y ) has an abelian group structure under
which for all objects W , X, Y of Obj C composition C(W,X)× C(X,Y )→ C(W,Y ) is
bilinear.
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A functor FC → D between additive categories is called an additive functor if F : C(X,Y )→
D
(

F (X), F (Y )
)

is a group homomorphism for all objects X, Y of Obj C.

Definition 1.3.2 A category C is called an abelian category if:

1) it is additive;

2) every morphism has a kernel and a cokernel;

3) every monomorphism is the kernel of its cokernel;

4) every epimorphism is the cokernel of its kernel;

5) every morphism can be factored as the composition of an epimorphism and a monomor-
phism.

Notice that the “1st Isomorphism Theorem” is built into the definition.

Theorem 1.3.3 (Freyd) Every small abelian category can be embedded as a subcategory of the
category of modules over some commutative ring.

Let R be a commutative ring. Then lim−→
J

D(j) and lim←−
J

D(j) exist for any diagram D in the

category of R-modules. Explicit constructions are as follows.
If j ≺ j′, let φj.j′ : Xj → Xj′ denote the morphism D(j ≺ j′) in the diagram. Then

lim−→
J

D(j) ∼= ⊕JXj/∼

where x ∼ φj,j′x and

lim←−
J

D(j) ∼= {(xj) ∈
∏

J

Xj} | φj,j′(xj) = xj′ .

Exercise 1.3.4 Verify that the right hand sides of the two constructions above do indeed have
the universal properties required to satisfy the definition of colimit and limit respectively.

Proposition 1.3.5 The composition of pullback squares is a pullback square. That is,

A - B - E

C
?

- D
?

- F
?

if the left and right squares are pullbacks then the outer square is a pullback.
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Proof: Given W → E and W → C whose compositions into F are equal, right diagram gives
a unique map W → B such that W → B → D equals W → C → D and then the left diagram
gives a unique map W → A with the desired properties.

Proposition 1.3.6 In an abelian category, a map is a monomorphism if and only if its kernel
is 0. Similarly, a map is an epimorphism if and only if its cokernel is 0.

Proof: Let f : X → Y be a monomorphism. Given j : A → X such that fj = 0, since we
also have f0 = 0 the definition of monomorphism gives j = 0, so j factors through 0 → X
(necessarily uniquely since there is only one morphism from A to 0). Thus 0 is the kernel of f .

Conversely, if 0 is the kernel of f , given i, j : A→ X such that if = jf we have (i− j)f = 0
so i− j factors through the kernel 0, meaning that i = j = 0. Thus f is a monomorphism.

Dualizing gives the proof of the final statement.

Proposition 1.3.7 In an abelian category, a morphism which is simulaneously a monomor-
phism and an epimorphism is an isomorphism.

Proof: Let f : X → Y such that f is a monomorphism and an epimorphism. Since f is an
epimorphism, its cokernel is 0, as shown above. But f is a monomorphism, and so, since each
monomorphism is the kernel of its cokernel, f : X → Y is the kernel of Y → 0. Since the

composition Y
1Y- Y → 0 is 0, there is a unique lift g : Y → X of 1Y to the kernel f : X → Y

of Y → 0. Using fg = 1Y , we have fgf = f which, using the fact that f is a monomorphism,
gives gf = 1X . Thus f and g are inverse isomorphisms.

Proposition 1.3.8 Let

P
i - Y

X

j

? f - Z

g

?

be a pullback diagram in an abelian category. Then the induced map Ker j → Ker g is an
isomorphism (and by symmetry the induced map Ker i→ Ker f is an isomorphism).

Proof: Let α : K → P and α′ : K ′ → Y be the kernels of j and g respectively, and let
φ : K → K ′ be the induced map of kernels. The paiir of map 0 : K ′ → X and α′ : Y → Z
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satisfy gα′ = f0 and so induce a unique map h : K ′ → P such that ih = α′ and jh = 0.
Since jh = 0 there is a unique ψ : K ′ → K such that ψα = h. Then α′φψ = iαψ = ih = α′,
giving φψ = 1K′ since α′ is a monomorphism. Also αψφ = hφ. Since ihφ = α′φ = iα and
jhφ = 0 = jα, the uniqueness property of the pullback P gives hφ = α. Thus αψφ = hφ = α,
given ψφ = 1K since α is a monomorphism.

Similarly pushouts preserve cokernels.

Corollary 1.3.9 If

P
iX - X

Y

iY

? g - Z

f

?

is a pullback in an abelian category and g is an monomorphism then iX is an monomorphism.
Similarly the pushout of an epimorphism is an epimorphism.

Proposition 1.3.10 Let

P
i - Y

X

j

? f - Z

g

?

be a commutative diagram in an abelian category. Then the diagram is a pullback if and only

if the kernel of X ⊕ Y f⊥(−g)- Z is P
(i,j)- X ⊕ Y .

Proof: Suppose that the diagram is a pullback. Given (p, q) : A→ X⊕Y such that
(

f⊥(−g)
)

◦
(p, q) = 0, we have fp − gq = 0 so the definition of pullback gives a unique map h : A → P
such that jh = p and ih = q. That is, (i, j) ◦ h = (p, q), so (p, q) : A→ X ⊕ Y is the kernel of
(

f⊥(−g)
)

◦ (p, q) = 0.

Conversely, suppose that the kernel of X ⊕ Y f⊥(−g)- Z is P
(i,j)- X ⊕ Y . Given p : A→ X

and q : A → Y such that fp = gq,we have
(

f⊥(−g)
)

◦ (p, q) = 0, so the definition of kernel
gives a unique map h : A → P such that (i, j) ◦ h = (p, q), or equivalently jh = p and ih = q.
So the diagram is a pullback.
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Lemma 1.3.11 In the commutive diagram

A > - B -- C

A′

∼=
?
> - B′

?
-- C ′

∼=
?

suppose that A, A′ are the kernels of the epimorphism B -- C and B′ -- C ′ respectively.
Then B → B′ is an isomorphism.

Proof: Each epimorphism is the cokernel of its kernel, so B → C and B′ → C ′ are the
cokernels of A → B and A′ → B respectively. Let B′ → Q be the cokernel of B′ → B. The
map A′ → B′ → Q is zero since its composition with the isomorphism A→ A′ is 0. Therefore
the universal property of cokernel gives a unique map C ′ → Q such that B′ → C ′ → Q is the

cokernel map B′ → Q. Since B → C
∼=- C ′ → Q is 0, the uniquenesss property of the cokernel

says that C
∼=- C ′ → Q is 0, and so C ′ → Q is zero because C → C ′ is an isomorphism. Thus

the cokernel map B′ → Q is 0. It follows that 0 satisfies the universal property of the cokernel
of B → B′ and so Q = 0. Thus B → B′ is an epimorphism. A dual argument shows that it is
a monomorphism.

Remark 1.3.12 This lemma is a special case of the 5-Lemma, discussed in the next chapter.

Proposition 1.3.13

If

P
iX - X

Y

iY

? g - Z

f

?

is a pullback in an abelian category and g is an epimorphism then iX is an epimorphism.
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Similarly, if

P
iX - X

Y

iY

? g - Z

f

?

is a pushout in an abelian category and g is a monomorphism then iX is a monomorphism.

Proof: Let P
h-- R >

k- X be the factorization of iX into the composition of an epimorphism
and a monomorphism. Define P ′ as the pullback

P ′ - R

P
? iX - X

?

∨

By Corollary 1.3.9, P ′ → P is a monomorphism. According to Proposition 1.3.5, P ′ is also the

pullback of R >
k- X → q and Y

g- Z. Since fkh = fiX = giY , the universal property of

the pullback gives a unique map φ : P → P ′ such that P
φ- P ′ → R is h and P

φ- P ′ → P
is 1P . In particular, P ′ → P is an epimorphism, since its composition with φ is an epimorphism
(namely, 1P ). Thus P ′ → P and φ : P ′ → P are inverse isomorphisms.

Proposition 1.3.13 gives a commutative diagram

P ′ - R⊕ Y - Z

P

∼=
?

- X ⊕ Y
?

∨

- Z

w

w

w

w

w

w

w

w

w

w

Applying the preceding lemma, gives that the monomorphism R⊕Y k⊕1Y- X⊕Y is an isomor-
phism. But the cokernel of k⊕1Y is isomorphic to the cokernel of k. Thus k is an isomorphism
and so the composition iX = hk is the composition of two epimorphisms and is thus an epi-
morphism.
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Example 1.3.14 The preceding proposition fails in an arbitrary category. For example, con-
sider the category with objects a, b and c where aside from the identities, the only morphisms
are and morphisms f : a → b, g, h : b → c and j : a → b where gf = hf = j. Then the pull
back of g and h is the square

a
f - b

b

f

? g - c.

h

?

However g is an epimorphism and f is not.

Proposition 1.3.15 In an abelian category, let

A >
i - B

C

p

??
>

j - D

q

??

be a commutative diagram in which i, j are injections and p, q are surjections. Then the
following are equivalent

1. The induced map ker p→ ker q is an isomorphism

2. The induced map coker i→ coker j is an isomorphism

3. The diagram is a pullback.

4. The diagram is a pushout.

Proof: The proof is left as an exercise.

A diagram with the properties in the previous proposition is sometimes called bicartesian.
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1.4 Representable Functors and Yoneda’s Lemma

For any pair of objects A, B of a category C, the definition of a category requires that C(A,B)
form a set, but this set might have greater structure. For example, in an additive category,
it forms an abelian group. In the category of R-modules over a commutative ring R it has
even more structure: it forms an R-module with the scalar multiplication given by (rf)(a) :=
r
(

f(a)
)

.
Given A ∈ Obj, C, there is a functor on C given by the associationX 7→ C(A,X). In general

this functor goes from C to Sets although, as above, it might take values in a category with
greater structure. A contravariant functor of the form X 7→ C(A,X) is called representable
and X is called the representing object.

The fact that a functor is representable can be a nontrivial theorem.

Example 1.4.1
Theorem (Brown Representability Theorem) Let E∗ be a generalized cohomology

theory which is defined on the category of CW -complexes and satisfies the “Milnor Wedge
Axiom”. Then for each n, the functor

En( ) : CW -complexes→ Ab
is representable.

In the case where E is ordinary cohomology, the representing object, written K(Z, n),
is called an Eilenberg-Mac Lane space, characterized (up to homotopy equivalence) by the
property that

πq

(

K(Z, n)
)

=

{

Z if q = n;

0 if q 6= n.

In the case where E is K-theory, the representing object is
{

BU if q is even;

U if q is odd,

where U := lim−→U(n) is the unitary group.

Let F : C → Sets be a representable functor, represented by A ∈ C and let G : C → Sets be
any functor. Let η : F → G be a natural transformation. Then ηA : C(A,A) = F (A)→ G(A).
Taking the image of 1A ∈ C(A,A) gives an element of G(A). Conversely, given F and G as
above, let y be an element of G(A). Use y to define a natural transformation η(y) : F → G
as follows. For any element f : A→ X in F (X) = C(A,X), applying G gives G(f) : G(A)→
G(X) and we define ηX := G(f)(y) ∈ G(X). The resulting maps η(y)X create a natural
transformation from F to G. (Exercise: check).

18



Lemma 1.4.2 (Yoneda)
Let F : C → Sets be a representable functor, represented by A ∈ C and let G : C → Sets

be any functor. Then the associations η 7→ ηA(1A) and y 7→ η(y) sets up a bijection between
natural transformations η := F → G and the elements of the set G(A).

Proof: Exercise.

Example 1.4.3 A natural transformation from Hn( ) → Hq( ) is called a cohomology opera-
tion. By Yoneda’s Lemma, the set of cohomology operations from Hn( )→ Hq( ) corresponds
bijectively to the elements of Hq

(

K(Z, n)
)

.

1.5 Adjoint Functors

Let C and D be categories and let F : C → D and G : D → C be functors. If there is a
natural bijection of sets D(FX, Y )→ C(X,GY ) for every object X of ObjC and Y of ObjD
then F and G are called adjoint functors, written F −−| G. (Natural means that it commutes
with morphisms in both variables.) F is called the left adjoint or coadjoint and G is called the
right adjoint or adjoint. Let IC and ID denote the identity functors on C and D. If F −−| G
then there are induced natural transformations α : IC → GF and β : FG → ID where αX

corresponds to 1FX and βY to 1GY under the bijections giving the adjointness.

Examples

1. Let R be a commmutive ring and let M be an R-module. Define F : R-modules → R-
modules by F (N) := M ⊗R N . (See section 2.2 for the definition of tensor prod-
uct M ⊗R N .) Let G : R-modules → R-modules by G(N) := HomR(M,N). Define

Φ : HomR

(

F (X), Y
)

→ HomR

(

X,G(Y )
)

by
(

(

Φ(f)
)

(x)
)

(m) := f(m ⊗ x) ∈ Y . Then

Φ is natural in both varibles and the map Ψ : HomR

(

X,G(Y )
)

→ HomR

(

F (X), Y
)

determined by
(

Ψ(f)
)

(m⊗ x) := f(x)(m) ∈ Y is a natural inverse to Φ. Thus F −−| G.

2. Define the (reduced) suspension

S : pointed topological spaces→ pointed topological spaces

by S(X) := X× [0, 1]/∼ where (x, 0) ∼ (x′, 0), (x, 1) ∼ (x′, 1) and (∗, t) ∼ (∗, t′) for all x,
x′, t, t′. For a pointed topological space X, define its loop space ΩX by ΩX : {f : [0, 1]→
X | f(0) = f(1) = ∗} with the “compact-open” topology. Then S −−| Ω.
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Proposition 1.5.1 Let F : C → D and G : D → C with F −−| G.

a) G(βY ) ◦ αGY = 1GY for all objects Y of ObjD.

b) βFX ◦ F (αX) = 1FX for all objects X of ObjC.

c) The adjoint of a map p : X → GY in C is βY ◦ F (p).

d) The adjoint of a map q : FX → Y in D is G(q) ◦ αX .

Proof: Let ΦA,B : D(FA,B) ∼= C(A,GB) denote the adjunction bijection. Let q : FX → Y .
Naturality gives

D(FX,FX)
∼=

ΦX,FX

- C(X,GFX)

D(FX, Y )

q∗

? ∼=
ΦX,FX

- C(X,GY )

(Gq)∗

?

Chasing 1FX around the diagram: the left-bottom path gives the adjoint of q∗(1FX) which
is q, whereas the top-right path gives (by definition of α) (Gq)∗(αX) which is Gq ◦ αX . This
proves part (d).

Applying part (d) with X := GY and q := βY : FX = FGY → Y gives that G(βY ) ◦ αGY
is the adjoint of βY . But 1GY is the adjoint of βY by definition of β. Thus G(βY ) ◦αGY = 1GY ,
proving part (a).

The proofs of parts (c) and (b) are similar.

The motivation for the terminology “adjoint” and “coadjoint” as an alternative to “right
adjoint” and “left adjoint” is provided by the following proposition.

Proposition 1.5.2 Let F : C → D and G : D → C with F −−| G. Then G preserves
limits (including pullbacks and products as special cases) F preserves colimites (pushouts and
coproducts).
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Proof: To illustrate the idea, we will give the proof that F preserves pullbacks. The proof of
the rest is similar. Let

P
iX - X

Y

iY

? g - Z

f

?

be a pullback diagram in D. Then

G(P )
G(iX)- G(X)

G(Y )

G(iY )

? G(g)- G(Z)

G(f)

?

commutes in C. If

P ′ i′X - G(X)

G(Y )

i′Y

? G(g)- G(Z)

G(f)

?

also commutes in C, then applying F gives the commutative diagram

F (P ′)
F (i′X)- FG(X)

FG(Y )

F (i′Y )

? FG(g)- FG(Z)

FG(f)

?
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in D. Applying the natural transformation β : FG→ ID gives

F (P ′)
βFG(X) ◦ F (i′X)

- X

Y

βFG(Y ) ◦ F (i′Y )

? g - Z

f

?

The universal property of the original pullback square then gives a unique map φ : F (P ′)→ P
such that βFG(X) ◦F (i′X)◦φ = iX and βFG(Y ) ◦F (i′Y )◦φ = iY . The adjoint ψ of φ is the desired
map P ′ → G(P ) having the property that ψ ◦ G(iX) = i′X and ψ ◦ G(iY ) = i′Y . Furthermore,
if ψ′ : P ′ → G(P ) also satisfies these equations then taking the adjoint would give a map
φ′ : F (P ′) → P satisfying the same questions as φ. The uniqueness part of the universal
property of pullback would guarantee that φ′ = φ and so ψ′ = ψ. Thus the diagram obtained
by applying G to the original pullback in D becomes a pullback in C.
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Chapter 2

Chain Complexes

2.1 Basic Concepts

In this section we will be working in some abelian category. In a few places (e.g. 5-Lemma)
it is convenient to assume that the category comes with a “forget functor” to Sets, since that
allows us to give proofs which involve “diagram chasing”. However by Freyd’s Theorem, any of
the results which can be reduced to statements over a finite diagram are valid in any abelian
category. Giving the proofs from the universal properties rather than diagram chasing would
be possible, although sometimes awkward.

A differential object in an abelian category consists of an object X together with a self-map
d : X → X such that d2 = 0. A morphism of differential objects is a map f : X → X ′ such
that d′f = fd.

The kernel of d is denoted Z(X), called the cycles of X.
The image of d is denoted B(X), called the boundaries of X.
The condition d2 = 0 guarantees that Im d ⊂ ker d, so to the differential object (X, d)

we can associate its homology H(X, d) := Ker d/ Im d. Often G has extra structure and we
require d to satisfy some compatibility condition in order that H(G, d) should also have this
structure. For example a differential Lie algebra (L, d) is defined as a Lie algebra L together
with a differential d which, in addition to d2 = 0 satisfies the condition d[x, y] = [dx, y]+ [x, dy].
These conditions yield an induced Lie algebra structure on H(L)

A graded object (indexed by the integers) in a category C consists of an object M together
with objects {Mn}n∈Z such that M = ⊕n∈ZMn.

When each object Mn has the underlying structure of a set, elements of M which lie in Mp

for some p are called homogeneous. If x ∈Mp we sometimes write |x| = p and refer to p as the
degree of x.
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Definition 2.1.1 Let C be an abelian category. A chain complex (C, d) in the category C
consists of a graded object C together with morphisms dn : Cn → Cn−1 such that dn−1 ◦dn = 0.
The maps dn are called boundary operators or differentials.

The cycles and boundaries of C become graded sub-objects of C under the grading Zp(C) :=
Z(C) ∩ Cp and Bp(C) := B(C) ∩ Cp.

The homology of C also inherits the structure of a graded object given by Hp(C) :=
Zp(C)/Bp(C).

Definition 2.1.2 A chain map f : C → D consists of monorphisms fp ∀p s.t.

Cp

dp - Cp−1

Dp

fp

? dp - Dp−1

fp−1

?

Notation:

1. The subscripts are often omitted, so we might write d2 = 0 or fd = df . Thus (C, d) forms
a differential object in which the differential has degree −1 and a chain map becomes a
morphism of differential objects.

2. We often write H∗(C) to refer to the graded object H∗(C) := ⊕p∈ZHp(C).

The composition of chain maps is a chain map so chain complexes and chain maps form a
category. Notice that the category of chain complexes (and chain maps) is an abelian category.

A chain map f : C → D induces a morphism f∗ : Hp(C)→ Hp(D) for all p, defined as the
induced map of cokernels from the diagram

0 - Bp(C) - Zp(C) - Hp(C) - 0

0 - Bp(D)

f

?
- Zp(D)

f

?
- Hp(D)

f∗

?

................
- 0

If our objects have the structure of sets, this can be expressed as follows.
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Let x ∈ Zp(C) represent an element [x] ∈ Hp(C).
Then df(x) = fd(x) = f(0) = 0 so f(x) ∈ Zp(D).
Define f∗([x]) := [f(x)].
If x, x′ represent the same element of Hp(C) then x − x′ = dy for some y ∈ Cp+1(C).

Therefore fx − fx′ = fdy = d(fy) which implies f(x), f(x′) represent the same element of
Hp(D). So f∗ is well defined.

The suspension SC of a chain complex C is defined by shifting dimensions according to the
rule (SC)n := Cn−1. Thus Hn(SC) = Hn−1(C).

A cochain complex is defined in the same way as a chain complex except that the differential
has degree +1 instead of −1. The terminology cochain map, cocycles, coboundaries, cohomology
is used for the cohomology versions of the similar concepts in homology. In a cochain complex C,
it is customary to write the pth gradation as Cp rather than Cp.

Given a chain complex C there are two obvious ways of producing a cochain complex D
from C:

1. Reindexing: Dp := C−p

2. Duality: Dp := HomR(Cp, R), if C∗ is a chain complex of R-modules.

It is clear in the first example, where D is obtained from C by reindexing, that Hp(D) =
H−p(C). The relationship between H∗

(

Hom(C,R)
)

and H∗(C) is less obvious and is given by
the Universal Coefficient Theorem, discussed later.

Definition 2.1.3 A composition of morphisms (in an abelian category)

X
f - Y

g - Z

is called exact at Y if Ker g = Im f . A sequence

Xn

fn - Xn−1

fn−1 - . . . - X1

f1 - X0

is called exact if it is exact at Xi for all i = 1, . . . , n− 1.

Remark 2.1.4 An exact sequence can be thought of as a chain complex whose homology is
zero. More generally, homology can be thought of as the deviation from exactness.

A nonnegatively graded chain complex whose homology groups Hn( ) are zero for n > 0 is
called acyclic.
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Definition 2.1.5 A 5-term exact sequence of the form

0 - A
f - B

g - C - 0

is called a short exact sequence.

Proposition 2.1.6 Let

0 - A
f - B

g - C - 0

be a short exact sequence. Then f is injective, g is surjective and B/A ∼= C.

Proof: Exactness at A ⇒ Ker f = Im (0→ A) = 0 ⇒ f injective.
Exactness at C ⇒ Im g = Ker (C → 0) = C ⇒ g surjective.
Exactness at B ⇒ B/ ker g ∼= Im g = C ⇒ B/ Im f ∼= B/A.

Corollary 2.1.7

(a) 0→ A
f- B → 0 exact ⇒ f is an isomorphism.

(b) 0→ A→ 0 exact ⇒ A = 0.

Definition 2.1.8
A map i : A→ B is called a split monomorphism if ∃s : B → A s.t. si = 1A.
A map p : A→ B is called a split epimorphism if ∃s : B → A s.t. ps = 1B.

Note: The splitting s (should it exist) is not unique.

It is trivial to check:
(1) A split monomorphism is a monomorphism
(2) A split epimorphism is an epimorphism

Proposition 2.1.9 The following three conditions (1a, 1b, and 2) are equivalent:

1. ∃ a short exact sequence 0→ A
f- B

g- C → 0 s.t.

1a) i is a split monomorphism

1b) p is a split epimorphism

2. B ∼= A⊕ C.

Remark 2.1.10 The isomorphism in 2 will depend upon the choice of splitting s in 1a (re-
spectively 1b).
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2.2 Double Complexes and Tensor Products

Definition 2.2.1 A double complex in C consists of an object Cp,q of ObjC for each pair of
integers, together with morphisms d′ : Cp,q → Cp−1,q and d′′ : Cp,q → Cp,q−1 such that:

1) d′2 = 0 : Cp,q → Cp−2,q;

2) d′′2 = 0 : Cp,q → Cp,q−2;

3) d′d′′ = d′′d′ : Cp,q → Cp−1,q−1.

Thus Cp,∗ is a chain complex for each p, C∗,q is a chain complex for each q, and d′ : Cp,∗ →
Cp−1,∗ and d′′ : C∗,q → C∗,q−1 are chain maps. That is, for each p, Cp,∗ forms a chain complex
in the category of chain complexes and similarly C∗,q is a chain complex of chain complexes for
each q.

Given a double complex C, form the total complex, TotC, by (TotC)n =
⊕

p+q=nCp,q with
d : (TotC)n → (TotC)n−1 defined as the map whose restriction to Cp,q is

(

d′ + (−1)pd′′
)

: Cp,q → Cp−1,q ⊕ Cp,q−1 →֒ (TotC)n−1.

It is easy to verify that d2 = 0. (The sign in the definition of d was included to make this true.)
From a double complex C, we can also form a “product” total complex Totπ C by

(Totπ C)n =
∏

p+q=n

Cp,q

with d : (Totπ C)n+1 → (Totπ C)n defined as the map whose projection to Cp,q is
(

d′ + (−1)pd′′
)

: (Totπ C)n+1 ։ Cp+1,q × Cp,q+1 → Cp,q.

Let R be a ring. In the rest of this section we will assume that our objects have the structure
of R-modules.

Let M be a right R-module and let N be a left R-module. The tensor product M ⊗R N is
the abelian group with the universal property

M ×N R bilinear - X

@
@

@
@

@R ..
..
..
..
..
..
..

∃!
�

M ⊗R N
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Explicity,
M ⊗R N =

(

Free Abelian Group on (M ×N)
)

/ ∼
where

1. (m,n1 + n2) ∼ (m,n1) + (m,n2)

2. (m1 +m2, n) ∼ (m1, n) + (m2, n)

3. (mr, n) ∼ (m, rn)

[(m,n)] in M ⊗R N is written m⊗ n.
Arbitrary elements of M ⊗R N have the form

∑k

i=1mi ⊗ ni.

Remark 2.2.2 In general M ⊗N has no natural R-module structure, although it would have
one if either M or N has the extra structure of an R-bimodule. In particular, if the ring R is
commutative then M ⊗R N becomes a left R-module via

r · (m⊗ n) := (r ·m)⊗ n.

