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Abstract

Recently, there has been some interest in autonomous dae¢guch as compact
closed categories) in which the objects are self-dual,érstinse thatt =~ A*, or even
A = A*, for all objectsA. In this talk, we investigate which coherence conditions
should be required of such a category. We also investigatd gtaphical language
could be used to reason about such a category.

1 Introduction

1.1 Self-duality

Itis well-known that each finite dimensional vector spads isomorphic, but not naturally
isomorphic, to its dual spac&*. Moreover, ifA is an inner product space, then there exists
a natural bijection betweesf andA*, but (in the case of complex inner product spaces) it is
skew linear instead of linear, and therefore aghemdA* are not naturally isomorphic. On
the other hand, there are autonomous categories (such eastdgory of finite dimensional
real inner product spaces, or the category of finite setseations) that are equipped with
a naturally arising family of isomorphismé = A*.

It therefore makes sense to study autonomous categortes ghequipped with a family
of isomorphisms 4 : A — A*. Such a family may either arise naturally from the category
itself, or it might be imposed by arbitrary choice as an dadddl structure. In any case,
it makes sense to ask which coherence conditions, if anyistraorphisms:4 should
satisfy. It also makes sense to considestict version in whichA = A*, and to ask
whether any coherence conditions should be imposed. #imalight of the fact that there
are sound and complete graphical languages for variousmdf autonomous categories
[6], it makes sense to ask whether there is a sound and cargigphical language for
autonomous categories with the additional structurd ef A*.

A similar structure of self-duality was recently describadthe more general context
of involutive monoidal categories, by Egger [1].
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1.2 Self-duality without coherence

There are two possible approaches to coherence. The fisstartt with an autonomous
(for example, compact closed) category, and to equip eaetioh with a chosen isomor-
phismh, : A — A*, without requiring any naturality or coherence conditiall. In

this approach, each object is equipped with a chosen “selfitgt structure”, which is in-
dependent of any other object. It is akin, for example, taggjng each finite dimensional
vector space with an arbitrarily and independently chosesisb In this case, the structure
chosen on, sayl ® B or A* does not need to bear any relationship to the structure ohose
on A or B. There is an obvious sound and complete graphical languageely the usual
language of autonomous categories, extended with basg&sbox

A A
ha

and their inverses, satisfying no special laws.

The strict version of this notion is to require= A* for all objects without any coher-
ence. Equivalently, for each objedt one requires a unijy : I — A ® A and a counit
€4 : A® A — I, satisfying the usual two laws for an exact pairing, i.e.,

AL oA A AT oA A
» le@idA » \LidA ®e (1.1)

) )

with no additional conditions imposed. Note that, in theeaiz® of coherence conditions,
it is not possible to write

(8w at
A A

in the graphical language, because the graphical languagklwhen validate additional
laws (think of the graphical representationpfg 5, for example). So even in the strict
case, the only available graphical language (which is tbend and complete) is the same
as in the non-strict case, i.e.,

A
A A

In particular, even in the strict formulation there is nosea to expect any particular
equations to hold between morphisms. For example, in theepee of a symmetric
monoidal structure (or more generally, a pivotal strugtutieere is a canonical isomor-
phismis : A — A**, usually depicted as the identity in the graphical langudgethe
setting of strict self-duality without coherence, we of smihaved = A**; however, there
is no reason to expect the canonical map: A — A** to be equal to the identity ofl.
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Indeed, in the graphical language, the mapvill then have to be depicted as

which is not a diagram for the identity morphism.

1.3 Self-duality with coherence

In light of the above, it seems reasonable to require thedsedfity isomorphisms 4 :
A — A* to satisfy some coherence axioms. Preferably the coheatoms should be
chosen in such a way that (a) they are valid in relevant exasnpind (b) there is a good
graphical language.

Note that the assumptioh = A* is not as benign as it might first appear. For example,
because an isomorphisfd ® B)* = B* @ A* is present in any autonomous category, we
obtain a derived isomorphism

h51®h;1
_

Ao B %% (Ag By = B* g A* B® A. (1.3)

If the original category was assumed to be symmetric momh@danore generally, braided
monoidal), one would certainly want to require (1.3) to beado the symmetry (or braid-
ing). And even if the underlying category was not assumess@ss a braiding (or sym-
metry), the self-duality assumption forces a braiding upswia (1.3).