Notice that R is an R-bimodule even if R is not commutative. (ie. left multiplication commutes
with right multiplication – R is associative) so the “extended module” R ⊗ N always has the
structure of an R-module with R acting via left multiplication on the left factor.

Having defined the tensor product of R-modules, we next define the tensor product of chain
complexes of R-modules. As per the discussion above, in general this will be a chain complex
of abelian groups, although if we have extra conditions, such as a commutative ring R, then it
will inherit an R-module structure.

Suppose that (C, d1) and (D, d2) are chain complexes of right and left R-modules respec-
tively. Set (C⊗D)n := ⊕n

i+jCi⊗Dj. Define d : (C⊗D)n → (C⊗D)n−1 to be the homomorphism

induced by d(x⊗ y) := d1x⊗ y+ (−1)|x|x⊗ d2y, where x is homogeneous of degree |x|. Equiv-
alently, (C ⊗ D, d) is the total complex of the double complex Cp ⊗ Dq. The chain complex
(C ⊗D, d) is called the tensor product of the chain complexes (C, d1) and (D, d2).

Later we will find a formula (Künneth Theorem) which gives the homology of the two tensor
product of chain complexes in terms of the homology of the factors.

2.3 Chain Homotopy

Definition 2.3.1 Let f, g : C → D be chain maps. A collection of maps sp : Cp → Dp+1 is
called a chain homotopy from f to g if the relation ds + sd = f − g : Cp → Dp is satisfied for
each p. If there exists a chain homotopy from f to g, then f and g are called chain homotopic.
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Remark 2.3.2 The intuition motivating the preceding definition is as follows.
Consider the CW -structure on the unit interval I := [0, 1] consisting of 0-cells for the points

{0} and {1} and a 1-cell joining them. The cellular chain complex C(I) for this CW -complex
is given by C(I)0 = R ⊕ R, C(I)1 = R and C(I)p = 0 for p 6= 0, 1. The differential is given by
d(c) = b−a, where a and b are generators of C(I)0 and c is a genarator of C(I)1. If X and Y are
CW -complexes, then C(X × Y ) = C(X)⊗C(Y ) and in particular, C(I ×X) = C(I)⊗C(X).

If F : I × X → Y is a (geometric) homotopy from f to g, then F∗(a ⊗ x) = f∗(a) and
F∗(b ⊗ x) = g∗(x) are forced by the fact that the restriction of F to X × {0} and X × {1}
are f and g respectively. Thus the (additional) information provided by F∗ is the value of
F (c× x) ∈ C(I)|x|+1, which corresponds to s(x). The formula ds+ sd = f − g follows from the
formula for d(c) in C(I). Here the sign in ds+ sd = ±(f − g) comes from the fact that I chose
to write I ×X rather than X × I (for this very reason!). If we were instead to model our chain
homotopy by maps from X × I we would get an equivalent concept but our sign convention
would come out differently.

Proposition 2.3.3 Chain homotopy is an equivalence relation.

Proof: Exercise

Proposition 2.3.4 f ≃ f ′, g ≃ g′ ⇒ gf ≃ g′f ′.

Proof: C
f-
f ′
- D

g-
g′
- E

Show gf ≃ gf ′:
Let s : f ≃ f ′. s : Cp → Dp+1 s.t. ds+ sd = f ′ − f .
g ◦ s : Cp → Ep+1 satisfies dgs+ gsd = gds+ gsd = g(ds+ sd) = g(f ′ − g) = gf ′ − gf.
Similarly g′f ≃ g′f ′.

Definition 2.3.5 A map f : C → D is a chain (homotopy) equivalence if ∃g : D → C s.t.
gf ≃ 1C , fg ≃ 1D.

Proposition 2.3.6 f ≃ g ⇒ f∗ = g∗ : H∗(C)→ H∗(D).

Proof: Let [x] ∈ Hp(C) be represented by x ∈ Zp(C). Let s : f ≃ g.
Then fx− gx = sdx+ dsx = dsx ∈ Bp(C). So [fx] = [gx] ∈ Hp(D).

Corollary 2.3.7 f : C → D is a chain equivalence⇒ f∗ : H∗(C)→ H∗(D) is an isomorphism.
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2.4 Snake Lemma; 5-Lemma; Algebraic Mayer-Vietoris

Lemma 2.4.1 (Snake Lemma) Let

A′ i′ - A
i′′ - A′′ - 0

0 - B′

f ′

? j′ - B

f

? j′′ - B′′

f ′′

?

be a commutative diagram in which the rows are exact. Then ∃ an exact sequence

ker f ′ → ker f → ker f ′′ ∂- coker f ′ → coker f → coker f ′′.

If i′ is a monomorphism then ker f ′ → ker f is a monomorphism and if j′′ is an epimorphism
then coker f → coker f ′′ is an epimorphism.

Proof:
Step 1. Construction of the map ∂ (called the “connecting homomorphism”):
Let x ∈ ker f ′′. Choose y ∈ A s.t. i′′(y) = x. Since j′′fy = f ′′i′′y = f ′′x = 0, fy ∈ ker j′′ =

Imj′ so fy = j′(z) for some z ∈ B′. Define ∂x = [z] in coker f ′.
Show ∂ well defined:
Suppose y, y′ ∈ A s.t. i′′y = x = i′′y′.
i′′(y − y′) = 0 ⇒ y − y′ = i′(w) for some w ∈ A′. Hence fy − fy′ = fi′w = j′f ′w.
Therefore if we let fy = j′z and fy′ = j′z′ then j′(z − z′) = j′f ′w ⇒ z − z′ = f ′w (since j

is an injection). So [z] = [z′] in Coker f ′.
√

Step 2: Exactness at Ker f ′′:

Show the composition ker f
i′′- ker f ′′ ∂- Coker f ′ is trivial.

Let k ∈ Ker f . Then ∂(i′′k) = [z] where j′(z) = f(k) = 0. So z = 0.
So ∂ ◦ i′′ = 0. Hence Im (i′′) ⊂ Ker ∂.
Conversely let x ∈ Ker ∂. Let y ∈ A s.t. i′′y = x. We wish to show that we can replace y

by a y′ ∈ ker f which satisfies i′′y′ = x.
Since commutativity of the diagram gives j′′y = 0 there exist z ∈ B′ s.t. j′z = fy. So

∂x = [z]. ∂x = 0⇒ z ∈ Im f ′.
Hence z = f ′w for some w ∈ A′.
Set y′ := y − i′w. Then i′′y = iy − i′′i′w = iy = x and fy′ = fy − fi′w = fy − j′f ′w =

fy − j′z = 0.
Hence y′ ∈ Ker f .

The rest of the proof is left as an exercise.
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Lemma 2.4.2 ( 5-Lemma)
Let

A - B - C - D - E

A′

f

?
- B′

g

?
- C ′

h

?
- D′

i

?
- E ′

j

?

be a commutative diagram with exact rows. If f, g, i, j are isomorphisms then h is also an
isomorphism.

(Actually , we need only f mono and j epi with g and i iso.)
Proof: Exercise

A sequence

0→ C
f- D

g- E → 0

of chain complexes and chain maps is a short exact sequence of chain complexes if

0→ Cp

fp- Dp

gp- Ep → 0

is a short exact sequence (of R-modules) for each p.

Theorem 2.4.3 Let
0→ P

f- Q
g- R→ 0

be a short exact sequence of chain complexes. Then there is an induced natural (long) exact
sequence

· · · → Hn(P )
f∗- Hn(Q)

g∗- Hn(R)
∂- Hn−1(P )

f∗- Hn−1(Q)→ . . .

Remark 2.4.4 Natural means:

0 - P - Q - R - 0

0 - P ′
?

- Q′
?

- R′
?

- 0
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implies

. . . - Hn(P ) - Hn(Q) - Hn(R)
∂- Hn−1(P ) - . . .

. . . - Hn(P ′)
?

- Hn(Q′)
?

- Hn(R′)
? ∂- Hn−1(P

′)
?

- . . .

Proof:
1. Definition of ∂:

Let [r] ∈ Hn(R), r ∈ Zn(R). Find q ∈ Qn s.t. g(q) = r.
g(dq) = d(qd) = dr = 0 (since r ∈ Zn(R)), which implies dg = fp for some p ∈ Pn−1.
f(dp) = dfp = d2q = 0 ⇒ dp = 0 (as f injective).
So p ∈ Zn−1(p). Define ∂[r] = [p].

2. ∂ is well defined:
(a) Result is independent of choice of q:
Suppose g(q) = g(q′) = r.
g(q − q′) = 0 ⇒ q − q′ = f(p′′) for some p′′ ∈ Pn.
Find p′ s.t. dq′ = fp′.
f(p− p′) = d(q − q′) = dfp′′ = fdp′′ ⇒ p− p′ = dp′′ ∈ Bn−1(P ).
So [p] = [p′] in Hn−1(P ).

(b) Result is independent of the choice of representative for [r]:
Suppose r′ ∈ Zn(R) s.t. [r′] = [r].
r − r′ = dr′′ for some r′′ ∈ Rn+1.
Find q′′ ∈ Qn+1 s.t. gq′′ = r′′.
gdq′′ = dgq′′ = dr′′ = r − r′ = g(q)− r′ ⇒ r′ = g(q − dq′′).
Set q′ := q − dq′′ ∈ Qn.
gq′ = r′ so we can use q′ to compute ∂[r′].
dq′ = dq − d2q′′ = dq so the definition of ∂[r′] agrees with the definition of ∂[r].

3. Sequence is exact at Hn−1(P ).

To show that the composition Hn(R)
∂- Hn−1(P )

f∗- Hn−1(Q) is trivial:
Let [r] ∈ Hn(R). Find q ∈ Qn s.t. gq = r.
Then ∂[r] = [p] where fp = dq.
So f∗∂[r] = [fp] = [dq] = 0 since dq ∈ Bn−1(Q).
Hence Im ∂ ⊂ Ker f∗.
Conversely let [p] ∈ Ker f∗.
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Since [fp] = 0, fp = dq for some q ∈ Qn.
Let r = gq. Then ∂[r] = [p].
So Ker f∗ ⊂ Im ∂.

The proof of exactness at the other places is left as an exercise.

Proposition 2.4.5 (Algebraic Mayer-Vietoris) Let

- An

i - Bn

j - Cn

∂ - An−1

i - Bn−1

j - Cn−1
-

- A′
n

α

? i′ - B′
n

β

? j′ - C ′
n

γ

? ∂ - A′
n−1

α

? i′ - B′
n−1

β

? j′ - C ′
n−1

γ

?
-

be a commutative diagram with exact rows. Suppose γ : Cn → C ′
n is an isomorphism ∀n. Then

there is an induced long exact sequence

. . . - An

ρ- Bn ⊕ A′
n

q- B′
n

∆- An−1
- Bn−1 ⊕ A′

n−1
- B′

n−1

where
ρ(a) = (ia, αa)
q(b, a′) = βb− i′a′
∆ = ∂γ−1j′

Proof: Exercise

2.5 Algebraic Mapping Cylinders and Cones

Theorem 2.5.1 (Algebraic Mapping Cylinder) Let f : A → X be a chain map. Then there
exists a factorization f = φi where i : A→ X ′ is a monomorphism and φ : X ′ → X is a chain
homotopy equivalence.

The chain complex X ′ is called the algebraic mapping cylinder of f and the quotient com-
plex X ′/A is called the algebraic mapping cone of f . These definitions are motivated by their
geometric counterparts. For a continous function f : A → X, the (geometric) mapping cylin-
der Mf is defined by Mf :=

(

X ∪ (A× I)
)

/∼ where (a, 0) ∼ f(a) and the (geometric) mapping
cone is defined as Mf/(A× 1). In both the geometric and the algebraic case, the usefulness of
the mapping cylinder/cone constructions is that they give a 3rd term which fits naturally with
f∗ to give long exact sequence without insisting that f∗ be an injection.
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Chapter 3

Derived Functors

3.1 Projective and Injective Resolutions

Let R be a ring.

Definition 3.1.1 Let M be an R-module. A nonnegatively graded chain complex P∗ of R-
modules is called a projective resolution of M if Pn is a projective R-module for all n and

Hn(P∗) =

{

M if n = 0;
0 if n 6= 0.

Proposition 3.1.2 Every R-module has a projective resolution.

Proof: Let M be an R-module. Since the category of R-modules has enough projectives, we
can choose a projective presentation q0 : P0

-- M of M . Let j0 : K0 → P0 be the kernel of q0
and let q1 : P1 → K0 be a projective resolution of K0. Continue inductively to define Pn, qn,
Kn, and jn for all n. Define dn := jn−1 ◦ qn : Pn → Pn−1 for n ≥ 1. Then d2 = 0 and (P∗, d)
forms a projective resolution of M .

Similarly, since the category of R-modules has enough injectives, every R-module has an
injective resolution.

Throughout this chapter, we will be working in an abelian category C which has enough
projectives (respectively injectives in the cases where we are using injective resolutions).

Theorem 3.1.3 Let P∗ and Q∗ be nonnegatively graded chain complexes in the abelian cate-
gory C. such that Pn is projective for all n and Q∗ is acyclic. Then

a) Given any homomorphism f : H0(P∗) → H0(Q∗) there exists a chain map φ : P∗ → Q∗

such that φ∗ = f on H0( ).
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b) If φ, ψ : P∗ → Q∗ are two chain maps inducing the same homomorphism on H0( ) then
φ ≃ ψ.

Proof: Let f : H0(P∗) → H0(Q∗). The quotient map Q0 = Z0(Q) -- Z0(Q)/B0(Q) =
H0(Q) is surjective so the projectivity of P0 gives a lift of the composition P0 = Z0(P ) →
Z0(P )/B0(P ) = H0(P )

f- H0(Q) to some map φ0 : P0 → Q0.

P0
-- H0(P )

Q0

φ0

?

................
-- H0(Q)

f

?

Using that Q is acyclic, the map Q1
-- B0(Q) = ker

(

Q0 → H0(Q)
)

is a surjection and the
commutativity of the above diagram shows that Im(φ0 ◦ d) ⊂ ker

(

Q0 → H0(Q)
)

. Thus the
projectivity of P1 gives a lift of the composition φ0 ◦d : P1 → B0(Q) to some map φ1 : P1 → Q1.

P1 ======== P0

d - P0

Q1

φ1

?

................ d -- B0

φ0 ◦ d
?

⊂ - Q0

φ0

?

Using that Q is acyclic, there is a surjection Q2
-- B1(Q) = Z1(Q) and the commutativity

of the above diagram shows that Im(φ1 ◦ d) ⊂ Z1 = B1 Thus the projectivity of P2 gives a lift
of the composition φ1 ◦ d : P2 → B1(Q) to some map φ2 : P2 → Q2.

P2 ======== P1

d - P1

Q2

φ2

?

................ d -- B1

φ1 ◦ d
?

⊂ - Q1

φ1

?

Continuing, we get a map φn : Pn → Qn for all n, giving a chain map φ : P∗ → Q∗ having the
property that φ∗ = f on H0( ).
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Suppose now that φ, ψ : P∗ → Q∗ are two chain maps inducing the same homomorphism
on H0().

To begin, set s−1 := 0 : P−1 → Q0. Since φ∗, ψ∗ agree on H0( ) and Q∗ is acyclic, the image
of the difference (φ∗ − ψ∗)(P0) is contained in B0(Q). Therefore the projectivity of P0 gives a
lift of the φ0ψ0 to some map s0 : P0 → Q1.

P0 ======== P0 ======== P0

Q1

s0

?

................ d -- B0

φ0 − ψ0

?
⊂ - Q0

φ0 − ψ0

?

Then ds0 + s−1d = ds0 = φ0 − ψ0.
Suppose inductively that sn : Pn → Qn+1 has been constructed so that dsn+sn−1d = φn−ψn.

Using that φ∗ and ψ∗ are chain maps we get

d(φn+1 − ψn+1) = (φn − ψn)d = (dsn + sn−1d)d = dsnd

and so d(φn − ψn − snd) = 0 : Pn+1 → Qn. Thus Im(φn − φn − snd) ⊂ ZnQ = BnQ, since
Q∗ is acyclic. Therefore the projectivity of Pn+1 gives a lift of φn − ψn − snd to some map
sn+1 : Pn+1 → Qn+2.

Pn+1 =========== Pn+1 ================Pn+1

Qn+2

sn+1

?

................ d -- Bn+1

φn+1 − ψn+1 − snd

?
⊂ - Qn+1

φn+1 − ψn+1 − snd

?

Then dsn+1 + snd = φn+1 − φn+1.

Let F : C → D be an additive functor between abelian categories. Let M be an object
in C. Pick a projective resolution P∗ of M . Then F (P∗) is a chain complex in D. If F
preserves exactness (image under F of an exact sequence is exact) then F (P∗) will be acyclic
with H0

(

F (P∗)
)

= F (M), however this will not be true for arbitrary F . Set (LnF )(M) :=
Hn

(

F (P∗)
)

, the nth left derived functor of F . It is easy to see that LnF is indeed a functor
from C to D and it follows from Theorem 3.1.3 that (LnF )(M) is well defined in the sense of
being independent (up to isomorphism) of the choice of the projective resolution P∗.

Similarly, we can define the right derived functors, RnF of a contravariant additive functor F
by means of an injective resolution.
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Intuitively LnF measures the deviation of F from preserving exactness. A functor which
preserves exactness is called exact. F is exact if and only if F preserves kernels and cokernels.
A functor which preserves cokernels is called right exact. That is, if f : X → Y then the
induced map F (Y )/ ImF (f) → F (Y/ Im f) is an isomorphism. Similarly, a covariant functor
which preservers kernels (the induced F (Ker f)→ KerF (f) is an isomorphism) is called right
exact.

Proposition 3.1.4 If 0 → A
f - B

g- C → 0 is a short exact sequence and F is right

exact then F (A)
F (f)- F (B)

F (g)- F (C)→ 0 is exact.

Proof: Applying the definition to C/ Im g gives F (C)/ ImF (g) = F (0). Since F is an additive
functor, F (0) = 0 so F (g) is an epimorphism.

Applying the definition to B/ Im f gives that the induced map F (B)/ ImF (f) → F (C) is
an isomorphism. That is, kerF (g) = ImF (f).

Left derived functors are most useful in the case where F is right exact, since this is sufficient
to conclude that L0F = F .

Proposition 3.1.5 If F is right exact then L0F = F .

Proof: Let F : C → D be right exact. Let X belong to Obj (C) and let P∗ be a projective
resolution of X. Applying the definition of right exactness to d : P1 → P0 gives

(

L0(F )
)

(X) = H0

(

F (P∗)
)

= F (P0)/ ImF (d) = F
(

P0/d(P1)
)

= F (X).

Similarly a right exact contravariant functor F has the property that R0(F ) = F .

Theorem 3.1.6 Let F : C → D be an additive functor. Given a short exact sequence 0 →
A

i- B
j- C → 0 in C, there is a natural induced long exact sequence

. . .
∂- Ln(A)

Ln(i)- Ln(B)
Ln(j)- Ln(C) - . . .

∂- L0(A)
L0(i)- L0(B)

L0(j)- L0(C)

in D.

Proof: Let θA : PA
0 → A and θC

0 : PC
0 → C be projective presentations of A and C respectively.

Choose a lift θ′0 : PC
0 → B of θC

0 . Set PB
0 := PA

0 ⊕ PC
0 and let θB

0 : PB → B be the map whose
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restrictions to PA
0 and PC

0 are given by i ◦ θA
0 and θ′0 respectively. Then

0 - PA
0

- PB
0

- PC
0

- 0

0 - A

θA
0

?? i - B

θB
0

? j - C

θC
0

??
- 0

commutes and so θB
0 is surjective by the Snake Lemma. That is, θB

0 : PB
0 → B is a projective

presentation of B.
Let KA

0 , KB
0 and KC

0 be the kernels of θA
0 , θB

0 and θC
0 respectively. By the Snake Lemma

there is an induced exact sequence 0→ KA
0 → KB

0 → KC
0 → 0. Repeat the above procedure to

get compatible projective presentations θA
1 : PA

1 → KA
0 , θB

1 : PB
1 → KB

0 , θC
1 : PC

1 → KC
0 . Let dA

1

be the composite PA
1

-- KA
0 > - PA

0 and define dB
1 : PB

1 → PB
0 and dC

1 : PC
1 → PC

0 similarly.
Continuing, get projectives PA

n , PB
n , PC

n for each n where (by construction) PB
n
∼= PA

n ⊕ PC
n .

Then (PA)∗, (PB)∗ and (PC)∗ are projective resolutions of A, B and C respectively and we
have a short exact sequence of chain complexes 0→ (PA)∗ → (PB)∗ → (PC)∗ → 0 which splits
as graded C-objects (but not necessarily as chain complexes). Since F is an additive functor,

F (PB
n ) ∼= F (PA)n ⊕ F (PC)n for each n. Thus 0 →

(

F (PA)
)

∗
→
(

F (PB)
)

∗
→
(

F (PC)
)

∗
→ 0

is a short exact sequence of chain complexes. The long exact homology sequence associated to
this short exact sequence is the one stated in the proposition.

Proposition 3.1.7 Let T be an additive right exact functor. Let Pq−1
dq−1- Pq−2 → . . . →

P0
-- A be exact with Pq−1, . . . , P0 projective, and let K

j- Pq−1 be the kernel of Pq−1 →
Pq−2. Then the induced sequence 0→ LqTA→ TK

Tj- TPq−1 is exact.

Proof: Let . . .→ Pn . . .→ Pq+1
dq+1- Pq be a (re-indexed) projective resolution of K. Then

. . .→ Pn . . .→ Pq+1
dq+1- Pq

dq- Pq−1 → . . .→ P0

is a projective resolution of A, where dq is the compositive Pq
-- K >

j- Pq−1. Using the
right exactness of T , we have a commutative diagram with exact rows

TPq+1

T (dq+1)- TPq
- TK - 0

0 - 0
?

- TPq−1

T (dq)

?
===== TPq−1

T (j)

?
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where exactness at TPq uses ImT (dq+1) = T (Im dq+1), obtained from the right exactness of T .

The Snake Lemma yields the exact sequence TPq+1
T (dq+1)- ker

(

T (dq)
)

→ ker
(

T (j)
)

→ 0. Thus
kerT (j) ∼= kerT (dq)/ ImT (dq+1) = Hq(TP∗) = LqTA as claimed.

Similarly

Proposition 3.1.8 Let S be an additive left exact covariant functor. Let Pq−1
dq−1- Pq−2 →

. . . → P0
-- A be exact with Pq−1, . . . , P0 projective, and let K

j - Pq−1 be the kernel of
Pq−1 → Pq−2. Then the induced sequence 0→ SPq−1 → SK → RqSA is exact.

Example 3.1.9 Let M be a right R-module over a ring R. Define F : R-modules → AB by
F (N) := M⊗RN . The left derived functors of F are called TorR

n (M, ). That is, TorR
n (M,N) :=

Ln(F )(N). Since F has a (right) adjoint it is left exact by Prop. 1.5.2. Thus TorR
0 (M,N) :=

M ⊗N .
Using the preceding definition, the definition of TorR

n (M,N) would involve tensoring a pro-
jective resolution of N with M . Given a left R-module N , we could define a similar functor F ′ :
R-modules→ AB by F ′(M) := M ⊗RN , yielding derived functors Tor′

R
n (M,N) := Ln(F ′)(M)

whose definition involves tensoring a projective resolution of M with N . It turns out that
Tor′

R
n (M,N) ∼= TorR

n (M,N). It is not hard to give a direct proof of this, but we will do it
instead later as an illustration of the use of spectral sequences.

A module M which has the property that tensoring with M preserves exactness is called flat.
Thus, if M is flat then TorR

n (M,N) = 0 for any N when n > 0. Of course a projective module
is automatically flat, but it is possible for a module to be flat without being free. For example,
Q is a flat Z-module which is not projective.

The right derived functors of the adjoint G : R-modules → AB given by G(M) :=
HomR(M,N) (for fixed N) are written Extn

R(M,N) and defined by means of an injective res-
olution of M . As the right adjoint in the pair F −−| G is left exact we get Ext0

R(M,N) =
HomR(M,N). We could consider instead the left derived functors of G′(N) := HomR(M,N)
(defined through a projective resolution of N), but it turns out that Ln(G′)(N) = Rn(G)(M).

The notation TorR(M,N) is often used for TorR
1 (M,N) and similarly ExtR(M,N) stands

for Ext1
R(M,N).

If R is a Principal Ideal Domain then any submodule of a projective module is projective
(and in fact is a free R-module). (See MAT1100–1101 notes, Page 92.) Thus if θ : Q → M
is a projective presentation of M then P∗ :=→ 0 → . . . → 0 → . . . 0 → ker θ ⊂ - Q forms
a projective resolution of M in which Pn = 0 for n > 1. It follows that if R is a PID then
Torn(M,N) = 0 for any M and N when n > 1.

Example 3.1.10 According to the following theorem, for diagrams indexed by the integers
the derived functors of lim−→ are 0 although, as we will see, the situation for lim←− is different.

39



Theorem 3.1.11 (“Homology commutes with direct limits”)
Let J be a directed set and let {Cj}j∈J be a direct system of chain complexes indexed by J

H

(

lim−→
J

(Cj)∗

)

= lim−→
J

H∗(Cj).

Proof:

Lemma 3.1.12 Let G = lim←−i∈J
Gj. Then any element of G has a representative of the

form φk(g) for some g ∈ Gk, where φk : Gk → G is the canonical map.