The morphism (1.3) also has implications for the graphmaguage. The isomorphism
(A® B)* = B* @ A* is usually represented in the graphical language like amtitygand
in planar autonomous categories this is the only possibdécel Therefore, because of
(1.3), itis not possible to represent : X — X* as an identity in the graphical language
for an arbitrary object ternX . As the caseX = A ® B shows, the map x should instead
be represented as a half-twist:

A R (1.4)

The morphism (1.3) then becomes:

A B A B
Also note that, ifhy : A — A* is represented in the graphical language as a half-twist,
then the morphism

00 = A lar, g Pa, y (1.5)
is represented as a full twist ofi*:

This indicates that an autonomous category with self-ustiould at minimum be tortile
(and possibly compact closed if the braiding is a symme®y)n other words, the minimal
autonomous structure on which it makes sense to requird-dwsality is that of a tortile
category.
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2 Background

We recall some well-known definitions from the theory of minlab categories [4].

Definition (Braided monoidal category). A braidingon a monoidal category is a natural
family of isomorphisms 4 5 : A ® B — B ® A, satisfying the two “hexagon axioms”:

(idp ® cac)oap.aco(cap®ide) =ap,c.ao(caBsc)oaan.c,
(idp @ coly) o apaco(cply ®ide) = apcac(cppea) o aane.
A monoidal category that is equipped with a braiding is ahdibraided monoidal category

Definition (Balanced monoidal category).Recall that @wiston a braided monoidal cat-
egory is a natural family of isomorphismMg : A — A, satisfyingd; = id; and such the
following commutes for al, B:

A®BgB®A (2.1)

0A®B\L \LQB(@GA

A®BEB®A

A balanced monoidal category a braided monoidal category with twist.

Definition (Right autonomous category). Recall that aright dual for an objectA4 in a
monoidal category is given byB, 7, €), whereB is an object, andy : ] — B ® A and
e: A® B — I are morphisms, such that the following two adjunction tgi@s commute:

ida ®n nRidp

A—=A®B®A B—>B®AR®B
o . 2.2
PN e 22)
A, B.

The maps) ande determine each other uniquely, and moreover, the tipley, €), if
it exists, is uniquely determined b¥ up to isomorphism. A monoidal categoryright
autonomous every objectA has a right dual, which we then dendt&*, 14, €4).

In the graphical language [6, 3, 2], these structures amesepted as follows:

Braiding cap = x , Twist 04 = [_sx 7,
A A
Dual n4 = <§ , €4 = .
A A

In each case (braided, balanced, or right autonomous) ihareoherence theorem stating
that an equation follows from the respective axioms if anly dtit holds in the graphical
language.

When combining a balanced structure with an autonomoustate; an additional ax-
iom is required that relates them. In the presence of thisraxtoherence holds for the
combined graphical language.
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Definition (Tortile category). A tortile categoryis a balanced monoidal category which
is also right autonomous and satisfies

04 = (04)".

A compact closed catego}y] is a special case of a tortile category satisfyfihg= id 4
for all A (and therefores p = cg}A). Equivalently, acompact closed categof] is a
right autonomous symmetric monoidal category.

3 Self-duality structure on tortile categories

We will state the coherence axioms for the self-duality isgohismsh 4 : A — A* in
two different ways. The first formulation, given in this deat assumes that the underlying
category is tortile (or compact closed, which is a speciaékaThe coherence axioms then
relate the self-duality structure to the tortile structu®ng the lines of (1.3) and (1.5) in
the introduction. In the next section, we will give an eqlevea set of axioms assuming
only right autonomous structure.

Definition. Let C be a tortile category. Aelf-duality structureon C is given by a family
of morphismsh4 : A — A*, one for each object, satisfying the following five axioms
(forall A andB):

(T1) h4 is anisomorphism.

(T2) WYy ohae =04 : A* — A*. Equivalently:h - o b = e 1 A** — A**,

A A~
% o)
= i E— —
(T3) hagp = A® B 24818, gx g g 24057, Br g A+ =, (A ® B)*, where the last
isomorphism is the canonical one from the autonomous streict

B ] A B hg[— A
hA®B * = \ "
A — B A Clha =~ B

(T4) hy: I =, I* is the canonical isomorphism from the autonomous structure

_ . o _ o .
(T5) hy = A X A* —2 A* whereiy : A — A** is the canonical isomorphism
arising from the pivotal structure, i.e.,

I
Cate A®

. , N d .
in= AL, 4O g o g A A @ A@ A* 1994, g

In the graphical language of braided autonomous categdhissaxiom is equivalent

to:
A Al
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Remark 3.1. The above axioms are sound for the graphical language, whesreepre-
sented by a half-twist as in (1.4).

Theorem 3.2. Let¢ : A — B be any of the canonical isomorphism arising from the tortile
structure. By this, we mean isomorphisms that are represeby identities in the usual
graphical language,i.eq, A\, p, (A®@ B)* 2 B*®@ A*, ] = T*,0ris : A — A**, but not
for example or ¢. Then the following commutes:

A B
hA\L \LhB
A* =— B*.