Proof: Let X = (gj)j∈J represent an element of G. Since x has only finitely many nonzero
components, the definition of direct system implies that ∃k ∈ J s.t. j ≤ k ∀j s.t. gj 6= 0. Then
adding φk,j(gj) − gj to x for all j s.t. gj 6= 0 gives a new representative for x with only one
nonzero component. (i.e. for some k, x = φk(g) with g ∈ Gk.)

Lemma 3.1.13 If g ∈ Gk s.t. φ)k(g) = 0 then φm,k(g) = 0 for some m.

Proof: noindent Notation: For “homogeneous” elements of ⊕α∈JGα (i.e. elements with just
1 nonzero component) write |h| = α to mean that h ∈ Gα, or more precisely that the only
nonzero component of h lies in Gα.

φk(g) = 0⇒ g ∈ H ′ ⇒

g =
n
∑

t=1

φjt,itgt − gt where gt ∈ Git (3.1)

Find m s.t. k ≤ m and ir ≤ m and jr ≤ m ∀r. Set g′ = φm,kg.
Adding g′ − g = φm.kg − g to equation 3.1 gives

g′ =
n
∑

t+0

φjt,itgt − gt where g0 = g (3.2)

Note that for any α < m, collecting terms on RHS in Gα gives 0, since LHS is 0 in degree α.
Among S := {i0, . . . , in, j0, . . . , jn,m} find α which is minimal. (i.e. each other index

occuring is either greater or not comparable) Since jt it, α is one of the i’s so this means
J − t 6= α for any t.

For each t with |gt| = α, add gt − φm,|gt|gt to both sides of equation 3.2.
As noted above,

∑

{t||gt|=α} gt = 0 so
∑

{t||gt|=α} φm,|gt|gt is also 0 and so we are actually
adding 0 to the equation. However we can rewrite it using:
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φjt,itgt − gt + gt − φm,|gt|gt = φjt,itgt − φm,|gt|gt ======
(|gt|=it)

φjt,itgt − φm,jt
φjt,itgt = φm,jt

g̃t where
g̃t = −φjt,itgt. Therefore we now have a new expression of the form g′ =

∑

φjt,itg)t − gt;
however the new2 set S is smaller than before since it no longer contains α (and no new index
was added).

Repeat this process until the set S consists of just {m}. Then no i’s are left in S (since
it < m ∀t) which means that there are no terms left in the sum. That is, Equation 3.1 reads
g′ = 0, as required.

Proof of Theorem
Let ψj,i : (Ci)∗ → (Cj)∗ be the maps in the direct system lim−→J

Cj. Definition of maps
φj,i : H(Ci∗)→ H(Cj∗) is φj,i = (ψj,i)∗.

H(Ci∗)
φj,i = (ψj,i)∗ - H(Cj∗)

@
@

@
@

@

φi

R

A
A
A
A
A
A
A
A
A
A
A
A
A

(ψi)∗

U

	�
�

�
�

�

φj

��
�
�
�
�
�
�
�
�
�
�
�
�

(ψj)∗
lim−→

J

H(Cj)

H(C)

θ

?

Claim θ is onto:
Given [x] ∈ H(C), where x ∈ C, find a representative xk ∈ Ck∗ for x. (That is, x = ψkxk).
Since x represents a homology class, ∂x = 0. Hence ψk∂xk = ∂ψkxk = ∂x = 0. Replacing

xk by xm = φm,kxk for some m, get a new representative for x s.t. ∂xm = 0. Therefore xm

represents a homology class [xm] ∈ H(Cm∗) and
[xm]

@
@

@
@

@R

[x]

H(Cm∗) - lim−→
J

H(Cj)

@
@

@
@

@R 	�
�

�
�

�

θ

H(C)
shows ∈ Im θ.

Claim θ is 1− 1:
Let y ∈ limJ H(Cj) s.t. θ(y) = 0.
Find a representative [xk] ∈ H(Ck∗) for y, where xk ∈ Xk∗. (That is, y = φk(xk).)
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[xk] - [y]

H(Ck∗) - lim−→
J

H(Cj)

@
@

@
@

@
ψk∗

R 	�
�

�
�

�

θ

H(C)

Since θy = 0, [ψkxk] = 0 in H(C). That is, ∃v ∈ C s.t. ∂v = ψkxk.
May choose l s.t. v = ψl∗(wl).
Find m s.t. k, l ≤ m. Then replacing xk, wl by their images in (Cm)∗ we get that x− ∂wm

stabilizes to 0 so that ∃m′ ≥ m s.t. [xm′ ] = [∂wm′ ] = 0. Hence y = 0.

Remark 3.1.14 Note that homology does not commute with arbitrary colimits.

Corollary 3.1.15 Suppose X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . are inclusions of CW -complexes and
X = ∪∞

n=1Xn. Then H∗(X) ∼= lim−→
n

H∗(Xn).

We next consider the derived functors of the inverse limit functor. As we shall see later,
failure of homology to commute with inverse limits is a source of great complication in working
with spectral sequences.

Let AB denote the category of abelian groups and let Inv be the category of inverse systems
of abelian groups indexed over the nonpositive integers. Then lim←− is a functor from Inv to AB.
Unlike lim−→, this functor fails to preserve exactness.

Let G be an inverse system . . . - Gn+1 φn

- Gn - . . .
φ0

- G0 where we use the
convention Gn = G−n. Define φ :

∏

k G
k → ∏

k G
k to be the map whose projection onto Gn is

the composite,
∏

k G
k

։ Gn+1 φn

- Gn. Then

lim←− (G) = ker

(

(1− φ) :
∏

k

Gk →
∏

k

Gk

)

.

Set lim←−
1(G) = coker (1 − φ). From the definition it is easy to see that if φn is onto for all n

then 1− φ is onto. In other words,

Proposition 3.1.16 Let G = {Gn} be an inverse system in which φn : Gn+1 → Gn is onto for
all n. Then lim←−

1(G) = 0.
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The Snake Lemma implies

Proposition 3.1.17 Let 0→ G′ → G→ G′′ → 0 be a short exact sequence of inverse systems.
Then there is an induced exact sequence

0→ lim←− (G′)→ lim←− (G)→ lim←− (G′′)→ lim←−
1(G′)→ lim←−

1(G)→ lim←−
1(G′′)→ 0.

Proposition 3.1.18 Let I = {In} be an injective in Inv. Then φn : In+1 → In is surjective
for all n. In particular, lim←−

1(I) = 0.

Proof: Construct an injection from I to a system J whose structure maps are surjective. For
example, set Jn := In ⊕ Jn−1. Since I is injective, there is a retraction J → I and this implies
that the structure maps in I are surjective too.

The dual of Theorem 3.1.6 combined with Proposition 3.1.17 and Proposition 3.1.18 yield
the following proposition, which justifies the notation.

Proposition 3.1.19 lim←−
1 is the first right derived functor of lim←−.

Proof: Let I be an injective presentation of an inverse system A and set B := I/A. Propo-
sition 3.1.18 says that lim←−

1 I = 0, while (R lim←−)(I) = 0 since I is injective. Therefore the long

exact sequences from the dual of Theorem 3.1.6 and Proposition 3.1.17 give that both lim←−
1A

and (R lim←−)(A) are isomorphic to the cokernel of lim←− I → lim←−B
When working with lim←−

n

1 the following sufficient condition for its vanishing, known as the

Mittag-Leffler condition, which generalizes Prop. 3.1.16, is often useful.

Theorem 3.1.20 Suppose A is an inverse system in which for each n there exists k(n) ≤ n
such that Im

(

Ai → An

)

equals Im
(

Ak(n) → An

)

for all i ≤ k(n). Then lim←−
n

1A = 0. In particular,

if all of the system maps in the inverse system {An} are epimorphisms then lim←−
n

1A = 0.

Theorem 3.1.21 Let . . .→ (Cn+1)∗ → (Cn)∗ → (Cn−1)∗ → . . . be an inverse system of chain
complexes indexed by the integers. Let C = lim←−

n

1Cn. Suppose that lim←−
n

1(Cn)∗ = 0. Then for

each q there is a (Milnor) short exact sequence

0→ lim←−
n

1Hq+1(C
n)→ Hq(C)→ lim←−

n

Hq(C
n)→ 0.
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Proof: Regard B(C) and Z(C) as subcomplexes of C where the restriction of the differential
on C to either of these subcomplexes is 0. Since lim←− preserves injections, Zq(C) = lim←−

n

Zq(Cn).

Applying lim←−
n

to the short exact sequence of inverse systems

0→ Zi(C
n)→ (Cn)i → Bi−1(C

n)→ 0

gives

0→ lim←−
n

Zi(C
n)→ Ci → lim←−

n

Bi−1(C
n)→ lim←−

n

1Zi(C
n)→ lim←−

n

1Ci → lim←−
n

1Bi−1(C
n)→ 0

Using our assumption that lim←−
n

1Ci = 0 for all i we get lim←−
n

1Bi(C
n) = 0 for all i and the sequence

becomes
0→ Zi(C)→ Ci → lim←−

n

Bi−1(C
n)→ lim←−

n

1Zi(C
n)→ 0.

Equivalently, using Ci/Zi(C) ∼= Bi−1(C), the sequence, applied with i := q + 1, can be written
as

0→ Bq(C)→ lim←−
n

Bq(C
n)→ lim←−

n

1Zq+1(C
n)→ 0.

Applying lim←−
n

to the short exact sequence of inverse systems

0→ Bq(C
n)→ Zq(C

n)→ Hq(C
n)→ 0

gives

0→ lim←−
n

Bq(C
n)→ lim←−

n

Zq(C
n)→ lim←−

n

Hq(C
n)→ lim←−

n

1Bq(C
n)→ lim←−

n

1Zq(C
n)→ lim←−

n

1Hq(Cn)→0.

Using our previous deduction that lim←−
n

1Bq(C
n) = 0, we conclude that lim←−

n

1Zq(C
n) ∼= lim←−

n

1Hq(Cn)

and the sequence becomes

0→ lim←−
n

Bq(C
n)→ Zq(C)→ lim←−

n

Hq(C
n)→ 0.

Applying the Snake Lemma to

Bq(Cn) ===== Bq(C) - 0

lim←−
n

Bq(C
n)

?
- Zq(C)

?
- lim←−

n

Hq(C
n)

?
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gives the short exact sequence

0→
(

lim←−
n

Bq(C
n)
)

/Bq(C)→ Zq(C)/Bq(C)→ lim←−
n

Hq(C
n)→ 0.

However Zq(C)/Bq(C) = Hq(C) and from above we have

lim←−
n

Bq(C
n)/Bq(C) ∼= lim←−

n

1Zq+1(C
n) ∼= lim←−

n

1Hq+1(Cn).

A common application is when X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . are inclusions of CW -complexes
and X = ∪∞

n=1Xn and we wish to calculate H∗(X). We set Cn equal to the cellular cochain
complex of Xn and use that the Cn → Cn−1 is onto, which by the Mittag-Leffler condition
(Theorem 3.1.20) guarantees that our hypothesis lim←−

n

1(Cn)∗ = 0 is satisfied.

This yields

Theorem 3.1.22 (Milnor) Suppose X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . are inclusions of CW -
complexes and X = ∪∞

n=1Xn. Then there is a natural short exact sequence

0→ lim←−
n

1Hq−1(Xn)→ Hq(X)→ lim←−
n

Hq(Xn)→ 0

originally proved by Milnor by applying Mayer-Vietoris to the “infinite mapping telescope” as
in [?, Theorem 13.1.3].

3.2 Künneth Theorem and Universal Coefficient Theo-

rems

Theorem 3.2.1 (Künneth Theorem) Let C and D be chain complexes of R-modules. Sup-
pose that Cn and the boundaries Bn(C) are flat R-modules for all n. Then for all n there is a
natural short exact sequence of R-modules

0→
(

H∗(C)⊗R H∗(D)
)

n
→ Hn(C ⊗R D)→ TorR

(

H∗(C), H∗(D)
)

n−1
→ 0.

If Bn(C) and Bn(D) are both projective for all n or if R is a PID then the sequence is split
(although not split naturally).
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Proof: Regard B(C) and Z(C) as subcomplexes of C where the restriction of the differential

on C to either of these subcomplexes is zero. Then 0→ Z(C) ⊂ - C
d-- SB(C)→ 0 becomes

a short exact sequence of chain complexes. Tensoring with D gives a long exact sequence of
chain complexes

. . .→ Tor
(

SB(C), D
)

→ Z(C)⊗D - C ⊗D → S(B)⊗ C → 0.

Since Bn(C) is flat for all n, Tor
(

SB(C), D
)

= 0 so the above sequence reduces to a short exact
sequence. The associated long exact homology sequence is

→Hn

(

B(C)⊗D)
ι-Hn

(

Z(C)⊗D
)

→ Hn(C⊗D)→ Hn−1

(

B(C)⊗D)
ι-Hn−1

(

Z(C)⊗D
)

→

where ι is induced by the inclusion Bn(C) ⊂ - Zn(C) and we have made the replacement
Hq(SX) = Hq−1(X). Therefore there is a short exact sequence

0→ coker ιn → Hn(C ⊗D)→ ker ιn−1 → 0. (3.3)

Tensoring the short exact sequence 0→ Bn(C)→ Zn(C)→ Hn(C)→ 0 with H(D) gives

→ TorR

(

C,H(D)
)

→ TorR

(

H(C), H(D)
)

→
(

B(C)⊗H(D)
) ι-

(

Z(C)⊗H(D)
)

→
(

H(C)⊗H(D)
)

→ 0,

(3.4)
where for graded objects X, Y , we set

(

Tor(X,Y )
)

n
:= ⊕i+j=n Tor(Xi, Yj).

Given a short exact sequence 0→ T → U → V of R-modules, such that V is flat, the long
exact Tor sequence shows that TorR

n (T,M) ∼= TorR
n (U,M) for n > 0 and any M . Thus T is flat

if and only if U is flat. In particular, our hypothesis that C is flat is equivalent to assuming that
Z(C) is flat. Thus TorR

(

Z(C), H(D)
)

= 0 and so (3.4) gives ker ιq ∼= TorR

(

H(C), H(D)
)

q

and coker ιq ∼=
(

H(C)⊗H(D)
)

q
. Therefore (3.3) becomes

0→
(

H(C)⊗H(D)
)

n
→ Hn(C ⊗D)→ TorR

(

H(C)⊗H(D)
)

n−1
→ 0

as desired.
If Bn−1(C) is projective then the sequence 0 → Zn(C) → Cn → Bn−1(C) → 0 splits

and so there is a retraction Cn → Zn(C). Similarly Bn−1(D) projective implies the existence
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of a retraction Dn → Zn(D). Thus if Bn−1(C) and Bn−1(D) are projective we get a map
θ : C ⊗D → Z(C)⊗ Z(D) of graded R-modules. Since

θ
(

B(C ⊗D) ⊂ B(C)⊗ Z(D) + Z(C)⊗B(D)

it induces a map H(C ⊗D) → H(C)⊗H(D) which splits the natural map H(C)⊗H(D) →
H(C ⊗D).

Next, consider the special case where R is a PID.

Lemma 3.2.2 Let R be a PID and let H be a graded R-module. Then there exists a free chain
complex C (i.e. Cn is a free R-module for each n) such that Hn(C) = H.

Proof: Let qp : Fp
-- Hp be a free presentation of Hp. Since a submodule of a free module

over a PID is free (See MAT1100–1101 notes, Page 92) Kp := ker qp is free. Set Cp := Fp⊕Kp−1

and define d : Cp → Cp−1 by d(x, y) := (y, 0). Then d2 = 0, Zp(C) = Fp and Bp(C) = Kp so
that Hp(C) = Fp/Kp

∼= Hp.

Lemma 3.2.3 Let C and D be chain complexes over a PID R such that C is free. Let ψ :
H∗(C)→ H∗(D) be a morphism of graded R-modules. Then there exists a chain map φ : C → D
such that φ∗ = ψ.

Proof: Since R is a PID, the submodule Bp(C) of Cp is free and thus Cp
∼= Zp(C)⊕Bp−1(C).

Since Zp(C) ⊂ Cp is free (thus projective) there exists a lift fp : Zp(C)→ Zp−1(D) making the
right square below commute.

0 - Bp(C) - Zp(C) - Hp(C) - 0

0 - Bp(D)

f ′
p

?

................
- Zp(D)

fp

?

................
- Hp(D)

ψp

?
- 0

Let f ′
p : Bp(C)→ Bp(D) be the induced map on kernels. Since Bp(C) is free (thus projective)

there exists f ′′
p−1 : Bp−1(C)→ Dp such that d ◦ f ′′

p−1 = f ′
p−1. Define

ψp : Cp
∼= Zp(C)⊕Bp−1(C)→ Dp

by φp(x, y) := f ′
p(x)+f

′′
p−1(y). Then φ∗ forms a chain map which has the desired property.
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Proof of Künneth Theorem (concluded)
To show that the sequence splits in the case where R is a PID:
By the lemmas there exist free chain complexes F and G together with chain maps F → C

and G→ D which induce isomorphisms on homology. By the naturality of the exact Künneth
sequence we have a commutative diagram

0 -
(

H∗(F )⊗R H∗(G)
)

n
- Hn(F ⊗R G) - TorR

(

H∗(F ), H∗(G)
)

n−1
- 0

0 -
(

H∗(C)⊗R H∗(D)
)

n

∼=
?

- Hn(C ⊗R D)

∼=
?

- TorR
(

H∗(C), H∗(D)
)

n−1

∼=
?

- 0

Since F and G are free chain complexes, the top sequence splits and so the bottom does also.

Example 3.2.4 Let C be the chain complex

. . .→ 0→ . . .→ 0→ Z
2- Z→ 0→ . . . .

let C be the chain complex

. . .→ 0→ . . .→ 0→ Z - 0→ 0→ . . .

and let D and D′ be the chain complex

. . .→ 0→ . . .→ 0→ 0→ Z/(2Z)→ 0→ . . .

where the nonzero terms are in degrees 1 and 0. Let φ : C → D and φ′ : C ′ → D′ be the
obvious maps. Then φ′

∗ = 0. If the splittings were natural, it would follow that (φ⊗ φ′)∗ = 0,
but it is the identity on H1(C ⊗D) ∼= H1(C

′ ⊗D′) ∼= Z/(2Z).

For an R-module G, let G denote the chain complex

Gn =

{

G if n = 0;
0 if n 6= 0

with (perforce) the zero differential. Then for any chain complex C of R-modules, (C⊗RG)n =
Cn ⊗R G for all n. The homology of this chain complex is called the homology of C with
coefficients in G, written H∗(C;G). As a special case of the Künneth Theorem we get
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Theorem 3.2.5 (Universal Coefficient Theorem) Let C be a chain complex of R-modules
and let G be an R-module. Suppose that Cn and Bn(C) are flat R-modules for all n. Then for
all n there is a natural short exact sequence of R-modules

0→ Hn(C)⊗G→ Hn(C;G)→ TorR
(

Hn−1(C), G
)

→ 0.

If G is free or if Bn(C) is free for all n or if R is a PID then the sequence is split (although
not split naturally).

3.3 Relative Derived Functors

Let E be a class of epimorphisms in a category C. An object P of C is called projective relative
to E if for every epimorphism g : B → A of E and homomorphism f : P → A there exists a
“lift” f ′ : P → B (not necessarily unique) such that gf ′ = f . The closure C(E) of a class E
of epimorphisms consists of those epimorphisms g : B → A such that for every projective P
relative to E and every map f : P → A there exists a lift f ′ : P → B such that gf ′ = f . It
follows directly that, as with subspaces of topological spaces, closure is an idempotent operation
(“the closure of the closure equals the closure”) and a class of epimorphisms will be called closed
if it equals its closure. It is easy to see that a closed class of epimorphism must be closed under
the operations of compositions and taking direct sums.

The category C is said to have enough projectives relative to the class E if for every object M
of C there exists an epimorphism ǫ : P →M of E with P projective relative to E .

If E is a closed class of epimorphisms such that C has enough projectives relative to E
then we can form projective resolutions relative to E for every object of C, define derived

functors LE
q (T ) relative to E for any additive functor T : C → A to an abelian category A, and

all the standard properties will carry over to this generalization.
The theorem that the left adjoint of an adjoint pair preserves projectives carries over to

relative projectives.

Proposition 3.3.1 Let F : C → D and G : D → C be functors between abelian categories C,
D such that F −−| G. Suppose that G : D(A,B)→ C(GA,GB) is a set injection for every pair
of objects A, B of D. Let E be a closed class of epimorphisms in C such that C has enough
projectives relative to E. Then G−1(E) is a closed class of epimorphisms in D such that D has
enough projectives relative to G−1(E), and the projectives of D relative to G−1(E) are the direct
summands of FP , where P is a projective in C relative to E.

Proof: Exercise.
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Note that the injectivity condition of G on morphisms guarantees that e is an epimorphism
whenever G(e) is.

Similarly we can define injectives relative to a class of monomorphisms, relative injective
resolutions, and use an adjoint pair F −−| G in which F is an injection on morphisms to
transport these from one category to another.
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Chapter 4

Spectral Sequences

A spectral sequence is defined as a sequence
(

(Er, dr)
)

r=n0,n0+1,...,
of differential abelian groups

such that Er+1 = H(Er, dr). By reindexing we could always arrange that n0 = 1, but sometimes
it is more natural to begin with some other integer. If all terms (Er, dr) of the spectral sequence
have the appropriate additional structure, we might refer, for example, to a spectral sequence
of R-modules, Hopf algebras, or whatever. If there exists N such that Er = EN for all r ≥ N
(equivalently dr = 0 for all r ≥ N) the spectral sequence is said to collapse at EN .

Notice that, in an intuitive sense, the terms of a spectral sequence get smaller as r →∞ as
each is a subquotient of its predecessor.

The definition of spectral sequence is so broad that we can say almost nothing of interest
about them without putting on some additional conditions. We will begin by considering
the most common type of spectral sequence, historically the one that formed the motivating
example: the spectral sequence of a filtered chain complex.

4.1 Filtered Objects

To study a complicated object X, it often helps to filter X and study it one filtration at a time.
A filtration FX of a group X is a nested collection of subgroups

FX := . . . FnX ⊂ Fn+1X ⊂ . . . ⊂ X −∞ < n <∞.

A morphism f : FX → FY of filtered groups is a homomorphism f : X → Y such that
f
(

Fn(X)
)

⊂ Fn(Y ). The groups FnX/Fn−1X are called the “filtration quotients” and their
direct sum Gr(FX) :=

⊕

n FnX/Fn−1X is called the associated graded group of the filtered
group FX . In cases where X has additional structure we might define special types of filtrations
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satisfying some compatibility conditions so that Gr(FX) inherits the additional structure. For
example, an algebra filtration of an algebraX is defined as one for which (FnX)(FkX) ⊂ Fn+kX.

Since our plan is to study X by computing Gr(FX), the first question we need to consider is
what conditions we need to place on our filtration so that Gr(FX) retains enough information
to recover X. Our experience from the 5-Lemma suggests that the appropriate way to phrase
the requirement is to ask for conditions on the filtrations which are sufficient to conclude that
f : X → Y is an isomorphism whenever f : FX → FY is a morphism of filtered groups for
which the induced Gr(f) : Gr(X)→ Gr(Y ) is an isomorphism.

It is clear that Gr(FX) can tell us nothing about X−(∪Xn) so we require that X = ∪Xn.
Similarly we need that ∩Xn = 0. However the latter condition is insufficient as can be seen
from the following example.

Example 4.1.1 Let X :=
⊕∞

k=1 Z and Y :=
∏∞

k=1 Z. Set

FnX :=











X if n ≥ 0;
∞
⊕

k=−n

Z if n < 0,
FnY :=











Y if n ≥ 0;
∞
∏

k=−n

Z if n < 0

and let f : X → Y be the inclusion. Then Gr(f) is an isomorphism but f is not.

FX is called cocomplete if the canonical map X → lim−→
n

FnX is an isomorphism and FX is

called complete if X → lim←−
n

(X/FnX) is an isomorphism. FX is called bicomplete if it both

complete and cocomplete.
Note that “FX cocomplete” is equivalent to “∪FnX = X” but “FX complete” is stronger

than “∩FnX = 0”. more precisly, let FX be a filtered abelian group. Applying Propostion 3.1.17
to the short exact sequence 0 → FnX → X → X/FnX → 0 of inverse systems gives an exact
sequence

0→ lim←−
n

FnX → lim←−
n

X → lim←−
n

X/Fn → lim←−
n

1FnX → lim←−
n

1X.

Since lim←−
n

X = X and lim←−
n

1X = 0, we get

Theorem 4.1.2 FX is complete if and only if lim←−
n

FnX = 0 and lim←−
n

1FnX = 0.

Theorem 4.1.3 (Comparison Theorem) Let FX be bicomplete and let FY be cocomplete
with ∩FnY = 0. Suppose that f : FX → FY is a morphism such that Gr(f) : Gr(X)→ Gr(Y )
is an isomorphism. Then f : X → Y is an isomorphism.
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Proof: Consider first the special case where the filtrations are bounded below. That is, suppose
that there exists N such that FnX = FnY = 0 for n < N . Then fn : FnX → FnY is an
isomorphism for all n by induction and the 5-Lemma and so taking limn→∞ gives f∞ : X ∼= Y .

Turning now to the general case, for each integer k define an induced filtration on X/FkX
by

Fn(X/FkX) =

{

FnX/FkX if n ≥ k;
0 if n < k,

and similarly filter Y/FkY . These filtrations are bounded below, so for each k the induced
map X/FkX → Y/FkY is an isomorphism by the special case above. Suppose f(x) = 0. If
x 6= 0, by cocompleteness of FX , there exists unique n such that x ∈ Fn−Fn−1. However since
FnX/Fn−1X → FnY/Fn−1Y is an isomorphism, in particular an injection, from f([x]) = 0 we
get [x] = 0 in FnX/Fn−1X. This says x ∈ Fn−1X, contradicting the choice of n.

Now suppose y ∈ Y . Since FY is cocomplete, y ∈ FnY for some n. Set yn := y. Since
FnX/Fn−1X → FnY/Fn−1Y is an isomorphism, in particular an epimorphism, there exists xn ∈
FnX such that f([xn]) = [yn]. That is, f(xn) ∼= yn modulo Fn−1Y . Set yn−1 := y−f(xn) ∈ Fn−1.
Repeating the argument, there exists xn−1 ∈ Fn−1X such that yn−1−f(xn−1) ∈ Fn−2Y . Contin-
uing, for all k we find xn−k ∈ Fn−kX such that y− f(xn)− f(xn−1)− . . .− f(xn−k) ∈ Fn−k−1Y .
Set wn−k := xn + xn−1 + . . . + xn−k. The projection map X/Fn−k−1X -- X/Fn−kX takes
wn−k−1 to wn−k since it takes [xn−k−1] to 0. Thus w := (. . . , wn−k−1, wn−k, . . . , wn−1, wn, 0, . . .)
is a “consistent sequence” describing an element of lim←−

k

(X/FkX) ∼= X. By construction

f(w)− y ∈ Fn−kY for all k. Thus f(w) = y since ∩mFm(Y ) = 0.

4.2 Filtered Chain Complexes

Let FC be a filtered chain complex. In many applications our goal is to compute H∗(C)
from knowledge of H∗(FnC/Fn−1C) for all n. The overall plan, which is not guaranteed to be
successful in general, would be:

1) Use the given filtration on C to define a filtration on H∗(C);

2) Use our knowledge of H∗(GrC) to compute GrH∗(C);

3) Reconstruct H∗(C) from GrH∗(C).

To begin, set Fn(H∗C) := Im(sn)∗, where sn : Fn(C)→ C is the inclusion (chain) map from
the filtration. The spectral sequence which we will define for this situation can be regarded
as a method of keeping track of the information contained in the infinite collection of long
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exact homology sequences coming from the short exact sequences 0 → Fn−1C → FnC →
FnC/Fn−1C → 0. When working with a long exact sequence, knowledge of two of every three
terms gives a handle on computing the remaining terms but does not, in general, completely
determine those terms, which explains intuitively why we have some reason to hope that a
spectral sequence might be useful and also why it is not guaranteed to solve our problem.

Before proceeding with our motivating example, we digress to discuss spectral sequences
formed from “exact couples”.

4.3 Exact Couples

In this section we will define exact couples, show how to associate a spectral sequence to an
exact couple, and discuss some properties of spectral sequences coming from exact couples. As
we shall see, a filtered chain complex gives rise to an exact couple and we will examine this
spectral sequence in greater detail.

Exact couples were invented by Massey and many books use them as a convenient method
of constructing spectral sequences. Other books bypass discussion of exact couples and define
the spectral sequence coming from a filtered chain complex directly.

Definition 4.3.1 An exact couple consists of a triangle

D
i - D

I@
@

@
@

@
k

	�
�

�
�

�

i

E

containing abelian groups D, E, and together with homomorphisms i, j, k such that the diagram
is exact at each vertex.

In the following, to avoid conflicting notation considering the many superscripts and sub-
scripts which will be needed we use the convention that an n-fold composition will be written
f ◦n rather than the usual fn.

Given an exact couple, set d := jk : E → E. By exactness, kj = 0, so d◦2 = jkjk = 0 and
therefore (E, d) forms a differential group. To the exact couple we can associate another exact
couple, called its derived couple, as follows. Set D′ := Im i ⊂ D and E ′ := H(E, d). Define
i′ := i|D and let j′ : D′ → E ′ be given by j′(iy) := j(y), where x denotes the equivalence class
of x. The map k′ : E ′ → D′ is defined by k′(z) := kz. One checks that the maps j′ and k′ are
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well defined and that (D′, E ′, i′, j′, k′) forms an exact couple. Therefore from our original exact
couple we can inductively form a sequence of exact couples (Dr, Er, ir, jr, kr)∞r=1 with D1 := D,
E1 := E, Dr := (Dr−1)′ and Er := (Er−1)′. This gives a spectral sequence (Er, dr)∞r=1 with
dr = jrkr.

Example 4.3.2 In our motivating example, to a filtered differential abelian group FC we
associate an exact couple as follows. Set D :=

⊕

pDp,q where Dp,q = Hp+q(FpC) and E :=
⊕

p,q Ep,q where Ep,q = Hp+q(FpC/Fp−1C).
The long exact homology sequences coming from the sequences

0→ Fp−1C
a- FpC

b- FpC/Fp−1C → 0

give rise, for each p, q, to maps a∗ : Dp−1,q+1 → Dp,q, b∗ : Dp,q → Ep,q, and ∂ : Ep,q → Dp−1,q.
Define i : D → D to be the map whose restriction to Dp−1,q+1 is the composition of a∗ with
the canonical inclusion Dp−1,q+1

⊂ - D. Similarly define j : D → E and k : E → D to be the
maps whose restrictions to each summand are the compositions of b∗ and ∂ with the inclusions.

The indexing scheme for the bigradations is motivated by the fact that in many applications
it causes all of the nonzero terms to appear in the first quadrant so it is the most common choice,
although one sometimes sees other conventions.

In our motivating example, the terms of the initial exact couple came with a bigrading
D =

⊕

Dp,q and E =
⊕

Ep,q and writing |f | for the bidegree of a morphism f we had:
|i| = (1,−1); |j| = (0, 0); |k| = (−1, 0); d = (−1, 0). It follows that |ir| = (1,−1); |jr| =
(−r + 1, r − 1); |kr| = (−1, 0); |dr| = (−r, r − 1) which is considered the standard bigrading
for a bigraded exact couple. The standard bigrading for a bigraded spectral sequence is one
such that |dr| = (−r, r− 1), which is consistent with the grading arising from a bigraded exact
couple. Ignoring the second gradation gives |ir| = 1; |jr| = −r + 1; |kr| = −1, which is the
standard grading on a graded exact couple.

We observed earlier that terms of a spectral sequence get smaller as r → ∞ as each is
a subquotient of its predecessor. Note that the bigrading is such that this applies to each
pair of coordinates individually (e.g. Er+1

p,q is a subquotient of Er
p,q) and so in particular if the

p, q-position ever becomes 0 that position remains 0 forevermore.
There is actually a second exact couple we could associate to FC , which yields the same spec-

tral sequence: use the same E as above but replace D by
⊕

Dp,q with Dp,q = Hp+q+1(C/FpC),
and define i, j, and k in a manner similar to that above.

When dealing with cohomology rather than homology the usual starting point would be a
system of inclusions of cochain complexes . . . ⊂ F n+1C ⊂ F nC ⊂ F n−1 . . . ⊂ C. This can
be reduced to the previous case by replacing the cochain complex C by a chain complex C∗

using the convention Cp := C−p and filtering the result by FnC∗ := F−nC. The usual practice,
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equivalent to the above followed by a rotation of 180◦, is to leave the original indices and instead
reverse the arrows in the exact couple. In this case it is customary to write Dp,q

r and Ep,q
r for

the terms in the exact couple and spectral sequence.

In applications it is often the case that E1 is known and that our goal includes computingD1.
The example of the filtered chain complex with the assumption that we know H∗(FpC/Fp−1C)
for all p is fairly typical.

Since each Dr is contained in Dr−1 and each Er is a sub-quotient of Er−1 the terms of these
exact couples get smaller as we progress. To get properties of the spectral sequence we need to
examine this process and in particular to analyze that which remains in the spectral sequence
as we let r go to infinity.

For x ∈ E, if dx = 0 then x belongs to E2 and so d2(x) is defined. In the following we shall
usually simplify the notation by writing simply x in place of x and writing drx = 0 to mean
“drx is defined and equals 0”.

If dx = 0, . . ., dr−1x = 0 then x represents an element of Er and drx is defined. Set
Zr := {x ∈ E | dmx = 0 ∀m ≤ r}, where by convention Z0 := E1. Then Er+1 ∼= Zr/∼ where
x ∼ y if there exists z ∈ E such that for some t ≤ r we have dmz = 0 for m < t (thus dtz is
defined) and dtz = x−y. With this as motivation we set Z∞ := ∩rZ

r = {x ∈ E | dmx = 0 ∀m}
(known as the “infinite cycles”) and define E∞ := Z∞/∼ where x ∼ y if there exists z ∈ E
such that for some t we have dmz = 0 for m < t and dtz = x− y.

Next we relate E∞ to quantities obtained from the exact couple.
Notice that Dr+1 = Im i◦r ∼= D/ ker i◦r. There is no analogy of this statement for r = ∞.

Instead we have separate concepts so we set D∞ := D/ ∪r ker i◦r and ∞D := ∩r Im i◦r.

Let D
i-- D′ = Im i ⊂

α- D be the factorization of i : D → D as the composition of an
epimorphism and a monomorphism. Then ∞D is the inverse limit of the system

. . . ⊂
α- Dn+1 ⊂

α- Dn ⊂
α- . . . ⊂

α- D1.

Explicitly, ∞D =
⋂

n i
nD equals elements of D infinitely “divisible” by i. If x is infinitely

divisible by i then so is ix and so i induces a map ∞ı : ∞D → ∞D. At the other end, D∞ is
the direct limit of

D1 i-- . . .
i-- Dn i-- Dn+1 i-- . . . .

Again i induces a canonical map ı : D∞ → D∞.
For y ∈ D, using the fact that kj = 0 and induction we see that dn(jy) is defined and equal to

zero for all n. Thus jy is an infinite cycle, so we get an induced map ̃ : D → Z∞(E). Applying
the same considerations to the derived exact couples gives an induced map ̃ : Dn → Z∞(En)

56



for each n. The diagram

D
i -- . . .

i -- Dn i -- Dn+1 i -- . . .

Z∞(E)



?
-- . . . -- Z∞(En)



?
-- Z∞(En+1)



?
-- . . .

commutes since ̃ : Dn → Z∞(En) is induced by jn = ji(n−1)−1
. Therefore there is an induced

map of direct limits ̃ : D∞ → E∞.
Turning to the other end, the commutative square on the right of the diagram

Z(En) - En dn

- En

Dn+1

k̃

?
- Dn

k

? jn

- En

w

w

w

w

w

w

w

w

w

w

yields the induced map k̃ of kernels. Due to the equality on the far right, the left square is a
pullback. Taking inverse limits in the diagram of pullbacks

. . . - Zn+1(E) - Zn(E) - . . . - . . . E

. . .

. . . >
α - Dn

k̃

?
>

α - Dn

k̃

?
>

α - . . . >
α - . . . D

k

?

yields an induced map k̃ : Z∞(E)→ ∞D which fits into the square

Z∞(E) - E

∞D

k̃

?
- D.

k

?

which, using that lim←− preserves injections, is seen to be a pullback. Applying the same con-

siderations to the derived exact couples gives an induced map k̃ : Z∞(En)→ ∞Dn for each n.

57



However ∞Dn =
⋂

m i
mDn =

⋂

m i
m+nD = ∞D. The maps k̃ : Z∞(En) → ∞Dn = ∞D are

compatible and so induce a map k̃ : E∞ → ∞D from the direct limit.
The analogue of the rth derived exact couple when r =∞ is the following exact sequence.

Theorem 4.3.3 There is an exact sequence

0→ D∞ i- D∞ j- E∞ k- ∞D
i- ∞D

j- lim←−
r

1Zr k- lim←−
r

1Dr i- lim←−
r

1Dr → 0.

Proof: The fact that i∞ : D∞ → D∞ is a monomorphism can be seen from the explicit
description of i∞. Consider the diagram

D
i - D

j̃- Z∞(E)
k̃ - ∞D

i - ∞D

D

w

w

w

w

w

w

w

w

w

w

i - D

w

w

w

w

w

w

w

w

w

w

j - E
?

∩

k̃ - D
?

∩

i - D
?

∩

(4.1)

in which the bottom row is known to be exact and the second last square is a pullback. In
general, given a diagram

A′ - B′ - C ′

A
?

- B
?

- C
?

∩

in which the bottom row is exact and the left square is a pullback, the top row must be exact.
It follows that the top row of (∗) is exact at the first ∞D. Also, Ker ̃ = Ker j = Im i, and since
the second last square is a pullback, Ker k̃ = Ker k = Im j = Im ̃. Therefore the top row of (∗)
is exact everywhere. Applying the same considerations to the derived exact couples and using
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∞Dn = ∞D gives a commutative diagram

D
i -- . . .

i -- Dn i -- Dn+1 i -- . . .

D

i

? i -- . . .
i -- Dn

i

? i -- Dn+1

i

? i -- . . .

Z∞(E)



?
-- . . . -- Z∞(En)



?
-- Z∞(En+1)



?
-- . . .

∞D

k̃

?
======== . . .======== ∞D

k̃

?
======== ∞D

k̃

?
======== . . .

∞D

i

?
======== . . .======== ∞D

i

?
======== ∞D

i

?
======== . . .

with exact columns. Passing to direct limits, which preserves exactness (Theorem 3.1.11), gives
the exact sequence

0→ D∞ i- D∞ j- E∞ k- ∞D
i- ∞D (4.2)

The original exact couple gives a short exact sequence

0→ Er/Ker k → Dr i- Dr+1 → 0 (4.3)

Since the boundaries d(Er) are contained in Ker k, the projection map Zr−1 -- Er induces
an isomorphism Zr−1/Ker k ∼= Er/Ker k. Since Ker k is a constant sequence, lim←−

r

1 Ker k = 0

(by Mittag-Leffler). Thus Proposition 3.1.17 gives lim←−
r

1Zr/Ker k ∼= lim←−
r

1Zr. Applying proposi-

tion 3.1.17 to the sequence 4.3 and making this substitution gives the exact sequence

0→ lim←−
r

Zr/Ker k
i- ∞D

i- ∞D
j- lim←−

r

1Zr k- lim←−
r

1Dr i- lim←−
r

1Dr → 0.

Splicing this together with the sequence 4.2 gives the theorem.
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4.4 Convergence of Spectral Sequences

As noted earlier, the definition of spectral sequence is so broad that we need to put some
conditions on our spectral sequences to make them useful as a computational tool. From now
on we will restrict attention to spectral sequences arising from exact couples. To see how to
proceed we examine the motivating example more closely.

Consider our motivating example. For a filtered chain complex FC with structure maps
sp : FpC → C we defined Fp

(

H∗(C)
)

= Im sp∗. Let D∗,∗, E∗,∗ be the associated exact couple.
Examining the definitions, D∞ = ⊕pD

∞
p where D∞

p = H(Cp)/ ∪m i−m(0). Since (sp)∗ is a
composition with im for every m, we have (sp)∗(∪mi

−m(0) = 0 and so (sp)∗ induces s̄p : D∞
p →

Im(sp)∗ = Fp

(

H(C)
)

. Observe that s̄p ◦ i = s̄p−1 so the image of the restriction of s̄p ◦ i =
to i(D∞

p−1) is contained in Fp−1

(

H(C)
)

. Therefore there is an induced map s̄ : D∞/iD∞ →
Gr
(

H(C)
)

.
Note that if C is cocomplete then the fact that homology commutes with direct limits

implies that H(C) is cocomplete, so the hypothesis of the next Lemma is always satisfied in
that case.

Lemma 4.4.1 If FH(C) is cocomplete then s̄ is a monomorphism.

Proof: Suppose s̄([z]) = 0 for z ∈ Dp. Since FH(C) is cocomplete, H(C) = lim−→
p

Dp so there

exists m such that im(z) = 0, by a property of lim−→. (If an element becomes 0 in the direct
limit, then it becomes 0 at some ”finite stage” of the system according to Lemma 3.1.13. Thus
[z] = 0 in D∞

p .

Theorem 4.4.2 Let C be a filtered differential abelian group. If FH(C) is cocomplete then

i) s̄p : D∞
p

∼=- Fp

(

H(C)
)

.

ii) f̄ : D∞/i∞(D∞)→ Gr
(

H(C)
)

is an isomorphism;

iii) There is an exact sequence 0→ Gr
(

H(C)
) j∞- E∞

∞k- ∞D
∞i- ∞D.

Proof: s̄p : D∞
p → Fp

(

H(C)
)

is surjective by definition of Fp

(

H(C)
)

. However in the case
where FH(C) is cocomplete, it is also injective by the preceding Lemma, giving (i).

Part (iii) follows from part (ii) and Theorem 4.3.3.
Suppose y ∈ Fp

(

H∗(X)
)

represents an element of Grp

(

H∗(X)
)

. Then y belongs to Im (sp)∗ :
H∗(Cp)→ H∗(C) and so [y] = s̄[yp] where (sp)∗(yp) = y. Therefore s̄ is onto. Suppose now that
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x, belonging to D∞
p , satisfies s̄([x]) = 0 in Grp

(

H∗(C)
)

. Then s̄p(x) belongs to Fp−1

(

H∗(C)
)

so there exists y ∈ D∞
p−1 such that s̄p(x) = s̄p−1(y) = s̄p(iy). By the preceding Lemma, s̄p is a

monomorphism, so x = iy and thus [x] = 0 in D∞/iD∞, which proves (ii).

Motivated by this example, we say that the spectral sequence (Er) abuts to FL if there
is an isomorphism GrL → E∞. Here we mean an isomorphism of graded abelian groups,
which makes sense since under our assumptions Er inherits a grading from E1 for each r. If in
addition the filtration on L is cocomplete, we say that (Er) weakly converges to FL and if it is
bicomplete we say that (Er) converges (or strongly converges) to FL. The notation (Er)⇒ FL

(or simply (Er) ⇒ L when the filtration on L is either understood or unimportant) is often
used in connection with convergence but there is no universal agreement as to which of the
three concepts (abuts, weakly converges, or converges) it refers to! We will use it to mean
“abuts”. We will also use the expression (Er) quasi-converges to FL to mean that the spectral
sequence weakly converges to FL with ∩nFnL = 0. (Note: The terminology “quasi-converges”
is nonstandard although the concept has appeared in the literature, sometimes under the name
“converges”.)

While it would be overstating things to claim that convergence of the spectral sequence
shows that E∞ determines H(C), it is clear that convergence is what we need in order to
expect that E∞ contains enough information to possibly reconstruct H(C). The sense in which
this is true is stated more precisely in the following theorem.

Theorem 4.4.3 (Spectral Sequence Comparison Theorem) Let f = (f r) : (Er) → Ẽr

be a morphism of spectral sequences.

1) If f : EN → ẼN is an isomorphism for some N then f r is an isomorphism for all r ≥ N
(including r =∞).

2) Suppose in addition that (Er) converges to FX and (Ẽr) quasi-converges to FX̃ . Let
φ : FX → FX̃ be a morphism of filtered abelian groups which is compatible with f . (That
is, there is exist isomorphisms η : GrX ∼= E∞ and η̃ : Gr X̃ ∼= Ẽ∞ such that f∞ ◦ η =
η̃ ◦Gr(f).) Then f : X → X̃ is an isomorphism.

Proof: The commutative diagram

EN fN

∼=
- ẼN

EN

dr

? fN

∼=
- ẼN

dr

?
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shows that f : EN+1 → ẼN+1 and (taking kernels) that f : ZN+1(E) → ZN+1(Ẽ) are isomor-
phisms. It follows by induction that these statements hold for all r ≥ N . Thus taking the limit
as r goes to infinity, gives that f : Z∞(E) → Z∞(Ẽ) and then passing to the quotient gives
that f : E∞ → Ẽ∞ is an isomorphism. Therefore the theorem follows from Theorem 4.1.3 and
the definitions of convergence/quasiconvergence.

Example 4.4.4 Within the constraints provided by Theorem 4.4.3, a spectral sequence might
have many limits.

Let 0 → A → B → C → 0 and 0 → A → B′ → C be short exact sequences with B 6∼= B′.
Let E be the spectral sequence with (Er, dr) = (A⊕ C, 0) for all r. Let L = B with filtration
0 ⊂ A ⊂ B, and let L′ = B′ with filtration 0 ⊂ A ⊂ B′. Then Gr(L) ∼= Gr(L′) ∼= A⊕C = E∞,
and both FL and FL′ are bicomplete. Thus the spectral sequence converges (strongly) to both
L and L′.

A typical calculation of some group Y by means of spectral sequences might proceed as an
application of Theorem 4.4.3 along the lines of the following plan.

1) Subgroups FnY forming a filtration of Y are defined, although usually not computable
at this point. The subgroups are chosen in a manner that seems natural bearing in mind
that to be useful it will be necessary to show convergence properties.

2) Directly or by means of an exact couple, a spectral sequence is defined in a manner that
seems to be related to the filtration.

3) Some early term of the spectral sequence (usually E1 or E2) is calculated explicity and
the differentials dr are calculated successively resulting in a computation of E∞.

4) With the aid of the knowledge of E∞, a conjecture Y = G is formulated for some G.

5) A suitable filtration on G and a map of filtrations FG → FY or FY → FG is defined.

6) The spectral sequence is demonstrated to converge to G.

7) The spectral sequence is demonstrated to converge to Y and Theorem 4.4.3 is applied.

It is step (5) that shows that Y is the “correct” object to which the spectral sequence
converges. The hardest steps are usually (3) and (7). For step (3), in most cases the calculations
require knowledge which cannot be obtained from the spectral sequence itself, although the
spectral sequence machinery plays its role in distilling the information and pointing the way to
exactly what needs to be calculated. Steps (4-6) are frequently very easy, and often not stated
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explicitly, with “by construction of G” being the most common justification of (6). We now
discuss the types of considerations involved in step (7).

Convergence of a spectral sequence to a desired L can be difficult to verify in general partly
because the conditions are stated in terms of some filtration (usually understood only in a
theoretical sense) on an initially unknown L rather than in terms of properties of the spectral
sequence itself or an exact couple from which it arose. Theorems 3.1.11 and 4.4.2(ii) give us
the following extremely important special case in which we can conclude convergence to H(C)
of the spectral sequence for FC based on conditions that are often easily checked.

Theorem 4.4.5 If FC is a filtered differential abelian group such that FC is cocomplete and
there exists M such that H(FnC) = 0 for n < M . Then the spectral sequence for FC converges
to H(C).

Although the second hypothesis, which implies that ∞D = 0 in the associated exact couple,
is very strong it handles the large numbers of commonly used filtrations which are 0 in negative
degrees.

Under the conditions of Theorem 4.4.5, in the standard case where C is a chain complex,
inserting the bigradings into Theorem 4.4.2 gives a short exact sequence 0→ D∞

p−1,q+1 → D∞
p,q →

E∞
p,q → 0 with D∞

p,q
∼= Fp

(

Hp+q(C)
)

; equivalently Fk

(

Hn(C)
)

/Fk−1

(

Hn(C)
) ∼= E∞

k,n−k. Thus the
only E∞ terms relevant to the computation to Hn(C) are those on the diagonal p + q = n.
In the important case of a first quadrant spectral sequence (Er

p,q = 0 if p < 0 or q < 0), the
number of nonzero terms on any diagonal is finite so the E∞-terms on the diagonal p + q = n
give a finite composition series for each Hn(C).

Here is an elementary example of an application of a spectral sequence.

Example 4.4.6 Let S∗( ) denote the singular chain complex, let H∗( ) := H∗

(

S∗( )
)

denote
singular homology, and let Hcell

∗ ( ) denote cellular homology. Let X be a CW -complex with n-
skeleton X(n). The inclusions S∗

(

X(n)
)

→ S∗(X) yield a filtration on S∗(X). In the associated
spectral sequence,

E1
p,q = Hp+q

(

X(p)/X(p−1)
) ∼=

{

free abelian group on the p-cells of X if q = 0;

0 if q 6= 0.

The differential d1
p,0 : Hp

(

X(p)/X(p−1)
)

→ Hp−1

(

X(p−1)/X(p−2)
)

is the definition of the differ-
ential in cellular homology. Therefore

E2
p,q =

{

Hcell(X) if q = 0;

0 if q 6= 0.
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Looking at the bidegrees, the domain or range of d2
p,q is zero for each p and q so d2 = 0,

and similarly dr = 0 for all r > 2. Therefore the spectral sequence collapses with E2 = E∞.
The spectral sequence converges to H∗(X) so the terms on the diagonal p + q = n form a
composition series for Hn(X). Since the (n, 0) term is the only nonzero term on this diagonal,
Hn(X) ∼= Hcell

n (X). That is, “cellular homology equals singular homology”.