Conjecture 3.3 (Coherence).An equation follows from the axioms of tortile categories
with self-duality structure if and only if it holds in the grhical language, wheré 4 is
represented as a half-twist as in (1.4).

The axioms have some interesting structure, captured ifotlegving discussion.

Theorem 3.4. Assuming axioms (T1)—(T4). If axiom (T5) holds for someatbjé and B,
then axiom (T5) also holds fot*, A ® B, andI. Therefore, it suffices to check (T5) for a
set of generators of the objects©f

Remark 3.5. In case the objects oFf are generated freely, axioms (T2)—(T4) can be used
as definitions ofh 4+, hagp, andhy, respectively. It therefore suffices, in this case, to
define the isomorphisnis, : A — A* for object generators, in some arbitrary way subject
only to axiom (T5). The definition then extends to all objedts (T2)—(T4), and gives a
self-duality structure o€ by Theorem 3.4.

Theorem 3.6. Axiom (T1) is a consequence of (T2) and (T5). The remainifanexare
independent.

Proof. Consider some non-trivial tortile category where the ofsjeze (without loss of
generality) generated freely from a set of generators aadperationsA*, A ® B, and
1. In light of Remark 3.5, it is clearly possible to defihg on the generators in some
arbitrary way so that axiom (T5) is violated, then extenditatl objects using axioms
(T2)—(T4). In this case, axioms (T1)—(T4) are valid and (&5hot. On the other hand,
defineh 4 on generators to satisfy (T5), and then extend the definitidactively to all
objects, but modifying the definition of exactly one/of-, hagp, or by by multiplying
by an additional scalar (for example, usihg- = ¢ - (h%) "' o 64+, whereg is a non-
trivial scalar). It is easy to see that the extra scalar do¢gwalidate (T5). So in this case,
exactly one of the axioms (T2)—(T4) fails, while the remagaxioms are valid. Finally,
to see that (T2) and (T5) imply (T1), note th&f is a split epi by (T2), henck, is a split
mono. Since 4 is an isomorphism, it follows from (T5) that; is mono, hence iso, hence
h 4 isiso as well. O

Remark 3.7. Notice that axiom (T5) in particular implies that

Ala, g B g (3.1)
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is a monoidal natural transformation (because it is equal tevhich is a monoidal natural
transformation in any tortile category). As a matter of falcone assumes that (3.1) is a
natural transformation, then the fact that it is monoidedadly follows from axioms (T1)—
(T4). However, this is not quite strong enough to imply ti#al ] is equal ta 4, i.e., axiom
(T5).

Example 3.8 (Natural examples).The compact closed category of finite dimensional real
inner product spaces possesses a self-duality, whereA — A* is given as the adjoint
of the inner producl ® A — I. The compact closed category of finite sets and relations
possesses a self-duality, whete= A* andh 4 : A — A* is given by the identity relation.

Example 3.9 (Unnatural example). The compact closed category of finite dimensional
complex inner product spaces (i.e., finite dimensionalétilspaces) can be equipped with
a self-duality, but not in a canonical way. First, rename dbgects (up to equivalence
of categories) so that they are freely generated. Then ehth@sstructure according to
Remark 3.5.

Example 3.10. From any tortile categorZ>, we can construct another categddywith
self-duality. Let the objects aD be pairs(A4, h), where A is an object ofC andh :

A — A* is an isomorphism oC satisfying axiom (T5). A morphism froni4, ) to
(B,R) is just a morphism fromd to B in C. Define(A,h) ® (B,h') = (A® B,h"),

(A, h)* = (A*,n"), and(I, ") in the unique way so that the axioms are satisfied, with
the tortile structure inherited frol®@. Note that the construction is non-canonical, in the
sense that each objedtof C generates potentially many non-isomorphic objéetsh, ),

(A, hg), ..., ofD.

4 Self-duality structure on right autonomous categories

We remarked in the introduction that a self-duality strueton a right autonomous category
already yields isomorphismsy p : A® B — B® Aandf,- : A* — A* asin (1.3)
and (1.5), which can be used as the basis for a tortile steictOf course, one still has
to require special axioms to ensure that the resulting strads indeed tortile, and that
the self-duality and tortile structures are compatiblehia $ense of Section 3. The result
is an alternate axiomatization of self-duality structursing only the language of right
autonomous categories.

Definition. Let C be a right autonomous category.salf-duality structureon C is given

by a family of morphism#.4 : A — A*, one for each objectl, satisfying the following
eight axioms (for allA, B, C, f, andg). For convenience, we express some axioms
in the graphical language of right autonomous categoridscfwis legitimate due to the
coherence theorem for right autonomous categories). Videnalte

fi=Alialop e g
(A1) hy is anisomorphism.