Consider a graded exact couple with standard gradation. Although the definition of con-
vergence gives little idea of where to look for an object to which the spectral sequence might
converge, there are two obvious candidates, L−∞ and L∞, defined as follows. Set L∞ := lim−→

n

Dn

and L−∞ := lim←−
n

Dn. That is, L−∞ and L∞ are the direct and inverse limits of the system

. . .
i- Dn−1

i- Dn
i- Dn+1

i- . . .

where D = ⊕nDn. Filter L∞ by FnL∞ := Im(Dn → L∞) and filter L−∞ by FnL−∞ :=
ker(L−∞ → Dn. The gradation on D induces a gradation on D∞ and it follows from the
definitions that FnL∞ = (Dn)∞. Thus (Dn)∞/i(Dn−1

∞) = Grn L∞. At the other end, L−∞

consists of sequences (xn) satisfying xn = i(xn−1) for all n. In particular, each xn lies in the set
∞D of infinitely divisible elements. Thus the canonical map L−∞ → Dn lifts to ∞Dn yielding
an injection L−∞/FnL−∞ → ∞Dn. Therefore for each n there is an injection Grn L−∞ → Kn

where Kn = ker(∞Dn−1 → ∞Dn). In general the map L−∞ → ∞Dn need not be surjective
(an element could be in the image of i◦r for each finite r without being part of a consistent
infinite sequence) although it is surjective in the special case when ∞Ds → ∞Ds+1 is surjective
for each s. In the latter case we would have GrL−∞

∼= K.
Theorem 4.3.3 gives lim←−

r

1Zr = 0 as a sufficient condition that ∞Ds → ∞Ds+1 be surjective

for each s, where (Zr) refers to the system of inclusions · · · ⊂ Zr+1 ⊂ Zr ⊂ Zr−1 ⊂ . . . . Thus
lim←−

r

1Zr = 0 is a sufficient condition for GrL−∞
∼= K.

Taking into account the short exact sequence 0 → D∞/i(D∞) → E∞ → K → 0 coming
from Theorem 4.3.3, the preceding discussion yields two obvious candidates for a suitable FL:
FL∞

or FL−∞
. In theory there are other possibilities, but in practice one of these two cases

usually occurs. We examine them individually and see what additional conditions are required
for convergence. Remember however that both L∞ and L−∞ are defined in terms of D and
that usually D is unknown; in fact, computation of D is usually the object of the exercise.
Nevertheless, D is usually known in a theoretical sense — typically the exact couple was created
from an abstractly defined filtration, and its properties may be known even if the exact object
is unknown. In the most common examples, one has a filtration which is bounded below (there
exists N below which the filtration is 0) in which case one hopes to prove convergence to filtL∞
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or the filtration is bounded above (there exists N such that FnX = X for n ≥ N) in which
case one hopes to prove convergence to FL−∞

. The first case arises frequently when dealing
with (generalized) homology, while the second frequently arises when dealing with (generalized)
cohomology, assuming one treats cohomology as “negatively graded homology”.

Case I: Conditions for convergence to FL∞

A direct limit is always cocomplete in its “canonical filtration”, so FL∞
is always cocomplete.

Therefore besides GrL∞
∼= E∞ (equivalently K = 0) it is required to verify that FL∞

is
complete. As we saw earlier, the completeness condition can be restated as ∩nFnL∞ = 0 and
lim←−

n

1FnL∞ = 0. Assuming convergence to FL∞
, the condition K = 0 shows that any nonzero

element x of ∞D survives to give a nontrivial element of L∞. However, being infinitely divisible,
x will lie in FnL∞ for all n, which, since, ∩nFnL∞ = 0, contradicts x 6= 0. Thus convergence
to FL∞

implies ∞D = 0, so this is a necessary condition for convergence. Conversely, if ∞D = 0
then, K = 0 and so the spectral sequence converges weakly to FL∞

. The spectral sequence
might not converge to FL∞

. For example, suppose there is a nonzero element [x] ∈ L∞ having
the property that for all t there exists yt such that x − ity lies in ker im for some m. Then
[x] = [ityt] in L∞ and so [x] ∈ ∪nFnL∞. However, if the reason why ∞D = 0 is that Dn = 0
for all sufficiently small n (as in our motivating example), then FnL∞ = 0 for all sufficiently
small n, and so the filtration is complete, and in particular the weak convergence of the spectral
sequence becomes convergence.

Case II: Conditions for convergence to FL−∞

Any inverse limit is complete in its canonical filtration so FL−∞
is always complete and the

issues are whether GrL−∞
∼= E∞ and whether FL−∞

is cocomplete. FL−∞
is cocomplete if

and only if every element of L−∞ lies in ker(L−∞ → Dn) for some n, for which a sufficient
condition is that L∞ = 0 or equivalently E∞ ∼= K. Therefore if the reason for the isomorphism
GrL−∞

∼= E∞ is that the maps E∞ -- K and GrL−∞ > - K are isomorphisms then the
rest of the convergence conditions are automatic. In particular, to deduce convergence to FL−∞

it suffices to know that L∞ = 0 and lim←−
r

1Zr = 0.

4.5 Multiplicative Spectral Sequences

Definition 4.5.1 A differential graded algebra (DGA) is a graded algebra A together with a
map d : An → An−1 such that d2 = 0 and

d(xy) = d(x)y + (−1)|x|xd(y).

It is easy to check that if (A, d) is a differential graded algebra then the multiplication on A
induces a well defined multiplication on H(A).
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In many spectral sequences of interest, each Er carries the additional structure of a differ-
ential algebra such that the multiplication on Er+1 is induced from that on Er. In this case
we say that the spectral sequence is multiplicative. If (Er) is a multiplicative spectral sequence
then there is an induced multiplication on E∞.

If Q is an algebra, we say that a filtration FQ on Q is multiplicative or an algebra filtration
if Fn(Q)Fk(Q) ⊂ Fn+k(Q) for all n and k. In this case there is an induced algebra structure on
the associated graded object Gr∗(Q). To say that a multiplicative spectral sequence converges
multiplicatively to a filtered algebra Q we impose the additional condition that the isomorphism
Gr∗(Q) ∼= E∞ be a ring homomorphism.

Massey has given the following necessary and sufficient condition, whose proof is straight-
forward, for the spectral sequence arising from an exact couple to be multiplicative.

Theorem 4.5.2 (Massey) Let

D
i - D

�
�

�
�

�

k

�

	�
�

�
�

�

j

E

be a graded exact couple in which E is a graded algebra. Suppose whenever elements x, y ∈ E
and elements a, b ∈ D satisfy k(x) = in(a) and k(y) = in(b) for some integer n, that there
is an element c ∈ D such that k(xy) = in(c) and j(c) = j(a)y + (−1)|x|xj(b). Then the
differential on E turns E into a differential graded algebra, and so the multiplication on E
induces one on E ′. Furthermore the derived couple satisfies the preceding condition also and
thus the resulting spectral sequence is multiplicative.

The following is an example where Massey’s conditions are easy to check. Using Massey’s
condition, we can check that a the spectral sequence associated to a filtered differential graded
algebra is multiplicative.

Proposition 4.5.3 Let FA be a filtered differential graded algebra. Then the associated spectral
sequence (abutting to H∗(A)) is multiplicative.

Proof: Let x be an element of Ep+∗ = H∗

(

Fp(A)/Fp−1(A)
)

and let y be an element of
Ep′+∗ = H∗

(

Fp′(A)/Fp′−1(A)
)

. Suppose k(x) = in(a) and k(y) = in(b) where a belongs
to H∗

(

Fp−1−n(A)
)

and b belongs to H∗

(

Fp′−1−n(A)
)

. Pick representatives x̃ ∈ Fp(A), ỹ ∈
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Fp′(A), â ∈ Fp−1−n(A), b̂ ∈ Fp′−1−n(A) in A for x, y, a, and b. Set ã := in(â) and b̃ := in(b̂).
Then d(x̃) = ã+ d(w) and d(ỹ) = b̃+ d(w′) for some w ∈ Fp−1(A) and w′ ∈ Fp′−1(A), where d
denotes the differential in A. In Fp+p′−1(A) we have

d(x̃ỹ) = ãỹ + (−1)|x|x̃b̃+ d(w)ỹ + (−1)|x|x̃d(w′)

= ãỹ + (−1)|x|x̃b̃+ d(wỹ) + d(x̃w′)− d(ww′) + (−1)|x|wb̃− ãw′.

Set c = [âỹ + (−1)|x|x̃b̂ + (−1)|x|wb̂− âw′] ∈ H∗

(

Fp+p′−1−n(A)
)

. Then k(xy) = in(c) and since

(−1)|x|wb̂− âw′ lies in filtration p+ p′ − 2− n < p+ p′ − 1, j(c) = j(a)y + (−1)|x|xj(b).

4.6 Some examples of standard spectral sequences and

their use

To this point we have considered the general theory of spectral sequences. The properties of
the spectral sequences arising in many specific situations have been well studied. Usually the
spectral sequence would be defined either directly, through an exact couple, or by giving some
filtration on a chain complex. This defines the E1-term. Typically a theorem would then be
proved giving some formula for the resulting E2-term. In many cases conditions under which
the spectral sequence converges may also be well known.

In this section we shall take a brief look at the Serre Spectral Sequence, Atiyah-Hirzebruch
Spectral Sequence, Spectral Sequence of a Double Complex, Grothendieck Spectral Sequence,
Change of Ring Spectral Sequence, Bockstein Spectral Sequence and Eilenberg-Moore Spectral
Sequence, and do a few sample calculations.

4.6.1 Serre Spectral Sequence

Let F → X
π- B be a fibre bundle (or more generally a fibration) in which the base B

is a CW -complex. Define a filtration on the total space by FnX := π−1B(n). This yields a
filtration on H∗(X) by setting FnH∗(X) := Im

(

H∗(FnX) → H∗(X)
)

. The spectral sequence
coming from the exact couple in which D1

p,q := Hp+q(FpX) and E1
p,q := Hp+q(FpX,Fp−1X) is

called the “Serre Spectral Sequence” of the fibration. Theorems from topology guarantee that
this filtration is cocomplete and that E1

p,q = 0 if either p < 0 or q < 0. Therefore the Serre
Spectral Sequence is always a first quadrant spectral sequence converging to H∗(X).

Theorem 4.6.1.1 (Serre) In the Serre Spectral Sequence of the fibration F → E → B there
is an isomorphism E2

p,q
∼= Hp

(

B; tHq(F )
)

.
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Here tH∗(F ) denotes a “twisted” or “local” coefficient system in which the differential
is modified to take into account the action, coming from the fibration, of the fundamental
groupoid of the base B on the fibre F . In the special case where B is simply connected and
Tor
(

H∗(B), H∗(F )
)

= 0 the Universal Coefficient Theorem says that the E2-term reduces to
E2

p,q
∼= Hp(B)⊗Hq(F ).

The Serre Spectral Sequence for cohomology, Ep,q
2
∼= Hp

(

B; tHq(F )
)

⇒ Hp+q(X), has the
advantage that it is a spectral sequence of algebras which both greatly simplifies calculation of
the differentials dr which are restricted by the requirement that they satisfy the Leibniz rule
with respect to the cup product on H∗(B) and H∗(F ), and also allows the computation of the
cup product on H∗(X). Since it is a first quadrant spectral sequence, convergence is not an
issue.

Frequently in applications of the Serre Spectral Sequence instead of using the spectral se-
quence to calculate H∗(X) from knowledge of H∗(F ) and H∗(B) it is instead H∗(X) and one
of the other two homologies which is known, and one is working backwards from the spectral
sequence to find the homology of the third space.

Example 4.6.1.2 The universal S1-bundle is the bundle S1 → S∞ → CP∞ where S∞ is
contractible. We will calculate H∗(CP∞) from the Serre Spectral Sequence of this bundle,
taking H∗(S1) and H∗(S∞) as known. We also take as known that CP∞ is path connected,
so H0(CP∞) ∼= Z.

Ep,q
2
∼= Hp(CP∞)⊗Hq(S1) ∼=

{

Hp(CP∞) if q = 0 or 1;

0 otherwise.

E∞ terms on the diagonal p + q = n form a composition series for Hn(S∞) which is zero for
n 6= 0. Therefore Ep,q

∞ = 0 unless p = 0 and q = 0, with E0,0
∞
∼= Z. Because all nonzero

terms lie in the first quadrant, the bidegrees of the differentials show that dr(E
1,0
2 ) = 0 for all

r ≥ 2, so 0 = E1,0
∞ = E1,0

2 = H1(CP∞). Since E1,q
2
∼= E1,0

2 ⊗ E0,q
2 it follows that E1,q

2 = 0 for
all q. Taking into the account the known zero terms, the bidegrees of the differentials show that
E0,1

3
∼= ker(d2 : E0,1

2 → E2,0
2 ) and E0,1

∞ = E0,1
3 . Similarly E2,0

∞ = E2,0
3
∼= coker(d2 : E0,1

2 → E2,0
2 ).

Therefore the vanishing of these E∞ terms shows that d2 : E0,1
2
∼= E2,0

2 and in particular
H2(CP∞) ∼= E0,1

2 = H1(S1) ∼= Z. It follows that E2,q
2
∼= Z ⊗ E0,q

2
∼= E0,q

2 for all q. With the
aid of the fact that we showed E1,1

2 = 0 we can repeat the argument used to show E1,q
2 = 0

for all q to conclude that E3,q
2 = 0 for all q. Repeating the procedure we inductively find that

Ep,q
2
∼= Ep−2,q

2 for all p > 0 and all q and in particular Hn(CP∞) ∼=
{

Z if n is even;

0 if n is odd.

The cup products in H∗(CP∞) can also be determined by taking advantage of the fact that
the spectral sequence is a spectral sequence of algebras. Let a ∈ E2,0

2
∼= Z be a generator and set
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x := d2a. By the preceding calculation, d2 is an isomorphism so x is a generator of H2(CP∞).
Therefore x⊗a is a generator of E2,2

2 and the isomorphism d2 gives that d2(x⊗a) is a generator
of H4(CP∞). However d2(x ⊗ a) = d2(x ⊗ 1)(1 ⊗ a) = 0 ⊗ 1 + (−1)2(x ⊗ 1)d2a = x2 ⊗ 1 and
thus x2 is a generator of H4(CP∞). Inductively it follows that xn is a generator of H2n(CP∞)
for all n and so H∗(CP∞) ∼= Z[x].

Exercise 4.6.1 Use the fibration ΩSn → PSn → Sn to calculate H∗(ΩSn) including its ring
structure.

Exercise 4.6.2 Up to homotopy, the space CP∞ deloops to give an “Eilenberg-MacLane
space” K(Z, 3) defined by the property that

πn

(

K(Z, 3)
)

=

{

Z if n = 3;
0 otherwise.

Let j : S3 → K(Z, 3) be a generator of π3

(

K(Z, 3)
)

and let S3〈3〉 denote the homotopy-theoretic
fibre of j. The long exact homotopy sequence of a fibration shows that

πq(S
3〈3〉) =

{

πq(S
3) if q 6= 3

0 if q = 3

Use the Serre spectral sequence for the induced fibration CP∞ → S3〈3〉 → S3 to calculate
H∗(S

3〈3〉). Applying the Hurewicz theorem to the results shows that π4(S
3) ∼= Z/(2Z).

When working backwards from the Serre or other first quadrant spectral sequences in which
E2

p,q
∼= E2

p,0 ⊗ E2
0,q the following analogue of the comparison theorem (4.4.3) is often useful.

Theorem 4.6.1.3 (Zeeman Comparison Theorem) Let E and E ′ be first quadrant spec-
tral sequences such that E2

p,q = E2
p,0 ⊗ E2

0,q and E ′2
p,q = E ′2

p,0 ⊗ E ′2
0,q. Let f : E → E ′ be a

homomorphism of spectral sequences such that f 2
p,q = f 2

p,0⊗ f 2
0,q. Suppose that f∞

p,q : E∞
p,q → E ′∞

p,q

is an isomorphism for all p and q. Then the following are equivalent:

1) f 2
p,0 : E2

p,0 → E ′2
p,0 is an isomorphism for p ≤ n− 1;

2) f 2
0,q : E2

0,q → E ′2
0,q is an isomorphism for q ≤ n.
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There is a version of the Serre Spectral Sequence for generalized homology theories coming
from the exact couple obtained by applying the generalized homology theory to the Serre
filtration of X.

Theorem 4.6.1.4 (Serre Spectral Sequence for Generalized Homology)
Let F → X → B be a fibration and let Y be an (unreduced) homology theory satisfy-

ing the Milnor wedge axiom. Then there is a (right half-plane) spectral sequence with E2
p,q
∼=

Hp

(

B; tYq(F )
)

converging to Yp+q(X).

Cocompleteness of the filtration follows from the properties of generalized homology theories
satisfying the wedge axiom [?], and the rest of the convergence conditions are trivial since
the filtration is 0 in negative degrees. Here, unlike the Serre Spectral Sequence for ordinary
homology, the existence of terms in the 4th quadrant opens the possibility for composition
series of infinite length, although in the case where B is a finite dimensional complex all the
nonzero terms of the spectral sequence will live in the strip between p = 0 and p = dimB and
so the filtrations will be finite.

The special case of the fibration ∗ → X → X yields what is known as the “Atiyah-
Hirzebruch” Spectral Sequence.

Theorem 4.6.1.5 (Atiyah-Hirzebruch Spectral Sequence) Let X be a CW -complex and
let Y be an (unreduced) homology theory satisfying the Milnor wedge axiom. Then there is a
(right half-plane) spectral sequence with E2

p,q
∼= Hp

(

X;Yq(∗)
)

converging to Yp+q(X).

Applying the spectral sequence comparison theorem (4.4.3) gives

Corollary 4.6.3 Let Y and Y ′ be generalized cohomology theories. Suppose that there is a
natural transformation η : Y∗ → Y ′

∗ such that η∗ : Y∗(∗) → Y∗(∗) is an isomorphism. Then
ηX : Y∗(X)→ Y ′

∗(X) is an isomorphism for any CW -complex X.

In the cohomology Serre Spectral Sequence for generalized cohomology (including the coho-
mology Atiyah-Hirzebruch Spectral Sequence) convergence of the spectral sequence to Y ∗(X)
is not guaranteed. Convergence to lim←−

n

Y ∗(FnX), should that occur, would be of the type dis-

cussed in Case II of Section 4.4. Since Xn = ∅ for n < 0, the system defining L∞ stabilizes
to 0. Therefore L∞ = 0 and by the discussion of Section 4.4, lim←−

r

1ZrX = 0 becomes a sufficient

condition for convergence to lim←−
n

Y ∗(FnX). However since the real object of study is usually

Y ∗(X), the spectral sequence is most useful when one is also able to show lim←−
n

1Y ∗(FnX) = 0 in
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which case the Milnor exact sequence [?]

0→ lim←−
n

1Y ∗(FnX)→ Y ∗(X)→ lim←−
n

Y ∗(FnX)→ 0

gives Y ∗(X) ∼= lim←−
n

Y ∗(FnX).

If Y ∗( ) has cup products then the spectral sequence has the extra structure of a spectral
sequence of Y ∗(∗)-algebras. In the case where B is finite dimensional all convergence problems
disappear since the spectral sequence lives in a strip and the filtrations are finite.

Example 4.6.1.6 Let K∗( ) be complex K-theory. Since K∗(∗) ∼= Z[z, z−1], with |z| = 2, in
the Atiyah-Hirzebruch Spectral Sequence for K∗(CP n) we have

Ep,q
2 =

{

Z if q is even and p is even with 0 ≤ p ≤ 2n;

0 otherwise.

Because CP n is a finite complex, the spectral sequence converges to K∗(CP n). Since all the
nonzero terms have even total degree and all the differentials have total degree +1, the spectral
sequence collapses at E2 and we conclude that Kq(CP n) = 0 if q is odd and that it has a
composition series consisting of (n + 1) copies of Z when q is even. Since Z is a free abelian
group, this uniquely identifies the group structure of Keven(CP n) as Zn+1. To find the ring
structure we can make use of the fact that this is a spectral sequence of K∗(∗)-algebras. The
result is K∗(CP n) ∼= K∗(∗)[x]/(xn+1), where |x| = 2.

In the Atiyah-Hirzebruch Spectral Sequence for K∗(CP∞) again all the terms have even
total degree so the spectral sequence collapses at E2. We noted earlier that collapse of the
spectral sequence implies that lim←−

r

1ZrX = 0 and so the spectral sequence convergences to

lim←−
n

K∗(CP n), where we used F2nCP∞ = CP n. Since our preceding calculation shows that

K∗(CP n)→ K∗(CP n−1) is onto, Proposition 3.1.16 implies that lim←−
n

1K∗(CP n) = 0. Therefore

the spectral sequence converges toK∗(CP∞) and we find thatK∗(CP∞) ∼= lim←−
n

K∗(CP n), which

is isomorphic to the power series ring K∗(∗)[[x]], where |x| = 2.

In topology one might be interested in the Atiyah-Hirzebruch Spectral Sequence in the case
where X is a spectrum rather than a space (a spectrum being a generalization in which cells
in negative degrees are allowed including the possibility that the dimensions of the cells are
not bounded below). In such cases the spectral sequence is no longer constrained to lie in the
right half-plane and convergence criteria are not well understood for either the homology or
cohomology version.
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4.6.2 Spectral Sequence of a Double Complex

A double complex is a chain complex of chain complexes. That is, it is a bigraded abelian
group Cp,q together with two differentials d′ : Cp,q → Cp−1,q and d′′ : Cp,q → Cp,q−1 satisfying
d′ ◦ d′ = 0, d′′ ◦ d′′ = 0, and d′d′′ = d′′d′. Given a double complex C its total complex TotC is
defined by (TotC)n :=

⊕

p+q=nCp,q with differential defined by d|Cp,q
:= d′ + (−1)pd′′ : Cp,q →

Cp−1,q ⊕ Cp,q−1 ⊂ Totn−1C.
There are two natural filtrations, F ′

Tot C and F ′′
Tot C on TotC given by

(

F ′
p(TotC)

)

n
=
⊕

s+t=n

s≤p

Cs,t and
(

F ′′
p (TotC)

)

n
=
⊕

s+t=n

t≤p

Cs,t

yielding two spectral sequences abutting to H∗(TotC). In E ′
p,q we have

(

F ′
p(TotC)/F ′

p−1(TotC)
)

n
= Cp,n−p

with the differential given by d(x) = (−1)pd′′(x). So F ′
p(TotC)/F ′

p−1(TotC) is isomorphic
to SpCp,∗, where S denotes the suspension functor on chain complexes defined by (SC)n = Cn−1.
Thus

E ′1
p,q = Hp+q

(

Fp( )/Fp−1( )
)

= Hp+q(S
pCp,∗) = Hq(Cp,∗).

The map d1 = j1k1 is induced by d′, so E ′2
p,q = Hp

(

Hq(C∗,∗)
)

. Similarly E ′′2
p,q = Hq

(

Hp(C∗,∗)
)

.
Convergence of these spectral sequences is not guaranteed, although the first will always

converge if there exists N such that Cp,q = 0 for p < N and the second will converge if there
exists N such that Cp,q = 0 for q < N .

The following is easy to check.

Proposition 4.6.4 If one of the two differentials in a double complex is trivial, then the spectral
sequence collapses at E2.

In the important special case of a first quadrant double complex both spectral sequences
converge and information is often obtained by playing one off against the other.

From the double complex C one could instead form the product total complex (Totπ C)n :=
∏

p+q=nCp,q and proceed in a similar manner to construct the same spectral sequences with
different convergence problems.

The technique of using a double complex in which one spectral sequence yields the homology
the total complex to which both converge can be used to prove

Theorem 4.6.2.1 (Grothendieck Spectral Sequence) Let C
F- B

G- A be a compo-
sition of additive functors, where C, B, and A are abelian categories. Assume that all objects in
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C and B have projective resolutions. Suppose that F takes projectives to projectives. Then for

all objects C of C there exists a (first quadrant) spectral sequence with E2
p,q = (LpG)

(

(LqF )(C)
)

converging to
(

Lp+q(GF )
)

(C).

Proof: Since F takes projectives to projectives,

(LnG)(FP ) =

{

0 if n > 0;
G(FP ) if n = 0

for any projective P of C.
Let P∗ be a projective resolution of C in C. Define a double complex T in B by letting T∗,q

be a projective resolution in B of F (Pq), with the d′-differential coming from this resolution.
By Theorem 3.1.3 the maps F (Pq) → F (Pq−1) yield maps T0,q → T0,q−1 and any choices can
be extended to chain maps T∗,q → T∗,q−1 yielding the d′′-differential. In fact, by the method of
Theorem 3.1.6 it is always possible to construct the resolutions and maps in such a way that
for each p the maps in the vertical direction are each the composition of a split epimorphism
and a split monomorphism and so the homology in the vertical direction, Hq(Tp,∗), forms a
projective resolution of Hq

(

F (P∗)
)

= (LqF )(C); we will assume that such a choice has been
made. In particular, any additive functor commutes with homology in the vertical direction.
The double complex G(T )∗∗ in A is contained in the first quadrant, so both of its spectral

sequences converge to H∗

(

TotG(T )∗∗
)

. In one spectral sequence we have

E2
p,q = Hq

(

Hp(GT∗∗)
)

= Hq

(

(LpG)T∗∗
)

= Hq

({

0 if p > 0;
G(T )0q if p = 0

)

=

{

0 if p > 0;
Lq(GF )(C) if p = 0.

Therefore H∗

(

TotG(T )∗∗
)

= L∗(GF )(C). In the other spectral sequence, our choice of the
maps T∗,q → T∗,q−1 gives

E2
p,q = Hp

(

Hq(GT∗∗)
)

= Hp

(

G(HqT∗∗)
)

= (LpG)
(

(LqF )(C)
)

.

Naturally there is a corresponding version for right derived functors.

Example 4.6.5 An application of the Grothendieck spectral sequence is the following “Change
of Rings Spectral Sequence”.

Let f : R → S be a ring homomorphism, let M be a right S-module and let N be a left
R-module. Let F (A) = S ⊗R A and G(B) = M ⊗S B, and note that GF (A) = M ⊗R A.
Applying the Grothendieck spectral sequence to the composition

Left R-Modules
F- Left S-Modules

G- Abelian Groups
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yields a convergent spectral sequence E2
p,q
∼= TorS

p

(

M,TorR
q (S,N)

)

⇒ TorR
p+q(M,N).

Corollary 4.6.6 Let f : R → S be a ring homomorphism and suppose that S is flat as an
abelian group. Let M be a right S-module and let N be a left R-module. Then TorS

p

(

M,S ⊗R

N)
)∼= TorR

p (M,N).

Proof: Since S is flat

TorR
q (S,N) =

{

0 if q > 0

S ⊗R N if q = 0

Thus the spectral sequences collapses to give the result.
It is also easy to give a direct proof. In general ( )⊗RS takes projective modules to projective

modules (because, for example, it has a right adjoint). Thus, since S is flat, tensoring a
projectiveR-resolution with S yields a projective S-resolution. Combined withM⊗S(S⊗RN) ∼=
M ⊗R N), this gives the result.

Similarly TorS
p

(

M ⊗R S,N)
)∼= TorR

p (M,N).

4.6.3 Bockstein Spectral Sequence

Let C be a chain complex of free abelian groups and let p be a positive integer. The short
exact sequence of groups 0→ Z/(pZ)→ Z/(p2Z)→ Z/(pZ)→ 0 yields a short exact sequence
of chain complexes 0→ C ⊗ Z/(pZ)→ C ⊗ Z/(p2Z)→ C ⊗ Z/(pZ)→ 0. The boundary map
βp : Hn(C; Z/(pZ))→ Hn−1(C; Z/(pZ)) from the corresponding long exact homology sequence
is called the mod p Bockstein. When p is clear from the context, it is dropped in the notation.
The commutative diagram of short exact sequences

0 - Z
p - Z

θp- Z/(pZ) - 0

0 - Z/(pZ)
? p- Z/(p2Z)

?
- Z/(pZ)

w

w

w

w

w

w

w

w

w

- 0

shows that βp factors as the composition H∗(C; Z/(pZ))
∂- H∗−1(C; Z)→ H∗−1(C; Z/(pZ)).

There is a graded exact couple in which Ds = Hs(C; Z) and Es = Hs(C; Z/(pZ)) with the

maps induced from the short exact sequence of groups 0 → Z
p- Z - Z/(pZ) → 0. The

corresponding spectral sequence is called the mod p Bockstein spectral sequence of C. It is
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clear from the definitions that β is the d1-differential of the Bockstein spectral sequence. The
dr-differential is written β(r) and is called the rth Bockstein modulo p.

From the definitions in Section 4.3, in the mod p Bockstein spectral sequence i∞ is mul-
tiplication by p, D∞ = H∗(C)/(p-torsion), D∞/(i∞D∞) = (H∗(C)/torsion) ⊗ Z/(pZ) , and
∞D = {x ∈ H∗(C) | x is infinitely divisible by p}. Therefore Theorem 4.3.3 yields,

Proposition 4.6.7 If H∗(C) has no infinitely p-divisible elements then

E∞ ∼= (H∗(C)/torsion)⊗ Z/(pZ)

in the mod p Bockstein spectral sequence for H∗(C). In particular this holds if H∗(C) has finite
type.

From the definition of the differentials we get

Proposition 4.6.8

a) Let x ∈ Cs ⊗ Z/(pZ) represent a homology class and let y ∈ Cs ⊗ Z be any element such
that θp(y) = x, where θp denotes reduction modulo p. Then β(j)[x] = 0 for j < r if and
only if y is divisible by pr. If β(j)[x] = 0 for j < r then β(r)[x] is defined and is given
by [θp(dy/p

r)].

b) The Bockstein spectral sequence of C collapses at Er if and only if H∗(C) has no elements
of order pm for m ≥ r.

For the rest of this subsection we will assume that p is a prime and let ( )(p) denote localiza-
tion at p. If H∗(C) is finitely generated then H∗(C)(p) can be reconstructed from its Bockstein
spectral sequence. Specifically, by the structure theorem for finitely generated modules over
a PID,

Hn(C)(p) = Zs
(p) ⊕ Z/(pt1Z)⊕ Z/(pt2Z)⊕ . . .⊕ Z/(ptkZ)

for some integers s, t1, t2, . . ., tk. By the universal coefficient theorem and the preceding propo-
sition, corresponding to a summand Z(p) there will be a basis element x ∈ Hn(C; Z/(pZ)) = E1

n

such that β(r)x = 0 for all r, and corresponding to a summand Z/(ptZ) there will be a pair of
basis elements x ∈ E1

n, y ∈ E1
n+1 such that β(r)x = 0 for all r, β(r)y = 0 for r < t and β(t)y = x.

If H∗(X) is finitely generated, it is common practice to describe H∗(X) indirectly by ex-
hibiting H∗(X; Z/(pZ)) together with a description of the mod p Bockstein spectral sequence
of H∗(X) for all p. As seen above, this completely determines H∗(X) but often has the ad-
vantage that H∗(X; Z/(pZ)) is simpler and/or has more structure than H∗(X). For exam-
ple, one could determine H∗(RP

∞) from the description H∗(RP
∞; Z/(pZ)) = 0 for p > 2,
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H∗(RP
∞; Z/(2Z)) = Γ[x] where |x| = 1, and β

(

γ2n(x)
)

= γ2n−1(x) for all n. (This describes
the E1-term and d1-differential of the mod 2 Bockstein spectral sequence; normally one would
have to go on to describe the higher Bocksteins but in this case E2 = H(E1, d1) = 0 so the
description is complete.) The advantage of this indirect description of H∗(RP

∞) is that the
H-space structure on RP∞ induces a Hopf algebra structure on H∗(RP

∞;F ) for any field F so
this description actually contains more information than H∗(RP

∞).
The Bockstein spectral sequence is unusual in two respects:

1) it is the only spectral sequence in common use which is not naturally bigraded;

2) its primary use is not in computing some object to which it “converges” but rather in
studying the p-torsion in H∗(C) by considering the level of the spectral sequence at which
various classes disappear. Although, as noted, convergence of the Bockstein spectral
sequence is usually not if interest, one object to which it converges is H∗(C)[1/p] filtered
by the subgroup Fn = {x | pnx ∈ H∗(C)}. Here, A[1/p] denotes the localization of A
away from p, given by A⊗ Z[1/p] where Z[1/p] = {x ∈ Q | pnx ∈ Z for some n}

Proposition 4.6.9 If C is a differential graded algebra of free abelian groups then the Bockstein
spectral sequence of C is multiplicative.

Proof: The proof is similar to that of Proposition 4.5.3 with c = [ãỹ+(−1)|x|x̃b̃+(−1)|x|pwb̃−
pãw′] where dx̃ = pnã+ dw and dỹ = pnb̃+ dw′, for [x̃], [ỹ] ∈ H∗(C).

4.6.4 Eilenberg-Moore Spectral Sequence

For a topological group G, Milnor showed how to construct a universal G-bundle G→ EG→
BG in which EG is the infinite join G∗∞ with diagonal G-action. There is a natural filtration
FnBG := G∗(n+1)/G on BG and therefore an induced filtration on the base of any principal G-
bundle. This filtration yields a spectral sequence including as a special case a tool for calculating
H∗(BG) from knowledge of H∗(G).

Theorem 4.6.4.1 Let G → X → B be a principal G-bundle and let H∗( ) denote homol-
ogy with coefficients in a field. Then there is a first quadrant spectral sequence with E2

p,q =

TorH∗(G)
pq

(

H∗(X), H∗(∗)
)

converging to Hp+q(BG).

Here the group structure makes H∗(G) into an algebra and TorA
pq(M,N) denotes degree q

of the graded object formed as the p th derived functor of the tensor product of the graded
modules M and N over the graded ring A.

There is also a version [?] which, like the Serre Spectral Sequence, is suitable for computing
H∗(G) from H∗(BG).
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Theorem 4.6.4.2 Let

W - Y

X
? f - B

π

?

be a pullback square in which π is a fibration and X and B are simply connected. Suppose that
H∗(X), H∗(Y ), and H∗(B) are flat R-modules of finite type, where H∗( ) denotes cohomology
with coefficients in the Noetherian ring R. Then there is a (second quadrant) spectral sequence
with Ep,q

2
∼= TorH∗(B)

pq

(

H∗(X), H∗(Y )
)

converging to Hp+q(W ).

The cohomological version of the Eilenberg-Moore Spectral Sequence, stated above, contains
the more familiar Tor for modules over an algebra. For the homological version one must dualize
these notions appropriately to define the cotensor product of comodules over a coalgebra, and
its derived functors cotor.

Provided the action of the fundamental group of B is sufficiently nice there are extensions of
the Eilenberg-Moore Spectral Sequence to the case where B is not simply connected, although
they do not always converge, and extensions to generalized (co)homology theories have also
been studied.
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Chapter 5

Simplicial Objects

5.1 Definitions

Definition 5.1.1 A simplicial C-object K consists of a collection of objects {Kn}n≥0 together
with C morphisms dj : Kn → Kn−1 for j = 0, . . . , n and sj : Kn → Kn+1 for j = 0, . . . , n
satisfying the simplicial identities:

didj = dj−1di for i < j;
sisj = sj+1si for i ≤ j;
disj = sj−1di for i < j;
disj = 1Kn

for i = j, j + 1;
disj = sjdi−1 for i > j + 1.

A simplicial map f : K → L is a collection of C morphisms fn : Kn → Ln which commutes
with all the dj’s and sj’s. The maps dj and sj are called boundary maps and degeneracy maps
respectively.

Example 5.1.2 Let X be an object of a category C. Define the corresponding “constant
simplicial object” in C by Kn = X for all n, and all the boundary and degeneracy maps are
the identity 1X .

Example 5.1.3 Let X be a set and let Kn =
∏n

i=0X = Xn+1. Define dj : Kn → Kn−1 by

dj

(

(x0, x1, . . . , xn)
)

= (x0, . . . , xj−1, xj+1, . . . , xn)

and sj : Kn → Kn+1 by

sj

(

(x0, x1, . . . , xn)
)

= (x0, . . . , xj−1, xj, xj, xj+1, . . . , xn).
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Then the simplicial identities are satisfied, so we have a simplicial set (i.e. a simplicial object
in the category of sets).

Let ∆n ⊂ Rn denote the “standard n-simplex”, defined as the convex hull of the n+1 points
ǫ0 := (0, 0, . . . , 0), ǫ1 := (1, 0, . . . 0), ǫ2 := (0, 1, . . . , 0), . . ., ǫn := (0, 0, . . . 1). For 0 ≤ j ≤ n,
let δj : ∆n−1 → ∆n be the inclusion of the jth face and let σj : ∆n+1 → ∆n be the affine map
determined by

σj(ǫi) =

{

ǫi if i ≤ j;
ǫi−1 if i > j.

(Thus σj collapses the jth face.) Given a simplicial set K, we can form a topological space |K|,
called the geometric realization of K by |K| =

∐

(Kn ×∆n) /∼ where (djx, t) ∼ (x, δjt)
and (sjx, t) ∼ (x, σjt). From the construction, |K| has a natural CW -structure.

Conversely, to a topological space X we can associate a simplicial set Sing(X), called the
“singular complex of X” by

Sing(X)n = {continuous functions from ∆n to X}

with djf = f ◦ δj and sjf = f ◦ σj.

Theorem 5.1.4 HomSimplicialSets(K, SingX) = HomT op(|K|, X). That is, we have adjoint
functors | | −−| Sing( ).

Example 5.1.5 Let C be a small category. Define a simplicial set N C, called the nerve of C,

as follows. An element of (N C)n consists of a composition Cn
fn- Cn−1

fn−1- . . .
f2- →

C1
f1- C0 of n morphisms in C. The boundary maps dj delete the object Cj and compose

in the missing spot to get the composition Cn
fn- . . . → Cj+1

fj−1◦fj- Cj+1 . . .
f1- C0 in

(N C)n−1 for 1 ≤ j ≤ n−1, while for j = 0 or j = n we simply delete the object at the relevant
end. The degeneracy sj creates a longer composition by adding a duplicate copy of Cj with
the identity map 1Cj

between the two copies. The simplicial identies are satisfied, so N C is a
simplicial set.

It is easy to see that if I is the category coming from the ordered set
{

{0, 1} | 0 ≺ 1
}

then
| N I| is homeomorphic to the unit interval I := [0, 1].

We shall sometimes write BC for | N C| and similarly if F : C → D is a functor between
small categories we might write BF for | N F |. The explanation for this notation will appear
in Chapter 6.

Products exist in the category of simplicial sets. Let K and L be simplicial sets. Then the
product simplicial set is given by (K × L)n = Kn × Ln with dj and sj acting componentwise.
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Proposition 5.1.6 If at least one of K, L has finite type (i.e. finitely many nondegenerate
elements in each degree) then |K × L| ∼= |K| × |L|.

Proposition 5.1.7 Let F,G : C → D be functors between small categories. A natural trans-
formation η : F → G induces a homotopy |F | ≃ |G|.

Proof: According to Proposition 1.1.4, the natural transformation corresponds to a functor
C × I → D and the realization of this functor gives the homotopy.

Remark 5.1.8 An interesting feature of the preceding proposition is that although the homo-
topy relation is symmetric, the existence of a natural transformation is not. In other words,
given η : F → G we get a homotopy |F | ≃ |G|. This homotopy can, of course, be reversed to
give a homotopy |G| ≃ |F | even though the latter homotopy is not necessarily the geometric
realization of any natural transformation G→ F .

Corollary 5.1.9 If the small category C has either an initial object or a terminal object then
| N C| is contractible.

Proof: Example 1.2.4 gives the contracting homotopy.

Let A be a simplicial abelian group. Define d :An→An−1 by d =
∑n

j=0(−1)jdj. It is easy

to check that d2 = 0, so (A, d) forms a chain complex.
Given a simplical set K, let ZK be the simplicial abelian group in which (ZK)n is the free

abelian group on the set Kn with the face and degeneracy maps induced from those in K. We
define the homology of the simplicial set K by H∗(K) := H∗(ZK, d).

It is clear from the definition of singular homology that Z Sing(X) is the singular chain
complex of X.

Theorem 5.1.10 The natural transformation K → Sing |K| coming from the adjunction in-
duces a homology isomorphism H∗(ZK, d) ∼= H∗(Sing |K|) = H∗(|K|) for all K.

Definition 5.1.11 Let K be a simplicial C-object, let C belong to Obj C. Let ǫ : K0 → C be
an “augmentation” of K satisfying ǫ ◦ d0 = ǫ ◦ d1 : K1 → C (equivalent to giving a morphisms
of simplicial sets from K to the constant simplicial set on C). A conical contraction of K
to C is defined as follows. Conventionally set K−1 := C and d0 := ǫ : K0 → K−1. A conical
contraction consists of an extra degeneracy s−1 : Kn−1 → Kn for n ≥ 0 satisfying the following
extension of the simplicial identities:

1. s−1sj = sj+1s−1 for −1 ≤ j ≤ n,
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2. d0s−1 = 1,

3. djs−1 = s−1dj−1 for j > 0.

Example 5.1.12 Suppose X is a small category with a terminal object Z. Define an augmen-
tation ǫ : N C → {Z} by setting ǫ(C0) := Z. Define s1 : N Cn → N Cn+1 by

s−1(Cn → . . .→ C1 → C0) := Cn → . . .→ C1 → C0 → Z

where C0 → Z is the unique morphism from C0 to Z. Then s−1 is a conical contraction
of N C to the point {Z}. This gives another proof of the statement in Corollary 5.1.9 that the
realization of the nerve of a category with a terminal object is contractible.

Lemma 5.1.13 Let A be a simplicial abelian group with an augmentation ǫ : A0 → C and a
conical contraction to C. Let C be the chain complex consisting of C in degree 0 and 0 in all
other degrees. Then ǫ induces a chain homotopy equivalence A ≃ C.

Proof: Define ǫ : (A, d) → C by ǫ0 = ǫ : A0 → C and, perforce, ǫn = 0 for n 6= 0. Since
ǫ0 ◦ d = ǫ ◦ d0 − ǫ ◦ d1 = 0 : A1 → C0, and the other squares trivially commute, ǫ is a chain
map. Define σ : C → (A, d) by σ0 := s−1C → A0 and, perforce, σn = 0 for n 6= 0. Trivially, σ
is a chain map.

Our assumptions on s−1 include ǫ ◦ s−1 = d0s−1 = s−1 = 1C , so ǫ ◦ σ = 1C .
For n > 0, set s := s−1 : An → An+1. For n > 0,

ds+ sd =
n+1
∑

j=0

(−1)jdjs
−1 +

n
∑

j=0

(−1)js−1dj

= 1An
+

n+1
∑

j=1

(−1)jdjs
−1 +

∑

j=0n

(−1)js−1dj

= 1An
+

n+1
∑

j=1

(−1)js−1dj−1 +
n
∑

j=0

(−1)js−1dj

= 1An
−

n
∑

j=0

(−1)js−1dj +
n
∑

j=0

(−1)js−1dj

= 1An
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For n = 0, the chain complex (A, d) does not include our conventional d0 : A0 → C and we get

ds+ sd = d0s
−1 − d1s

−1 + 0

= 1A0
− s−1d0 = 1A0

− σǫ

Thus s is a chain homotopy 1A ≃ σ ◦ ǫ.

Remark 5.1.14 Let K be a simplicial set with a conical contraction to a point. Applying the
preceding to the singular complex of |K| shows that H∗(|K|) = 0, but in fact |K| ≃ ∗ and if
K is a “Kan complex” then the stronger statement that K ≃ ∗ as simplicial sets holds. In
particular, this applies to any simplical group, including non-abelian ones, since a simplicial
group is always a Kan complex.

5.2 Triples and Cotriples

Let C and D be categories and let F : C → D and G : D → C be functors such that F −−| G.
Set S = G ◦ F : C → C and let T = F ◦ G : D → D. Define µ : S ◦ S → S be the natural
transformation µX = G(βF (X)), where β : FG → ID is the natural transformation defined in

Section 1.5. Then letting α : IC → GF be as in Section 1.5, µX ◦µS(X) = µX ◦S(µX) : S3(X)→
S(X), αS(X) ◦ αX = S(αX) ◦ αX : X → S2(X), µX ◦ αS(X) = 1S(X), and µX ◦ SαX = 1S(X), for
every object X of C.

Definition 5.2.1 Let A be a category. A triple or monad (S, µ, η) on A consists of a functor
S : A → A together with natural transformations µ : S2 → S and η : IA → S such that

µ ◦ µS = µ ◦ Sµ : S3 → S, ηS ◦ η = Sη ◦ η : IA → S2, and µ ◦ ηS = µ ◦ Sη = 1S : S → S.
A cotriple (T, ψ, ǫ) on A consists of a functor T : A→ A together with natural transforma-

tions ψ : T → T 2 and ǫ : T → IA, such that ψT ◦ψ = Tψ◦ψ : T → T 3, ǫ◦ǫT = ǫ◦Tǫ : T 2 → IA,
and Tǫ ◦ ψ = ǫT ◦ ψ = 1T : T → T .

An adjoint pair F −−| G gives rise to a triple S := GF on C and a cotriple T := FG on D.
Let T be a cotriple on a category D. For each object X of D we construct a simplicial

set T•X as follows. Set (T•X)n = T n+1X and write TnX for (T•X)n. For j = 0, . . . , n, define
maps dj : TnX → Tn−1X by dj = T n−j(ǫT jX) and sj : TnX → Tn+1X by sj = T n−jψT jX . These
maps satisfy the simplicial identities, so T•X becomes a simplicial object in the category D
which comes with a natural augmentation ǫX : T0X → X. In particular, if D is an abelian
category, we get a chain complex (T•X, d) for each object X of D.
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Suppose now that the cotriple comes with a natural transformation η : ID → T having

the property that ǫ ◦ η = 1D. Set s−1 := T n+1η : Tn → Tn+1. Then s−1 forms a conical
contraction to X on T•X and in thus (T•X, d) ≃ X in this case, where X denotes the chain
complex consisting of X concentratred in degree 0. In particular, if the cotriple T arises from
an adjoint pair F −−| G, then on any object X = F (A) in the image of F , the composition
F ◦ αA : X = F (A)→ FGF (A) = T (X) gives a natural transformation η : IIm F → T |Im F , and
so (T•X, d) ≃ X wheneven X = F (A) for some A.

In the case where D is an abelian category we plan to use this process to produce projective
resolutions in D. Note that since the coadjoint F always preserves projectives, if G happens
to take values in projective objects of C, then (T•X, d) ≃ X will be a projective resolution
of H0(T•X, d) = H0(X) = X in the category D.

Remark 5.2.2 This section contains the motivation for attempts to generalize the key notions
of homological algebra, such as derived functors, to nonabelian categories. If T takes values
among D-projectives, one replaces the notion of projective resolution by the simplicial D-
object T•X. An interesting special case is where we wish to consider derived funtors of some
functor Q : D → E where E is an abelian category, but D is not. Although our analogue of
the projective resolution produces a simplicial set in the nonabelian category D, taking derived
functors of Q requires applying Q to the resolution which gives a simplicial object in the abelian
category E from which we get a chain complex in the standard sense.

Furthermore, even if T does not take values among projectives, we can define a “projective
class” (a collection of objects satisfying the lifting property with respect to a class of morphisms
satisfying certain axioms analogous to those satisfied by the collection of epimorphism) and
under suitable conditions the image of T might form a projective class in which case we can do
“relative homological algebra” relative to this projective class.
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Chapter 6

Group Homology and Cohomology

6.1 Representations

Let G be a group and let K be a commutative ring.
A (linear) representation of G consists of a K-module V and an action G×V 7→ V satisfying

g · (av + bw) = a g · v + b g · w ∀g ∈ G, a, b ∈ K, v, w ∈W.

Equivalently, a rep. is a group homomorphism G 7→ AutK(V ).
Another formulation: Define a ring K[G], called the group ring, as follows. As an abelian

group,
K[G] = {free K-module with basis G}.

Multiplication is determined by g · h = gh (the left defines multiplication in K[G]; the right
is multiplication in G). Then a rep. of G on V is a ring homomorphism K[G] 7→ EndK(V ).
This makes V a left K[G]-module.

Note that as rings,
K[G×H] = K[G]⊗Z K[H].

K[G] is commutative if and only if G is abelian.

Yet another formulation of represention:
To the group G we associate a category BG as follows. BG has only one object labelled ∗.

The set of morphisms BG(∗, ∗) is defined to be G with composition of morphisms given by
multiplication within G. (The explanation of the notation BG will appear in section 6.5.)

The preceding paragraph contains an alternative approach to the definition of a group.
That is, instead of defining a group as a set with a binary operation satisfying certain axioms, a
group can be defined as a category with one object in which every morphisms is an isomorphism.
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(More generally, a category in which every morphism is an isomorphism is called a groupoid.)
A representation of G corresponds to a functor BG→ K-modules.

The equivalence of the various approaches above can be summarized by saying that there
are equivalences of categories:

G-representations on K-vector-spaces ≃ K[G]-modules

≃ the category of functors from BG to K-modules.

Two extreme cases of group actions are as follows

1. Trivial action:

g · v = v for all g ∈ G and v ∈ V .

2. Free action:

g · v = v only if g is the identity e of G.

Let ρ be a representation of G on a K-module A. Define the invariant submodule AG of A
by AG := {a ∈ A | g · a = a for all g ∈ G and a ∈ A}. Define the coinvariant quotient AG

of A by AG := A/∼ where g · a ∼ a for all g ∈ G and a ∈ A. The association A 7→ AG is
a contravariant functor from K[G]-modules to K-modules, and the association A 7→ AG is a
covariant functor from K[G]-modules to K-modules.

Proposition 6.1.1 Let T : K-modules→ K[G]-modules be the “trivial module” functor which
associates to the module A the representation consisting of A with trivial G-action.

The invariant subgroup functor A 7→ AG is right adjoint to the trivial module functor.

The coinvariant quotient functor A 7→ AG is left adjoint to the trivial module functor.

Proof: Let A be a K[G]-module and let X be a K-module.

1. Given a K[G]-module map f : TX → A, since the action on TX is trivial, the image
of f lands in AG, so f can be regarded as an element of HomK(X,AG). Conversely, if

f ∈ HomK(X,AG), the composition X
f - AG →֒ A gives a corresponding element

of HomK[G](TX,A). These are inverse processes.

2. Given a K[G]-module map f : A → TX, the trivial action on TX forces f(g · a) = f(a)
for all a ∈ A and g ∈ G. This produces an induced map f̄ : AG → X such that f factors

as the composition A -- AG
f̄- TX. Conversely, given f̄ : AG → X, defining f as

the composition A -- AG
f̄- TX gives a corresponding element of HomK[G](A, TX).

These are inverse processes.
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It follows from the preceding proposition that A 7→ AG is a left exact functor and that
A 7→ AG is a right exact functor. We define Hn(G;A), the group homology of G with coefficients
in A, by setting Hn(G;A) to be the nth left derived funtor of A 7→ AG. We define Hn(G;A),
the group homology of G with coefficients in A, by setting Hn(G;A) to be the nth right derived
funtor of A 7→ AG.

Write simply K for the K[G]-module TK.

Proposition 6.1.2

1. AG
∼= K ⊗K[G] A

2. AG ∼= HomK[G](K,A)

Proof: The second statement is precisely the adjointness in the second statement of Proposi-
tion 6.1. The first follows from the first statement of Proposition 6.1 since it says that both
functors have the same left adjoint. (It is also trivial to check the statment directly from the
definitions.)