(A2) hy: 1 =, I* is the canonical isomorphism from the autonomous structure
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(A3) (f*)r = (fy)"

(A4) The following commutes, where the vertical isomorphésare the canonical ones
from the autonomous structure:

(4w B) L2 4 g By

| ., !

(A5) o = (o)~ ', wherea : (A®B)®C — A®(B®C) is the associativity isomorphism
from the monoidal structure. Equivalently, s sec) is €qual toh g p)ec Modulo
associativity.

(A6)

c— e | A c e I A
B Mo ooy @ e B = B | WeC 5"
A o™ A | 'AzB 18— |Mpac c

(A7)

A***
*kkk * *% *kk *kkk

h Kk
A A® A = AR ARA EAT mA

We remark the following. First,—); is a covariant functor whose object partis)*.
Secondh,4 : A — A* is a natural transformation with respectitdy definition:hpo f =
fs o ha. We also havév 4~ = (ha);. Axiom (A4) is equivalent to the following, which is
a componentwise naturality férag '

Note that this naturality implies

h
" h
— ] "

and therefore with (A6),

1
=
=

|

— (4.2)

)

We define

-1 h has Iy !
CAB = L 04 = A =2 AF =25 A" 5 A 25 A
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Thency, s satisfies the two hexagon axioms by (A6), (A5), and (4.2)ingi\a braided
structure. Similarly, one must verify th&y defines a balanced structure and that the
remaining axioms are satisfied.

Theorem 4.1. A self-duality structure on a right autonomous categorydgea tortile
structure satisfying the axioms of Section 3. Conversely, self-duality structure on a
tortile category satisfies the axioms of Section 4. The twistroctions are mutually in-
verse, establishing a one-to-one correspondence betvaréle tcategories with a self-
duality structure (in the sense of Section 3) and autonomategories with a self-duality
structure (in the sense of Section 4).

Remark 4.2. The property (4.2) is a version of the Yang-Baxter equat@rbfaids. The
axiom (A7) is a version of yanking.

Remark 4.3. Axiom (A5) states that the associativity map satisfies thed@d@n of The-
orem 3.2. The corresponding properties for the other mag$iebrem 3.2 follows from
the remaining axioms. Most of them follow from axiom (A7) acaherence for braided
autonomous categories.

Remark 4.4. A useful consequence of (A7) and (A4) f$* = fy;. Equivalently,A La,
A* 2%, 4+ is a natural transformation.

Remark 4.5 (Induced dagger structure). As the presence of the functpr ), suggests, a
self-duality structure on a right autonomous (or tortilecompact closed) category induces
a dagger structure: namely, fér: A — B, definef? : B — A to be the unique morphism
for (f*); = f*. Then the properties of Theorem 3.2 mean precisely thataherical
isomorphisms mentioned there angitary with respect to the induced dagger structure.

However, the induced dagger structure is not usually the one thatailis the ex-
ample categories. In particular, fgr: I — I, we always have® = f, whereas for the
“natural” dagger (say arising from linear adjoints in finitiemensional Hilbert spaces) we
have thatf is the complex conjugate ¢f Therefore, in finite dimensional Hilbert spaces,
equipped by brute force with a self-duality structure asxarbples 3.9 or 3.10, the induced
dagger structure is never the canonical one.

Moreover, ifC is tortile with self-duality, then the induced dagger stare (—)* is not
a dagger tortile structure. Namely, we hdvg 5)* = cp 4 and(04)* = 64, whereas a
dagger tortile category should satigiys 5)" = ¢;'5 and(64)" = 6", In other words,
ca,p and @4 fail to be unitary with respect to the induced dagger stmectuFor these
reasons, we refrain from using the usual notatiei for these unnatural dagger structures.

On the other hand, in “natural” examples of self-dualitygcts@asreal inner product
spaces, the induced dagger does coincide with the usuatdagg

5 Strict self-duality

Recall that every self-duality structurey : A — A* on a right autonomous category
induces a strict autonomous structure

ﬁA:[—>A®A, €A AQRA— I,
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namely viaria = (hAT1 ®ida)ona andés = e o (ida ® h4) (as displayed graphically in
(1.2). Itis therefore an obvious idea to axiomatize the-datlity directly in terms of such
N4 andéy, rather than passing via a pre-existing autonomous steietod isomorphisms
h 4. This question will be addressed in the full version of thiicke.

6 Conclusions

We have proposed a set of coherence conditions for autonooadegories in whichl =
A*. We have given two equivalent formulations of the cohererewlitions. All the listed
conditions are sound for an obvious graphical language aaadatisfied in relevant ex-
amples. We conjecture that the conditions are also compBate area where self-duality
arises is in the study of categories with chosen Frobengebah structures on each object.
It remains to be seen how the coherence conditions disciesedcan be generalized to
Frobenius algebras.
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