Corollary 6.1.3

1. H∗(G;A) ∼= TorK[G]
∗ (K,A).

2. H∗(G;A) ∼= Ext∗K[G](K,A).

The equations in this corollary are sometimes treated as the definitions of group homology
and cohomology.

The right and left exactness of A 7→ AG and A 7→ AG give H0(G;A) = AG and H0(G;A) =
AG.

The preceding Corollary tells us that H∗(G;A) and H∗(G;A) can be computed using a
projective K[G]-resolution of the trivial K[G]-module K. One way to get a projective K[G]-
resolution of the trivial K[G]-module K is to begin with a projective Z[G]-resolution of the
trivial Z[G]-module Z and apply the change of rings functor K ⊗Z ( ). This means that
the relationship between TorK[G]

∗ (K,A) and TorZ[G]
∗ (Z, A) is given by the universal coefficient

theorem, and ExtK[G]
∗ (K,A) is similarly related to ExtZ[G]

∗ (Z, A). Since this tells us how to
obtain the general case from the special case K = Z, for the rest of this chapter we will assume
that K = Z.
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Remark 6.1.4 The preceding should not be interpreted as saying that the coefficient ring K
plays no role in representation theory — this is far from true. For example, if G is a finite
group then the represenation theory in the case where the characteristic of K divides the order
of G looks significantly different, and cannot readily be obtained, from that in the case where
the characteristic of K does not divide the order of the group. If K is a field of characteristic 0,
then K[G] is a semisimple ring and the representation theory of finite groups in this case is well
understood. In characteristic p there are not as many tools, and, for example, there are many
basic problems concerning the representation theory of the symmetric group which were solved
long ago when the coefficient ring K is a field of characteristic zero but are major unsolved
problems when K is a field of characteristic p. Perhaps one way to look at this is that there is
a lot more to representation theory than the information contained in group (co)homology.

Proposition 6.1.5 Let φ : G → L be a group homomorphism and let A be a Z[L]-module.
Then TorZ[L]

∗ (Z[L]⊗Z[G] Z;A) ∼= H∗(G;A)

Proof: Since Z[L] is a free, thus flat, abelian group for any L, the result follows immediately
form 4.6.6.

6.2 G-bundles

To put the preceding section in perspective we discuss the topological approach to group ho-
mology and cohomology. The section is intended for intuition and motivation. The material
will be surveyed without proofs.

In this section, let K = Z and, to avoid confusion with the topological versions, we will
write Halg

∗ (G) and H∗
alg(G) for H∗(G; Z) and H∗(G; Z) as defined in the preceding section.

One might hope that to a group G we could associate some topological space X having
the property that H∗(X) = Halg

∗ (G) and H∗(X) = H∗
alg(G). The Eilenberg-Moore spectral

sequence suggests that X should have the property that ΩX ≃ G. Such a space X exists. It
is written BG and goes by the name of “the classifying space of G”. To see what it classifies,
we have to consider G-bundles. Since this discussion holds for any topological group, not just
those with the discrete topology, in this section we will let G denote an arbitrary topological
group.

A numerable cover of a topological space X is one which possesses a partition of unity.

Definition 6.2.1 Let B be a topological space with chosen basepoint ∗. A (locally trivial)
fibre bundle over B consists of a map p : E → B such that for all b ∈ B there exists an open
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neighbourhood U of b for which there is a homeomorphism φ : p−1(U)→ p−1(∗)×U satisfying
π′′ ◦ φ = p|U , where π′′ denotes projection onto the second factor. If there is a numerable open
cover of B by open sets with homeomorphisms as above then the bundle is said to be numerable.

For any spaces F and B, there is a product bundle π2 : F × B → B. A bundle which is
isomorphic to a such a product is called a trivial bundle.

Definition 6.2.2 Let G be a topological group and B a topological space. A principal G-
bundle over B consists of a fibre bundle p : E → B together with an action G × E → E such
that:

1) the “shearing map” G×E → E ×E given by (g, x) 7→ (x, g · x) maps G×E homeomor-
phically to its image;

2) B = E/G and p : E → E/G is the quotient map;

3) for all b ∈ B there exists an open neighbourhood U of b such that p : p−1(U) → U
is G-bundle isomorphic to the trivial bundle π′′ : G × U → U . That is, there exists a
homeomorphism φ : p−1(U)→ G× U satisfying p = π′′ ◦ φ and φ(g · x) = g · φ(x), where
g · (g′, u) = (gg′, u).

The shearing map is injective if and only if the action is free, so by condition (1), the action
of G on the total space of a principal bundle is always free. If G and E are compact, then
of course a free action suffices to satisfy condition (1). In general, a free action produces a
well defined “translation map” τ : Q → G, where Q = {(x, g · x) ∈ X × X} is the image of
the shearing function. Condition (1) is equivalent to requiring a free action with a continuous
translation function.

Given a bundle ξ = π : E → B and a map f : B′ → B, the map from the pullback (in the
category of topological spaces) of π and f to B′ forms a bundle over B′, denoted f ∗(ξ).

Theorem 6.2.3 Let G be a topological group and let ξ be a numerable principal G-bundle over
a space B. Suppose f ≃ h : B′ → B. Then f ∗(ξ) ∼= h∗(ξ).

Corollary 6.2.4 Any bundle over a contractible base is trivial.

Definition 6.2.5 A numerable principalG-bundle γ over a pointed space B̃ is called a universal
G-bundle if:

1) for any numerable principal G-bundle ξ there exists a map f : B → B̃ from the base
space B of ξ to the base space B̃ of γ such that ξ = f ∗(γ);
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2) whenever f , h are two pointed maps from some space B into the base space B̃ of γ such
that f ∗(γ) ∼= h∗(γ) then f ≃ h.

In other words, a numerable principal G-bundle γ with base space B̃ is a universal G-bundle if,
for any pointed space B, pullback induces a bijection from the homotopy classes of maps [B, B̃]
to isomorphism classes of numerable principal bundles over B. If p : E → B and p′ : E → B′

are both universal G-bundles for the same group G then the properties of universal bundles
produce maps φ : B → B′ and ψ : B′ → B such that ψ ◦ φ ≃ 1B and φ ◦ ψ = 1B′ . It follows
that the universal G-bundle (should it exist) is unique up to homotopy equivalence.

The first construction of universal G-bundle was given by Milnor, and is known as the Milnor
construction. We will later be describing a different construction of a universal G-bundle. It
will give a different topological space from Milnor as the base, but of course, they must be
homotopy equivalent, according to the preceding discussion.

Theorem 6.2.6

1. If EG→ EG/G is a universal G-bundle then EG must be a contractible space on which
G acts freely.

2. Let EG be a contractible space with a numerable cover and a free action of G. Then the
quotient map EG→ EG/G is a universal G-bundle.

That is, a principal bundle EG→ EG/G is a universal bundle if and only if G is contractible.

Theorem 6.2.7 (Milnor) For every topological group G, there exists a contractible space EG
with a numerable cover and a free action of G.

Given a universal bundle EG → EG/G, set BG := EG/G. According to the preceding
discussion this base space always exists and depends, up to homotopy equivalence, only on G
and not upon the choice of contractible total space EG. It is called the “classifying space” of
the group G since it classifies principal G-bundles in the sense of the following theorem:

Theorem 6.2.8 Given any topological group, there exists a classifying space BG, unique up
to homotopy equivalence, and a universal bundle EG → BG having the property that for any
space B, pullback sets up a bijection between [B,BG] and isomorphism classes of principal
G-bundles over B.

Henceforth we shall use the notation BG to denote any space which is the base space of
some universal G bundle, Thus BG denotes a homotopy type. Any particular topological space
which has the homotopy type BG could be called a model for the classifying space, but this
distinction will not usually be important to us.
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Proposition 6.2.9 ΩBG ≃ G

Theorem 6.2.10 In the case where G is a discrete group (i.e an object in the category of
groups to be treated as an object in the category of topological groups by assigning it the discrete
topology) H∗(BG) ∼= Halg

∗ (G) and H∗(BG) ∼= H∗
alg(G).

Note that there is a slight conflict in notation. In order to discuss BG we have to treat G
as a topological group even though its assigned topology is trivial. As a topological space, the
topological H∗(G) and H∗(G) already have a meaning, although they are 0 above degree 0 since
as a topological space, G is an isolated collection of points. Thus when one writes H∗(G) and
H∗(G), one generally means what we have been writing in this section as Halg

∗ (G) and H∗
alg(G),

since the other meaning of the notation is not a very interesting object to consider.
The preceding discussion makes sense for any topological group and in general BG can be

a complicated and interesting space. Returning the original case where G is a discrete group,
the resulting space BG becomes the Eilenberg-Mac Lane space K(G, 1) characterized by the
fact that it has a unique nonzero homotopy group consisting of G in degree 1.

Example 6.2.11

1. BZ = S1

2. B
(

Z/(2Z)
)

= RP∞

6.3 Homotopy Theory of Nerves of Categories

In this section we continue our motivational discussion (without proofs) by considering some
applications of the theory of fibrations to the nerves of categories.

One of the features of a fibre bundle p : X → B is that the “fibres”, Fb = p−1(b), are
homeomorphic for all points b in a common path component of B and one of its properties is
the long exact homotopy sequence:

Theorem 6.3.1 Let p : X → B be a fibre bundle with fibre F . Then there is a long exact
homotopy sequence

. . .→ πn+1(B)→ πn(F )→ πn(X)→ πn(B)→ πn−1(F )→ . . .

But from a homotopy viewpoint, having homeomorphic fibres and the rest of the rigid
structure of a fibre bundle is overkill. In homotopy theory it is more natural to generalize fibre
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bundles to “fibrations”. We will not go into the precise definition of fibration (see [?] for those
details) but merely state the relevant properties.

If p : X → B is a fibration then the fibres over different points need not be homeomorphic,
but they are homotopy equivalent so we have a well defined notion of the homotopy type F of
the fibre and we still have the exact sequence

. . .→ πn+1(B)→ πn(F )→ πn(X)→ πn(B)→ πn−1(F )→ . . . .

Theorem 6.3.2 (Hurewicz)
A fibre bundle is a fibration.

Theorem 6.3.3 Let f : X → Y be a map of pointed spaces which induces a surjective map on
path components. Then there exists a factorization f = pφ where φ : X → X ′ is a homotopy
equivalence and p : X ′ → Y is a fibration.

The fibre of p is called the “homotopy fibre” of f . As a homotopy type it is well defined in
the sense that not only is p−1(y) ≃ p−1(y′) for every y, y′ ∈ Y but any factorization f = φ̄ ◦ p̄
in which φ̄ : X → X̄ is a homotopy equivalence and p̄ : X̄ → Y is a fibration, yields the same
homotopy type p̄−1(y).

As in the case of kernels, strictly speaking the fibre is the inclusion map F →֒ E rather than
F itself. We sometimes write “F → E → B” is a fibration to mean that E → B is a fibration
whose fibre is F → E. Similarly the phrase “F → E → B” is a “homotopy fibration” will be
understood to mean that F → E is the homotopy fibre of E → B.

Theorem 6.3.4 (Quillen Theorem B)
Let G : C → D be a functor between small categories. Suppose that for every morphism

f : D → D′ in D the realization of the induced functor C//D → C//D′ between the comma

categories is a homotopy equivalence. Then F → |N C| | N G|- | N D| is a homotopy fibration,
where F := | N C//D| (which, up to homotopy equivalence, is independent of D).

Let C be a small category and let A : CX be a functor from C to an abelian category X.
Define a simplicial X object K(C;A) by

K(C;A)p :=
∐

C0→...→Cp∈N Cp

A(C0).

For j > 0, the boundary dj is defined as the map whose restriction to the summand indexed by
C0 → . . . → Cp maps to K(C,A)p−1 through the summand A(C0) indexed by dj(C0 → . . . →
Cp), while d0 is defined as the map whose restriction to the summand C0 → . . . → Cp maps
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A(C0) into the summand A(C1) indexed by C1 → . . . → Cp using the map A(C0 → C1). The
degeneracies sj is defined in a similar fashion, using the identity map A(C0)→ A(C0) entering
K(C,A)p+1 through the summand indexed by sj(C0 → . . . → Cp). We write H∗(C;A) for the

homology H∗

(

K(C,A), d
)

of the chain complex associated to this simplicial abelian group. In
the case where A is a constant functor A(C) = X for all C ∈ ObjC with A(f) = 1X for all
morphisms f , H∗(C;A) = H∗(BC;X), where, as before, BC := | N C| In general H∗(C;A) =
H∗(BC;X) represents the homology of a local (sometimes called “twisted”) coefficient system
on (BC;X).

Theorem 6.3.5
Hp(C;A) is the p the pth derived functor lim−→

C

p(A) of the colimit functor lim−→
C

A→ X.

The outline of the proof is as follows. Examination of the definitions shows that H0(C;A) =
lim−→
C

A. A short exact sequence A→ B → C of functors from C to X gives rise to a corresponding

short exact sequence of chain complexes yielding a long exact homology sequence

→ Hp(C;A)→ Hp(C;B)→ Hp(C;C)→ Hp−1(C;A)→ . . .→ H0(C;A)→ H0(C;B)

→ H0(C;C).

The general properties of derived functors yields a long exact homology sequence

→ lim−→
C

p(A)→ lim−→
C

p(B)→ lim−→
C

p(C)→ lim−→
C

p−1(A)→ . . . lim−→
C

0(A)→ lim−→
C

0(B)→ lim−→
C

0(C).

The key step is to show that if P : C → X is projective in the category of functors from C → X
then Hq(C;P ) = 0 for q > 0. Applying this to a projective presentation R → P → A of A
shows that

Hp(C,A) = Hp−1(C,R) =======
(induction)

lim−→
C

p−1(R) = lim−→
C

p(A).

6.4 (Co)Homology of a Pushout

Let

A
i - B

C

j

? h - G

f

?
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be a pushout in the category of groups. Then

Lemma 6.4.1

Z[G]⊗Z[A] IA
i∗- Z[G]⊗Z[B] IB

Z[G]⊗Z[C] IC

j∗

? h∗ - IG

f∗

?

is a pushout in the category of Z[G] modules, where i∗ denotes 1Z[G] ⊗ i, and j∗, f∗, h∗ are
defined similarly.

Proof: Let K be the two sided ideal in Z[G] generated by the ideals Im f∗ and Imh∗. The
intersection Im f∗ ∩ Imh∗ is Im(f ◦ i)∗ = Im(h ◦ j)∗. As in Example 1.2.6, K is the pushout of
the given diagram.

We show that the inclusion K ⊂ IG is an equality. Suppose g − 1 is a generator of IG.
Writing g as a word in Im f and Imh, we have g = wx where either x ∈ B′ := f(B) or
x ∈ C ′ := h(C), and w is a word with one fewer letter than g. For words y of length 1 in G,
either y − 1 ∈ Im f∗ or y − 1 ∈ Imh∗ so by induction we may assume that w − 1 ∈ K, and,
since x has length 1, we also have x− 1 ∈ K. Since x− 1 ∈ K we have w(x− 1) ∼= 0 modulo
K so g ∼= w modulo K, and thus g − 1 ∼= w − 1 ∼= 0 modulo K. Therefore every generator of
IG lies in K and so IG = K.

Let Q denote the cokernel of h∗, which since the diagram is a pushout, is isomorphic to the
cokernel of i∗. Applying Theorem 3.1.6 to the top row gives a long exact sequence for Tor∗( ),
and applying it to the bottom row gives a similar long exact Tor∗( ) sequence from the bottom
row. Since the terms coming from the cokernel are isomorphic, Algebraic Mayer-Vietoris gives
the long exact sequence

. . .→ TorZ[G]
n (Z[A]⊗Z[G] IA,Z)→ TorZ[G]

n (Z[G]⊗Z[B] IB,Z)⊕ TorZ[G]
n (Z[G]⊗Z[C] IC,Z)

→ TorZ[G]
n (IG,Z)→ Tor

Z[G]
n−1(Z[G]⊗Z[A] IA,Z)→ . . .

For any K, Proposition 6.1.5 gives TorZ[G]
n (Z[G]⊗Z[K] IK,Z) ∼= TorZ[K]

n (IK,Z) and the exact se-

quence of Z[K] modules 0→ IK → Z[K]→ Z→ 0 gives (by Theorem 3.1.6) TorZ[K]
n (IK,Z) ∼=

Tor
Z[K]
n+1 (Z,Z) = Hn+1(K). Thus our pushout of groups yields a long exact Mayer-Vietoris

sequence

. . .→ Hq(A)→ Hq(B)⊕Hq(C)→ Hq(G)→ Hq−1(A)→
. . .→ H1(A)→ H1(B)⊕H1(C)→ H1(G)
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6.5 Bar Construction

Let G be a group and let BG be the associated category (one object ∗ with morphisms given
by G). Let EG denote the category of objects over ∗, which is the same as the comma category
1BG//∗ associated to the identity functor 1BG. Then | N EG| is contractible, since EG has the
terminal object 1∗ : ∗ → ∗.

Every comma category comes with a forgetful functor C//D → C. Write P : EG → BG
for this forgetful functor (which drops the target ∗).

In BG, a composition of length n is simply a sequence of n elements of the group G.

Thus N BG is the simplicial set in which (N BG)n = Gn with boundary dj

(

(gn, . . . , g1)
)

=
(g1, . . . , gjgj−1, . . . , g1) given by multiplying adjacent elements for 1 ≤ j ≤ n − 1, while d0

and dn drop the end elements. For 1 ≤ j ≤ n − 1, the degeneracy sj inserts the identity
between gj and gj+1 while s0 and sn insert it at the ends. Similarly (N EG)n = Gn+1 where

dj

(

(gn, . . . , g1, g0)
)

and sj

(

(gn, . . . , g1, g0)
)

are given by acting on (gn . . . , g1) as above, and P
drops g0. The group G acts on N EG by g · (gn, . . . , g1, g0) := (gn, . . . , g1, gg0) and it is clear
that this action of G is a free action. Since the boundaries and degeneracy operate on the
leftmost n elements, this action commutes with them (whereas acting with g on each compo-
nent would not) giving N EG the structure of a simplicial G-set. In the quotient (N EG)/G,
(gn, . . . , g1, g0) ∼ (gn, . . . , g1, e). Comparing this with N BG shows that we have a simplicial
isomorphism Θ : (N EG)/G ∼= N BG such that the composition N EG -- (N EG)/G ∼=
N BG

Θ- is N P . Since | N EG| is a contractible G-space on which G acts freely, we see

that |BG|
∼=

Θ
- |(N EG)/G| ≃ BG, justifying our notation.

Let R be a ring. (We will be applying the discussion below to the ring Z[G].) There is a
canonical ring homomorphism η : Z → R. Define the “extended module functor” E : AB →
R-modules by E(M) := R⊗ZM (as in the Change of Rings section). If J : R−modules→ AB
is the forgetful functor, then HomR

(

(E(M), N
) ∼= HomAB

(

M,J(N)
)

. That is E −−| J . As
in section 5.2 the adjunction produces a simplicial R-module T•N for each abelian group N .
Since the left adjoint E always preserves projectives (and in this case takes free modules to free
modules), if N is a free abelian group then (T•N)n will be a projective (in fact free) R-module
for all n, and the chain complex (T•N, d) will be a complex of R-projectives. Also, if we start
with an R-module X and let N = J(X), then as in Section 5.2, (T•N, d) will have a conical
contraction to X. Thus, if we begin with an R-module X whose underlying abelian group is
a free abelian group then (T•X, d) forms a projective resolution of X as an R-module. This is
called the bar resolution of X.

Remark 6.5.1 Eilenberg and Mac Lane found it faster to write ‘a|b’ than ‘a ⊗ b’ which was
the origin of the name “bar resolution”.
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An augmentation of a ring R is a ring homomorphism ǫ : R → Z such that ǫ ◦ η = 1Z. In
the case of Z[G], an augmentation is given by ǫ(

∑

nigi) :=
∑

ni.
For an augmented ring we can define a “reduced bar construction” as follows.
Let R be a ring with augmentation ǫ : R→ Z. Set IR := ker ǫ, known as the “augmentation

ideal”. Let X be an R-module and let B∗X be the resolution of X described above. Then
(T•)X = R⊗(n+1) ⊗X with differentials given by

dj(rn ⊗ · · · ⊗ aj+1 ⊗ aj ⊗ aj−1 ⊗ · · · ⊗ r0 ⊗ x) = rn ⊗ · · · ⊗ rj+1 ⊗ rjrj−1 ⊗ · · · ⊗ r0 ⊗ x)

for j > 0 and
d0(rn ⊗ · · · ⊗ r0 ⊗ x) = ǫ(r0)(rn ⊗ · · · ⊗ a1 ⊗ x).

IR is an ideal in R, so the subspace (IR)• defined by (IR)n := R ⊗ (J)⊗n (with R-module
structure given by acting on the left factor) forms an R-free subcomplex of T•X. Since

(dj+1 − dj)(rn ⊗ · · · ⊗ rj+1 ⊗ 1⊗ rj−1 ⊗ · · · ⊗ r0 ⊗ x) = 0

for j < n, the projection R⊗(1−ǫ)⊗· · ·⊗(1−ǫ) : R⊗(n+1)⊗X → R⊗(IR)⊗n⊗X is a chain map.
Thus ((IR)•X, d) is a retract (as a chain complex) of the acyclic chain complex (T•X, d). In
particular Hq

(

((IR)•X, d)
)

= 0 for q > 0. Since it is easy to check that H0

(

((IR)•X, d)
)

= X
the complex ((IR)•X, d) is a projective R-module resolution of X. It is called the “reduced bar
complex” of X.

Let G be a group. Consider the special case where R = Z[G] and X is the trivial Z[G]-
module Z. Then (ZT•Z, d) and ((IZ[G])•X, d) form projective resolutions of Z as a Z[G]-module
and is thus are suitable for computing H∗(G) and H∗(G). Explicitly, the bar resolution in
degree n looks like Z[G]⊗(n+1) ⊗ Z which is same as Z[G]⊗(n+1). The reduced bar resolution in
degree looks like Z[G]⊗ I⊗(n) in degree n, where I denotes the augmentation ideal.

6.6 Interpretations of H1( ), H1( ), H2( ), H2( )

Let ǫ : ZG→ Z be the augmentation and write IG := ker ǫ for the augmentation ideal.

Proposition 6.6.1 IG is the free abelian group on {g − 1 | g ∈ G}

Proof: It is clear that as an abelian group, Z[G] is the free Z-module on G. Suppose x =
∑

nigi ∈ IG, where
∑

ni = 0. Then x =
∑

nigi −
∑

ni = 0 =
∑

ni(gi − 1) showing that
{g − 1 | g ∈ G} generates IG. Conversely, if

∑

ni(gi − 1) = 0 in IG regarding this as an
equation in the free group Z[G] gives ni = 0 for all i.

95



Let A be a Z[G]-module.
Since Torn

Z[G](Z[G], A) = 0 for n > 0, from the short exact sequence of Z[G] modules

0→ IG
i- Z[G]→ Z→ 0 we get

Proposition 6.6.2

1. Hn(G;A) ∼= Tor
Z[G]
n−1(IG;A) for n > 1

2. there is a long exact sequence

0→ H1(G;A) = TorZ[G](Z, A)→ IG⊗ZG A
i∗- ZG⊗ZG A = A→ Z⊗ZG A→ 0

and so H1(G;A) = ker(i∗ : IG⊗ZGA
i∗- A) where i∗ is given by i∗

(

(g−1)⊗a
)

= ga−a.

In general there does not seem to any useful reinterpretation of the second part of this
proposition, but in the special case where A has trivial G-action we can say more. Thus
suppose that A has trivial G-action. Then ga = a and so i∗ = 0. This gives

H1(G;A) ∼= IG⊗Z[G] A =
(

IG/(IG)2
)

⊗ A

Lemma 6.6.3 IG/(IG)2 ∼= Gab where Gab denotes the “abelianization of G, defined the quo-
tient G/[G,G] of G by its commutator subgroup.

Proof: IG is the free abelian group on {g−1 | g ∈ G}. Define φ : IG→ Gab by φ(g−1) := [g].
Notice that

φ
(

(x− 1)(y − 1)
)

= φ(xy − x− y + 1) = φ
(

(xy − 1)− (x− 1)− (y − 1)
)

= φ(xy − 1)− φ(x− 1)− φ(y − 1) = [xy][x−1][y−1] = [xyx−1y−1] = [e]

Thus the restriction of φ to (IG)2 is trivial so there is an induced morphism φ̄ : IG/(IG)2 → Gab

of abelian groups. Conversely, the map ψ : G → IG/(IG)2 given by ψ(g) := [g − 1] restricts
trivially to Gab by the same calculation so it induces a homomorphism ψ̄ : Gab → IG/(IG)2.
It is clear that φ̄ and ψ̄ are inverses.

Summarizing the precding we have:

Proposition 6.6.4 Let A be a trivial G-module. Then H1(G;A) ∼= Gab ⊗ A.
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This result is familiar from topology. Recall that in the case of trivial action, H1(G; Z) =
HT opologicalSpaces

1 (BG) and that BG is the Eilenberg-Mac Lane space K(G, 1). According to the

Hurewicz Theorem H1

(

K(G, 1)
)

=
(

π1

(

K(G, 1)
)

)

ab
= Gab

We now look at H1(G;A).

Again using 0→ IG
i- Z[G]→ Z we get the exact sequence

0→ H0(G;A) - HomZG(ZG,A)
i∗- HomZG(IG,A)→ H1(G,A)→ 0.

Thus H1(G,A) ∼= coker i∗ :
(

A→ HomZG(IG,A)
)

.
Set Der(G,A) := {f : G→ A | f(gh) = f(g) + g · f(h)}. An element of Der(G,A) is called

a “crossed homomorphism”. The intuition behind the notation is that if A is made into a G-
bimodule by giving it a trivial right action of G, then elements of Der(G,A) are “derivations”
(satisfy the Leibniz rule).

Lemma 6.6.5 HomZG(IG,A)
) ∼= Der(G.A)

Proof: Given f ∈ HomZG(IG,A)
)

define f̄ : G → A by f̄(g) := f(g − 1). Then f̄(gh) =
f(gh− 1) = f

(

(g(h− 1)+ (g− 1)
)

= g · f(h− 1)+ f(g− 1) = g · f̄ + f̄(g) so f̄ lies in Der(G,A).
Conversely, given f̄ ∈ Der(G,A) define f : IG → A by f(g − 1) := f̄(g). The same

calculation shows that f is a Z[G]-module homomorphism so lies in HomZG(IG,A)
)

. It is clear
that f 7→ f̄ and f̄ 7→ f are inverse operations.

Under the identification HomZG(IG,A)
) ∼= Der(G.A) the map i∗ : A → HomZG(IG,A)

corresponds to the one taking a to the “derivation” fa where fa(g) = (g−1)a, called the “inner
derivation” corresponding to A. Thus setting I Der(G,A) = {inner derivations} we get

Proposition 6.6.6 H1(G,A) ∼= Der(G,A)/I Der(G.A)

In the case where A has trivial G-action, an element of Der(G,A) becomes simply a group
homomorphism G → A and I Der(G,A) becomes the trivial subgroup. Since A is an abelian
group, a group homomorphism G→ A corresponds to a homomorphism from Gab to A. Thus
in the case of trivial G-action we get H1(G;A) = Hom(Gab, A) = Hom

(

H1(G), A
)

which is a
special case of the universal coefficient theorem.

Lemma 6.6.7 Let φ : B -- C be a surjective group homomorphism with kernel A. Then

1. Z⊗Z[A] ⊗Z[B] ∼= Z[C] as right Z[B]-modules.

2. TorZ[A]
n (Z, X) ∼= TorZ[B]

n (Z[C], X) for any left Z[B]-module X.
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Proof:

1. As an abelian group, Z⊗Z[A] Z[B] is free on the set of right cosets B/A which is C.

2. Let P∗ be a Z[B]-projective resolution of X. Then P∗ is also a Z[A]-projective resolution
of X and Z⊗Z[A] P∗

∼= Z⊗Z[A] Z[B]⊗Z[B] P∗
∼= Z[C]⊗Z[B] P∗

Proposition 6.6.8 Let φ : B → C be a group homomorphism with kernel A. Then

1. Conjugation induces an action of C on Aab.

2. There is an induced short exact sequence 0 → Aab → ZC ⊗Z[B] IB → IC → 0 of Z[C]-
modules.

Proof:

1. Given c ∈ C and [a] ∈ Aab define c · [a] := [bab−1] ∈ Aab, where b ∈ φ−1(c) ⊂ B. If b′ also
satisfies φ(b′) = b then b′ = bā for some ā ∈ A. Write a1 := bab−1 and a2 := b′āb′−1 in A.
Then b′ab′−1 = bāaā−1b−1 = a2a1a

−1
2 which is congruent to a1 modulo [A,A]. Thus c · [a]

is well defined and it is easy to see that it is a group action.

2. Applying ZC ⊗Z[B] ( ) to the short exact sequence 0 → IB → Z[B] → Z → 0 yields the
exact sequence

0→ Tor
Z[B]
1 (Z[C]⊗Z[B] Z,Z)→ Z[C]⊗Z[B] IB → Z[C]⊗Z[B] Z[B]→ Z[C]⊗Z[B] Z→ 0

of Z[B]-modules. We have Z[C]⊗Z[B]Z[B] ∼= Z[C] and since B → C is onto, Z[C]⊗Z[B] Z ∼=
Z. The map Z[C] ⊗Z[B] Z[B] → Z[C] ⊗Z[B] Z → 0 corresponds to the augmentation

Z[C]→ Z under these isomorphisms. Since Aab
∼= Tor

Z[A]
1 (Z,Z) ∼= Tor

Z[B]
1 (Z[C]⊗Z[B]Z,Z)

using Lemma 6.6.7, the result follows.

Theorem 6.6.9 Let φ : B -- C be a surjective group homomorphism with kernel A. Let X
be a left Z[C]-module. Then there is an exact sequence

H2(B,X)→ H2(C,X)→ Aab ⊗Z[C] X → H1(B,X)→ H1(C,X)→ 0
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Proof: Applying ( ) ⊗Z[C] X to the second part of the preceding proposition gives the exact
sequence

Tor
Z[C]
1 (Z[C]⊗Z[B] IB,X)→ Tor

Z[C]
1 (IC,X)→ Aab ⊗Z[C] X → IB ⊗Z[B] X → IC ⊗Z[C] X → 0.

(6.1)
Let P -- X be a projective Z[C] presentation with kernel M .
Naturality gives a commutative diagram with exact rows

Tor
Z[B]
1 (IB, P ) - Tor

Z[B]
1 (IB,X) - IB ⊗Z[B] M - IB ⊗Z[B] P

Tor
Z[C]
1 (Z[C]⊗Z[B] IB, P )

?
- Tor

Z[C]
1 (Z[C]⊗Z[B] IB,X)

?
- IB ⊗Z[B] M

w

w

w

w

w

w

w

w

w

- IB ⊗Z[B] P

w

w

w

w

w

w

w

w

w

in which the top row is the Tor-sequence obtained by applying IB ⊗Z[B] ( ) to the short exact
sequence 0 → M → P → X → 0 (thought of as a short exact sequence of Z[B]-modules
via the ring homomorphism Z[B] → Z[C]) and the bottom is the one obtained by applying
(Z[C]⊗Z[B] IB)⊗Z[C] ( ) to the same sequence. The map

Tor
Z[B]
1 (IB,X)→ Tor

Z[C]
1 (Z[C]⊗Z[B] IB,X)

in the diagram is a lift of the canonical map Tor
Z[B]
1 (IB,X) → Tor

Z[C]
1 (IB,X) snd since

Tor
Z[C]
1 (Z[C] ⊗Z[B] IB, P ) = 0 (as P is Z[C]-projective) diagram chasing shows that it is sur-

jective. That is, Im
(

Tor
Z[C]
1 (Z[C]⊗Z[B] IB,X)→ Tor

Z[C]
1 (IB,X)

)

equals Im
(

Tor
Z[B]
1 (IB,X)→

Tor
Z[C]
1 (IB,X)

)

. Thus making the subsitutions Equation 6.1 Tor
Z[B]
1 (IB,X) ∼= H2(B,X) and

Tor
Z[C]
1 (IC,X) ∼= H2(C,X) gives the exact sequence

H2(B,X)→ H2(C,X)→ Aab ⊗Z[C] X → IB ⊗Z[B] X → IC ⊗Z[C] X → 0
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Diagram-chasing in

0 0

H1(B;X)
?

- H1(C;X)
?

IB ⊗Z[B] X
?

- IC ⊗Z[C] X
?

- 0

B
?
===========B

?

shows thatH1(B;X)→ H1(C;X) is onto and that its kernel is the same as the kernel of IB⊗Z[B]

X → IC ⊗Z[C] X.

We now consider the special case where X := Z as a trivial Z[C]-module.

Proposition 6.6.10 Let φ : B → C be a group homomorphism with kernel A. Then the group
Aab ⊗Z[C] Z is isomorphic to A/[B,A].

Proof: Recall that the (right) action of Z[C] on Aab is given by [a] · c := [b−1ab] where
φ(b) = c. Thus Aab ⊗Z[C] Z is the same as Aab/ ∼ where [a] ∼ [a] · c = [b−1ab]. Define
θ : Aab → A/[B,A] by θ([a]) := [a]. If φ(b) = c then θ([a · c]) = θ(b−1ab) = [b−1ab] which is
congruent to θ([a]) = a modulo the commutator b−1aba−1. Therefore θ induces a well defined
map θ̄ : Aab⊗Z[C]Z→ A/[B,A]. Conversely, let q : A→ Aab⊗Z[C]Z ∼= A/∼ be the quotient map.
Since q(aba−1b−1) = q(a) there is a well-defined induced map q̄ : A/[B,A] → Aab ⊗ Z[C]Z ∼=
A/∼. It is clear that θ̄ and q̄ are inverse isomorphisms.

Corollary 6.6.11 (Hopf)
Let F -- G be a free presentation of a group G and let R be its kernel. Then H2(G) ∼=

R ∩
(

[F, F ]/[F,R]
)

.

Proof: Applying the preceding theorem with X := Z gives

H1(G) ∼= ker(R/[F,R]→ F/[F, F ]) = R ∩
(

[F, F ]/[F,R]
)
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The cohomology version of Theorem 6.6.9 is

Theorem 6.6.12 Let φ : B → C be a group homomorphism with kernel A. Let X be a left
Z[C]-module. Then there is an exact sequence

0→ H1(C;X)→ H1(B;X)→ HomZ[C](Aab, X)→ H2(C;X)→ H2(B;X)

Proof: Applying HomZ[C]( , X) to the second part of Proposition 6.6.8 gives the exact sequence

0→ HomZ[C](IC,X)→ HomZ[B](IB,X)→ HomZ[C](Aab, X)→ ExtZ[C](IC,X)

→ ExtZ[C](Z[C]⊗Z[B] IB,X)

Let P -- X be a presentation with kernel M .
Naturality gives the commutative diagram with exact rows

HomZ[B](IB, P ) - HomZ[B](IB,M) - Ext1
Z[B](IB,X) - Ext1

Z[B](IB, P )

HomZ[B](IB, P )

w

w

w

w

w

w

w

w

w

- HomZ[B](IB,M)

w

w

w

w

w

w

w

w

w

- Ext1
Z[C](Z[C]⊗Z[B] IB,X)

?
- Ext1

Z[C](Z[C]⊗Z[B] IB, P )
?

in which Ext1
Z[B](IB, P ) = 0. The map Ext1

Z[B](IB,X) → Ext1
Z[C](Z[C] ⊗Z[B] IB,X) in the

diagram extends to the canonical map Ext1
Z[B](IB,X)→ Ext1

Z[C](IB,X) and diagram-chasing
shows that is injective. This gives the exact sequence

0→ HomZ[C](IC,X)→ HomZ[B](IB,X)→ HomZ[C](Aab, X)→ H2(C,X)→ H2(B;X)

in which we have made the substitutions Ext1
Z[B](IB,X) ∼= H2(B,X) and Ext1

Z[C](IC,X) ∼=
H2(C,X).
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Diagram-chasing in

B ============B

0 - Hom(IC,X)
?

- Hom(IB,X)
?

H1(C;X)
?

- H1(B;X)
?

0
?

0
?

shows that H1(C;X)→ H1(B;X) is injective and that its cokernel is the same as the cokernel
of Hom(IC,X)→ Hom(IB,X) giving the desired sequence.

If X and Y are groups, a sequence of group homomorphism Y → Z -- X in which
Z → X is surjective with kernel Y → Z is called an “extension” of X by Y . We will write
Y > - Z -- X for an extension.

Let G be a group and let A be abelian. Then, any extension of A > - E
β-- G gives rise

to an action of G by A by g · a := xax−1 where x ∈ E satisfies β(x) = g. Conversely, given
an action of G on an abelian group A, we wish to determine the possible extensions of G by A
which give rise to this action.

Write (A > - E -- G) ∼ (A > - E ′ -- G) if there exist an isomorphism φ : E → E ′

such that

A > - E -- G

A

w

w

w

w

w

w

w

w

w

w

> - E ′

φ

?
-- G

w

w

w

w

w

w

w

w

w

w

Observe that if (A > - E -- G) ∼ (A > - E ′ -- G) then the action of G on A coming
from A > - E -- G agrees with that coming from A > - E ′ -- G. Let M(G,A) denote
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the set of equivalences classes of extension of G by A under this relation which yield to the
given action of G on A. We will construct a bijection from M(G,A) to H2(G,A).

Let A > - E -- G be an extension of G by A which yields the given action of G on A.
By Theorem 6.6.12 in the special case X := A, there is an exact sequence

0→ H1(G;A)→ H1(E;A)→ HomZ[G](A,A)
δ- H2(G;A)→ H2(E;A).

If (A > - E -- G) ∼ (A > - E ′ -- G) then naturality gives a commuting diagram showing
that the element δ(1A) is independent of the choice of representative for the equivalence class
containing (A > - E -- G). That δ(1A) induces a well defined θ : M→ H2(G;A).

Theorem 6.6.13 θ : M→ H2(G;A) is a bijection.

Proof: We first show that θ is onto. Let q : F -- G be any free presentation of G with
kernel j : R→ F . Theorem 6.6.12 gives an exact sequence

H1(F,A)→ HomZ[G](Rab, A)→ H2(G;A) - 0.

Given an element of H2(G;A), choose a pre-image in ᾱ ∈ HomZ[G](Rab, A) and let α be the

composite R -- Rab
ᾱ- A.

Composing the auction map G → Aut(A) with q gives an action of F on A. We write af

for f · a, noting that (ax)y = ayx. Let V be the semidirect product V := A⋊F .
Set U :=

{(

α(r), r−1
)

| r ∈ R
}

⊂ V .
Claim: U is a normal subgroup of V .
Proof of Claim:

The restriction to R of the action on A is defined as the composition R ⊂ - F -- G→
Aut(A) which is trivial. Therefore, writing ’+’ for the group operation in the abelian group A,
we have

(

α(r1), r
−1
1

)

+
(

α(r2), r
−1
2

)

=
(

α(r1) + α(r2), r
−1
1 r−1

2

)

=
(

α(r2r1), (r2r1)
−1
)

∈ U and
(

α(r), r−1
)−1

=
(

α(r−1), r
)

∈ U and so U is a subgroup of V .
Let (a, f) ∈ V and

(

α(r), r−1
)

∈ U . Write r′ := rf ∈ R. Then

(a, f)
(

α(r), r−1
)

(a, f)−1 =
(

a+ α(r)f , fr−1
)(

(−a)f−1

, f−1
)

=
(

a+ α(r)f +
(

(−a)f−1)fr−1

, fr−1f−1
)

=
(

a+ α(r)f + (−a)(r′)−1

, (r′)−1
)

=
(

a+ α(r)f − a, (r′)−1
)

=
(

α(r′), (r′)−1
)
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which belongs to U . Thus U is a normal subgroup of V completing the proof of the claim.

Set E := V/U . We have an inclusion A ⊂ - E given by a 7→ [(a, 1)]. The map p : V → G
given by (a, f) 7→ q(f) restricts trivially to E and so induces p̄ : E → G whose kernel is A.
Thus we have produced an extension A > - E -- G of G by A. Define φ : F → E by
φ(f) = [(0, f)]. The restriction of φ to kernels is α : R→ A creating a diagram

R > - F
q -- G

A

α

?
> - E

φ

? p̄ -- G

w

w

w

w

w

w

w

w

w

w

Naturality of Theorem 6.6.12 then gives a diagram

H1(E,A) - HomZ[G](A,A) - H2(G;A) - H2(E,A)

H1(F,A)
?

- HomZ[G](Rab, A)

ᾱ∗

?
- H2(G;A)

w

w

w

w

w

w

w

w

w

- 0
?

which, by definition of ᾱ, shows that our chosen element of H2(G,A) lies in the image of θ.

We next show that θ is injective. Suppose that (A >
i- E

p-- G) and (A >
i′- E ′ p′-- G)

are extensions whose equivalence classes in M have the same image under θ. Let F be a free
group on E ∐ E ′. Let f : F → E and f ′ : F → E ′ be the canonical maps, and let q : F → G
be the map whose restrictions to E and E ′ are p and p′ respectively. Let R be the kernel of q.
Then we have a diagram

R >
j - F

q -- G

A

f̄

?

.................
>

i - E

f

?? p̄ -- G

w

w

w

w

w

w

w

w

w

w

and a similar diagram for f ′. The induced maps f̄ and f̄ ′ on kernels are surjective.
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By naturality we have diagram

H1(E;A) - HomZ[G](A,A)
δ- H2(G;A) - H2(E,A)

H1(F ;A)
? j∗- HomZ[G](Rab, A)

f̄ ∗

? δ̂- H2(G;A)

w

w

w

w

w

w

w

w

w

- 0
?

and a similar diagram for the other extension. The images of the extension under θ is defined
as δ(1), so the commutativity of the diagram says that δ̂

(

f̄ ∗(1)
)

= δ̂
(

f̄ ′∗(1)
)

. Thus there exists

d ∈ H1(F ;A) = Der(F,A) such that j∗(d) = f̄ ∗(1)− f̄ ′∗(1). That is, we have a crossed homo-
morphism d : F → A such that dj = f̄ − f̄ ′. Define f ′′ : F → E ′ by f ′′(x) :=

(

i′d(x)
)(

f ′(x)
)

.
Note that the equation dj = f̄ − f̄ ′ implies that the restriction of f ′′ to R equals the restriction
of f to R.

We wish to check that f ′′ is a homomorphism. Writing ag for the action of G on A and for
its induced action on F (via q), for x, y ∈ F we have

f ′′(xy) = i′d(xy) f ′(xy) = i′(dx+ (dy)x) f ′(x) f ′(y) = i′(dx) i′
(

(dy)x)
)

f ′(x) f ′(y)

The action of G on A (which, by definition of “extension” is the same for both extensions) is
defined by conjugation with preimages under p′. Thus, using p̄′f = q gives

i′
(

(dy)x)
)

= f ′(x) i′dy
(

f ′(x)
)−1

.

Therefore

f ′′(xy) = i′(dx) f ′(x) i′dy
(

f ′(x)
)−1

f ′(x) f ′(y) = i′(dx) f ′(x) i′dy f ′(y) = f ′′(x)f ′′(y)

The definition of f ′′ implies that the f ′′(x) differs from f ′(x) by multiplication by an element
of A = ker p̄ so the map G→ G induced on cokernels by f ′′ is the same as that induced by f ′,
namely the identity. Since 1G is surjective and the restriction of f ′′ to the kernels is f̄ ′ which
is surjective, it follows by diagram-chasing (non-abelian Snake Lemma) that f ′′ is surjective.

For e ∈ E, choose x ∈ F such that f(x) = e and set Φ(e) := f ′′(x) ∈ E ′. If y also satisfies
f(y) = e then q(x−1y) = pf(x−1y) = 1 ∈ G and so there exists r ∈ R such that j(r) = x−1y.
Then if̄(r) = fj(r) = e−1e = 1E which implies that f̄(r) = 1A, since i is an injection. Since, as
above f ′′j = if̄ = fj, we get f ′′j(r) = 1E′ which implies that f ′′(x) = f ′′(y), and so Φ : E → E ′

is well defined. Given a ∈ A, choose s ∈ R such that f̄(s) = a. Then computing Φ(ia) using
the lift js of ia shows that the restriction of Φ to A is the identity. Also, as above, the map on
cokernels induced by f ′′ is 1G and so the map of cokernels induced by Φ is 1G. Thus Φ shows

that (A >
i- E

p-- G) ∼ (A >
i′- E ′ p′-- G). Hence θ is injective.
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6.7 Ext and extensions

In this section we discuss a relationship between Extn and extensions (explaining the name)
analogous to the interpretation of H2(G;A) in the preceding section. This material is not
specifically about group cohomology but is presented in this chapter because of the analogy
with the previous section.

An exact sequence of the form 0 → B → En → En−1 → . . . → E1 → A → 0 is called
an n-extension of A by B. Let ∼ be the equivalence relation generated by (0 → B → En →
En−1 → . . .→ E1 → A→ 0 ∼ (0→ B → E ′

n → E ′
n−1 → . . . → E1 → A→ 0) if there exists a

diagram

0 - B - En
- En−1

- . . . - E1
- A - 0

0 - B

w

w

w

w

w

w

w

w

w

w

- E ′
n

?
- E ′

n−1

?
- . . . - E ′

1

?
- A

w

w

w

w

w

w

w

w

w

w

- 0

(Unlike the case n = 1 where the equalities at the ends force the middle arrow to be an
isomorphism, in general this relation would not be symmetric if we had not extended it by
taking the equivalence relation it generated.) Let En(A,B) be the set of equivlances classes of
extensions of A by B under this equivalence relation.

A map α : A′ → A induces a map En(A′, B) → En(A,B) as follows. Let E ′
1 be the

pullback of A′ → A and E1 → A. Then ker(E ′
1 → A′) ∼= ker(E → A) and so we have a map

E2 → ker(E ′
1 → A′) > - E ′

1 which makes E2 → E ′
1 → A and E3 → E2 → E ′

1 exact. Define

α∗
(

[0→ B → En → En−1 → . . .→ E1 → A]
)

:= [0→ B → En → En−1 → . . .→ E ′
1 → A′]

Check that α∗ is well defined (exercise) and E(A,B) is a contravariant functor in the first
variable. Similarly, given β : B → B′, use pushout to define E ′

n to get a map

β∗
(

[0→ B → En → En−1 → . . .→ E1 → A]
)

::= [0→ B → E ′
n → En−1 → . . .→ E1 → A]

)

turning E(A,B) into a covariant functor in the second variable.

Theorem 6.7.1 En(A,B) ∼= Extn(A,B)

Proof: Define Θ : En(A, b)→ Extn(A,B) as follows.
Set Kn := ker(Pn−1 → Pn−2 > - Pn−1. Then Proposition 3.1.8 yields an exact sequence

Hom(Pn−1, B)→ Hom(Kn, B)
τ- Extn(A,B)→ 0
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Let P∗ be a projective resolution of A. Let [0 → B → En → En−1 → . . . → E1 → A]
belong to En(A,B). Set D∗ =→ 0 → . . . 0 - B → En → En−1 → . . . → E1. Then D∗ is
acyclic with H0(D∗) = A. By Theorem 3.1.3 there exists a chain map φ : P∗ → D∗ inducing
the identity on H0(P∗) = H0(D∗) = A. That is, we have a commutative diagram

Pn+1
- Pn

- Pn−1
- Pn−2

- . . . - P0
- A - 0

0 - B

φn

?
- En

φn−1

?
- En−1

φn−1

?
- . . . - E1

φ0

?
- A

w

w

w

w

w

w

w

w

w

w

- 0

By exactness, we have an induced map η : Pn
-- Kn and φn factors as φn = φη wghere

φ : Kn → B.
Define Θ([0→ B → En → En−1 → . . .→ E1 → A]) := τ(φ). Check that Θ is well defined.

(Exercise)
Conversely given an element x ∈ Extn(B,A) pick φ : Kn → B such that x = τ(φ). Let E

be the pushout of φ with i : Kn > - Pn−1. The induced map E -- Kn−1 : ker(Pn−2 →
Pn−3 makes 0 → B → E → Pn−2 → Pn−3 exact, where E → Pn−2 is the compositive
E -- Kn−1 > - Pn−2. Define

Ψ(x) := [B → E → Pn−2 → Pn−3 → . . .→ P0 → A]

Check that Ψ : Extn(A,B)→ En(A,B) is a well defined inverse to Θ.

6.8 (Co)Homology of cyclic groups

Let G = Z/(nZ). Then Z[G] ∼= Z[t]/(tn − 1) where t is a generator of G. Set N := 1 + t+ t2 +
. . .+ tn−1. Then tN = 0 in Z[G].

. . .Z[G]
N- Z[G]

1−t- Z[G]→ . . .
N- Z[G]

1−t- Z[G]
N- Z[G]

1−t- Z[G] (6.2)

forms a projective resolution of Z as a Z[G] module. Applying Z⊗Z[G] ( ) to the sequence 6.2
gives

. . .Z
n- Z

0- Z→ . . .
n- Z

0- Z
n- Z

0- Z.

Taking homology gives

Hq

(

Z/(nZ)
)

=











Z if q = 0

Z/(nZ) if q is odd

0 if q is even and q > 0
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Similarly, applying Applying HomZ[G]( ,Z) to the sequence 6.2 gives

Z
0- Z

n- Z
0- Z→ . . .

n- Z
0- Z

n- Z
0- Z→ . . . .

and so taking cohomology gives

Hq
(

Z/(nZ)
)

=











Z if q = 0

0 if q is odd

Z/(nZ) if q is even and q > 0

Alternatively, the cohomology result could be derived from the homology result by means of
the Universal Coefficient Theorem.

In the special case n = 2, geometrically this result corresponds to the fact that the Eilenberg-
Mac Lane space K(Z/(2Z), 1) is the projective space RP∞.

Next consider the case where G is the infinite cyclic group Z. Then Z[G] = Z[t]

0→ . . .→ 0→ Z[G]
1−t- Z[G] (6.3)

forms a projective resolution of Z as a Z[G] module. Applying Z⊗Z[G] ( ) to the sequence 6.2
gives

0→ . . .→ 0→ Z
0- Z

and then taking homology gives

Hq(Z) ∼= Z

{

Z if q = 0 of q = 1

0 otherwise

Similarly, or by means of the Universal Coefficient Theorem, we compute

Hq(Z) ∼= Z

{

Z if q = 0 of q = 1

0 otherwise

Geometrically this corresponds to the statement that the Eilenberg-Mac Lane space K(Z, 1)
is S1.
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